xref: /llvm-project/mlir/test/Examples/Toy/Ch7/struct-codegen.toy (revision ee2c6cd9069fe0d8e7386ce53300e7645e4db792)
157540c96SRiver Riddle# RUN: toyc-ch7 %s -emit=mlir 2>&1 | FileCheck %s
26b4e30b7SRiver Riddle# RUN: toyc-ch7 %s -emit=mlir -opt 2>&1 | FileCheck %s --check-prefix=OPT
36b4e30b7SRiver Riddle
46b4e30b7SRiver Riddlestruct Struct {
56b4e30b7SRiver Riddle  var a;
66b4e30b7SRiver Riddle  var b;
76b4e30b7SRiver Riddle}
86b4e30b7SRiver Riddle
96b4e30b7SRiver Riddle# User defined generic function may operate on struct types as well.
106b4e30b7SRiver Riddledef multiply_transpose(Struct value) {
116b4e30b7SRiver Riddle  # We can access the elements of a struct via the '.' operator.
126b4e30b7SRiver Riddle  return transpose(value.a) * transpose(value.b);
136b4e30b7SRiver Riddle}
146b4e30b7SRiver Riddle
156b4e30b7SRiver Riddledef main() {
166b4e30b7SRiver Riddle  # We initialize struct values using a composite initializer.
176b4e30b7SRiver Riddle  Struct value = {[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]};
186b4e30b7SRiver Riddle
196b4e30b7SRiver Riddle  # We pass these arguments to functions like we do with variables.
206b4e30b7SRiver Riddle  var c = multiply_transpose(value);
216b4e30b7SRiver Riddle  print(c);
226b4e30b7SRiver Riddle}
236b4e30b7SRiver Riddle
24*ee2c6cd9SRiver Riddle# CHECK-LABEL:   toy.func private @multiply_transpose(
256b4e30b7SRiver Riddle# CHECK-SAME:                             [[VAL_0:%.*]]: !toy.struct<tensor<*xf64>, tensor<*xf64>>) -> tensor<*xf64>
260050e8f0SRiver Riddle# CHECK-NEXT:      [[VAL_1:%.*]] = toy.struct_access [[VAL_0]][0] : !toy.struct<tensor<*xf64>, tensor<*xf64>> -> tensor<*xf64>
270050e8f0SRiver Riddle# CHECK-NEXT:      [[VAL_2:%.*]] = toy.transpose([[VAL_1]] : tensor<*xf64>) to tensor<*xf64>
280050e8f0SRiver Riddle# CHECK-NEXT:      [[VAL_3:%.*]] = toy.struct_access [[VAL_0]][1] : !toy.struct<tensor<*xf64>, tensor<*xf64>> -> tensor<*xf64>
290050e8f0SRiver Riddle# CHECK-NEXT:      [[VAL_4:%.*]] = toy.transpose([[VAL_3]] : tensor<*xf64>) to tensor<*xf64>
300050e8f0SRiver Riddle# CHECK-NEXT:      [[VAL_5:%.*]] = toy.mul [[VAL_2]], [[VAL_4]] : tensor<*xf64>
310050e8f0SRiver Riddle# CHECK-NEXT:      toy.return [[VAL_5]] : tensor<*xf64>
326b4e30b7SRiver Riddle
33*ee2c6cd9SRiver Riddle# CHECK-LABEL:   toy.func @main()
340050e8f0SRiver Riddle# CHECK-NEXT:      [[VAL_6:%.*]] = toy.struct_constant [dense<{{\[\[}}1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>, dense<{{\[\[}}1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>] : !toy.struct<tensor<*xf64>, tensor<*xf64>>
350050e8f0SRiver Riddle# CHECK-NEXT:      [[VAL_7:%.*]] = toy.generic_call @multiply_transpose([[VAL_6]]) : (!toy.struct<tensor<*xf64>, tensor<*xf64>>) -> tensor<*xf64>
360050e8f0SRiver Riddle# CHECK-NEXT:      toy.print [[VAL_7]] : tensor<*xf64>
370050e8f0SRiver Riddle# CHECK-NEXT:      toy.return
386b4e30b7SRiver Riddle
39*ee2c6cd9SRiver Riddle# OPT-LABEL:   toy.func @main()
400050e8f0SRiver Riddle# OPT-NEXT:      [[VAL_0:%.*]] = toy.constant dense<{{\[\[}}1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>
410050e8f0SRiver Riddle# OPT-NEXT:      [[VAL_1:%.*]] = toy.transpose([[VAL_0]] : tensor<2x3xf64>) to tensor<3x2xf64>
420050e8f0SRiver Riddle# OPT-NEXT:      [[VAL_2:%.*]] = toy.mul [[VAL_1]], [[VAL_1]] : tensor<3x2xf64>
430050e8f0SRiver Riddle# OPT-NEXT:      toy.print [[VAL_2]] : tensor<3x2xf64>
440050e8f0SRiver Riddle# OPT-NEXT:      toy.return
45