123e5130eSAndrzej Warzynski//-------------------------------------------------------------------------------------------------- 223e5130eSAndrzej Warzynski// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS. 35a1f87f9SAart Bik// 423e5130eSAndrzej Warzynski// Set-up that's shared across all tests in this directory. In principle, this 523e5130eSAndrzej Warzynski// config could be moved to lit.local.cfg. However, there are downstream users that 623e5130eSAndrzej Warzynski// do not use these LIT config files. Hence why this is kept inline. 723e5130eSAndrzej Warzynski// 8dce7a7cfSTim Harvey// DEFINE: %{sparsifier_opts} = enable-runtime-library=true 9dce7a7cfSTim Harvey// DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts} 10dce7a7cfSTim Harvey// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}" 11dce7a7cfSTim Harvey// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}" 1223e5130eSAndrzej Warzynski// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils 13fe55c34dSZhaoshi Zheng// DEFINE: %{run_libs_sve} = -shared-libs=%native_mlir_runner_utils,%native_mlir_c_runner_utils 146e692e72SYinying Li// DEFINE: %{run_opts} = -e main -entry-point-result=void 15*eb206e9eSAndrea Faulds// DEFINE: %{run} = mlir-runner %{run_opts} %{run_libs} 16fe55c34dSZhaoshi Zheng// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs_sve} 1723e5130eSAndrzej Warzynski// 1823e5130eSAndrzej Warzynski// DEFINE: %{env} = 1923e5130eSAndrzej Warzynski//-------------------------------------------------------------------------------------------------- 2023e5130eSAndrzej Warzynski 2123e5130eSAndrzej Warzynski// RUN: %{compile} | %{run} | FileCheck %s 226116ca67SAnlun Xu// 236116ca67SAnlun Xu// Do the same run, but now with direct IR generation. 24dce7a7cfSTim Harvey// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false 2523e5130eSAndrzej Warzynski// RUN: %{compile} | %{run} | FileCheck %s 266116ca67SAnlun Xu// 276116ca67SAnlun Xu// Do the same run, but now with direct IR generation and vectorization. 28dce7a7cfSTim Harvey// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true 2923e5130eSAndrzej Warzynski// RUN: %{compile} | %{run} | FileCheck %s 3023e5130eSAndrzej Warzynski// 3123e5130eSAndrzej Warzynski// Do the same run, but now with direct IR generation and VLA vectorization. 3223e5130eSAndrzej Warzynski// RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %} 336116ca67SAnlun Xu 346116ca67SAnlun Xu#SparseVector = #sparse_tensor.encoding<{ 35dbe1be9aSYinying Li map = (d0) -> (d0 : compressed) 366116ca67SAnlun Xu}> 376116ca67SAnlun Xu 386116ca67SAnlun Xu#SparseMatrix = #sparse_tensor.encoding<{ 392a07f0fdSYinying Li map = (d0, d1) -> (d0 : compressed, d1 : compressed) 406116ca67SAnlun Xu}> 416116ca67SAnlun Xu 426116ca67SAnlun Xu#Sparse3dTensor = #sparse_tensor.encoding<{ 433dc62112SYinying Li map = (d0, d1, d2) -> (d0 : compressed, d1 : compressed, d2 : compressed) 446116ca67SAnlun Xu}> 456116ca67SAnlun Xu 466116ca67SAnlun Xumodule { 476116ca67SAnlun Xu 486116ca67SAnlun Xu func.func @reshape0(%arg0: tensor<3x4xf64, #SparseMatrix>) -> tensor<2x6xf64, #SparseMatrix> { 496116ca67SAnlun Xu %shape = arith.constant dense <[ 2, 6 ]> : tensor<2xi32> 506116ca67SAnlun Xu %0 = tensor.reshape %arg0(%shape) : (tensor<3x4xf64, #SparseMatrix>, tensor<2xi32>) -> tensor<2x6xf64, #SparseMatrix> 516116ca67SAnlun Xu return %0 : tensor<2x6xf64, #SparseMatrix> 526116ca67SAnlun Xu } 536116ca67SAnlun Xu 546116ca67SAnlun Xu func.func @reshape1(%arg0: tensor<3x4xf64, #SparseMatrix>) -> tensor<12xf64, #SparseVector> { 556116ca67SAnlun Xu %shape = arith.constant dense <[ 12 ]> : tensor<1xi32> 566116ca67SAnlun Xu %0 = tensor.reshape %arg0(%shape) : (tensor<3x4xf64, #SparseMatrix>, tensor<1xi32>) -> tensor<12xf64, #SparseVector> 576116ca67SAnlun Xu return %0 : tensor<12xf64, #SparseVector> 586116ca67SAnlun Xu } 596116ca67SAnlun Xu 606116ca67SAnlun Xu func.func @reshape2(%arg0: tensor<3x4xf64, #SparseMatrix>) -> tensor<2x3x2xf64, #Sparse3dTensor> { 616116ca67SAnlun Xu %shape = arith.constant dense <[ 2, 3, 2 ]> : tensor<3xi32> 626116ca67SAnlun Xu %0 = tensor.reshape %arg0(%shape) : (tensor<3x4xf64, #SparseMatrix>, tensor<3xi32>) -> tensor<2x3x2xf64, #Sparse3dTensor> 636116ca67SAnlun Xu return %0 : tensor<2x3x2xf64, #Sparse3dTensor> 646116ca67SAnlun Xu } 656116ca67SAnlun Xu 666116ca67SAnlun Xu 676e692e72SYinying Li func.func @main() { 686116ca67SAnlun Xu %m = arith.constant dense <[ [ 1.1, 0.0, 1.3, 0.0 ], 696116ca67SAnlun Xu [ 2.1, 0.0, 2.3, 0.0 ], 706116ca67SAnlun Xu [ 3.1, 0.0, 3.3, 0.0 ]]> : tensor<3x4xf64> 716116ca67SAnlun Xu %sm = sparse_tensor.convert %m : tensor<3x4xf64> to tensor<3x4xf64, #SparseMatrix> 726116ca67SAnlun Xu 736116ca67SAnlun Xu %reshaped0 = call @reshape0(%sm) : (tensor<3x4xf64, #SparseMatrix>) -> tensor<2x6xf64, #SparseMatrix> 746116ca67SAnlun Xu %reshaped1 = call @reshape1(%sm) : (tensor<3x4xf64, #SparseMatrix>) -> tensor<12xf64, #SparseVector> 756116ca67SAnlun Xu %reshaped2 = call @reshape2(%sm) : (tensor<3x4xf64, #SparseMatrix>) -> tensor<2x3x2xf64, #Sparse3dTensor> 766116ca67SAnlun Xu 776116ca67SAnlun Xu %c0 = arith.constant 0 : index 786116ca67SAnlun Xu %df = arith.constant -1.0 : f64 796116ca67SAnlun Xu 806e692e72SYinying Li // 816e692e72SYinying Li // CHECK: ---- Sparse Tensor ---- 826e692e72SYinying Li // CHECK-NEXT: nse = 6 836e692e72SYinying Li // CHECK-NEXT: dim = ( 2, 6 ) 846e692e72SYinying Li // CHECK-NEXT: lvl = ( 2, 6 ) 85eb177803SYinying Li // CHECK-NEXT: pos[0] : ( 0, 2 ) 86eb177803SYinying Li // CHECK-NEXT: crd[0] : ( 0, 1 ) 87eb177803SYinying Li // CHECK-NEXT: pos[1] : ( 0, 3, 6 ) 88eb177803SYinying Li // CHECK-NEXT: crd[1] : ( 0, 2, 4, 0, 2, 4 ) 89eb177803SYinying Li // CHECK-NEXT: values : ( 1.1, 1.3, 2.1, 2.3, 3.1, 3.3 ) 906e692e72SYinying Li // CHECK-NEXT: ---- 916e692e72SYinying Li // CHECK: ---- Sparse Tensor ---- 926e692e72SYinying Li // CHECK-NEXT: nse = 6 936e692e72SYinying Li // CHECK-NEXT: dim = ( 12 ) 946e692e72SYinying Li // CHECK-NEXT: lvl = ( 12 ) 95eb177803SYinying Li // CHECK-NEXT: pos[0] : ( 0, 6 ) 96eb177803SYinying Li // CHECK-NEXT: crd[0] : ( 0, 2, 4, 6, 8, 10 ) 97eb177803SYinying Li // CHECK-NEXT: values : ( 1.1, 1.3, 2.1, 2.3, 3.1, 3.3 ) 986e692e72SYinying Li // CHECK-NEXT: ---- 996e692e72SYinying Li // CHECK: ---- Sparse Tensor ---- 1006e692e72SYinying Li // CHECK-NEXT: nse = 6 1016e692e72SYinying Li // CHECK-NEXT: dim = ( 2, 3, 2 ) 1026e692e72SYinying Li // CHECK-NEXT: lvl = ( 2, 3, 2 ) 103eb177803SYinying Li // CHECK-NEXT: pos[0] : ( 0, 2 ) 104eb177803SYinying Li // CHECK-NEXT: crd[0] : ( 0, 1 ) 105eb177803SYinying Li // CHECK-NEXT: pos[1] : ( 0, 3, 6 ) 106eb177803SYinying Li // CHECK-NEXT: crd[1] : ( 0, 1, 2, 0, 1, 2 ) 107eb177803SYinying Li // CHECK-NEXT: pos[2] : ( 0, 1, 2, 3, 4, 5, 6 ) 108eb177803SYinying Li // CHECK-NEXT: crd[2] : ( 0, 0, 0, 0, 0, 0 ) 109eb177803SYinying Li // CHECK-NEXT: values : ( 1.1, 1.3, 2.1, 2.3, 3.1, 3.3 ) 1106e692e72SYinying Li // CHECK-NEXT: ---- 1116e692e72SYinying Li // 1126e692e72SYinying Li sparse_tensor.print %reshaped0: tensor<2x6xf64, #SparseMatrix> 1136e692e72SYinying Li sparse_tensor.print %reshaped1: tensor<12xf64, #SparseVector> 1146e692e72SYinying Li sparse_tensor.print %reshaped2: tensor<2x3x2xf64, #Sparse3dTensor> 1156116ca67SAnlun Xu 1166116ca67SAnlun Xu bufferization.dealloc_tensor %sm : tensor<3x4xf64, #SparseMatrix> 1176116ca67SAnlun Xu bufferization.dealloc_tensor %reshaped0 : tensor<2x6xf64, #SparseMatrix> 1186116ca67SAnlun Xu bufferization.dealloc_tensor %reshaped1 : tensor<12xf64, #SparseVector> 1196116ca67SAnlun Xu bufferization.dealloc_tensor %reshaped2 : tensor<2x3x2xf64, #Sparse3dTensor> 1206116ca67SAnlun Xu 1216116ca67SAnlun Xu return 1226116ca67SAnlun Xu } 1236116ca67SAnlun Xu 1246116ca67SAnlun Xu} 125