xref: /minix3/common/lib/libc/quad/qdivrem.c (revision f14fb602092e015ff630df58e17c2a9cd57d29b3)
1*f14fb602SLionel Sambuc /*	$NetBSD: qdivrem.c,v 1.4 2012/03/20 16:21:41 matt Exp $	*/
2b6cbf720SGianluca Guida 
3b6cbf720SGianluca Guida /*-
4b6cbf720SGianluca Guida  * Copyright (c) 1992, 1993
5b6cbf720SGianluca Guida  *	The Regents of the University of California.  All rights reserved.
6b6cbf720SGianluca Guida  *
7b6cbf720SGianluca Guida  * This software was developed by the Computer Systems Engineering group
8b6cbf720SGianluca Guida  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9b6cbf720SGianluca Guida  * contributed to Berkeley.
10b6cbf720SGianluca Guida  *
11b6cbf720SGianluca Guida  * Redistribution and use in source and binary forms, with or without
12b6cbf720SGianluca Guida  * modification, are permitted provided that the following conditions
13b6cbf720SGianluca Guida  * are met:
14b6cbf720SGianluca Guida  * 1. Redistributions of source code must retain the above copyright
15b6cbf720SGianluca Guida  *    notice, this list of conditions and the following disclaimer.
16b6cbf720SGianluca Guida  * 2. Redistributions in binary form must reproduce the above copyright
17b6cbf720SGianluca Guida  *    notice, this list of conditions and the following disclaimer in the
18b6cbf720SGianluca Guida  *    documentation and/or other materials provided with the distribution.
19b6cbf720SGianluca Guida  * 3. Neither the name of the University nor the names of its contributors
20b6cbf720SGianluca Guida  *    may be used to endorse or promote products derived from this software
21b6cbf720SGianluca Guida  *    without specific prior written permission.
22b6cbf720SGianluca Guida  *
23b6cbf720SGianluca Guida  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24b6cbf720SGianluca Guida  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25b6cbf720SGianluca Guida  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26b6cbf720SGianluca Guida  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27b6cbf720SGianluca Guida  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28b6cbf720SGianluca Guida  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29b6cbf720SGianluca Guida  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30b6cbf720SGianluca Guida  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31b6cbf720SGianluca Guida  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32b6cbf720SGianluca Guida  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33b6cbf720SGianluca Guida  * SUCH DAMAGE.
34b6cbf720SGianluca Guida  */
35b6cbf720SGianluca Guida 
36b6cbf720SGianluca Guida #include <sys/cdefs.h>
37b6cbf720SGianluca Guida #if defined(LIBC_SCCS) && !defined(lint)
38b6cbf720SGianluca Guida #if 0
39b6cbf720SGianluca Guida static char sccsid[] = "@(#)qdivrem.c	8.1 (Berkeley) 6/4/93";
40b6cbf720SGianluca Guida #else
41*f14fb602SLionel Sambuc __RCSID("$NetBSD: qdivrem.c,v 1.4 2012/03/20 16:21:41 matt Exp $");
42b6cbf720SGianluca Guida #endif
43b6cbf720SGianluca Guida #endif /* LIBC_SCCS and not lint */
44b6cbf720SGianluca Guida 
45b6cbf720SGianluca Guida /*
46b6cbf720SGianluca Guida  * Multiprecision divide.  This algorithm is from Knuth vol. 2 (2nd ed),
47b6cbf720SGianluca Guida  * section 4.3.1, pp. 257--259.
48b6cbf720SGianluca Guida  */
49b6cbf720SGianluca Guida 
50b6cbf720SGianluca Guida #include "quad.h"
51b6cbf720SGianluca Guida 
52*f14fb602SLionel Sambuc #define	B	((int)1 << (unsigned int)HALF_BITS)	/* digit base */
53b6cbf720SGianluca Guida 
54b6cbf720SGianluca Guida /* Combine two `digits' to make a single two-digit number. */
55*f14fb602SLionel Sambuc #define	COMBINE(a, b) (((u_int)(a) << (unsigned int)HALF_BITS) | (b))
56b6cbf720SGianluca Guida 
57b6cbf720SGianluca Guida /* select a type for digits in base B: use unsigned short if they fit */
58b6cbf720SGianluca Guida #if UINT_MAX == 0xffffffffU && USHRT_MAX >= 0xffff
59b6cbf720SGianluca Guida typedef unsigned short digit;
60b6cbf720SGianluca Guida #else
61b6cbf720SGianluca Guida typedef u_int digit;
62b6cbf720SGianluca Guida #endif
63b6cbf720SGianluca Guida 
64*f14fb602SLionel Sambuc static void shl(digit *p, int len, int sh);
65b6cbf720SGianluca Guida 
66b6cbf720SGianluca Guida /*
67b6cbf720SGianluca Guida  * __qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v.
68b6cbf720SGianluca Guida  *
69b6cbf720SGianluca Guida  * We do this in base 2-sup-HALF_BITS, so that all intermediate products
70b6cbf720SGianluca Guida  * fit within u_int.  As a consequence, the maximum length dividend and
71b6cbf720SGianluca Guida  * divisor are 4 `digits' in this base (they are shorter if they have
72b6cbf720SGianluca Guida  * leading zeros).
73b6cbf720SGianluca Guida  */
74b6cbf720SGianluca Guida u_quad_t
__qdivrem(u_quad_t uq,u_quad_t vq,u_quad_t * arq)75b6cbf720SGianluca Guida __qdivrem(u_quad_t uq, u_quad_t vq, u_quad_t *arq)
76b6cbf720SGianluca Guida {
77b6cbf720SGianluca Guida 	union uu tmp;
78b6cbf720SGianluca Guida 	digit *u, *v, *q;
79b6cbf720SGianluca Guida 	digit v1, v2;
80b6cbf720SGianluca Guida 	u_int qhat, rhat, t;
81b6cbf720SGianluca Guida 	int m, n, d, j, i;
82b6cbf720SGianluca Guida 	digit uspace[5], vspace[5], qspace[5];
83b6cbf720SGianluca Guida 
84b6cbf720SGianluca Guida 	/*
85b6cbf720SGianluca Guida 	 * Take care of special cases: divide by zero, and u < v.
86b6cbf720SGianluca Guida 	 */
87b6cbf720SGianluca Guida 	if (vq == 0) {
88b6cbf720SGianluca Guida 		/* divide by zero. */
89b6cbf720SGianluca Guida 		static volatile const unsigned int zero = 0;
90b6cbf720SGianluca Guida 
91b6cbf720SGianluca Guida 		tmp.ul[H] = tmp.ul[L] = 1 / zero;
92b6cbf720SGianluca Guida 		if (arq)
93b6cbf720SGianluca Guida 			*arq = uq;
94b6cbf720SGianluca Guida 		return (tmp.q);
95b6cbf720SGianluca Guida 	}
96b6cbf720SGianluca Guida 	if (uq < vq) {
97b6cbf720SGianluca Guida 		if (arq)
98b6cbf720SGianluca Guida 			*arq = uq;
99b6cbf720SGianluca Guida 		return (0);
100b6cbf720SGianluca Guida 	}
101b6cbf720SGianluca Guida 	u = &uspace[0];
102b6cbf720SGianluca Guida 	v = &vspace[0];
103b6cbf720SGianluca Guida 	q = &qspace[0];
104b6cbf720SGianluca Guida 
105b6cbf720SGianluca Guida 	/*
106b6cbf720SGianluca Guida 	 * Break dividend and divisor into digits in base B, then
107b6cbf720SGianluca Guida 	 * count leading zeros to determine m and n.  When done, we
108b6cbf720SGianluca Guida 	 * will have:
109b6cbf720SGianluca Guida 	 *	u = (u[1]u[2]...u[m+n]) sub B
110b6cbf720SGianluca Guida 	 *	v = (v[1]v[2]...v[n]) sub B
111b6cbf720SGianluca Guida 	 *	v[1] != 0
112b6cbf720SGianluca Guida 	 *	1 < n <= 4 (if n = 1, we use a different division algorithm)
113b6cbf720SGianluca Guida 	 *	m >= 0 (otherwise u < v, which we already checked)
114b6cbf720SGianluca Guida 	 *	m + n = 4
115b6cbf720SGianluca Guida 	 * and thus
116b6cbf720SGianluca Guida 	 *	m = 4 - n <= 2
117b6cbf720SGianluca Guida 	 */
118b6cbf720SGianluca Guida 	tmp.uq = uq;
119b6cbf720SGianluca Guida 	u[0] = 0;
120b6cbf720SGianluca Guida 	u[1] = (digit)HHALF(tmp.ul[H]);
121b6cbf720SGianluca Guida 	u[2] = (digit)LHALF(tmp.ul[H]);
122b6cbf720SGianluca Guida 	u[3] = (digit)HHALF(tmp.ul[L]);
123b6cbf720SGianluca Guida 	u[4] = (digit)LHALF(tmp.ul[L]);
124b6cbf720SGianluca Guida 	tmp.uq = vq;
125b6cbf720SGianluca Guida 	v[1] = (digit)HHALF(tmp.ul[H]);
126b6cbf720SGianluca Guida 	v[2] = (digit)LHALF(tmp.ul[H]);
127b6cbf720SGianluca Guida 	v[3] = (digit)HHALF(tmp.ul[L]);
128b6cbf720SGianluca Guida 	v[4] = (digit)LHALF(tmp.ul[L]);
129b6cbf720SGianluca Guida 	for (n = 4; v[1] == 0; v++) {
130b6cbf720SGianluca Guida 		if (--n == 1) {
131b6cbf720SGianluca Guida 			u_int rbj;	/* r*B+u[j] (not root boy jim) */
132b6cbf720SGianluca Guida 			digit q1, q2, q3, q4;
133b6cbf720SGianluca Guida 
134b6cbf720SGianluca Guida 			/*
135b6cbf720SGianluca Guida 			 * Change of plan, per exercise 16.
136b6cbf720SGianluca Guida 			 *	r = 0;
137b6cbf720SGianluca Guida 			 *	for j = 1..4:
138b6cbf720SGianluca Guida 			 *		q[j] = floor((r*B + u[j]) / v),
139b6cbf720SGianluca Guida 			 *		r = (r*B + u[j]) % v;
140b6cbf720SGianluca Guida 			 * We unroll this completely here.
141b6cbf720SGianluca Guida 			 */
142b6cbf720SGianluca Guida 			t = v[2];	/* nonzero, by definition */
143b6cbf720SGianluca Guida 			q1 = (digit)(u[1] / t);
144b6cbf720SGianluca Guida 			rbj = COMBINE(u[1] % t, u[2]);
145b6cbf720SGianluca Guida 			q2 = (digit)(rbj / t);
146b6cbf720SGianluca Guida 			rbj = COMBINE(rbj % t, u[3]);
147b6cbf720SGianluca Guida 			q3 = (digit)(rbj / t);
148b6cbf720SGianluca Guida 			rbj = COMBINE(rbj % t, u[4]);
149b6cbf720SGianluca Guida 			q4 = (digit)(rbj / t);
150b6cbf720SGianluca Guida 			if (arq)
151b6cbf720SGianluca Guida 				*arq = rbj % t;
152b6cbf720SGianluca Guida 			tmp.ul[H] = COMBINE(q1, q2);
153b6cbf720SGianluca Guida 			tmp.ul[L] = COMBINE(q3, q4);
154b6cbf720SGianluca Guida 			return (tmp.q);
155b6cbf720SGianluca Guida 		}
156b6cbf720SGianluca Guida 	}
157b6cbf720SGianluca Guida 
158b6cbf720SGianluca Guida 	/*
159b6cbf720SGianluca Guida 	 * By adjusting q once we determine m, we can guarantee that
160b6cbf720SGianluca Guida 	 * there is a complete four-digit quotient at &qspace[1] when
161b6cbf720SGianluca Guida 	 * we finally stop.
162b6cbf720SGianluca Guida 	 */
163b6cbf720SGianluca Guida 	for (m = 4 - n; u[1] == 0; u++)
164b6cbf720SGianluca Guida 		m--;
165b6cbf720SGianluca Guida 	for (i = 4 - m; --i >= 0;)
166b6cbf720SGianluca Guida 		q[i] = 0;
167b6cbf720SGianluca Guida 	q += 4 - m;
168b6cbf720SGianluca Guida 
169b6cbf720SGianluca Guida 	/*
170b6cbf720SGianluca Guida 	 * Here we run Program D, translated from MIX to C and acquiring
171b6cbf720SGianluca Guida 	 * a few minor changes.
172b6cbf720SGianluca Guida 	 *
173b6cbf720SGianluca Guida 	 * D1: choose multiplier 1 << d to ensure v[1] >= B/2.
174b6cbf720SGianluca Guida 	 */
175b6cbf720SGianluca Guida 	d = 0;
176*f14fb602SLionel Sambuc 	for (t = v[1]; t < B / 2; t <<= (unsigned int)1)
177b6cbf720SGianluca Guida 		d++;
178b6cbf720SGianluca Guida 	if (d > 0) {
179b6cbf720SGianluca Guida 		shl(&u[0], m + n, d);		/* u <<= d */
180b6cbf720SGianluca Guida 		shl(&v[1], n - 1, d);		/* v <<= d */
181b6cbf720SGianluca Guida 	}
182b6cbf720SGianluca Guida 	/*
183b6cbf720SGianluca Guida 	 * D2: j = 0.
184b6cbf720SGianluca Guida 	 */
185b6cbf720SGianluca Guida 	j = 0;
186b6cbf720SGianluca Guida 	v1 = v[1];	/* for D3 -- note that v[1..n] are constant */
187b6cbf720SGianluca Guida 	v2 = v[2];	/* for D3 */
188b6cbf720SGianluca Guida 	do {
189b6cbf720SGianluca Guida 		digit uj0, uj1, uj2;
190b6cbf720SGianluca Guida 
191b6cbf720SGianluca Guida 		/*
192b6cbf720SGianluca Guida 		 * D3: Calculate qhat (\^q, in TeX notation).
193b6cbf720SGianluca Guida 		 * Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and
194b6cbf720SGianluca Guida 		 * let rhat = (u[j]*B + u[j+1]) mod v[1].
195b6cbf720SGianluca Guida 		 * While rhat < B and v[2]*qhat > rhat*B+u[j+2],
196b6cbf720SGianluca Guida 		 * decrement qhat and increase rhat correspondingly.
197b6cbf720SGianluca Guida 		 * Note that if rhat >= B, v[2]*qhat < rhat*B.
198b6cbf720SGianluca Guida 		 */
199b6cbf720SGianluca Guida 		uj0 = u[j + 0];	/* for D3 only -- note that u[j+...] change */
200b6cbf720SGianluca Guida 		uj1 = u[j + 1];	/* for D3 only */
201b6cbf720SGianluca Guida 		uj2 = u[j + 2];	/* for D3 only */
202b6cbf720SGianluca Guida 		if (uj0 == v1) {
203b6cbf720SGianluca Guida 			qhat = B;
204b6cbf720SGianluca Guida 			rhat = uj1;
205b6cbf720SGianluca Guida 			goto qhat_too_big;
206b6cbf720SGianluca Guida 		} else {
207b6cbf720SGianluca Guida 			u_int nn = COMBINE(uj0, uj1);
208b6cbf720SGianluca Guida 			qhat = nn / v1;
209b6cbf720SGianluca Guida 			rhat = nn % v1;
210b6cbf720SGianluca Guida 		}
211b6cbf720SGianluca Guida 		while (v2 * qhat > COMBINE(rhat, uj2)) {
212b6cbf720SGianluca Guida 	qhat_too_big:
213b6cbf720SGianluca Guida 			qhat--;
214b6cbf720SGianluca Guida 			if ((rhat += v1) >= B)
215b6cbf720SGianluca Guida 				break;
216b6cbf720SGianluca Guida 		}
217b6cbf720SGianluca Guida 		/*
218b6cbf720SGianluca Guida 		 * D4: Multiply and subtract.
219b6cbf720SGianluca Guida 		 * The variable `t' holds any borrows across the loop.
220b6cbf720SGianluca Guida 		 * We split this up so that we do not require v[0] = 0,
221b6cbf720SGianluca Guida 		 * and to eliminate a final special case.
222b6cbf720SGianluca Guida 		 */
223b6cbf720SGianluca Guida 		for (t = 0, i = n; i > 0; i--) {
224b6cbf720SGianluca Guida 			t = u[i + j] - v[i] * qhat - t;
225b6cbf720SGianluca Guida 			u[i + j] = (digit)LHALF(t);
226b6cbf720SGianluca Guida 			t = (B - HHALF(t)) & (B - 1);
227b6cbf720SGianluca Guida 		}
228b6cbf720SGianluca Guida 		t = u[j] - t;
229b6cbf720SGianluca Guida 		u[j] = (digit)LHALF(t);
230b6cbf720SGianluca Guida 		/*
231b6cbf720SGianluca Guida 		 * D5: test remainder.
232b6cbf720SGianluca Guida 		 * There is a borrow if and only if HHALF(t) is nonzero;
233b6cbf720SGianluca Guida 		 * in that (rare) case, qhat was too large (by exactly 1).
234b6cbf720SGianluca Guida 		 * Fix it by adding v[1..n] to u[j..j+n].
235b6cbf720SGianluca Guida 		 */
236b6cbf720SGianluca Guida 		if (HHALF(t)) {
237b6cbf720SGianluca Guida 			qhat--;
238b6cbf720SGianluca Guida 			for (t = 0, i = n; i > 0; i--) { /* D6: add back. */
239b6cbf720SGianluca Guida 				t += u[i + j] + v[i];
240b6cbf720SGianluca Guida 				u[i + j] = (digit)LHALF(t);
241b6cbf720SGianluca Guida 				t = HHALF(t);
242b6cbf720SGianluca Guida 			}
243b6cbf720SGianluca Guida 			u[j] = (digit)LHALF(u[j] + t);
244b6cbf720SGianluca Guida 		}
245b6cbf720SGianluca Guida 		q[j] = (digit)qhat;
246b6cbf720SGianluca Guida 	} while (++j <= m);		/* D7: loop on j. */
247b6cbf720SGianluca Guida 
248b6cbf720SGianluca Guida 	/*
249b6cbf720SGianluca Guida 	 * If caller wants the remainder, we have to calculate it as
250b6cbf720SGianluca Guida 	 * u[m..m+n] >> d (this is at most n digits and thus fits in
251b6cbf720SGianluca Guida 	 * u[m+1..m+n], but we may need more source digits).
252b6cbf720SGianluca Guida 	 */
253b6cbf720SGianluca Guida 	if (arq) {
254b6cbf720SGianluca Guida 		if (d) {
255b6cbf720SGianluca Guida 			for (i = m + n; i > m; --i)
256b6cbf720SGianluca Guida 				u[i] = (digit)(((u_int)u[i] >> d) |
257*f14fb602SLionel Sambuc 				    LHALF((u_int)u[i - 1] << (unsigned int)(HALF_BITS - d)));
258b6cbf720SGianluca Guida 			u[i] = 0;
259b6cbf720SGianluca Guida 		}
260b6cbf720SGianluca Guida 		tmp.ul[H] = COMBINE(uspace[1], uspace[2]);
261b6cbf720SGianluca Guida 		tmp.ul[L] = COMBINE(uspace[3], uspace[4]);
262b6cbf720SGianluca Guida 		*arq = tmp.q;
263b6cbf720SGianluca Guida 	}
264b6cbf720SGianluca Guida 
265b6cbf720SGianluca Guida 	tmp.ul[H] = COMBINE(qspace[1], qspace[2]);
266b6cbf720SGianluca Guida 	tmp.ul[L] = COMBINE(qspace[3], qspace[4]);
267b6cbf720SGianluca Guida 	return (tmp.q);
268b6cbf720SGianluca Guida }
269b6cbf720SGianluca Guida 
270b6cbf720SGianluca Guida /*
271b6cbf720SGianluca Guida  * Shift p[0]..p[len] left `sh' bits, ignoring any bits that
272b6cbf720SGianluca Guida  * `fall out' the left (there never will be any such anyway).
273b6cbf720SGianluca Guida  * We may assume len >= 0.  NOTE THAT THIS WRITES len+1 DIGITS.
274b6cbf720SGianluca Guida  */
275b6cbf720SGianluca Guida static void
shl(digit * p,int len,int sh)276b6cbf720SGianluca Guida shl(digit *p, int len, int sh)
277b6cbf720SGianluca Guida {
278b6cbf720SGianluca Guida 	int i;
279b6cbf720SGianluca Guida 
280b6cbf720SGianluca Guida 	for (i = 0; i < len; i++)
281b6cbf720SGianluca Guida 		p[i] = (digit)(LHALF((u_int)p[i] << sh) |
282b6cbf720SGianluca Guida 		    ((u_int)p[i + 1] >> (HALF_BITS - sh)));
283b6cbf720SGianluca Guida 	p[i] = (digit)(LHALF((u_int)p[i] << sh));
284b6cbf720SGianluca Guida }
285