xref: /llvm-project/mlir/test/Examples/NVGPU/Ch1.py (revision f8ff9094711b74d3f695f7571f6390f8a481fc52)
14d330820SGuray Ozen# RUN: env SUPPORT_LIB=%mlir_cuda_runtime \
24d330820SGuray Ozen# RUN:   %PYTHON %s | FileCheck %s
34d330820SGuray Ozen
44d330820SGuray Ozen# ===----------------------------------------------------------------------===//
54d330820SGuray Ozen#  Chapter 1 : 2D Saxpy
64d330820SGuray Ozen# ===----------------------------------------------------------------------===//
74d330820SGuray Ozen#
84d330820SGuray Ozen# This program demonstrates 2D Saxpy:
94d330820SGuray Ozen#  1. Use GPU dialect to allocate and copy memory host to gpu and vice versa
104d330820SGuray Ozen#  2. Computes 2D SAXPY kernel using operator overloading
114d330820SGuray Ozen#  3. Pass numpy arrays to MLIR as memref arguments
124d330820SGuray Ozen#  4. Verify MLIR program with reference computation in python
134d330820SGuray Ozen#
144d330820SGuray Ozen# ===----------------------------------------------------------------------===//
154d330820SGuray Ozen
164d330820SGuray Ozen
174d330820SGuray Ozenfrom mlir import ir
184d330820SGuray Ozenfrom mlir.dialects import gpu, memref
194d330820SGuray Ozenfrom tools.nvdsl import *
204d330820SGuray Ozenimport numpy as np
214d330820SGuray Ozen
224d330820SGuray Ozen
234d330820SGuray Ozen@NVDSL.mlir_func
244d330820SGuray Ozendef saxpy(x, y, alpha):
254d330820SGuray Ozen    # 1. Use MLIR GPU dialect to allocate and copy memory
26*f8ff9094SGuray Ozen    token_ty = gpu.AsyncTokenType.get()
274d330820SGuray Ozen    t1 = gpu.wait(token_ty, [])
284d330820SGuray Ozen    x_dev, t2 = gpu.alloc(x.type, token_ty, [t1], [], [])
294d330820SGuray Ozen    y_dev, t3 = gpu.alloc(y.type, token_ty, [t2], [], [])
304d330820SGuray Ozen    t4 = gpu.memcpy(token_ty, [t3], x_dev, x)
314d330820SGuray Ozen    t5 = gpu.memcpy(token_ty, [t4], y_dev, y)
324d330820SGuray Ozen    t6 = gpu.wait(token_ty, [t5])
334d330820SGuray Ozen
344d330820SGuray Ozen    # 2. Compute 2D SAXPY kernel
354d330820SGuray Ozen    @NVDSL.mlir_gpu_launch(grid=(M, 1, 1), block=(N, 1, 1))
364d330820SGuray Ozen    def saxpy_kernel():
374d330820SGuray Ozen        bidx = gpu.block_id(gpu.Dimension.x)
384d330820SGuray Ozen        tidx = gpu.thread_id(gpu.Dimension.x)
394d330820SGuray Ozen        x_val = memref.load(x_dev, [bidx, tidx])
404d330820SGuray Ozen        y_val = memref.load(y_dev, [bidx, tidx])
414d330820SGuray Ozen
424d330820SGuray Ozen        # SAXPY: y[i] += a * x[i];
434d330820SGuray Ozen        y_val += x_val * alpha
444d330820SGuray Ozen
454d330820SGuray Ozen        memref.store(y_val, y_dev, [bidx, tidx])
464d330820SGuray Ozen
474d330820SGuray Ozen    saxpy_kernel()
484d330820SGuray Ozen
494d330820SGuray Ozen    t7 = gpu.memcpy(token_ty, [t6], y, y_dev)
504d330820SGuray Ozen    gpu.wait(token_ty, [t7])
514d330820SGuray Ozen
524d330820SGuray Ozen
534d330820SGuray Ozen# 3. Pass numpy arrays to MLIR
544d330820SGuray OzenM = 256
554d330820SGuray OzenN = 32
564d330820SGuray Ozenalpha = 2.0
574d330820SGuray Ozenx = np.random.randn(M, N).astype(np.float32)
584d330820SGuray Ozeny = np.ones((M, N), np.float32)
594d330820SGuray Ozensaxpy(x, y, alpha)
604d330820SGuray Ozen
614d330820SGuray Ozen#  4. Verify MLIR with reference computation
624d330820SGuray Ozenref = np.ones((M, N), np.float32)
634d330820SGuray Ozenref += x * alpha
644d330820SGuray Ozennp.testing.assert_allclose(y, ref, rtol=5e-03, atol=1e-01)
654d330820SGuray Ozenprint("PASS")
664d330820SGuray Ozen# CHECK-NOT: Mismatched elements
67