xref: /llvm-project/mlir/lib/IR/Operation.cpp (revision 5fac87d1bcc40775edb5c1770331833a9e78f8e3)
1 //===- Operation.cpp - Operation support code -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/IR/Operation.h"
10 #include "mlir/IR/BlockAndValueMapping.h"
11 #include "mlir/IR/BuiltinTypes.h"
12 #include "mlir/IR/Dialect.h"
13 #include "mlir/IR/OpImplementation.h"
14 #include "mlir/IR/PatternMatch.h"
15 #include "mlir/IR/TypeUtilities.h"
16 #include "mlir/Interfaces/FoldInterfaces.h"
17 #include <numeric>
18 
19 using namespace mlir;
20 
21 OpAsmParser::~OpAsmParser() {}
22 
23 //===----------------------------------------------------------------------===//
24 // OperationName
25 //===----------------------------------------------------------------------===//
26 
27 /// Form the OperationName for an op with the specified string.  This either is
28 /// a reference to an AbstractOperation if one is known, or a uniqued Identifier
29 /// if not.
30 OperationName::OperationName(StringRef name, MLIRContext *context) {
31   if (auto *op = AbstractOperation::lookup(name, context))
32     representation = op;
33   else
34     representation = Identifier::get(name, context);
35 }
36 
37 /// Return the name of the dialect this operation is registered to.
38 StringRef OperationName::getDialectNamespace() const {
39   if (Dialect *dialect = getDialect())
40     return dialect->getNamespace();
41   return representation.get<Identifier>().strref().split('.').first;
42 }
43 
44 /// Return the operation name with dialect name stripped, if it has one.
45 StringRef OperationName::stripDialect() const {
46   auto splitName = getStringRef().split(".");
47   return splitName.second.empty() ? splitName.first : splitName.second;
48 }
49 
50 /// Return the name of this operation. This always succeeds.
51 StringRef OperationName::getStringRef() const {
52   return getIdentifier().strref();
53 }
54 
55 /// Return the name of this operation as an identifier. This always succeeds.
56 Identifier OperationName::getIdentifier() const {
57   if (auto *op = representation.dyn_cast<const AbstractOperation *>())
58     return op->name;
59   return representation.get<Identifier>();
60 }
61 
62 OperationName OperationName::getFromOpaquePointer(const void *pointer) {
63   return OperationName(
64       RepresentationUnion::getFromOpaqueValue(const_cast<void *>(pointer)));
65 }
66 
67 //===----------------------------------------------------------------------===//
68 // Operation
69 //===----------------------------------------------------------------------===//
70 
71 /// Create a new Operation with the specific fields.
72 Operation *Operation::create(Location location, OperationName name,
73                              TypeRange resultTypes, ValueRange operands,
74                              ArrayRef<NamedAttribute> attributes,
75                              BlockRange successors, unsigned numRegions) {
76   return create(location, name, resultTypes, operands,
77                 DictionaryAttr::get(location.getContext(), attributes),
78                 successors, numRegions);
79 }
80 
81 /// Create a new Operation from operation state.
82 Operation *Operation::create(const OperationState &state) {
83   return create(state.location, state.name, state.types, state.operands,
84                 state.attributes.getDictionary(state.getContext()),
85                 state.successors, state.regions);
86 }
87 
88 /// Create a new Operation with the specific fields.
89 Operation *Operation::create(Location location, OperationName name,
90                              TypeRange resultTypes, ValueRange operands,
91                              DictionaryAttr attributes, BlockRange successors,
92                              RegionRange regions) {
93   unsigned numRegions = regions.size();
94   Operation *op = create(location, name, resultTypes, operands, attributes,
95                          successors, numRegions);
96   for (unsigned i = 0; i < numRegions; ++i)
97     if (regions[i])
98       op->getRegion(i).takeBody(*regions[i]);
99   return op;
100 }
101 
102 /// Overload of create that takes an existing DictionaryAttr to avoid
103 /// unnecessarily uniquing a list of attributes.
104 Operation *Operation::create(Location location, OperationName name,
105                              TypeRange resultTypes, ValueRange operands,
106                              DictionaryAttr attributes, BlockRange successors,
107                              unsigned numRegions) {
108   assert(llvm::all_of(resultTypes, [](Type t) { return t; }) &&
109          "unexpected null result type");
110 
111   // We only need to allocate additional memory for a subset of results.
112   unsigned numTrailingResults = OpResult::getNumTrailing(resultTypes.size());
113   unsigned numInlineResults = OpResult::getNumInline(resultTypes.size());
114   unsigned numSuccessors = successors.size();
115   unsigned numOperands = operands.size();
116   unsigned numResults = resultTypes.size();
117 
118   // If the operation is known to have no operands, don't allocate an operand
119   // storage.
120   bool needsOperandStorage = true;
121   if (operands.empty()) {
122     if (const AbstractOperation *abstractOp = name.getAbstractOperation())
123       needsOperandStorage = !abstractOp->hasTrait<OpTrait::ZeroOperands>();
124   }
125 
126   // Compute the byte size for the operation and the operand storage. This takes
127   // into account the size of the operation, its trailing objects, and its
128   // prefixed objects.
129   size_t byteSize =
130       totalSizeToAlloc<BlockOperand, Region, detail::OperandStorage>(
131           numSuccessors, numRegions, needsOperandStorage ? 1 : 0) +
132       detail::OperandStorage::additionalAllocSize(numOperands);
133   size_t prefixByteSize = llvm::alignTo(
134       Operation::prefixAllocSize(numTrailingResults, numInlineResults),
135       alignof(Operation));
136   char *mallocMem = reinterpret_cast<char *>(malloc(byteSize + prefixByteSize));
137   void *rawMem = mallocMem + prefixByteSize;
138 
139   // Create the new Operation.
140   Operation *op =
141       ::new (rawMem) Operation(location, name, numResults, numSuccessors,
142                                numRegions, attributes, needsOperandStorage);
143 
144   assert((numSuccessors == 0 || op->mightHaveTrait<OpTrait::IsTerminator>()) &&
145          "unexpected successors in a non-terminator operation");
146 
147   // Initialize the results.
148   auto resultTypeIt = resultTypes.begin();
149   for (unsigned i = 0; i < numInlineResults; ++i, ++resultTypeIt)
150     new (op->getInlineOpResult(i)) detail::InlineOpResult(*resultTypeIt, i);
151   for (unsigned i = 0; i < numTrailingResults; ++i, ++resultTypeIt) {
152     new (op->getOutOfLineOpResult(i))
153         detail::OutOfLineOpResult(*resultTypeIt, i);
154   }
155 
156   // Initialize the regions.
157   for (unsigned i = 0; i != numRegions; ++i)
158     new (&op->getRegion(i)) Region(op);
159 
160   // Initialize the operands.
161   if (needsOperandStorage)
162     new (&op->getOperandStorage()) detail::OperandStorage(op, operands);
163 
164   // Initialize the successors.
165   auto blockOperands = op->getBlockOperands();
166   for (unsigned i = 0; i != numSuccessors; ++i)
167     new (&blockOperands[i]) BlockOperand(op, successors[i]);
168 
169   return op;
170 }
171 
172 Operation::Operation(Location location, OperationName name, unsigned numResults,
173                      unsigned numSuccessors, unsigned numRegions,
174                      DictionaryAttr attributes, bool hasOperandStorage)
175     : location(location), numResults(numResults), numSuccs(numSuccessors),
176       numRegions(numRegions), hasOperandStorage(hasOperandStorage), name(name),
177       attrs(attributes) {
178   assert(attributes && "unexpected null attribute dictionary");
179 }
180 
181 // Operations are deleted through the destroy() member because they are
182 // allocated via malloc.
183 Operation::~Operation() {
184   assert(block == nullptr && "operation destroyed but still in a block");
185 
186   // Explicitly run the destructors for the operands.
187   if (hasOperandStorage)
188     getOperandStorage().~OperandStorage();
189 
190   // Explicitly run the destructors for the successors.
191   for (auto &successor : getBlockOperands())
192     successor.~BlockOperand();
193 
194   // Explicitly destroy the regions.
195   for (auto &region : getRegions())
196     region.~Region();
197 }
198 
199 /// Destroy this operation or one of its subclasses.
200 void Operation::destroy() {
201   // Operations may have additional prefixed allocation, which needs to be
202   // accounted for here when computing the address to free.
203   char *rawMem = reinterpret_cast<char *>(this) -
204                  llvm::alignTo(prefixAllocSize(), alignof(Operation));
205   this->~Operation();
206   free(rawMem);
207 }
208 
209 /// Return the context this operation is associated with.
210 MLIRContext *Operation::getContext() { return location->getContext(); }
211 
212 /// Return the dialect this operation is associated with, or nullptr if the
213 /// associated dialect is not registered.
214 Dialect *Operation::getDialect() { return getName().getDialect(); }
215 
216 Region *Operation::getParentRegion() {
217   return block ? block->getParent() : nullptr;
218 }
219 
220 Operation *Operation::getParentOp() {
221   return block ? block->getParentOp() : nullptr;
222 }
223 
224 /// Return true if this operation is a proper ancestor of the `other`
225 /// operation.
226 bool Operation::isProperAncestor(Operation *other) {
227   while ((other = other->getParentOp()))
228     if (this == other)
229       return true;
230   return false;
231 }
232 
233 /// Replace any uses of 'from' with 'to' within this operation.
234 void Operation::replaceUsesOfWith(Value from, Value to) {
235   if (from == to)
236     return;
237   for (auto &operand : getOpOperands())
238     if (operand.get() == from)
239       operand.set(to);
240 }
241 
242 /// Replace the current operands of this operation with the ones provided in
243 /// 'operands'.
244 void Operation::setOperands(ValueRange operands) {
245   if (LLVM_LIKELY(hasOperandStorage))
246     return getOperandStorage().setOperands(this, operands);
247   assert(operands.empty() && "setting operands without an operand storage");
248 }
249 
250 /// Replace the operands beginning at 'start' and ending at 'start' + 'length'
251 /// with the ones provided in 'operands'. 'operands' may be smaller or larger
252 /// than the range pointed to by 'start'+'length'.
253 void Operation::setOperands(unsigned start, unsigned length,
254                             ValueRange operands) {
255   assert((start + length) <= getNumOperands() &&
256          "invalid operand range specified");
257   if (LLVM_LIKELY(hasOperandStorage))
258     return getOperandStorage().setOperands(this, start, length, operands);
259   assert(operands.empty() && "setting operands without an operand storage");
260 }
261 
262 /// Insert the given operands into the operand list at the given 'index'.
263 void Operation::insertOperands(unsigned index, ValueRange operands) {
264   if (LLVM_LIKELY(hasOperandStorage))
265     return setOperands(index, /*length=*/0, operands);
266   assert(operands.empty() && "inserting operands without an operand storage");
267 }
268 
269 //===----------------------------------------------------------------------===//
270 // Diagnostics
271 //===----------------------------------------------------------------------===//
272 
273 /// Emit an error about fatal conditions with this operation, reporting up to
274 /// any diagnostic handlers that may be listening.
275 InFlightDiagnostic Operation::emitError(const Twine &message) {
276   InFlightDiagnostic diag = mlir::emitError(getLoc(), message);
277   if (getContext()->shouldPrintOpOnDiagnostic()) {
278     // Print out the operation explicitly here so that we can print the generic
279     // form.
280     // TODO: It would be nice if we could instead provide the
281     // specific printing flags when adding the operation as an argument to the
282     // diagnostic.
283     std::string printedOp;
284     {
285       llvm::raw_string_ostream os(printedOp);
286       print(os, OpPrintingFlags().printGenericOpForm().useLocalScope());
287     }
288     diag.attachNote(getLoc()) << "see current operation: " << printedOp;
289   }
290   return diag;
291 }
292 
293 /// Emit a warning about this operation, reporting up to any diagnostic
294 /// handlers that may be listening.
295 InFlightDiagnostic Operation::emitWarning(const Twine &message) {
296   InFlightDiagnostic diag = mlir::emitWarning(getLoc(), message);
297   if (getContext()->shouldPrintOpOnDiagnostic())
298     diag.attachNote(getLoc()) << "see current operation: " << *this;
299   return diag;
300 }
301 
302 /// Emit a remark about this operation, reporting up to any diagnostic
303 /// handlers that may be listening.
304 InFlightDiagnostic Operation::emitRemark(const Twine &message) {
305   InFlightDiagnostic diag = mlir::emitRemark(getLoc(), message);
306   if (getContext()->shouldPrintOpOnDiagnostic())
307     diag.attachNote(getLoc()) << "see current operation: " << *this;
308   return diag;
309 }
310 
311 //===----------------------------------------------------------------------===//
312 // Operation Ordering
313 //===----------------------------------------------------------------------===//
314 
315 constexpr unsigned Operation::kInvalidOrderIdx;
316 constexpr unsigned Operation::kOrderStride;
317 
318 /// Given an operation 'other' that is within the same parent block, return
319 /// whether the current operation is before 'other' in the operation list
320 /// of the parent block.
321 /// Note: This function has an average complexity of O(1), but worst case may
322 /// take O(N) where N is the number of operations within the parent block.
323 bool Operation::isBeforeInBlock(Operation *other) {
324   assert(block && "Operations without parent blocks have no order.");
325   assert(other && other->block == block &&
326          "Expected other operation to have the same parent block.");
327   // If the order of the block is already invalid, directly recompute the
328   // parent.
329   if (!block->isOpOrderValid()) {
330     block->recomputeOpOrder();
331   } else {
332     // Update the order either operation if necessary.
333     updateOrderIfNecessary();
334     other->updateOrderIfNecessary();
335   }
336 
337   return orderIndex < other->orderIndex;
338 }
339 
340 /// Update the order index of this operation of this operation if necessary,
341 /// potentially recomputing the order of the parent block.
342 void Operation::updateOrderIfNecessary() {
343   assert(block && "expected valid parent");
344 
345   // If the order is valid for this operation there is nothing to do.
346   if (hasValidOrder())
347     return;
348   Operation *blockFront = &block->front();
349   Operation *blockBack = &block->back();
350 
351   // This method is expected to only be invoked on blocks with more than one
352   // operation.
353   assert(blockFront != blockBack && "expected more than one operation");
354 
355   // If the operation is at the end of the block.
356   if (this == blockBack) {
357     Operation *prevNode = getPrevNode();
358     if (!prevNode->hasValidOrder())
359       return block->recomputeOpOrder();
360 
361     // Add the stride to the previous operation.
362     orderIndex = prevNode->orderIndex + kOrderStride;
363     return;
364   }
365 
366   // If this is the first operation try to use the next operation to compute the
367   // ordering.
368   if (this == blockFront) {
369     Operation *nextNode = getNextNode();
370     if (!nextNode->hasValidOrder())
371       return block->recomputeOpOrder();
372     // There is no order to give this operation.
373     if (nextNode->orderIndex == 0)
374       return block->recomputeOpOrder();
375 
376     // If we can't use the stride, just take the middle value left. This is safe
377     // because we know there is at least one valid index to assign to.
378     if (nextNode->orderIndex <= kOrderStride)
379       orderIndex = (nextNode->orderIndex / 2);
380     else
381       orderIndex = kOrderStride;
382     return;
383   }
384 
385   // Otherwise, this operation is between two others. Place this operation in
386   // the middle of the previous and next if possible.
387   Operation *prevNode = getPrevNode(), *nextNode = getNextNode();
388   if (!prevNode->hasValidOrder() || !nextNode->hasValidOrder())
389     return block->recomputeOpOrder();
390   unsigned prevOrder = prevNode->orderIndex, nextOrder = nextNode->orderIndex;
391 
392   // Check to see if there is a valid order between the two.
393   if (prevOrder + 1 == nextOrder)
394     return block->recomputeOpOrder();
395   orderIndex = prevOrder + ((nextOrder - prevOrder) / 2);
396 }
397 
398 //===----------------------------------------------------------------------===//
399 // ilist_traits for Operation
400 //===----------------------------------------------------------------------===//
401 
402 auto llvm::ilist_detail::SpecificNodeAccess<
403     typename llvm::ilist_detail::compute_node_options<
404         ::mlir::Operation>::type>::getNodePtr(pointer N) -> node_type * {
405   return NodeAccess::getNodePtr<OptionsT>(N);
406 }
407 
408 auto llvm::ilist_detail::SpecificNodeAccess<
409     typename llvm::ilist_detail::compute_node_options<
410         ::mlir::Operation>::type>::getNodePtr(const_pointer N)
411     -> const node_type * {
412   return NodeAccess::getNodePtr<OptionsT>(N);
413 }
414 
415 auto llvm::ilist_detail::SpecificNodeAccess<
416     typename llvm::ilist_detail::compute_node_options<
417         ::mlir::Operation>::type>::getValuePtr(node_type *N) -> pointer {
418   return NodeAccess::getValuePtr<OptionsT>(N);
419 }
420 
421 auto llvm::ilist_detail::SpecificNodeAccess<
422     typename llvm::ilist_detail::compute_node_options<
423         ::mlir::Operation>::type>::getValuePtr(const node_type *N)
424     -> const_pointer {
425   return NodeAccess::getValuePtr<OptionsT>(N);
426 }
427 
428 void llvm::ilist_traits<::mlir::Operation>::deleteNode(Operation *op) {
429   op->destroy();
430 }
431 
432 Block *llvm::ilist_traits<::mlir::Operation>::getContainingBlock() {
433   size_t Offset(size_t(&((Block *)nullptr->*Block::getSublistAccess(nullptr))));
434   iplist<Operation> *Anchor(static_cast<iplist<Operation> *>(this));
435   return reinterpret_cast<Block *>(reinterpret_cast<char *>(Anchor) - Offset);
436 }
437 
438 /// This is a trait method invoked when an operation is added to a block.  We
439 /// keep the block pointer up to date.
440 void llvm::ilist_traits<::mlir::Operation>::addNodeToList(Operation *op) {
441   assert(!op->getBlock() && "already in an operation block!");
442   op->block = getContainingBlock();
443 
444   // Invalidate the order on the operation.
445   op->orderIndex = Operation::kInvalidOrderIdx;
446 }
447 
448 /// This is a trait method invoked when an operation is removed from a block.
449 /// We keep the block pointer up to date.
450 void llvm::ilist_traits<::mlir::Operation>::removeNodeFromList(Operation *op) {
451   assert(op->block && "not already in an operation block!");
452   op->block = nullptr;
453 }
454 
455 /// This is a trait method invoked when an operation is moved from one block
456 /// to another.  We keep the block pointer up to date.
457 void llvm::ilist_traits<::mlir::Operation>::transferNodesFromList(
458     ilist_traits<Operation> &otherList, op_iterator first, op_iterator last) {
459   Block *curParent = getContainingBlock();
460 
461   // Invalidate the ordering of the parent block.
462   curParent->invalidateOpOrder();
463 
464   // If we are transferring operations within the same block, the block
465   // pointer doesn't need to be updated.
466   if (curParent == otherList.getContainingBlock())
467     return;
468 
469   // Update the 'block' member of each operation.
470   for (; first != last; ++first)
471     first->block = curParent;
472 }
473 
474 /// Remove this operation (and its descendants) from its Block and delete
475 /// all of them.
476 void Operation::erase() {
477   if (auto *parent = getBlock())
478     parent->getOperations().erase(this);
479   else
480     destroy();
481 }
482 
483 /// Remove the operation from its parent block, but don't delete it.
484 void Operation::remove() {
485   if (Block *parent = getBlock())
486     parent->getOperations().remove(this);
487 }
488 
489 /// Unlink this operation from its current block and insert it right before
490 /// `existingOp` which may be in the same or another block in the same
491 /// function.
492 void Operation::moveBefore(Operation *existingOp) {
493   moveBefore(existingOp->getBlock(), existingOp->getIterator());
494 }
495 
496 /// Unlink this operation from its current basic block and insert it right
497 /// before `iterator` in the specified basic block.
498 void Operation::moveBefore(Block *block,
499                            llvm::iplist<Operation>::iterator iterator) {
500   block->getOperations().splice(iterator, getBlock()->getOperations(),
501                                 getIterator());
502 }
503 
504 /// Unlink this operation from its current block and insert it right after
505 /// `existingOp` which may be in the same or another block in the same function.
506 void Operation::moveAfter(Operation *existingOp) {
507   moveAfter(existingOp->getBlock(), existingOp->getIterator());
508 }
509 
510 /// Unlink this operation from its current block and insert it right after
511 /// `iterator` in the specified block.
512 void Operation::moveAfter(Block *block,
513                           llvm::iplist<Operation>::iterator iterator) {
514   assert(iterator != block->end() && "cannot move after end of block");
515   moveBefore(&*std::next(iterator));
516 }
517 
518 /// This drops all operand uses from this operation, which is an essential
519 /// step in breaking cyclic dependences between references when they are to
520 /// be deleted.
521 void Operation::dropAllReferences() {
522   for (auto &op : getOpOperands())
523     op.drop();
524 
525   for (auto &region : getRegions())
526     region.dropAllReferences();
527 
528   for (auto &dest : getBlockOperands())
529     dest.drop();
530 }
531 
532 /// This drops all uses of any values defined by this operation or its nested
533 /// regions, wherever they are located.
534 void Operation::dropAllDefinedValueUses() {
535   dropAllUses();
536 
537   for (auto &region : getRegions())
538     for (auto &block : region)
539       block.dropAllDefinedValueUses();
540 }
541 
542 void Operation::setSuccessor(Block *block, unsigned index) {
543   assert(index < getNumSuccessors());
544   getBlockOperands()[index].set(block);
545 }
546 
547 /// Attempt to fold this operation using the Op's registered foldHook.
548 LogicalResult Operation::fold(ArrayRef<Attribute> operands,
549                               SmallVectorImpl<OpFoldResult> &results) {
550   // If we have a registered operation definition matching this one, use it to
551   // try to constant fold the operation.
552   auto *abstractOp = getAbstractOperation();
553   if (abstractOp && succeeded(abstractOp->foldHook(this, operands, results)))
554     return success();
555 
556   // Otherwise, fall back on the dialect hook to handle it.
557   Dialect *dialect = getDialect();
558   if (!dialect)
559     return failure();
560 
561   auto *interface = dialect->getRegisteredInterface<DialectFoldInterface>();
562   if (!interface)
563     return failure();
564 
565   return interface->fold(this, operands, results);
566 }
567 
568 /// Emit an error with the op name prefixed, like "'dim' op " which is
569 /// convenient for verifiers.
570 InFlightDiagnostic Operation::emitOpError(const Twine &message) {
571   return emitError() << "'" << getName() << "' op " << message;
572 }
573 
574 //===----------------------------------------------------------------------===//
575 // Operation Cloning
576 //===----------------------------------------------------------------------===//
577 
578 /// Create a deep copy of this operation but keep the operation regions empty.
579 /// Operands are remapped using `mapper` (if present), and `mapper` is updated
580 /// to contain the results.
581 Operation *Operation::cloneWithoutRegions(BlockAndValueMapping &mapper) {
582   SmallVector<Value, 8> operands;
583   SmallVector<Block *, 2> successors;
584 
585   // Remap the operands.
586   operands.reserve(getNumOperands());
587   for (auto opValue : getOperands())
588     operands.push_back(mapper.lookupOrDefault(opValue));
589 
590   // Remap the successors.
591   successors.reserve(getNumSuccessors());
592   for (Block *successor : getSuccessors())
593     successors.push_back(mapper.lookupOrDefault(successor));
594 
595   // Create the new operation.
596   auto *newOp = create(getLoc(), getName(), getResultTypes(), operands, attrs,
597                        successors, getNumRegions());
598 
599   // Remember the mapping of any results.
600   for (unsigned i = 0, e = getNumResults(); i != e; ++i)
601     mapper.map(getResult(i), newOp->getResult(i));
602 
603   return newOp;
604 }
605 
606 Operation *Operation::cloneWithoutRegions() {
607   BlockAndValueMapping mapper;
608   return cloneWithoutRegions(mapper);
609 }
610 
611 /// Create a deep copy of this operation, remapping any operands that use
612 /// values outside of the operation using the map that is provided (leaving
613 /// them alone if no entry is present).  Replaces references to cloned
614 /// sub-operations to the corresponding operation that is copied, and adds
615 /// those mappings to the map.
616 Operation *Operation::clone(BlockAndValueMapping &mapper) {
617   auto *newOp = cloneWithoutRegions(mapper);
618 
619   // Clone the regions.
620   for (unsigned i = 0; i != numRegions; ++i)
621     getRegion(i).cloneInto(&newOp->getRegion(i), mapper);
622 
623   return newOp;
624 }
625 
626 Operation *Operation::clone() {
627   BlockAndValueMapping mapper;
628   return clone(mapper);
629 }
630 
631 //===----------------------------------------------------------------------===//
632 // OpState trait class.
633 //===----------------------------------------------------------------------===//
634 
635 // The fallback for the parser is to reject the custom assembly form.
636 ParseResult OpState::parse(OpAsmParser &parser, OperationState &result) {
637   return parser.emitError(parser.getNameLoc(), "has no custom assembly form");
638 }
639 
640 // The fallback for the printer is to print in the generic assembly form.
641 void OpState::print(Operation *op, OpAsmPrinter &p) { p.printGenericOp(op); }
642 
643 /// Emit an error about fatal conditions with this operation, reporting up to
644 /// any diagnostic handlers that may be listening.
645 InFlightDiagnostic OpState::emitError(const Twine &message) {
646   return getOperation()->emitError(message);
647 }
648 
649 /// Emit an error with the op name prefixed, like "'dim' op " which is
650 /// convenient for verifiers.
651 InFlightDiagnostic OpState::emitOpError(const Twine &message) {
652   return getOperation()->emitOpError(message);
653 }
654 
655 /// Emit a warning about this operation, reporting up to any diagnostic
656 /// handlers that may be listening.
657 InFlightDiagnostic OpState::emitWarning(const Twine &message) {
658   return getOperation()->emitWarning(message);
659 }
660 
661 /// Emit a remark about this operation, reporting up to any diagnostic
662 /// handlers that may be listening.
663 InFlightDiagnostic OpState::emitRemark(const Twine &message) {
664   return getOperation()->emitRemark(message);
665 }
666 
667 //===----------------------------------------------------------------------===//
668 // Op Trait implementations
669 //===----------------------------------------------------------------------===//
670 
671 OpFoldResult OpTrait::impl::foldIdempotent(Operation *op) {
672   auto *argumentOp = op->getOperand(0).getDefiningOp();
673   if (argumentOp && op->getName() == argumentOp->getName()) {
674     // Replace the outer operation output with the inner operation.
675     return op->getOperand(0);
676   }
677 
678   return {};
679 }
680 
681 OpFoldResult OpTrait::impl::foldInvolution(Operation *op) {
682   auto *argumentOp = op->getOperand(0).getDefiningOp();
683   if (argumentOp && op->getName() == argumentOp->getName()) {
684     // Replace the outer involutions output with inner's input.
685     return argumentOp->getOperand(0);
686   }
687 
688   return {};
689 }
690 
691 LogicalResult OpTrait::impl::verifyZeroOperands(Operation *op) {
692   if (op->getNumOperands() != 0)
693     return op->emitOpError() << "requires zero operands";
694   return success();
695 }
696 
697 LogicalResult OpTrait::impl::verifyOneOperand(Operation *op) {
698   if (op->getNumOperands() != 1)
699     return op->emitOpError() << "requires a single operand";
700   return success();
701 }
702 
703 LogicalResult OpTrait::impl::verifyNOperands(Operation *op,
704                                              unsigned numOperands) {
705   if (op->getNumOperands() != numOperands) {
706     return op->emitOpError() << "expected " << numOperands
707                              << " operands, but found " << op->getNumOperands();
708   }
709   return success();
710 }
711 
712 LogicalResult OpTrait::impl::verifyAtLeastNOperands(Operation *op,
713                                                     unsigned numOperands) {
714   if (op->getNumOperands() < numOperands)
715     return op->emitOpError()
716            << "expected " << numOperands << " or more operands";
717   return success();
718 }
719 
720 /// If this is a vector type, or a tensor type, return the scalar element type
721 /// that it is built around, otherwise return the type unmodified.
722 static Type getTensorOrVectorElementType(Type type) {
723   if (auto vec = type.dyn_cast<VectorType>())
724     return vec.getElementType();
725 
726   // Look through tensor<vector<...>> to find the underlying element type.
727   if (auto tensor = type.dyn_cast<TensorType>())
728     return getTensorOrVectorElementType(tensor.getElementType());
729   return type;
730 }
731 
732 LogicalResult OpTrait::impl::verifyIsIdempotent(Operation *op) {
733   // FIXME: Add back check for no side effects on operation.
734   // Currently adding it would cause the shared library build
735   // to fail since there would be a dependency of IR on SideEffectInterfaces
736   // which is cyclical.
737   return success();
738 }
739 
740 LogicalResult OpTrait::impl::verifyIsInvolution(Operation *op) {
741   // FIXME: Add back check for no side effects on operation.
742   // Currently adding it would cause the shared library build
743   // to fail since there would be a dependency of IR on SideEffectInterfaces
744   // which is cyclical.
745   return success();
746 }
747 
748 LogicalResult
749 OpTrait::impl::verifyOperandsAreSignlessIntegerLike(Operation *op) {
750   for (auto opType : op->getOperandTypes()) {
751     auto type = getTensorOrVectorElementType(opType);
752     if (!type.isSignlessIntOrIndex())
753       return op->emitOpError() << "requires an integer or index type";
754   }
755   return success();
756 }
757 
758 LogicalResult OpTrait::impl::verifyOperandsAreFloatLike(Operation *op) {
759   for (auto opType : op->getOperandTypes()) {
760     auto type = getTensorOrVectorElementType(opType);
761     if (!type.isa<FloatType>())
762       return op->emitOpError("requires a float type");
763   }
764   return success();
765 }
766 
767 LogicalResult OpTrait::impl::verifySameTypeOperands(Operation *op) {
768   // Zero or one operand always have the "same" type.
769   unsigned nOperands = op->getNumOperands();
770   if (nOperands < 2)
771     return success();
772 
773   auto type = op->getOperand(0).getType();
774   for (auto opType : llvm::drop_begin(op->getOperandTypes(), 1))
775     if (opType != type)
776       return op->emitOpError() << "requires all operands to have the same type";
777   return success();
778 }
779 
780 LogicalResult OpTrait::impl::verifyZeroRegion(Operation *op) {
781   if (op->getNumRegions() != 0)
782     return op->emitOpError() << "requires zero regions";
783   return success();
784 }
785 
786 LogicalResult OpTrait::impl::verifyOneRegion(Operation *op) {
787   if (op->getNumRegions() != 1)
788     return op->emitOpError() << "requires one region";
789   return success();
790 }
791 
792 LogicalResult OpTrait::impl::verifyNRegions(Operation *op,
793                                             unsigned numRegions) {
794   if (op->getNumRegions() != numRegions)
795     return op->emitOpError() << "expected " << numRegions << " regions";
796   return success();
797 }
798 
799 LogicalResult OpTrait::impl::verifyAtLeastNRegions(Operation *op,
800                                                    unsigned numRegions) {
801   if (op->getNumRegions() < numRegions)
802     return op->emitOpError() << "expected " << numRegions << " or more regions";
803   return success();
804 }
805 
806 LogicalResult OpTrait::impl::verifyZeroResult(Operation *op) {
807   if (op->getNumResults() != 0)
808     return op->emitOpError() << "requires zero results";
809   return success();
810 }
811 
812 LogicalResult OpTrait::impl::verifyOneResult(Operation *op) {
813   if (op->getNumResults() != 1)
814     return op->emitOpError() << "requires one result";
815   return success();
816 }
817 
818 LogicalResult OpTrait::impl::verifyNResults(Operation *op,
819                                             unsigned numOperands) {
820   if (op->getNumResults() != numOperands)
821     return op->emitOpError() << "expected " << numOperands << " results";
822   return success();
823 }
824 
825 LogicalResult OpTrait::impl::verifyAtLeastNResults(Operation *op,
826                                                    unsigned numOperands) {
827   if (op->getNumResults() < numOperands)
828     return op->emitOpError()
829            << "expected " << numOperands << " or more results";
830   return success();
831 }
832 
833 LogicalResult OpTrait::impl::verifySameOperandsShape(Operation *op) {
834   if (failed(verifyAtLeastNOperands(op, 1)))
835     return failure();
836 
837   if (failed(verifyCompatibleShapes(op->getOperandTypes())))
838     return op->emitOpError() << "requires the same shape for all operands";
839 
840   return success();
841 }
842 
843 LogicalResult OpTrait::impl::verifySameOperandsAndResultShape(Operation *op) {
844   if (failed(verifyAtLeastNOperands(op, 1)) ||
845       failed(verifyAtLeastNResults(op, 1)))
846     return failure();
847 
848   SmallVector<Type, 8> types(op->getOperandTypes());
849   types.append(llvm::to_vector<4>(op->getResultTypes()));
850 
851   if (failed(verifyCompatibleShapes(types)))
852     return op->emitOpError()
853            << "requires the same shape for all operands and results";
854 
855   return success();
856 }
857 
858 LogicalResult OpTrait::impl::verifySameOperandsElementType(Operation *op) {
859   if (failed(verifyAtLeastNOperands(op, 1)))
860     return failure();
861   auto elementType = getElementTypeOrSelf(op->getOperand(0));
862 
863   for (auto operand : llvm::drop_begin(op->getOperands(), 1)) {
864     if (getElementTypeOrSelf(operand) != elementType)
865       return op->emitOpError("requires the same element type for all operands");
866   }
867 
868   return success();
869 }
870 
871 LogicalResult
872 OpTrait::impl::verifySameOperandsAndResultElementType(Operation *op) {
873   if (failed(verifyAtLeastNOperands(op, 1)) ||
874       failed(verifyAtLeastNResults(op, 1)))
875     return failure();
876 
877   auto elementType = getElementTypeOrSelf(op->getResult(0));
878 
879   // Verify result element type matches first result's element type.
880   for (auto result : llvm::drop_begin(op->getResults(), 1)) {
881     if (getElementTypeOrSelf(result) != elementType)
882       return op->emitOpError(
883           "requires the same element type for all operands and results");
884   }
885 
886   // Verify operand's element type matches first result's element type.
887   for (auto operand : op->getOperands()) {
888     if (getElementTypeOrSelf(operand) != elementType)
889       return op->emitOpError(
890           "requires the same element type for all operands and results");
891   }
892 
893   return success();
894 }
895 
896 LogicalResult OpTrait::impl::verifySameOperandsAndResultType(Operation *op) {
897   if (failed(verifyAtLeastNOperands(op, 1)) ||
898       failed(verifyAtLeastNResults(op, 1)))
899     return failure();
900 
901   auto type = op->getResult(0).getType();
902   auto elementType = getElementTypeOrSelf(type);
903   for (auto resultType : llvm::drop_begin(op->getResultTypes())) {
904     if (getElementTypeOrSelf(resultType) != elementType ||
905         failed(verifyCompatibleShape(resultType, type)))
906       return op->emitOpError()
907              << "requires the same type for all operands and results";
908   }
909   for (auto opType : op->getOperandTypes()) {
910     if (getElementTypeOrSelf(opType) != elementType ||
911         failed(verifyCompatibleShape(opType, type)))
912       return op->emitOpError()
913              << "requires the same type for all operands and results";
914   }
915   return success();
916 }
917 
918 LogicalResult OpTrait::impl::verifyIsTerminator(Operation *op) {
919   Block *block = op->getBlock();
920   // Verify that the operation is at the end of the respective parent block.
921   if (!block || &block->back() != op)
922     return op->emitOpError("must be the last operation in the parent block");
923   return success();
924 }
925 
926 static LogicalResult verifyTerminatorSuccessors(Operation *op) {
927   auto *parent = op->getParentRegion();
928 
929   // Verify that the operands lines up with the BB arguments in the successor.
930   for (Block *succ : op->getSuccessors())
931     if (succ->getParent() != parent)
932       return op->emitError("reference to block defined in another region");
933   return success();
934 }
935 
936 LogicalResult OpTrait::impl::verifyZeroSuccessor(Operation *op) {
937   if (op->getNumSuccessors() != 0) {
938     return op->emitOpError("requires 0 successors but found ")
939            << op->getNumSuccessors();
940   }
941   return success();
942 }
943 
944 LogicalResult OpTrait::impl::verifyOneSuccessor(Operation *op) {
945   if (op->getNumSuccessors() != 1) {
946     return op->emitOpError("requires 1 successor but found ")
947            << op->getNumSuccessors();
948   }
949   return verifyTerminatorSuccessors(op);
950 }
951 LogicalResult OpTrait::impl::verifyNSuccessors(Operation *op,
952                                                unsigned numSuccessors) {
953   if (op->getNumSuccessors() != numSuccessors) {
954     return op->emitOpError("requires ")
955            << numSuccessors << " successors but found "
956            << op->getNumSuccessors();
957   }
958   return verifyTerminatorSuccessors(op);
959 }
960 LogicalResult OpTrait::impl::verifyAtLeastNSuccessors(Operation *op,
961                                                       unsigned numSuccessors) {
962   if (op->getNumSuccessors() < numSuccessors) {
963     return op->emitOpError("requires at least ")
964            << numSuccessors << " successors but found "
965            << op->getNumSuccessors();
966   }
967   return verifyTerminatorSuccessors(op);
968 }
969 
970 LogicalResult OpTrait::impl::verifyResultsAreBoolLike(Operation *op) {
971   for (auto resultType : op->getResultTypes()) {
972     auto elementType = getTensorOrVectorElementType(resultType);
973     bool isBoolType = elementType.isInteger(1);
974     if (!isBoolType)
975       return op->emitOpError() << "requires a bool result type";
976   }
977 
978   return success();
979 }
980 
981 LogicalResult OpTrait::impl::verifyResultsAreFloatLike(Operation *op) {
982   for (auto resultType : op->getResultTypes())
983     if (!getTensorOrVectorElementType(resultType).isa<FloatType>())
984       return op->emitOpError() << "requires a floating point type";
985 
986   return success();
987 }
988 
989 LogicalResult
990 OpTrait::impl::verifyResultsAreSignlessIntegerLike(Operation *op) {
991   for (auto resultType : op->getResultTypes())
992     if (!getTensorOrVectorElementType(resultType).isSignlessIntOrIndex())
993       return op->emitOpError() << "requires an integer or index type";
994   return success();
995 }
996 
997 static LogicalResult verifyValueSizeAttr(Operation *op, StringRef attrName,
998                                          bool isOperand) {
999   auto sizeAttr = op->getAttrOfType<DenseIntElementsAttr>(attrName);
1000   if (!sizeAttr)
1001     return op->emitOpError("requires 1D vector attribute '") << attrName << "'";
1002 
1003   auto sizeAttrType = sizeAttr.getType().dyn_cast<VectorType>();
1004   if (!sizeAttrType || sizeAttrType.getRank() != 1 ||
1005       !sizeAttrType.getElementType().isInteger(32))
1006     return op->emitOpError("requires 1D vector of i32 attribute '")
1007            << attrName << "'";
1008 
1009   if (llvm::any_of(sizeAttr.getIntValues(), [](const APInt &element) {
1010         return !element.isNonNegative();
1011       }))
1012     return op->emitOpError("'")
1013            << attrName << "' attribute cannot have negative elements";
1014 
1015   size_t totalCount = std::accumulate(
1016       sizeAttr.begin(), sizeAttr.end(), 0,
1017       [](unsigned all, APInt one) { return all + one.getZExtValue(); });
1018 
1019   if (isOperand && totalCount != op->getNumOperands())
1020     return op->emitOpError("operand count (")
1021            << op->getNumOperands() << ") does not match with the total size ("
1022            << totalCount << ") specified in attribute '" << attrName << "'";
1023   else if (!isOperand && totalCount != op->getNumResults())
1024     return op->emitOpError("result count (")
1025            << op->getNumResults() << ") does not match with the total size ("
1026            << totalCount << ") specified in attribute '" << attrName << "'";
1027   return success();
1028 }
1029 
1030 LogicalResult OpTrait::impl::verifyOperandSizeAttr(Operation *op,
1031                                                    StringRef attrName) {
1032   return verifyValueSizeAttr(op, attrName, /*isOperand=*/true);
1033 }
1034 
1035 LogicalResult OpTrait::impl::verifyResultSizeAttr(Operation *op,
1036                                                   StringRef attrName) {
1037   return verifyValueSizeAttr(op, attrName, /*isOperand=*/false);
1038 }
1039 
1040 LogicalResult OpTrait::impl::verifyNoRegionArguments(Operation *op) {
1041   for (Region &region : op->getRegions()) {
1042     if (region.empty())
1043       continue;
1044 
1045     if (region.getNumArguments() != 0) {
1046       if (op->getNumRegions() > 1)
1047         return op->emitOpError("region #")
1048                << region.getRegionNumber() << " should have no arguments";
1049       else
1050         return op->emitOpError("region should have no arguments");
1051     }
1052   }
1053   return success();
1054 }
1055 
1056 LogicalResult OpTrait::impl::verifyElementwise(Operation *op) {
1057   auto isMappableType = [](Type type) {
1058     return type.isa<VectorType, TensorType>();
1059   };
1060   auto resultMappableTypes = llvm::to_vector<1>(
1061       llvm::make_filter_range(op->getResultTypes(), isMappableType));
1062   auto operandMappableTypes = llvm::to_vector<2>(
1063       llvm::make_filter_range(op->getOperandTypes(), isMappableType));
1064 
1065   // If the op only has scalar operand/result types, then we have nothing to
1066   // check.
1067   if (resultMappableTypes.empty() && operandMappableTypes.empty())
1068     return success();
1069 
1070   if (!resultMappableTypes.empty() && operandMappableTypes.empty())
1071     return op->emitOpError("if a result is non-scalar, then at least one "
1072                            "operand must be non-scalar");
1073 
1074   assert(!operandMappableTypes.empty());
1075 
1076   if (resultMappableTypes.empty())
1077     return op->emitOpError("if an operand is non-scalar, then there must be at "
1078                            "least one non-scalar result");
1079 
1080   if (resultMappableTypes.size() != op->getNumResults())
1081     return op->emitOpError(
1082         "if an operand is non-scalar, then all results must be non-scalar");
1083 
1084   SmallVector<Type, 4> types = llvm::to_vector<2>(
1085       llvm::concat<Type>(operandMappableTypes, resultMappableTypes));
1086   TypeID expectedBaseTy = types.front().getTypeID();
1087   if (!llvm::all_of(types,
1088                     [&](Type t) { return t.getTypeID() == expectedBaseTy; }) ||
1089       failed(verifyCompatibleShapes(types))) {
1090     return op->emitOpError() << "all non-scalar operands/results must have the "
1091                                 "same shape and base type";
1092   }
1093 
1094   return success();
1095 }
1096 
1097 bool OpTrait::hasElementwiseMappableTraits(Operation *op) {
1098   return op->hasTrait<Elementwise>() && op->hasTrait<Scalarizable>() &&
1099          op->hasTrait<Vectorizable>() && op->hasTrait<Tensorizable>();
1100 }
1101 
1102 //===----------------------------------------------------------------------===//
1103 // BinaryOp implementation
1104 //===----------------------------------------------------------------------===//
1105 
1106 // These functions are out-of-line implementations of the methods in BinaryOp,
1107 // which avoids them being template instantiated/duplicated.
1108 
1109 void impl::buildBinaryOp(OpBuilder &builder, OperationState &result, Value lhs,
1110                          Value rhs) {
1111   assert(lhs.getType() == rhs.getType());
1112   result.addOperands({lhs, rhs});
1113   result.types.push_back(lhs.getType());
1114 }
1115 
1116 ParseResult impl::parseOneResultSameOperandTypeOp(OpAsmParser &parser,
1117                                                   OperationState &result) {
1118   SmallVector<OpAsmParser::OperandType, 2> ops;
1119   Type type;
1120   return failure(parser.parseOperandList(ops) ||
1121                  parser.parseOptionalAttrDict(result.attributes) ||
1122                  parser.parseColonType(type) ||
1123                  parser.resolveOperands(ops, type, result.operands) ||
1124                  parser.addTypeToList(type, result.types));
1125 }
1126 
1127 void impl::printOneResultOp(Operation *op, OpAsmPrinter &p) {
1128   assert(op->getNumResults() == 1 && "op should have one result");
1129 
1130   // If not all the operand and result types are the same, just use the
1131   // generic assembly form to avoid omitting information in printing.
1132   auto resultType = op->getResult(0).getType();
1133   if (llvm::any_of(op->getOperandTypes(),
1134                    [&](Type type) { return type != resultType; })) {
1135     p.printGenericOp(op);
1136     return;
1137   }
1138 
1139   p << op->getName() << ' ';
1140   p.printOperands(op->getOperands());
1141   p.printOptionalAttrDict(op->getAttrs());
1142   // Now we can output only one type for all operands and the result.
1143   p << " : " << resultType;
1144 }
1145 
1146 //===----------------------------------------------------------------------===//
1147 // CastOp implementation
1148 //===----------------------------------------------------------------------===//
1149 
1150 /// Attempt to fold the given cast operation.
1151 LogicalResult
1152 impl::foldCastInterfaceOp(Operation *op, ArrayRef<Attribute> attrOperands,
1153                           SmallVectorImpl<OpFoldResult> &foldResults) {
1154   OperandRange operands = op->getOperands();
1155   if (operands.empty())
1156     return failure();
1157   ResultRange results = op->getResults();
1158 
1159   // Check for the case where the input and output types match 1-1.
1160   if (operands.getTypes() == results.getTypes()) {
1161     foldResults.append(operands.begin(), operands.end());
1162     return success();
1163   }
1164 
1165   return failure();
1166 }
1167 
1168 /// Attempt to verify the given cast operation.
1169 LogicalResult impl::verifyCastInterfaceOp(
1170     Operation *op, function_ref<bool(TypeRange, TypeRange)> areCastCompatible) {
1171   auto resultTypes = op->getResultTypes();
1172   if (llvm::empty(resultTypes))
1173     return op->emitOpError()
1174            << "expected at least one result for cast operation";
1175 
1176   auto operandTypes = op->getOperandTypes();
1177   if (!areCastCompatible(operandTypes, resultTypes)) {
1178     InFlightDiagnostic diag = op->emitOpError("operand type");
1179     if (llvm::empty(operandTypes))
1180       diag << "s []";
1181     else if (llvm::size(operandTypes) == 1)
1182       diag << " " << *operandTypes.begin();
1183     else
1184       diag << "s " << operandTypes;
1185     return diag << " and result type" << (resultTypes.size() == 1 ? " " : "s ")
1186                 << resultTypes << " are cast incompatible";
1187   }
1188 
1189   return success();
1190 }
1191 
1192 void impl::buildCastOp(OpBuilder &builder, OperationState &result, Value source,
1193                        Type destType) {
1194   result.addOperands(source);
1195   result.addTypes(destType);
1196 }
1197 
1198 ParseResult impl::parseCastOp(OpAsmParser &parser, OperationState &result) {
1199   OpAsmParser::OperandType srcInfo;
1200   Type srcType, dstType;
1201   return failure(parser.parseOperand(srcInfo) ||
1202                  parser.parseOptionalAttrDict(result.attributes) ||
1203                  parser.parseColonType(srcType) ||
1204                  parser.resolveOperand(srcInfo, srcType, result.operands) ||
1205                  parser.parseKeywordType("to", dstType) ||
1206                  parser.addTypeToList(dstType, result.types));
1207 }
1208 
1209 void impl::printCastOp(Operation *op, OpAsmPrinter &p) {
1210   p << op->getName() << ' ' << op->getOperand(0);
1211   p.printOptionalAttrDict(op->getAttrs());
1212   p << " : " << op->getOperand(0).getType() << " to "
1213     << op->getResult(0).getType();
1214 }
1215 
1216 Value impl::foldCastOp(Operation *op) {
1217   // Identity cast
1218   if (op->getOperand(0).getType() == op->getResult(0).getType())
1219     return op->getOperand(0);
1220   return nullptr;
1221 }
1222 
1223 LogicalResult
1224 impl::verifyCastOp(Operation *op,
1225                    function_ref<bool(Type, Type)> areCastCompatible) {
1226   auto opType = op->getOperand(0).getType();
1227   auto resType = op->getResult(0).getType();
1228   if (!areCastCompatible(opType, resType))
1229     return op->emitError("operand type ")
1230            << opType << " and result type " << resType
1231            << " are cast incompatible";
1232 
1233   return success();
1234 }
1235 
1236 //===----------------------------------------------------------------------===//
1237 // Misc. utils
1238 //===----------------------------------------------------------------------===//
1239 
1240 /// Insert an operation, generated by `buildTerminatorOp`, at the end of the
1241 /// region's only block if it does not have a terminator already. If the region
1242 /// is empty, insert a new block first. `buildTerminatorOp` should return the
1243 /// terminator operation to insert.
1244 void impl::ensureRegionTerminator(
1245     Region &region, OpBuilder &builder, Location loc,
1246     function_ref<Operation *(OpBuilder &, Location)> buildTerminatorOp) {
1247   OpBuilder::InsertionGuard guard(builder);
1248   if (region.empty())
1249     builder.createBlock(&region);
1250 
1251   Block &block = region.back();
1252   if (!block.empty() && block.back().hasTrait<OpTrait::IsTerminator>())
1253     return;
1254 
1255   builder.setInsertionPointToEnd(&block);
1256   builder.insert(buildTerminatorOp(builder, loc));
1257 }
1258 
1259 /// Create a simple OpBuilder and forward to the OpBuilder version of this
1260 /// function.
1261 void impl::ensureRegionTerminator(
1262     Region &region, Builder &builder, Location loc,
1263     function_ref<Operation *(OpBuilder &, Location)> buildTerminatorOp) {
1264   OpBuilder opBuilder(builder.getContext());
1265   ensureRegionTerminator(region, opBuilder, loc, buildTerminatorOp);
1266 }
1267 
1268 //===----------------------------------------------------------------------===//
1269 // UseIterator
1270 //===----------------------------------------------------------------------===//
1271 
1272 Operation::UseIterator::UseIterator(Operation *op, bool end)
1273     : op(op), res(end ? op->result_end() : op->result_begin()) {
1274   // Only initialize current use if there are results/can be uses.
1275   if (op->getNumResults())
1276     skipOverResultsWithNoUsers();
1277 }
1278 
1279 Operation::UseIterator &Operation::UseIterator::operator++() {
1280   // We increment over uses, if we reach the last use then move to next
1281   // result.
1282   if (use != (*res).use_end())
1283     ++use;
1284   if (use == (*res).use_end()) {
1285     ++res;
1286     skipOverResultsWithNoUsers();
1287   }
1288   return *this;
1289 }
1290 
1291 void Operation::UseIterator::skipOverResultsWithNoUsers() {
1292   while (res != op->result_end() && (*res).use_empty())
1293     ++res;
1294 
1295   // If we are at the last result, then set use to first use of
1296   // first result (sentinel value used for end).
1297   if (res == op->result_end())
1298     use = {};
1299   else
1300     use = (*res).use_begin();
1301 }
1302