xref: /llvm-project/mlir/lib/Dialect/SparseTensor/Transforms/Utils/CodegenEnv.cpp (revision cf4dd91165abe631ab4f3e205c78a14d4a927344)
1 //===- CodegenEnv.cpp -  Code generation environment class ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "CodegenEnv.h"
10 
11 #include "mlir/Dialect/Bufferization/IR/Bufferization.h"
12 #include "mlir/Dialect/Linalg/Utils/Utils.h"
13 #include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h"
14 #include "mlir/Dialect/Tensor/IR/Tensor.h"
15 
16 #include <optional>
17 
18 using namespace mlir;
19 using namespace mlir::sparse_tensor;
20 
21 //===----------------------------------------------------------------------===//
22 // Code generation environment helper functions
23 //===----------------------------------------------------------------------===//
24 
25 /// Returns true if tensor materializes uninitialized into the computation.
26 static bool isMaterializing(Value val) {
27   return val.getDefiningOp<tensor::EmptyOp>() ||
28          val.getDefiningOp<bufferization::AllocTensorOp>();
29 }
30 
31 /// Sorts the dependent loops such that it is ordered in the same sequence in
32 /// which loops will be generated.
33 static void sortDependentLoops(std::vector<LoopCoeffPair> &target) {
34   std::sort(target.begin(), target.end(),
35             [](const LoopCoeffPair &l, const LoopCoeffPair &r) {
36               assert(std::addressof(l) == std::addressof(r) || l != r);
37               return l.first < r.first;
38             });
39 }
40 //===----------------------------------------------------------------------===//
41 // Code generation environment constructor and general methods
42 //===----------------------------------------------------------------------===//
43 
44 CodegenEnv::CodegenEnv(linalg::GenericOp linop, SparsificationOptions opts,
45                        unsigned numTensors, unsigned numLoops, unsigned maxRank)
46     : linalgOp(linop), sparseOptions(opts),
47       latticeMerger(numTensors, numLoops, maxRank), loopEmitter(),
48       sparseOut(nullptr), outerParNest(-1u), insChain(), expValues(),
49       expFilled(), expAdded(), expCount(), redVal(), redExp(detail::kInvalidId),
50       redCustom(detail::kInvalidId), redValidLexInsert() {}
51 
52 LogicalResult CodegenEnv::initTensorExp() {
53   // Builds the tensor expression for the Linalg operation in SSA form.
54   std::optional<ExprId> optExp = latticeMerger.buildTensorExpFromLinalg(op());
55   if (!optExp || !isAdmissibleTensorExp(*optExp))
56     return failure();
57 
58   tensorExp = *optExp;
59   return success();
60 }
61 
62 void CodegenEnv::startEmit() {
63   assert(insChain == nullptr && "must only start emitting once");
64   if (sparseOut) {
65     insChain = sparseOut->get();
66     latticeMerger.setHasSparseOut(true);
67   }
68 
69   // Sort the related loop array such that they are in the same order as they
70   // appears on the topoOrder.
71   // TODO: since we only handle affine addition for slice based codegen, and
72   // addition is assoicative, the order how we evaluate the expression does
73   // not matter. However, to support multiplication, the order of the loop
74   // index should match the evaluation order to the affine expression AST.
75 
76   // Initialize loop emitter.
77   SmallVector<Value> tensors; // input tensors passed to loop emitter
78   for (OpOperand &t : linalgOp->getOpOperands()) {
79     tensors.push_back(t.get());
80     const TensorId tid = makeTensorId(t.getOperandNumber());
81     const Level lvlRank = linalgOp.getMatchingIndexingMap(&t).getNumResults();
82     const auto enc = getSparseTensorEncoding(t.get().getType());
83     (void)enc;
84     assert(!enc || lvlRank == enc.getLvlRank());
85     for (Level lvl = 0; lvl < lvlRank; lvl++)
86       sortDependentLoops(latticeMerger.getDependentLoops(tid, lvl));
87   }
88   loopEmitter.initialize(
89       tensors,
90       StringAttr::get(linalgOp.getContext(),
91                       linalg::GenericOp::getOperationName()),
92       /*hasOutput=*/true,
93       /*isSparseOut=*/sparseOut != nullptr, /*numLoops=*/getLoopNum(),
94       // TODO: compute the map and pass it to loop emitter directly instead of
95       // passing in a callback.
96       /*dependentLvlGetter=*/
97       [this](TensorId t, Level lvl) -> std::vector<LoopCoeffPair> {
98         return merger().getDependentLoops(t, lvl);
99       });
100 }
101 
102 std::optional<Operation *> CodegenEnv::genLoopBoundary(
103     function_ref<std::optional<Operation *>(MutableArrayRef<Value> parameters)>
104         callback) {
105   SmallVector<Value> params;
106   if (isReduc()) {
107     params.push_back(redVal);
108     if (isValidLexInsert())
109       params.push_back(redValidLexInsert);
110   } else {
111     assert(!isValidLexInsert());
112   }
113   if (isExpand())
114     params.push_back(expCount);
115   if (insChain != nullptr)
116     params.push_back(insChain);
117   auto r = callback(params); // may update parameters
118   unsigned i = 0;
119   if (isReduc()) {
120     updateReduc(params[i++]);
121     if (isValidLexInsert())
122       updateValidLexInsert(params[i++]);
123   }
124   if (isExpand())
125     updateExpandCount(params[i++]);
126   if (insChain != nullptr)
127     updateInsertionChain(params[i]);
128   return r;
129 }
130 
131 //===----------------------------------------------------------------------===//
132 // Code generation environment verify functions.
133 //===----------------------------------------------------------------------===//
134 
135 bool CodegenEnv::isAdmissibleTensorExp(ExprId exp) {
136   // We reject any expression that makes a reduction from `-outTensor`, as those
137   // expressions create a dependency between the current iteration (i) and the
138   // previous iteration (i-1). It would require iterating over the whole
139   // coordinate space, which prevent exploiting sparsity for faster code.
140   for (utils::IteratorType it : linalgOp.getIteratorTypesArray()) {
141     if (it == utils::IteratorType::reduction) {
142       if (latticeMerger.hasNegateOnOut(exp))
143         return false;
144       break;
145     }
146   }
147 
148   OpOperand *lhs = linalgOp.getDpsInitOperand(0);
149   const TensorId tensor = makeTensorId(lhs->getOperandNumber());
150   // An non-annotated output tensor is assumed dense, and becomes a random
151   // access n-dim memref. Admissible since insertions cannot occur.
152   if (getSparseTensorType(lhs->get()).isAllDense())
153     return true;
154 
155   // A tensor expression with a sparse output tensor that changes its values
156   // but not its nonzero structure, an operation called "simply dynamic" in
157   // [Bik96,Ch9], is also admissible without special env.
158   if (latticeMerger.isSingleCondition(tensor, exp))
159     return true;
160 
161   // Accept "truly dynamic" if the output tensor materializes uninitialized
162   // into the computation and insertions occur in lexicographic index order.
163   sparseOut = lhs;
164 
165   // Find the outermost parallel nest to determine whether compress/expand is
166   // needed.
167   outerParNest = 0;
168   const auto iteratorTypes = linalgOp.getIteratorTypesArray();
169   for (unsigned i = 0, e = getLoopNum(); i < e; i++) {
170     if (linalg::isReductionIterator(iteratorTypes[i]))
171       break; // terminate at first reduction
172     outerParNest++;
173   }
174 
175   // Inadmissible kernel should have already been rejected by the previous
176   // path during loop scheduling.
177   assert(static_cast<int64_t>(outerParNest) >=
178          linalgOp.getRank(linalgOp.getDpsInitOperand(0)) - 1);
179   return isMaterializing(lhs->get());
180 }
181 
182 //===----------------------------------------------------------------------===//
183 // Code generation environment topological sort methods
184 //===----------------------------------------------------------------------===//
185 
186 Value CodegenEnv::getLoopVar(LoopId i) const {
187   return loopEmitter.getLoopIV(i);
188 }
189 
190 //===----------------------------------------------------------------------===//
191 // Code generation environment sparse tensor output and expansion methods
192 //===----------------------------------------------------------------------===//
193 
194 void CodegenEnv::updateInsertionChain(Value chain) {
195   assert(sparseOut != nullptr && insChain != nullptr);
196   insChain = chain;
197 }
198 
199 bool CodegenEnv::atExpandLevel(OpOperand *o, unsigned rank, LoopId n) const {
200   return sparseOut == o && outerParNest == static_cast<LoopId>(rank - 1) &&
201          outerParNest == n;
202 }
203 
204 void CodegenEnv::startExpand(Value values, Value filled, Value added,
205                              Value count) {
206   assert(sparseOut != nullptr && expValues == nullptr);
207   expValues = values;
208   expFilled = filled;
209   expAdded = added;
210   expCount = count;
211 }
212 
213 void CodegenEnv::updateExpandCount(Value count) {
214   assert(sparseOut != nullptr && expValues != nullptr);
215   expCount = count;
216 }
217 
218 void CodegenEnv::endExpand() {
219   assert(sparseOut != nullptr && expValues != nullptr);
220   expValues = expFilled = expAdded = expCount = Value();
221 }
222 
223 //===----------------------------------------------------------------------===//
224 // Code generation environment reduction methods
225 //===----------------------------------------------------------------------===//
226 
227 void CodegenEnv::startReduc(ExprId exp, Value val) {
228   assert(!isReduc() && exp != detail::kInvalidId && val);
229   redExp = exp;
230   redVal = val;
231   latticeMerger.setExprValue(exp, val);
232 }
233 
234 void CodegenEnv::updateReduc(Value val) {
235   assert(isReduc() && val);
236   redVal = val;
237   latticeMerger.clearExprValue(redExp);
238   latticeMerger.setExprValue(redExp, val);
239 }
240 
241 Value CodegenEnv::endReduc() {
242   assert(isReduc());
243   Value val = redVal;
244   redVal = val;
245   latticeMerger.clearExprValue(redExp);
246   redExp = detail::kInvalidId;
247   return val;
248 }
249 
250 void CodegenEnv::startValidLexInsert(Value val) {
251   assert(!isValidLexInsert() && isReduc() && val);
252   redValidLexInsert = val;
253 }
254 
255 void CodegenEnv::updateValidLexInsert(Value val) {
256   assert(redValidLexInsert && isReduc() && val);
257   redValidLexInsert = val;
258 }
259 
260 void CodegenEnv::endValidLexInsert() {
261   assert(isValidLexInsert() && !isReduc());
262   redValidLexInsert = Value();
263 }
264 
265 void CodegenEnv::startCustomReduc(ExprId exp) {
266   assert(!isCustomReduc() && exp != detail::kInvalidId);
267   redCustom = exp;
268 }
269 
270 Value CodegenEnv::getCustomRedId() const {
271   assert(isCustomReduc());
272   return dyn_cast<sparse_tensor::ReduceOp>(exp(redCustom).op).getIdentity();
273 }
274 
275 void CodegenEnv::endCustomReduc() {
276   assert(isCustomReduc());
277   redCustom = detail::kInvalidId;
278 }
279