1*2fe8fb19SBen Gras /* $NetBSD: n_cabs.c,v 1.5 2003/08/07 16:44:50 agc Exp $ */
2*2fe8fb19SBen Gras /*
3*2fe8fb19SBen Gras * Copyright (c) 1985, 1993
4*2fe8fb19SBen Gras * The Regents of the University of California. All rights reserved.
5*2fe8fb19SBen Gras *
6*2fe8fb19SBen Gras * Redistribution and use in source and binary forms, with or without
7*2fe8fb19SBen Gras * modification, are permitted provided that the following conditions
8*2fe8fb19SBen Gras * are met:
9*2fe8fb19SBen Gras * 1. Redistributions of source code must retain the above copyright
10*2fe8fb19SBen Gras * notice, this list of conditions and the following disclaimer.
11*2fe8fb19SBen Gras * 2. Redistributions in binary form must reproduce the above copyright
12*2fe8fb19SBen Gras * notice, this list of conditions and the following disclaimer in the
13*2fe8fb19SBen Gras * documentation and/or other materials provided with the distribution.
14*2fe8fb19SBen Gras * 3. Neither the name of the University nor the names of its contributors
15*2fe8fb19SBen Gras * may be used to endorse or promote products derived from this software
16*2fe8fb19SBen Gras * without specific prior written permission.
17*2fe8fb19SBen Gras *
18*2fe8fb19SBen Gras * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19*2fe8fb19SBen Gras * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20*2fe8fb19SBen Gras * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21*2fe8fb19SBen Gras * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22*2fe8fb19SBen Gras * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23*2fe8fb19SBen Gras * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24*2fe8fb19SBen Gras * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25*2fe8fb19SBen Gras * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26*2fe8fb19SBen Gras * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27*2fe8fb19SBen Gras * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28*2fe8fb19SBen Gras * SUCH DAMAGE.
29*2fe8fb19SBen Gras */
30*2fe8fb19SBen Gras
31*2fe8fb19SBen Gras #ifndef lint
32*2fe8fb19SBen Gras static char sccsid[] = "@(#)cabs.c 8.1 (Berkeley) 6/4/93";
33*2fe8fb19SBen Gras #endif /* not lint */
34*2fe8fb19SBen Gras
35*2fe8fb19SBen Gras /* HYPOT(X,Y)
36*2fe8fb19SBen Gras * RETURN THE SQUARE ROOT OF X^2 + Y^2 WHERE Z=X+iY
37*2fe8fb19SBen Gras * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
38*2fe8fb19SBen Gras * CODED IN C BY K.C. NG, 11/28/84;
39*2fe8fb19SBen Gras * REVISED BY K.C. NG, 7/12/85.
40*2fe8fb19SBen Gras *
41*2fe8fb19SBen Gras * Required system supported functions :
42*2fe8fb19SBen Gras * copysign(x,y)
43*2fe8fb19SBen Gras * finite(x)
44*2fe8fb19SBen Gras * scalb(x,N)
45*2fe8fb19SBen Gras * sqrt(x)
46*2fe8fb19SBen Gras *
47*2fe8fb19SBen Gras * Method :
48*2fe8fb19SBen Gras * 1. replace x by |x| and y by |y|, and swap x and
49*2fe8fb19SBen Gras * y if y > x (hence x is never smaller than y).
50*2fe8fb19SBen Gras * 2. Hypot(x,y) is computed by:
51*2fe8fb19SBen Gras * Case I, x/y > 2
52*2fe8fb19SBen Gras *
53*2fe8fb19SBen Gras * y
54*2fe8fb19SBen Gras * hypot = x + -----------------------------
55*2fe8fb19SBen Gras * 2
56*2fe8fb19SBen Gras * sqrt ( 1 + [x/y] ) + x/y
57*2fe8fb19SBen Gras *
58*2fe8fb19SBen Gras * Case II, x/y <= 2
59*2fe8fb19SBen Gras * y
60*2fe8fb19SBen Gras * hypot = x + --------------------------------------------------
61*2fe8fb19SBen Gras * 2
62*2fe8fb19SBen Gras * [x/y] - 2
63*2fe8fb19SBen Gras * (sqrt(2)+1) + (x-y)/y + -----------------------------
64*2fe8fb19SBen Gras * 2
65*2fe8fb19SBen Gras * sqrt ( 1 + [x/y] ) + sqrt(2)
66*2fe8fb19SBen Gras *
67*2fe8fb19SBen Gras *
68*2fe8fb19SBen Gras *
69*2fe8fb19SBen Gras * Special cases:
70*2fe8fb19SBen Gras * hypot(x,y) is INF if x or y is +INF or -INF; else
71*2fe8fb19SBen Gras * hypot(x,y) is NAN if x or y is NAN.
72*2fe8fb19SBen Gras *
73*2fe8fb19SBen Gras * Accuracy:
74*2fe8fb19SBen Gras * hypot(x,y) returns the sqrt(x^2+y^2) with error less than 1 ulps (units
75*2fe8fb19SBen Gras * in the last place). See Kahan's "Interval Arithmetic Options in the
76*2fe8fb19SBen Gras * Proposed IEEE Floating Point Arithmetic Standard", Interval Mathematics
77*2fe8fb19SBen Gras * 1980, Edited by Karl L.E. Nickel, pp 99-128. (A faster but less accurate
78*2fe8fb19SBen Gras * code follows in comments.) In a test run with 500,000 random arguments
79*2fe8fb19SBen Gras * on a VAX, the maximum observed error was .959 ulps.
80*2fe8fb19SBen Gras *
81*2fe8fb19SBen Gras * Constants:
82*2fe8fb19SBen Gras * The hexadecimal values are the intended ones for the following constants.
83*2fe8fb19SBen Gras * The decimal values may be used, provided that the compiler will convert
84*2fe8fb19SBen Gras * from decimal to binary accurately enough to produce the hexadecimal values
85*2fe8fb19SBen Gras * shown.
86*2fe8fb19SBen Gras */
87*2fe8fb19SBen Gras #define _LIBM_STATIC
88*2fe8fb19SBen Gras #include "mathimpl.h"
89*2fe8fb19SBen Gras
90*2fe8fb19SBen Gras vc(r2p1hi, 2.4142135623730950345E0 ,8279,411a,ef32,99fc, 2, .9A827999FCEF32)
91*2fe8fb19SBen Gras vc(r2p1lo, 1.4349369327986523769E-17 ,597d,2484,754b,89b3, -55, .84597D89B3754B)
92*2fe8fb19SBen Gras vc(sqrt2, 1.4142135623730950622E0 ,04f3,40b5,de65,33f9, 1, .B504F333F9DE65)
93*2fe8fb19SBen Gras
94*2fe8fb19SBen Gras ic(r2p1hi, 2.4142135623730949234E0 , 1, 1.3504F333F9DE6)
95*2fe8fb19SBen Gras ic(r2p1lo, 1.2537167179050217666E-16 , -53, 1.21165F626CDD5)
96*2fe8fb19SBen Gras ic(sqrt2, 1.4142135623730951455E0 , 0, 1.6A09E667F3BCD)
97*2fe8fb19SBen Gras
98*2fe8fb19SBen Gras #ifdef vccast
99*2fe8fb19SBen Gras #define r2p1hi vccast(r2p1hi)
100*2fe8fb19SBen Gras #define r2p1lo vccast(r2p1lo)
101*2fe8fb19SBen Gras #define sqrt2 vccast(sqrt2)
102*2fe8fb19SBen Gras #endif
103*2fe8fb19SBen Gras
104*2fe8fb19SBen Gras double
hypot(double x,double y)105*2fe8fb19SBen Gras hypot(double x, double y)
106*2fe8fb19SBen Gras {
107*2fe8fb19SBen Gras static const double zero=0, one=1,
108*2fe8fb19SBen Gras small=1.0E-18; /* fl(1+small)==1 */
109*2fe8fb19SBen Gras static const ibig=30; /* fl(1+2**(2*ibig))==1 */
110*2fe8fb19SBen Gras double t,r;
111*2fe8fb19SBen Gras int exp;
112*2fe8fb19SBen Gras
113*2fe8fb19SBen Gras if(finite(x))
114*2fe8fb19SBen Gras if(finite(y))
115*2fe8fb19SBen Gras {
116*2fe8fb19SBen Gras x=copysign(x,one);
117*2fe8fb19SBen Gras y=copysign(y,one);
118*2fe8fb19SBen Gras if(y > x)
119*2fe8fb19SBen Gras { t=x; x=y; y=t; }
120*2fe8fb19SBen Gras if(x == zero) return(zero);
121*2fe8fb19SBen Gras if(y == zero) return(x);
122*2fe8fb19SBen Gras exp= logb(x);
123*2fe8fb19SBen Gras if(exp-(int)logb(y) > ibig )
124*2fe8fb19SBen Gras /* raise inexact flag and return |x| */
125*2fe8fb19SBen Gras { one+small; return(x); }
126*2fe8fb19SBen Gras
127*2fe8fb19SBen Gras /* start computing sqrt(x^2 + y^2) */
128*2fe8fb19SBen Gras r=x-y;
129*2fe8fb19SBen Gras if(r>y) { /* x/y > 2 */
130*2fe8fb19SBen Gras r=x/y;
131*2fe8fb19SBen Gras r=r+sqrt(one+r*r); }
132*2fe8fb19SBen Gras else { /* 1 <= x/y <= 2 */
133*2fe8fb19SBen Gras r/=y; t=r*(r+2.0);
134*2fe8fb19SBen Gras r+=t/(sqrt2+sqrt(2.0+t));
135*2fe8fb19SBen Gras r+=r2p1lo; r+=r2p1hi; }
136*2fe8fb19SBen Gras
137*2fe8fb19SBen Gras r=y/r;
138*2fe8fb19SBen Gras return(x+r);
139*2fe8fb19SBen Gras
140*2fe8fb19SBen Gras }
141*2fe8fb19SBen Gras
142*2fe8fb19SBen Gras else if(y==y) /* y is +-INF */
143*2fe8fb19SBen Gras return(copysign(y,one));
144*2fe8fb19SBen Gras else
145*2fe8fb19SBen Gras return(y); /* y is NaN and x is finite */
146*2fe8fb19SBen Gras
147*2fe8fb19SBen Gras else if(x==x) /* x is +-INF */
148*2fe8fb19SBen Gras return (copysign(x,one));
149*2fe8fb19SBen Gras else if(finite(y))
150*2fe8fb19SBen Gras return(x); /* x is NaN, y is finite */
151*2fe8fb19SBen Gras #if !defined(__vax__)&&!defined(tahoe)
152*2fe8fb19SBen Gras else if(y!=y) return(y); /* x and y is NaN */
153*2fe8fb19SBen Gras #endif /* !defined(__vax__)&&!defined(tahoe) */
154*2fe8fb19SBen Gras else return(copysign(y,one)); /* y is INF */
155*2fe8fb19SBen Gras }
156*2fe8fb19SBen Gras
157*2fe8fb19SBen Gras /* CABS(Z)
158*2fe8fb19SBen Gras * RETURN THE ABSOLUTE VALUE OF THE COMPLEX NUMBER Z = X + iY
159*2fe8fb19SBen Gras * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
160*2fe8fb19SBen Gras * CODED IN C BY K.C. NG, 11/28/84.
161*2fe8fb19SBen Gras * REVISED BY K.C. NG, 7/12/85.
162*2fe8fb19SBen Gras *
163*2fe8fb19SBen Gras * Required kernel function :
164*2fe8fb19SBen Gras * hypot(x,y)
165*2fe8fb19SBen Gras *
166*2fe8fb19SBen Gras * Method :
167*2fe8fb19SBen Gras * cabs(z) = hypot(x,y) .
168*2fe8fb19SBen Gras */
169*2fe8fb19SBen Gras
170*2fe8fb19SBen Gras struct complex { double x, y; };
171*2fe8fb19SBen Gras
172*2fe8fb19SBen Gras double
cabs(z)173*2fe8fb19SBen Gras cabs(z)
174*2fe8fb19SBen Gras struct complex z;
175*2fe8fb19SBen Gras {
176*2fe8fb19SBen Gras return hypot(z.x,z.y);
177*2fe8fb19SBen Gras }
178*2fe8fb19SBen Gras
179*2fe8fb19SBen Gras double
z_abs(z)180*2fe8fb19SBen Gras z_abs(z)
181*2fe8fb19SBen Gras struct complex *z;
182*2fe8fb19SBen Gras {
183*2fe8fb19SBen Gras return hypot(z->x,z->y);
184*2fe8fb19SBen Gras }
185*2fe8fb19SBen Gras
186*2fe8fb19SBen Gras /* A faster but less accurate version of cabs(x,y) */
187*2fe8fb19SBen Gras #if 0
188*2fe8fb19SBen Gras double hypot(x,y)
189*2fe8fb19SBen Gras double x, y;
190*2fe8fb19SBen Gras {
191*2fe8fb19SBen Gras static const double zero=0, one=1;
192*2fe8fb19SBen Gras small=1.0E-18; /* fl(1+small)==1 */
193*2fe8fb19SBen Gras static const ibig=30; /* fl(1+2**(2*ibig))==1 */
194*2fe8fb19SBen Gras double temp;
195*2fe8fb19SBen Gras int exp;
196*2fe8fb19SBen Gras
197*2fe8fb19SBen Gras if(finite(x))
198*2fe8fb19SBen Gras if(finite(y))
199*2fe8fb19SBen Gras {
200*2fe8fb19SBen Gras x=copysign(x,one);
201*2fe8fb19SBen Gras y=copysign(y,one);
202*2fe8fb19SBen Gras if(y > x)
203*2fe8fb19SBen Gras { temp=x; x=y; y=temp; }
204*2fe8fb19SBen Gras if(x == zero) return(zero);
205*2fe8fb19SBen Gras if(y == zero) return(x);
206*2fe8fb19SBen Gras exp= logb(x);
207*2fe8fb19SBen Gras x=scalb(x,-exp);
208*2fe8fb19SBen Gras if(exp-(int)logb(y) > ibig )
209*2fe8fb19SBen Gras /* raise inexact flag and return |x| */
210*2fe8fb19SBen Gras { one+small; return(scalb(x,exp)); }
211*2fe8fb19SBen Gras else y=scalb(y,-exp);
212*2fe8fb19SBen Gras return(scalb(sqrt(x*x+y*y),exp));
213*2fe8fb19SBen Gras }
214*2fe8fb19SBen Gras
215*2fe8fb19SBen Gras else if(y==y) /* y is +-INF */
216*2fe8fb19SBen Gras return(copysign(y,one));
217*2fe8fb19SBen Gras else
218*2fe8fb19SBen Gras return(y); /* y is NaN and x is finite */
219*2fe8fb19SBen Gras
220*2fe8fb19SBen Gras else if(x==x) /* x is +-INF */
221*2fe8fb19SBen Gras return (copysign(x,one));
222*2fe8fb19SBen Gras else if(finite(y))
223*2fe8fb19SBen Gras return(x); /* x is NaN, y is finite */
224*2fe8fb19SBen Gras else if(y!=y) return(y); /* x and y is NaN */
225*2fe8fb19SBen Gras else return(copysign(y,one)); /* y is INF */
226*2fe8fb19SBen Gras }
227*2fe8fb19SBen Gras #endif
228