1619bfe8bSAart Bik// NOTE: Assertions have been autogenerated by utils/generate-test-checks.py 206a65ce5SPeiming Liu// RUN: mlir-opt %s --sparse-reinterpret-map -sparsification | FileCheck %s 3619bfe8bSAart Bik 42a07f0fdSYinying Li#SparseMatrix = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : compressed, d1 : compressed) }> 5619bfe8bSAart Bik 6619bfe8bSAart Bik// A contrived example that demonstrates the many different ways 7619bfe8bSAart Bik// in which scalar values can be involved in a sparse kernel 8619bfe8bSAart Bik// through the linalg generic op. 9619bfe8bSAart Bik 10619bfe8bSAart Bik#trait = { 11619bfe8bSAart Bik indexing_maps = [ 12619bfe8bSAart Bik affine_map<(i,j) -> (i,j)>, // A (sparse tensor) 13619bfe8bSAart Bik affine_map<(i,j) -> ()>, // p (scalar tensor) 14619bfe8bSAart Bik affine_map<(i,j) -> ()>, // q (true scalar) 15619bfe8bSAart Bik affine_map<(i,j) -> (i,j)> // X (dense tensor out) 16619bfe8bSAart Bik ], 17619bfe8bSAart Bik iterator_types = ["parallel", "parallel"], 18619bfe8bSAart Bik doc = "X(i,j) += A(i,j) * p * q * r * s * 2.2" 19619bfe8bSAart Bik} 20619bfe8bSAart Bik 21619bfe8bSAart Bik// CHECK-LABEL: func @mul( 22c5a67e16SYinying Li// CHECK-SAME: %[[VAL_0:.*0]]: tensor<32x16xf32, #sparse{{[0-9]*}}>, 23619bfe8bSAart Bik// CHECK-SAME: %[[VAL_1:.*1]]: tensor<f32>, 24619bfe8bSAart Bik// CHECK-SAME: %[[VAL_2:.*2]]: f32, 25619bfe8bSAart Bik// CHECK-SAME: %[[VAL_3:.*3]]: f32, 26c66303c2SMatthias Springer// CHECK-SAME: %[[VAL_4:.*4]]: tensor<32x16xf32>) -> tensor<32x16xf32> { 27af371f9fSRiver Riddle// CHECK-DAG: %[[VAL_5:.*]] = arith.constant 2.200000e+00 : f32 28af371f9fSRiver Riddle// CHECK-DAG: %[[VAL_6:.*]] = arith.constant 0 : index 29af371f9fSRiver Riddle// CHECK-DAG: %[[VAL_7:.*]] = arith.constant 1 : index 30b0f8057eSPeiming Liu// CHECK-DAG: %[[VAL_8:.*]] = arith.addf %[[VAL_2]], %[[VAL_3]] : f32 31c5a67e16SYinying Li// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32x16xf32, #sparse{{[0-9]*}}> to memref<?xindex> 32c5a67e16SYinying Li// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32x16xf32, #sparse{{[0-9]*}}> to memref<?xindex> 33c5a67e16SYinying Li// CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 1 : index} : tensor<32x16xf32, #sparse{{[0-9]*}}> to memref<?xindex> 34c5a67e16SYinying Li// CHECK-DAG: %[[VAL_12:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 1 : index} : tensor<32x16xf32, #sparse{{[0-9]*}}> to memref<?xindex> 35c5a67e16SYinying Li// CHECK-DAG: %[[VAL_13:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse{{[0-9]*}}> to memref<?xf32> 36*ced2fc78SChristopher Bate// CHECK-DAG: %[[VAL_14:.*]] = bufferization.to_memref %[[VAL_1]] : tensor<f32> to memref<f32> 37*ced2fc78SChristopher Bate// CHECK-DAG: %[[VAL_15:.*]] = bufferization.to_memref %[[VAL_4]] : tensor<32x16xf32> to memref<32x16xf32> 38b0f8057eSPeiming Liu// CHECK-DAG: %[[VAL_16:.*]] = memref.load %[[VAL_14]][] : memref<f32> 39b0f8057eSPeiming Liu// CHECK-DAG: %[[VAL_17:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_6]]] : memref<?xindex> 40b0f8057eSPeiming Liu// CHECK-DAG: %[[VAL_18:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_7]]] : memref<?xindex> 41619bfe8bSAart Bik// CHECK: scf.for %[[VAL_19:.*]] = %[[VAL_17]] to %[[VAL_18]] step %[[VAL_7]] { 42619bfe8bSAart Bik// CHECK: %[[VAL_20:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_19]]] : memref<?xindex> 43619bfe8bSAart Bik// CHECK: %[[VAL_21:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_19]]] : memref<?xindex> 44a54f4eaeSMogball// CHECK: %[[VAL_22:.*]] = arith.addi %[[VAL_19]], %[[VAL_7]] : index 45619bfe8bSAart Bik// CHECK: %[[VAL_23:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_22]]] : memref<?xindex> 46619bfe8bSAart Bik// CHECK: scf.for %[[VAL_24:.*]] = %[[VAL_21]] to %[[VAL_23]] step %[[VAL_7]] { 47619bfe8bSAart Bik// CHECK: %[[VAL_25:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_24]]] : memref<?xindex> 48619bfe8bSAart Bik// CHECK: %[[VAL_26:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_24]]] : memref<?xf32> 49a54f4eaeSMogball// CHECK: %[[VAL_27:.*]] = arith.mulf %[[VAL_26]], %[[VAL_16]] : f32 50a54f4eaeSMogball// CHECK: %[[VAL_28:.*]] = arith.mulf %[[VAL_27]], %[[VAL_2]] : f32 51a54f4eaeSMogball// CHECK: %[[VAL_29:.*]] = arith.mulf %[[VAL_28]], %[[VAL_3]] : f32 52a54f4eaeSMogball// CHECK: %[[VAL_30:.*]] = arith.mulf %[[VAL_29]], %[[VAL_8]] : f32 53a54f4eaeSMogball// CHECK: %[[VAL_31:.*]] = arith.mulf %[[VAL_30]], %[[VAL_5]] : f32 54619bfe8bSAart Bik// CHECK: %[[VAL_32:.*]] = memref.load %[[VAL_15]]{{\[}}%[[VAL_20]], %[[VAL_25]]] : memref<32x16xf32> 55a54f4eaeSMogball// CHECK: %[[VAL_33:.*]] = arith.addf %[[VAL_31]], %[[VAL_32]] : f32 56619bfe8bSAart Bik// CHECK: memref.store %[[VAL_33]], %[[VAL_15]]{{\[}}%[[VAL_20]], %[[VAL_25]]] : memref<32x16xf32> 57619bfe8bSAart Bik// CHECK: } 58619bfe8bSAart Bik// CHECK: } 5957470abcSAlexander Belyaev// CHECK: %[[VAL_34:.*]] = bufferization.to_tensor %[[VAL_15]] : memref<32x16xf32> 60619bfe8bSAart Bik// CHECK: return %[[VAL_34]] : tensor<32x16xf32> 61619bfe8bSAart Bik// CHECK: } 62fb35cd3bSRiver Riddlefunc.func @mul(%arga: tensor<32x16xf32, #SparseMatrix>, 63619bfe8bSAart Bik %argp: tensor<f32>, 64619bfe8bSAart Bik %argq: f32, 65619bfe8bSAart Bik %argr: f32, 66c66303c2SMatthias Springer %argx: tensor<32x16xf32>) -> tensor<32x16xf32> { 67a54f4eaeSMogball %s = arith.addf %argq, %argr : f32 68a54f4eaeSMogball %c = arith.constant 2.2 : f32 69619bfe8bSAart Bik %0 = linalg.generic #trait 70619bfe8bSAart Bik ins(%arga, %argp, %argq: tensor<32x16xf32, #SparseMatrix>, tensor<f32>, f32) 71619bfe8bSAart Bik outs(%argx: tensor<32x16xf32>) { 72619bfe8bSAart Bik ^bb(%a: f32, %p: f32, %q: f32, %x: f32): 73a54f4eaeSMogball %0 = arith.mulf %a, %p : f32 // scalar tensor argument 74a54f4eaeSMogball %1 = arith.mulf %0, %q : f32 // scalar argument 75a54f4eaeSMogball %2 = arith.mulf %1, %argr : f32 // scalar argument from outside block 76a54f4eaeSMogball %3 = arith.mulf %2, %s : f32 // scalar value from outside block 77a54f4eaeSMogball %4 = arith.mulf %3, %c : f32 // direct constant from outside block 78a54f4eaeSMogball %5 = arith.addf %4, %x : f32 79619bfe8bSAart Bik linalg.yield %5 : f32 80619bfe8bSAart Bik } -> tensor<32x16xf32> 81619bfe8bSAart Bik 82619bfe8bSAart Bik return %0 : tensor<32x16xf32> 83619bfe8bSAart Bik} 84