xref: /llvm-project/mlir/lib/Dialect/SparseTensor/Transforms/SparseBufferRewriting.cpp (revision abb05014f90478eadb1fe260ad47af429370c92f)
1 //===- SparseBufferRewriting.cpp - Sparse buffer rewriting rules ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements rewriting rules that are specific to sparse tensor
10 // primitives with memref operands.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodegenUtils.h"
15 
16 #include "mlir/Dialect/Arith/IR/Arith.h"
17 #include "mlir/Dialect/Func/IR/FuncOps.h"
18 #include "mlir/Dialect/Linalg/IR/Linalg.h"
19 #include "mlir/Dialect/Math/IR/Math.h"
20 #include "mlir/Dialect/MemRef/IR/MemRef.h"
21 #include "mlir/Dialect/SCF/IR/SCF.h"
22 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
23 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
24 #include "mlir/Support/LLVM.h"
25 
26 using namespace mlir;
27 using namespace mlir::sparse_tensor;
28 
29 //===---------------------------------------------------------------------===//
30 // Helper methods for the actual rewriting rules.
31 //===---------------------------------------------------------------------===//
32 
33 static constexpr uint64_t loIdx = 0;
34 static constexpr uint64_t hiIdx = 1;
35 static constexpr uint64_t xStartIdx = 2;
36 
37 static constexpr const char kPartitionFuncNamePrefix[] = "_sparse_partition_";
38 static constexpr const char kBinarySearchFuncNamePrefix[] =
39     "_sparse_binary_search_";
40 static constexpr const char kHybridQuickSortFuncNamePrefix[] =
41     "_sparse_hybrid_qsort_";
42 static constexpr const char kSortStableFuncNamePrefix[] =
43     "_sparse_sort_stable_";
44 static constexpr const char kShiftDownFuncNamePrefix[] = "_sparse_shift_down_";
45 static constexpr const char kHeapSortFuncNamePrefix[] = "_sparse_heap_sort_";
46 static constexpr const char kQuickSortFuncNamePrefix[] = "_sparse_qsort_";
47 
48 using FuncGeneratorType = function_ref<void(
49     OpBuilder &, ModuleOp, func::FuncOp, uint64_t, uint64_t, bool, uint32_t)>;
50 
51 /// Constructs a function name with this format to facilitate quick sort:
52 ///   <namePrefix><nx>_<x type>_<y0 type>..._<yn type> for sort
53 ///   <namePrefix><nx>_<x type>_coo_<ny>_<y0 type>..._<yn type> for sort_coo
54 static void getMangledSortHelperFuncName(llvm::raw_svector_ostream &nameOstream,
55                                          StringRef namePrefix, uint64_t nx,
56                                          uint64_t ny, bool isCoo,
57                                          ValueRange operands) {
58   nameOstream << namePrefix << nx << "_"
59               << getMemRefType(operands[xStartIdx]).getElementType();
60 
61   if (isCoo)
62     nameOstream << "_coo_" << ny;
63 
64   uint64_t yBufferOffset = isCoo ? 1 : nx;
65   for (Value v : operands.drop_front(xStartIdx + yBufferOffset))
66     nameOstream << "_" << getMemRefType(v).getElementType();
67 }
68 
69 /// Looks up a function that is appropriate for the given operands being
70 /// sorted, and creates such a function if it doesn't exist yet. The
71 /// parameters `nx` and `ny` tell the number of x and y values provided
72 /// by the buffer in xStartIdx, and `isCoo` indicates whether the instruction
73 /// being processed is a sparse_tensor.sort or sparse_tensor.sort_coo.
74 //
75 // All sorting function generators take (lo, hi, xs, ys) in `operands` as
76 // parameters for the sorting functions. Other parameters, such as the recursive
77 // call depth, are appended to the end of the parameter list as
78 // "trailing parameters".
79 static FlatSymbolRefAttr
80 getMangledSortHelperFunc(OpBuilder &builder, func::FuncOp insertPoint,
81                          TypeRange resultTypes, StringRef namePrefix,
82                          uint64_t nx, uint64_t ny, bool isCoo,
83                          ValueRange operands, FuncGeneratorType createFunc,
84                          uint32_t nTrailingP = 0) {
85   SmallString<32> nameBuffer;
86   llvm::raw_svector_ostream nameOstream(nameBuffer);
87   getMangledSortHelperFuncName(nameOstream, namePrefix, nx, ny, isCoo,
88                                operands.drop_back(nTrailingP));
89 
90   ModuleOp module = insertPoint->getParentOfType<ModuleOp>();
91   MLIRContext *context = module.getContext();
92   auto result = SymbolRefAttr::get(context, nameOstream.str());
93   auto func = module.lookupSymbol<func::FuncOp>(result.getAttr());
94 
95   if (!func) {
96     // Create the function.
97     OpBuilder::InsertionGuard insertionGuard(builder);
98     builder.setInsertionPoint(insertPoint);
99     Location loc = insertPoint.getLoc();
100     func = builder.create<func::FuncOp>(
101         loc, nameOstream.str(),
102         FunctionType::get(context, operands.getTypes(), resultTypes));
103     func.setPrivate();
104     createFunc(builder, module, func, nx, ny, isCoo, nTrailingP);
105   }
106 
107   return result;
108 }
109 
110 /// Creates a code block to process each pair of (xs[i], xs[j]) for sorting.
111 /// The code to process the value pairs is generated by `bodyBuilder`.
112 static void forEachIJPairInXs(
113     OpBuilder &builder, Location loc, ValueRange args, uint64_t nx, uint64_t ny,
114     bool isCoo, function_ref<void(uint64_t, Value, Value, Value)> bodyBuilder) {
115   Value iOffset, jOffset;
116   if (isCoo) {
117     Value cstep = constantIndex(builder, loc, nx + ny);
118     iOffset = builder.create<arith::MulIOp>(loc, args[0], cstep);
119     jOffset = builder.create<arith::MulIOp>(loc, args[1], cstep);
120   }
121   for (uint64_t k = 0; k < nx; k++) {
122     scf::IfOp ifOp;
123     Value i, j, buffer;
124     if (isCoo) {
125       Value ck = constantIndex(builder, loc, k);
126       i = builder.create<arith::AddIOp>(loc, ck, iOffset);
127       j = builder.create<arith::AddIOp>(loc, ck, jOffset);
128       buffer = args[xStartIdx];
129     } else {
130       i = args[0];
131       j = args[1];
132       buffer = args[xStartIdx + k];
133     }
134     bodyBuilder(k, i, j, buffer);
135   }
136 }
137 
138 /// Creates a code block to process each pair of (xys[i], xys[j]) for sorting.
139 /// The code to process the value pairs is generated by `bodyBuilder`.
140 static void forEachIJPairInAllBuffers(
141     OpBuilder &builder, Location loc, ValueRange args, uint64_t nx, uint64_t ny,
142     bool isCoo, function_ref<void(uint64_t, Value, Value, Value)> bodyBuilder) {
143 
144   // Create code for the first (nx + ny) buffers. When isCoo==true, these
145   // logical buffers are all from the xy buffer of the sort_coo operator.
146   forEachIJPairInXs(builder, loc, args, nx + ny, 0, isCoo, bodyBuilder);
147 
148   uint64_t numHandledBuffers = isCoo ? 1 : nx + ny;
149 
150   // Create code for the remaining buffers.
151   Value i = args[0];
152   Value j = args[1];
153   for (const auto &arg :
154        llvm::enumerate(args.drop_front(xStartIdx + numHandledBuffers))) {
155     bodyBuilder(arg.index() + nx + ny, i, j, arg.value());
156   }
157 }
158 
159 /// Creates a code block for swapping the values in index i and j for all the
160 /// buffers.
161 //
162 // The generated IR corresponds to this C like algorithm:
163 //     swap(x0[i], x0[j]);
164 //     swap(x1[i], x1[j]);
165 //     ...
166 //     swap(xn[i], xn[j]);
167 //     swap(y0[i], y0[j]);
168 //     ...
169 //     swap(yn[i], yn[j]);
170 static void createSwap(OpBuilder &builder, Location loc, ValueRange args,
171                        uint64_t nx, uint64_t ny, bool isCoo) {
172   auto swapOnePair = [&](uint64_t unused, Value i, Value j, Value buffer) {
173     Value vi = builder.create<memref::LoadOp>(loc, buffer, i);
174     Value vj = builder.create<memref::LoadOp>(loc, buffer, j);
175     builder.create<memref::StoreOp>(loc, vj, buffer, i);
176     builder.create<memref::StoreOp>(loc, vi, buffer, j);
177   };
178 
179   forEachIJPairInAllBuffers(builder, loc, args, nx, ny, isCoo, swapOnePair);
180 }
181 
182 /// Creates code to compare all the (xs[i], xs[j]) pairs. The method to compare
183 /// each pair is create via `compareBuilder`.
184 static Value createInlinedCompareImplementation(
185     OpBuilder &builder, Location loc, ValueRange args, uint64_t nx, uint64_t ny,
186     bool isCoo,
187     function_ref<Value(OpBuilder &, Location, Value, Value, Value, bool, bool)>
188         compareBuilder) {
189   Value result;
190   auto bodyBuilder = [&](uint64_t k, Value i, Value j, Value buffer) {
191     bool isFirstDim = (k == 0);
192     bool isLastDim = (k == nx - 1);
193     Value val =
194         compareBuilder(builder, loc, i, j, buffer, isFirstDim, isLastDim);
195     if (isFirstDim) {
196       result = val;
197     } else if (!isLastDim) {
198       OpBuilder::InsertionGuard insertionGuard(builder);
199       auto ifOp = cast<scf::IfOp>(val.getDefiningOp());
200       builder.setInsertionPointAfter(ifOp);
201       builder.create<scf::YieldOp>(loc, ifOp.getResult(0));
202     }
203   };
204 
205   forEachIJPairInXs(builder, loc, args, nx, ny, isCoo, bodyBuilder);
206 
207   builder.setInsertionPointAfterValue(result);
208   return result;
209 }
210 
211 /// Generates code to compare whether x[i] is equal to x[j] and returns the
212 /// result of the comparison.
213 static Value createEqCompare(OpBuilder &builder, Location loc, Value i, Value j,
214                              Value x, bool isFirstDim, bool isLastDim) {
215   Value vi = builder.create<memref::LoadOp>(loc, x, i);
216   Value vj = builder.create<memref::LoadOp>(loc, x, j);
217 
218   Value res;
219   if (isLastDim) {
220     res = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, vi, vj);
221     // For 1D, we create a compare without any control flow. Otherwise, we
222     // create YieldOp to return the result in the nested if-stmt.
223     if (!isFirstDim)
224       builder.create<scf::YieldOp>(loc, res);
225   } else {
226     Value ne =
227         builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ne, vi, vj);
228     scf::IfOp ifOp = builder.create<scf::IfOp>(loc, builder.getIntegerType(1),
229                                                ne, /*else=*/true);
230     // If (x[i] != x[j]).
231     builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
232     Value f = constantI1(builder, loc, false);
233     builder.create<scf::YieldOp>(loc, f);
234 
235     // If (x[i] == x[j]). Set up the insertion point for the nested if-stmt that
236     // checks the remaining dimensions.
237     builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
238     res = ifOp.getResult(0);
239   }
240 
241   return res;
242 }
243 
244 /// Creates code to compare whether xs[i] is equal to xs[j].
245 //
246 // The generate IR corresponds to this C like algorithm:
247 //   if (x0[i] != x0[j])
248 //     return false;
249 //   else
250 //     if (x1[i] != x1[j])
251 //       return false;
252 //     else if (x2[2] != x2[j]))
253 //       and so on ...
254 static Value createInlinedEqCompare(OpBuilder &builder, Location loc,
255                                     ValueRange args, uint64_t nx, uint64_t ny,
256                                     bool isCoo, uint32_t nTrailingP = 0) {
257   // Compare functions don't use trailing parameters.
258   (void)nTrailingP;
259   assert(nTrailingP == 0);
260   return createInlinedCompareImplementation(builder, loc, args, nx, ny, isCoo,
261                                             createEqCompare);
262 }
263 
264 /// Generates code to compare whether x[i] is less than x[j] and returns the
265 /// result of the comparison.
266 static Value createLessThanCompare(OpBuilder &builder, Location loc, Value i,
267                                    Value j, Value x, bool isFirstDim,
268                                    bool isLastDim) {
269   Value vi = builder.create<memref::LoadOp>(loc, x, i);
270   Value vj = builder.create<memref::LoadOp>(loc, x, j);
271 
272   Value res;
273   if (isLastDim) {
274     res = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult, vi, vj);
275     // For 1D, we create a compare without any control flow. Otherwise, we
276     // create YieldOp to return the result in the nested if-stmt.
277     if (!isFirstDim)
278       builder.create<scf::YieldOp>(loc, res);
279   } else {
280     Value ne =
281         builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ne, vi, vj);
282     scf::IfOp ifOp = builder.create<scf::IfOp>(loc, builder.getIntegerType(1),
283                                                ne, /*else=*/true);
284     // If (x[i] != x[j]).
285     builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
286     Value lt =
287         builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult, vi, vj);
288     builder.create<scf::YieldOp>(loc, lt);
289 
290     // If (x[i] == x[j]). Set up the insertion point for the nested if-stmt that
291     // checks the remaining dimensions.
292     builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
293     res = ifOp.getResult(0);
294   }
295 
296   return res;
297 }
298 
299 /// Creates code to compare whether xs[i] is less than xs[j].
300 //
301 // The generate IR corresponds to this C like algorithm:
302 //   if (x0[i] != x0[j])
303 //     return x0[i] < x0[j];
304 //   else if (x1[j] != x1[i])
305 //     return x1[i] < x1[j];
306 //   else
307 //       and so on ...
308 static Value createInlinedLessThan(OpBuilder &builder, Location loc,
309                                    ValueRange args, uint64_t nx, uint64_t ny,
310                                    bool isCoo, uint32_t nTrailingP = 0) {
311   // Compare functions don't use trailing parameters.
312   (void)nTrailingP;
313   assert(nTrailingP == 0);
314   return createInlinedCompareImplementation(builder, loc, args, nx, ny, isCoo,
315                                             createLessThanCompare);
316 }
317 
318 /// Creates a function to use a binary search to find the insertion point for
319 /// inserting xs[hi] to the sorted values xs[lo..hi).
320 //
321 // The generate IR corresponds to this C like algorithm:
322 //   p = hi
323 //   while (lo < hi)
324 //      mid = (lo + hi) >> 1
325 //      if (xs[p] < xs[mid])
326 //        hi = mid
327 //      else
328 //        lo = mid - 1
329 //   return lo;
330 //
331 static void createBinarySearchFunc(OpBuilder &builder, ModuleOp module,
332                                    func::FuncOp func, uint64_t nx, uint64_t ny,
333                                    bool isCoo, uint32_t nTrailingP = 0) {
334   // Binary search doesn't use trailing parameters.
335   (void)nTrailingP;
336   assert(nTrailingP == 0);
337   OpBuilder::InsertionGuard insertionGuard(builder);
338   Block *entryBlock = func.addEntryBlock();
339   builder.setInsertionPointToStart(entryBlock);
340 
341   Location loc = func.getLoc();
342   ValueRange args = entryBlock->getArguments();
343   Value p = args[hiIdx];
344   SmallVector<Type, 2> types(2, p.getType()); // Only two types.
345   scf::WhileOp whileOp = builder.create<scf::WhileOp>(
346       loc, types, SmallVector<Value, 2>{args[loIdx], args[hiIdx]});
347 
348   // The before-region of the WhileOp.
349   Block *before =
350       builder.createBlock(&whileOp.getBefore(), {}, types, {loc, loc});
351   builder.setInsertionPointToEnd(before);
352   Value cond1 = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult,
353                                               before->getArgument(0),
354                                               before->getArgument(1));
355   builder.create<scf::ConditionOp>(loc, cond1, before->getArguments());
356 
357   // The after-region of the WhileOp.
358   Block *after =
359       builder.createBlock(&whileOp.getAfter(), {}, types, {loc, loc});
360   builder.setInsertionPointToEnd(after);
361   Value lo = after->getArgument(0);
362   Value hi = after->getArgument(1);
363   // Compute mid = (lo + hi) >> 1.
364   Value c1 = constantIndex(builder, loc, 1);
365   Value mid = builder.create<arith::ShRUIOp>(
366       loc, builder.create<arith::AddIOp>(loc, lo, hi), c1);
367   Value midp1 = builder.create<arith::AddIOp>(loc, mid, c1);
368 
369   // Compare xs[p] < xs[mid].
370   SmallVector<Value> compareOperands{p, mid};
371   uint64_t numXBuffers = isCoo ? 1 : nx;
372   compareOperands.append(args.begin() + xStartIdx,
373                          args.begin() + xStartIdx + numXBuffers);
374   Value cond2 =
375       createInlinedLessThan(builder, loc, compareOperands, nx, ny, isCoo);
376   // Update lo and hi for the WhileOp as follows:
377   //   if (xs[p] < xs[mid]))
378   //     hi = mid;
379   //   else
380   //     lo = mid + 1;
381   Value newLo = builder.create<arith::SelectOp>(loc, cond2, lo, midp1);
382   Value newHi = builder.create<arith::SelectOp>(loc, cond2, mid, hi);
383   builder.create<scf::YieldOp>(loc, ValueRange{newLo, newHi});
384 
385   builder.setInsertionPointAfter(whileOp);
386   builder.create<func::ReturnOp>(loc, whileOp.getResult(0));
387 }
388 
389 /// Creates code to advance i in a loop based on xs[p] as follows:
390 ///   while (xs[i] < xs[p]) i += step (step > 0)
391 /// or
392 ///   while (xs[i] > xs[p]) i += step (step < 0)
393 /// The routine returns i as well as a boolean value to indicate whether
394 /// xs[i] == xs[p].
395 static std::pair<Value, Value>
396 createScanLoop(OpBuilder &builder, ModuleOp module, func::FuncOp func,
397                ValueRange xs, Value i, Value p, uint64_t nx, uint64_t ny,
398                bool isCoo, int step) {
399   Location loc = func.getLoc();
400   scf::WhileOp whileOp =
401       builder.create<scf::WhileOp>(loc, TypeRange{i.getType()}, ValueRange{i});
402 
403   Block *before =
404       builder.createBlock(&whileOp.getBefore(), {}, {i.getType()}, {loc});
405   builder.setInsertionPointToEnd(before);
406   SmallVector<Value> compareOperands;
407   if (step > 0) {
408     compareOperands.push_back(before->getArgument(0));
409     compareOperands.push_back(p);
410   } else {
411     assert(step < 0);
412     compareOperands.push_back(p);
413     compareOperands.push_back(before->getArgument(0));
414   }
415   compareOperands.append(xs.begin(), xs.end());
416   Value cond =
417       createInlinedLessThan(builder, loc, compareOperands, nx, ny, isCoo);
418   builder.create<scf::ConditionOp>(loc, cond, before->getArguments());
419 
420   Block *after =
421       builder.createBlock(&whileOp.getAfter(), {}, {i.getType()}, {loc});
422   builder.setInsertionPointToEnd(after);
423   Value cs = constantIndex(builder, loc, step);
424   i = builder.create<arith::AddIOp>(loc, after->getArgument(0), cs);
425   builder.create<scf::YieldOp>(loc, ValueRange{i});
426   i = whileOp.getResult(0);
427 
428   builder.setInsertionPointAfter(whileOp);
429   compareOperands[0] = i;
430   compareOperands[1] = p;
431   Value compareEq =
432       createInlinedEqCompare(builder, loc, compareOperands, nx, ny, isCoo);
433 
434   return std::make_pair(whileOp.getResult(0), compareEq);
435 }
436 
437 /// Creates and returns an IfOp to compare two elements and swap the elements
438 /// if compareFunc(data[b], data[a]) returns true. The new insertion point is
439 /// right after the swap instructions.
440 static scf::IfOp createCompareThenSwap(OpBuilder &builder, Location loc,
441                                        uint64_t nx, uint64_t ny, bool isCoo,
442                                        SmallVectorImpl<Value> &swapOperands,
443                                        SmallVectorImpl<Value> &compareOperands,
444                                        Value a, Value b) {
445   // Compare(data[b], data[a]).
446   compareOperands[0] = b;
447   compareOperands[1] = a;
448   Value cond =
449       createInlinedLessThan(builder, loc, compareOperands, nx, ny, isCoo);
450   scf::IfOp ifOp = builder.create<scf::IfOp>(loc, cond, /*else=*/false);
451   builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
452   swapOperands[0] = b;
453   swapOperands[1] = a;
454   createSwap(builder, loc, swapOperands, nx, ny, isCoo);
455   return ifOp;
456 }
457 
458 /// Creates code to insert the 3rd element to a list of two sorted elements.
459 static void createInsert3rd(OpBuilder &builder, Location loc, uint64_t nx,
460                             uint64_t ny, bool isCoo,
461                             SmallVectorImpl<Value> &swapOperands,
462                             SmallVectorImpl<Value> &compareOperands, Value v0,
463                             Value v1, Value v2) {
464   scf::IfOp ifOp = createCompareThenSwap(builder, loc, nx, ny, isCoo,
465                                          swapOperands, compareOperands, v1, v2);
466   createCompareThenSwap(builder, loc, nx, ny, isCoo, swapOperands,
467                         compareOperands, v0, v1);
468   builder.setInsertionPointAfter(ifOp);
469 }
470 
471 /// Creates code to sort 3 elements.
472 static void createSort3(OpBuilder &builder, Location loc, uint64_t nx,
473                         uint64_t ny, bool isCoo,
474                         SmallVectorImpl<Value> &swapOperands,
475                         SmallVectorImpl<Value> &compareOperands, Value v0,
476                         Value v1, Value v2) {
477   // Sort the first 2 elements.
478   scf::IfOp ifOp1 = createCompareThenSwap(
479       builder, loc, nx, ny, isCoo, swapOperands, compareOperands, v0, v1);
480   builder.setInsertionPointAfter(ifOp1);
481 
482   // Insert the 3th element.
483   createInsert3rd(builder, loc, nx, ny, isCoo, swapOperands, compareOperands,
484                   v0, v1, v2);
485 }
486 
487 /// Creates code to sort 5 elements.
488 static void createSort5(OpBuilder &builder, Location loc, uint64_t nx,
489                         uint64_t ny, bool isCoo,
490                         SmallVectorImpl<Value> &swapOperands,
491                         SmallVectorImpl<Value> &compareOperands, Value v0,
492                         Value v1, Value v2, Value v3, Value v4) {
493   // Sort the first 3 elements.
494   createSort3(builder, loc, nx, ny, isCoo, swapOperands, compareOperands, v0,
495               v1, v2);
496 
497   auto insert4th = [&]() {
498     scf::IfOp ifOp = createCompareThenSwap(
499         builder, loc, nx, ny, isCoo, swapOperands, compareOperands, v2, v3);
500     createInsert3rd(builder, loc, nx, ny, isCoo, swapOperands, compareOperands,
501                     v0, v1, v2);
502     builder.setInsertionPointAfter(ifOp);
503   };
504 
505   // Insert the 4th element.
506   insert4th();
507 
508   // Insert the 5th element.
509   scf::IfOp ifOp = createCompareThenSwap(builder, loc, nx, ny, isCoo,
510                                          swapOperands, compareOperands, v3, v4);
511   insert4th();
512   builder.setInsertionPointAfter(ifOp);
513 }
514 
515 /// Creates a code block to swap the values in indices lo, mi, and hi so that
516 /// data[lo], data[mi] and data[hi] are sorted in non-decreasing values. When
517 /// the number of values in range [lo, hi) is more than a threshold, we also
518 /// include the middle of [lo, mi) and [mi, hi) and sort a total of five values.
519 static void createChoosePivot(OpBuilder &builder, ModuleOp module,
520                               func::FuncOp func, uint64_t nx, uint64_t ny,
521                               bool isCoo, Value lo, Value hi, Value mi,
522                               ValueRange args) {
523   SmallVector<Value> compareOperands{mi, lo};
524   uint64_t numXBuffers = isCoo ? 1 : nx;
525   compareOperands.append(args.begin() + xStartIdx,
526                          args.begin() + xStartIdx + numXBuffers);
527   SmallVector<Value> swapOperands{mi, lo};
528   swapOperands.append(args.begin() + xStartIdx, args.end());
529   Location loc = func.getLoc();
530   Value c1 = constantIndex(builder, loc, 1);
531   Value hiP1 = builder.create<arith::AddIOp>(loc, hi, c1);
532   Value len = builder.create<arith::SubIOp>(loc, hiP1, lo);
533   Value lenThreshold = constantIndex(builder, loc, 1000);
534   Value lenCond = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult,
535                                                 len, lenThreshold);
536   scf::IfOp lenIf = builder.create<scf::IfOp>(loc, lenCond, /*else=*/true);
537 
538   // When len < 1000, choose pivot from median of 3 values.
539   builder.setInsertionPointToStart(&lenIf.getThenRegion().front());
540   createSort3(builder, loc, nx, ny, isCoo, swapOperands, compareOperands, lo,
541               mi, hi);
542 
543   // When len >= 1000, choose pivot from median of 5 values.
544   builder.setInsertionPointToStart(&lenIf.getElseRegion().front());
545   Value miP1 = builder.create<arith::AddIOp>(loc, hi, c1);
546   Value a = builder.create<arith::AddIOp>(loc, lo, miP1);
547   // Value a is the middle between [loc, mi].
548   a = builder.create<arith::ShRUIOp>(loc, a, c1);
549   Value b = builder.create<arith::AddIOp>(loc, mi, hiP1);
550   // Value b is the middle between [mi, hi].
551   b = builder.create<arith::ShRUIOp>(loc, b, c1);
552   createSort5(builder, loc, nx, ny, isCoo, swapOperands, compareOperands, lo, a,
553               mi, b, hi);
554 
555   builder.setInsertionPointAfter(lenIf);
556 }
557 
558 /// Creates a function to perform quick sort partition on the values in the
559 /// range of index [lo, hi), assuming lo < hi.
560 //
561 // The generated IR corresponds to this C like algorithm:
562 // int partition(lo, hi, xs) {
563 //   p = (lo+hi)/2  // pivot index
564 //   i = lo
565 //   j = hi-1
566 //   while (i < j) do {
567 //     while (xs[i] < xs[p]) i ++;
568 //     i_eq = (xs[i] == xs[p]);
569 //     while (xs[j] > xs[p]) j --;
570 //     j_eq = (xs[j] == xs[p]);
571 //     if (i < j) {
572 //       swap(xs[i], xs[j])
573 //       if (i == p) {
574 //         p = j;
575 //       } else if (j == p) {
576 //         p = i;
577 //       }
578 //       if (i_eq && j_eq) {
579 //         ++i;
580 //         --j;
581 //       }
582 //     }
583 //   }
584 //   return p
585 //   }
586 static void createPartitionFunc(OpBuilder &builder, ModuleOp module,
587                                 func::FuncOp func, uint64_t nx, uint64_t ny,
588                                 bool isCoo, uint32_t nTrailingP = 0) {
589   // Quick sort partition doesn't use trailing parameters.
590   (void)nTrailingP;
591   assert(nTrailingP == 0);
592   OpBuilder::InsertionGuard insertionGuard(builder);
593 
594   Block *entryBlock = func.addEntryBlock();
595   builder.setInsertionPointToStart(entryBlock);
596 
597   Location loc = func.getLoc();
598   ValueRange args = entryBlock->getArguments();
599   Value lo = args[loIdx];
600   Value hi = args[hiIdx];
601   Value sum = builder.create<arith::AddIOp>(loc, lo, hi);
602   Value c1 = constantIndex(builder, loc, 1);
603   Value p = builder.create<arith::ShRUIOp>(loc, sum, c1);
604 
605   Value i = lo;
606   Value j = builder.create<arith::SubIOp>(loc, hi, c1);
607   createChoosePivot(builder, module, func, nx, ny, isCoo, i, j, p, args);
608   SmallVector<Value, 3> operands{i, j, p}; // Exactly three values.
609   SmallVector<Type, 3> types{i.getType(), j.getType(), p.getType()};
610   scf::WhileOp whileOp = builder.create<scf::WhileOp>(loc, types, operands);
611 
612   // The before-region of the WhileOp.
613   Block *before =
614       builder.createBlock(&whileOp.getBefore(), {}, types, {loc, loc, loc});
615   builder.setInsertionPointToEnd(before);
616   Value cond = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult,
617                                              before->getArgument(0),
618                                              before->getArgument(1));
619   builder.create<scf::ConditionOp>(loc, cond, before->getArguments());
620 
621   // The after-region of the WhileOp.
622   Block *after =
623       builder.createBlock(&whileOp.getAfter(), {}, types, {loc, loc, loc});
624   builder.setInsertionPointToEnd(after);
625   i = after->getArgument(0);
626   j = after->getArgument(1);
627   p = after->getArgument(2);
628 
629   uint64_t numXBuffers = isCoo ? 1 : nx;
630   auto [iresult, iCompareEq] =
631       createScanLoop(builder, module, func, args.slice(xStartIdx, numXBuffers),
632                      i, p, nx, ny, isCoo, 1);
633   i = iresult;
634   auto [jresult, jCompareEq] =
635       createScanLoop(builder, module, func, args.slice(xStartIdx, numXBuffers),
636                      j, p, nx, ny, isCoo, -1);
637   j = jresult;
638 
639   // If i < j:
640   cond = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult, i, j);
641   scf::IfOp ifOp = builder.create<scf::IfOp>(loc, types, cond, /*else=*/true);
642   builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
643   SmallVector<Value> swapOperands{i, j};
644   swapOperands.append(args.begin() + xStartIdx, args.end());
645   createSwap(builder, loc, swapOperands, nx, ny, isCoo);
646   // If the pivot is moved, update p with the new pivot.
647   Value icond =
648       builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, i, p);
649   scf::IfOp ifOpI = builder.create<scf::IfOp>(loc, TypeRange{p.getType()},
650                                               icond, /*else=*/true);
651   builder.setInsertionPointToStart(&ifOpI.getThenRegion().front());
652   builder.create<scf::YieldOp>(loc, ValueRange{j});
653   builder.setInsertionPointToStart(&ifOpI.getElseRegion().front());
654   Value jcond =
655       builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, j, p);
656   scf::IfOp ifOpJ = builder.create<scf::IfOp>(loc, TypeRange{p.getType()},
657                                               jcond, /*else=*/true);
658   builder.setInsertionPointToStart(&ifOpJ.getThenRegion().front());
659   builder.create<scf::YieldOp>(loc, ValueRange{i});
660   builder.setInsertionPointToStart(&ifOpJ.getElseRegion().front());
661   builder.create<scf::YieldOp>(loc, ValueRange{p});
662   builder.setInsertionPointAfter(ifOpJ);
663   builder.create<scf::YieldOp>(loc, ifOpJ.getResults());
664   builder.setInsertionPointAfter(ifOpI);
665   Value compareEqIJ =
666       builder.create<arith::AndIOp>(loc, iCompareEq, jCompareEq);
667   scf::IfOp ifOp2 = builder.create<scf::IfOp>(
668       loc, TypeRange{i.getType(), j.getType()}, compareEqIJ, /*else=*/true);
669   builder.setInsertionPointToStart(&ifOp2.getThenRegion().front());
670   Value i2 = builder.create<arith::AddIOp>(loc, i, c1);
671   Value j2 = builder.create<arith::SubIOp>(loc, j, c1);
672   builder.create<scf::YieldOp>(loc, ValueRange{i2, j2});
673   builder.setInsertionPointToStart(&ifOp2.getElseRegion().front());
674   builder.create<scf::YieldOp>(loc, ValueRange{i, j});
675   builder.setInsertionPointAfter(ifOp2);
676   builder.create<scf::YieldOp>(
677       loc,
678       ValueRange{ifOp2.getResult(0), ifOp2.getResult(1), ifOpI.getResult(0)});
679 
680   // False branch for if i < j:
681   builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
682   builder.create<scf::YieldOp>(loc, ValueRange{i, j, p});
683 
684   // Return for the whileOp.
685   builder.setInsertionPointAfter(ifOp);
686   builder.create<scf::YieldOp>(loc, ifOp.getResults());
687 
688   // Return for the function.
689   builder.setInsertionPointAfter(whileOp);
690   builder.create<func::ReturnOp>(loc, whileOp.getResult(2));
691 }
692 
693 /// Computes (n-2)/n, assuming n has index type.
694 static Value createSubTwoDividedByTwo(OpBuilder &builder, Location loc,
695                                       Value n) {
696   Value i2 = constantIndex(builder, loc, 2);
697   Value res = builder.create<arith::SubIOp>(loc, n, i2);
698   Value i1 = constantIndex(builder, loc, 1);
699   return builder.create<arith::ShRUIOp>(loc, res, i1);
700 }
701 
702 /// Creates a function to heapify the subtree with root `start` within the full
703 /// binary tree in the range of index [first, first + n).
704 //
705 // The generated IR corresponds to this C like algorithm:
706 // void shiftDown(first, start, n, data) {
707 //   if (n >= 2) {
708 //     child = start - first
709 //     if ((n-2)/2 >= child) {
710 //       // Left child exists.
711 //       child = child * 2 + 1 // Initialize the bigger child to left child.
712 //       childIndex = child + first
713 //       if (child+1 < n && data[childIndex] < data[childIndex+1])
714 //         // Right child exits and is bigger.
715 //         childIndex++; child++;
716 //       // Shift data[start] down to where it belongs in the subtree.
717 //       while (data[start] < data[childIndex) {
718 //         swap(data[start], data[childIndex])
719 //         start = childIndex
720 //         if ((n - 2)/2 >= child) {
721 //           // Left child exists.
722 //           child = 2*child + 1
723 //           childIndex = child + 1
724 //           if (child + 1) < n && data[childIndex] < data[childIndex+1]
725 //             childIndex++; child++;
726 //         }
727 //       }
728 //     }
729 //   }
730 // }
731 //
732 static void createShiftDownFunc(OpBuilder &builder, ModuleOp module,
733                                 func::FuncOp func, uint64_t nx, uint64_t ny,
734                                 bool isCoo, uint32_t nTrailingP) {
735   // The value n is passed in as a trailing parameter.
736   assert(nTrailingP == 1);
737   OpBuilder::InsertionGuard insertionGuard(builder);
738   Block *entryBlock = func.addEntryBlock();
739   builder.setInsertionPointToStart(entryBlock);
740 
741   Location loc = func.getLoc();
742   Value n = entryBlock->getArguments().back();
743   ValueRange args = entryBlock->getArguments().drop_back();
744   Value first = args[loIdx];
745   Value start = args[hiIdx];
746 
747   // If (n >= 2).
748   Value c2 = constantIndex(builder, loc, 2);
749   Value condN =
750       builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::uge, n, c2);
751   scf::IfOp ifN = builder.create<scf::IfOp>(loc, condN, /*else=*/false);
752   builder.setInsertionPointToStart(&ifN.getThenRegion().front());
753   Value child = builder.create<arith::SubIOp>(loc, start, first);
754 
755   // If ((n-2)/2 >= child).
756   Value t = createSubTwoDividedByTwo(builder, loc, n);
757   Value condNc =
758       builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::uge, t, child);
759   scf::IfOp ifNc = builder.create<scf::IfOp>(loc, condNc, /*else=*/false);
760 
761   builder.setInsertionPointToStart(&ifNc.getThenRegion().front());
762   Value c1 = constantIndex(builder, loc, 1);
763   SmallVector<Value> compareOperands{start, start};
764   uint64_t numXBuffers = isCoo ? 1 : nx;
765   compareOperands.append(args.begin() + xStartIdx,
766                          args.begin() + xStartIdx + numXBuffers);
767 
768   // Generate code to inspect the children of 'r' and return the larger child
769   // as follows:
770   //   child = r * 2 + 1 // Left child.
771   //   childIndex = child + first
772   //   if (child+1 < n && data[childIndex] < data[childIndex+1])
773   //     childIndex ++; child ++ // Right child is bigger.
774   auto getLargerChild = [&](Value r) -> std::pair<Value, Value> {
775     Value lChild = builder.create<arith::ShLIOp>(loc, r, c1);
776     lChild = builder.create<arith::AddIOp>(loc, lChild, c1);
777     Value lChildIdx = builder.create<arith::AddIOp>(loc, lChild, first);
778     Value rChild = builder.create<arith::AddIOp>(loc, lChild, c1);
779     Value cond1 = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult,
780                                                 rChild, n);
781     SmallVector<Type, 2> ifTypes(2, r.getType());
782     scf::IfOp if1 =
783         builder.create<scf::IfOp>(loc, ifTypes, cond1, /*else=*/true);
784     builder.setInsertionPointToStart(&if1.getThenRegion().front());
785     Value rChildIdx = builder.create<arith::AddIOp>(loc, rChild, first);
786     // Compare data[left] < data[right].
787     compareOperands[0] = lChildIdx;
788     compareOperands[1] = rChildIdx;
789     Value cond2 =
790         createInlinedLessThan(builder, loc, compareOperands, nx, ny, isCoo);
791     scf::IfOp if2 =
792         builder.create<scf::IfOp>(loc, ifTypes, cond2, /*else=*/true);
793     builder.setInsertionPointToStart(&if2.getThenRegion().front());
794     builder.create<scf::YieldOp>(loc, ValueRange{rChild, rChildIdx});
795     builder.setInsertionPointToStart(&if2.getElseRegion().front());
796     builder.create<scf::YieldOp>(loc, ValueRange{lChild, lChildIdx});
797     builder.setInsertionPointAfter(if2);
798     builder.create<scf::YieldOp>(loc, if2.getResults());
799     builder.setInsertionPointToStart(&if1.getElseRegion().front());
800     builder.create<scf::YieldOp>(loc, ValueRange{lChild, lChildIdx});
801     builder.setInsertionPointAfter(if1);
802     return std::make_pair(if1.getResult(0), if1.getResult(1));
803   };
804 
805   Value childIdx;
806   std::tie(child, childIdx) = getLargerChild(child);
807 
808   // While (data[start] < data[childIndex]).
809   SmallVector<Type, 3> types(3, child.getType());
810   scf::WhileOp whileOp = builder.create<scf::WhileOp>(
811       loc, types, SmallVector<Value, 2>{start, child, childIdx});
812 
813   // The before-region of the WhileOp.
814   SmallVector<Location, 3> locs(3, loc);
815   Block *before = builder.createBlock(&whileOp.getBefore(), {}, types, locs);
816   builder.setInsertionPointToEnd(before);
817   start = before->getArgument(0);
818   childIdx = before->getArgument(2);
819   compareOperands[0] = start;
820   compareOperands[1] = childIdx;
821   Value cond =
822       createInlinedLessThan(builder, loc, compareOperands, nx, ny, isCoo);
823   builder.create<scf::ConditionOp>(loc, cond, before->getArguments());
824 
825   // The after-region of the WhileOp.
826   Block *after = builder.createBlock(&whileOp.getAfter(), {}, types, locs);
827   start = after->getArgument(0);
828   child = after->getArgument(1);
829   childIdx = after->getArgument(2);
830   SmallVector<Value> swapOperands{start, childIdx};
831   swapOperands.append(args.begin() + xStartIdx, args.end());
832   createSwap(builder, loc, swapOperands, nx, ny, isCoo);
833   start = childIdx;
834   Value cond2 =
835       builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::uge, t, child);
836   scf::IfOp if2 = builder.create<scf::IfOp>(
837       loc, TypeRange{child.getType(), child.getType()}, cond2, /*else=*/true);
838   builder.setInsertionPointToStart(&if2.getThenRegion().front());
839   auto [newChild, newChildIdx] = getLargerChild(child);
840   builder.create<scf::YieldOp>(loc, ValueRange{newChild, newChildIdx});
841   builder.setInsertionPointToStart(&if2.getElseRegion().front());
842   builder.create<scf::YieldOp>(loc, ValueRange{child, childIdx});
843   builder.setInsertionPointAfter(if2);
844   builder.create<scf::YieldOp>(
845       loc, ValueRange{start, if2.getResult(0), if2.getResult(1)});
846 
847   builder.setInsertionPointAfter(ifN);
848   builder.create<func::ReturnOp>(loc);
849 }
850 
851 /// Creates a function to perform heap sort on the values in the range of index
852 /// [lo, hi) with the assumption hi - lo >= 2.
853 //
854 // The generate IR corresponds to this C like algorithm:
855 // void heapSort(lo, hi, data) {
856 //   n = hi - lo
857 //   for i = (n-2)/2 downto 0
858 //     shiftDown(lo, lo+i, n)
859 //
860 //   for l = n downto 2
861 //      swap(lo, lo+l-1)
862 //      shiftdown(lo, lo, l-1)
863 // }
864 static void createHeapSortFunc(OpBuilder &builder, ModuleOp module,
865                                func::FuncOp func, uint64_t nx, uint64_t ny,
866                                bool isCoo, uint32_t nTrailingP) {
867   // Heap sort function doesn't have trailing parameters.
868   (void)nTrailingP;
869   assert(nTrailingP == 0);
870   OpBuilder::InsertionGuard insertionGuard(builder);
871   Block *entryBlock = func.addEntryBlock();
872   builder.setInsertionPointToStart(entryBlock);
873 
874   Location loc = func.getLoc();
875   ValueRange args = entryBlock->getArguments();
876   Value lo = args[loIdx];
877   Value hi = args[hiIdx];
878   Value n = builder.create<arith::SubIOp>(loc, hi, lo);
879 
880   // For i = (n-2)/2 downto 0.
881   Value c0 = constantIndex(builder, loc, 0);
882   Value c1 = constantIndex(builder, loc, 1);
883   Value s = createSubTwoDividedByTwo(builder, loc, n);
884   Value up = builder.create<arith::AddIOp>(loc, s, c1);
885   scf::ForOp forI = builder.create<scf::ForOp>(loc, c0, up, c1);
886   builder.setInsertionPointToStart(forI.getBody());
887   Value i = builder.create<arith::SubIOp>(loc, s, forI.getInductionVar());
888   Value lopi = builder.create<arith::AddIOp>(loc, lo, i);
889   SmallVector<Value> shiftDownOperands = {lo, lopi};
890   shiftDownOperands.append(args.begin() + xStartIdx, args.end());
891   shiftDownOperands.push_back(n);
892   FlatSymbolRefAttr shiftDownFunc = getMangledSortHelperFunc(
893       builder, func, TypeRange(), kShiftDownFuncNamePrefix, nx, ny, isCoo,
894       shiftDownOperands, createShiftDownFunc, /*nTrailingP=*/1);
895   builder.create<func::CallOp>(loc, shiftDownFunc, TypeRange(),
896                                shiftDownOperands);
897 
898   builder.setInsertionPointAfter(forI);
899   // For l = n downto 2.
900   up = builder.create<arith::SubIOp>(loc, n, c1);
901   scf::ForOp forL = builder.create<scf::ForOp>(loc, c0, up, c1);
902   builder.setInsertionPointToStart(forL.getBody());
903   Value l = builder.create<arith::SubIOp>(loc, n, forL.getInductionVar());
904   Value loplm1 = builder.create<arith::AddIOp>(loc, lo, l);
905   loplm1 = builder.create<arith::SubIOp>(loc, loplm1, c1);
906   SmallVector<Value> swapOperands{lo, loplm1};
907   swapOperands.append(args.begin() + xStartIdx, args.end());
908   createSwap(builder, loc, swapOperands, nx, ny, isCoo);
909   shiftDownOperands[1] = lo;
910   shiftDownOperands[shiftDownOperands.size() - 1] =
911       builder.create<arith::SubIOp>(loc, l, c1);
912   builder.create<func::CallOp>(loc, shiftDownFunc, TypeRange(),
913                                shiftDownOperands);
914 
915   builder.setInsertionPointAfter(forL);
916   builder.create<func::ReturnOp>(loc);
917 }
918 
919 /// A helper for generating code to perform quick sort. It partitions [lo, hi),
920 /// recursively calls quick sort to process the smaller partition and returns
921 /// the bigger partition to be processed by the enclosed while-loop.
922 static std::pair<Value, Value>
923 createQuickSort(OpBuilder &builder, ModuleOp module, func::FuncOp func,
924                 ValueRange args, uint64_t nx, uint64_t ny, bool isCoo,
925                 uint32_t nTrailingP) {
926   MLIRContext *context = module.getContext();
927   Location loc = func.getLoc();
928   Value lo = args[loIdx];
929   Value hi = args[hiIdx];
930   FlatSymbolRefAttr partitionFunc = getMangledSortHelperFunc(
931       builder, func, {IndexType::get(context)}, kPartitionFuncNamePrefix, nx,
932       ny, isCoo, args.drop_back(nTrailingP), createPartitionFunc);
933   Value p = builder
934                 .create<func::CallOp>(loc, partitionFunc,
935                                       TypeRange{IndexType::get(context)},
936                                       args.drop_back(nTrailingP))
937                 .getResult(0);
938   Value pP1 =
939       builder.create<arith::AddIOp>(loc, p, constantIndex(builder, loc, 1));
940   Value lenLow = builder.create<arith::SubIOp>(loc, p, lo);
941   Value lenHigh = builder.create<arith::SubIOp>(loc, hi, p);
942   Value cond = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ule,
943                                              lenLow, lenHigh);
944 
945   SmallVector<Type, 2> types(2, lo.getType()); // Only two types.
946   scf::IfOp ifOp = builder.create<scf::IfOp>(loc, types, cond, /*else=*/true);
947 
948   Value c0 = constantIndex(builder, loc, 0);
949   auto mayRecursion = [&](Value low, Value high, Value len) {
950     Value cond =
951         builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ne, len, c0);
952     scf::IfOp ifOp = builder.create<scf::IfOp>(loc, cond, /*else=*/false);
953     builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
954     SmallVector<Value> operands{low, high};
955     operands.append(args.begin() + xStartIdx, args.end());
956     builder.create<func::CallOp>(loc, func, operands);
957     builder.setInsertionPointAfter(ifOp);
958   };
959 
960   // Recursively call quickSort to process the smaller partition and return
961   // the bigger partition to be processed by the enclosed while-loop.
962   builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
963   mayRecursion(lo, p, lenLow);
964   builder.create<scf::YieldOp>(loc, ValueRange{pP1, hi});
965 
966   builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
967   mayRecursion(pP1, hi, lenHigh);
968   builder.create<scf::YieldOp>(loc, ValueRange{lo, p});
969 
970   builder.setInsertionPointAfter(ifOp);
971   return std::make_pair(ifOp.getResult(0), ifOp.getResult(1));
972 }
973 
974 /// Creates a function to perform insertion sort on the values in the range of
975 /// index [lo, hi).
976 //
977 // The generate IR corresponds to this C like algorithm:
978 // void insertionSort(lo, hi, data) {
979 //   for (i = lo+1; i < hi; i++) {
980 //      d = data[i];
981 //      p = binarySearch(lo, i-1, data)
982 //      for (j = 0; j > i - p; j++)
983 //        data[i-j] = data[i-j-1]
984 //      data[p] = d
985 //   }
986 // }
987 static void createSortStableFunc(OpBuilder &builder, ModuleOp module,
988                                  func::FuncOp func, uint64_t nx, uint64_t ny,
989                                  bool isCoo, uint32_t nTrailingP) {
990   // Stable sort function doesn't use trailing parameters.
991   (void)nTrailingP;
992   assert(nTrailingP == 0);
993   OpBuilder::InsertionGuard insertionGuard(builder);
994   Block *entryBlock = func.addEntryBlock();
995   builder.setInsertionPointToStart(entryBlock);
996 
997   MLIRContext *context = module.getContext();
998   Location loc = func.getLoc();
999   ValueRange args = entryBlock->getArguments();
1000   Value c1 = constantIndex(builder, loc, 1);
1001   Value lo = args[loIdx];
1002   Value hi = args[hiIdx];
1003   Value lop1 = builder.create<arith::AddIOp>(loc, lo, c1);
1004 
1005   // Start the outer for-stmt with induction variable i.
1006   scf::ForOp forOpI = builder.create<scf::ForOp>(loc, lop1, hi, c1);
1007   builder.setInsertionPointToStart(forOpI.getBody());
1008   Value i = forOpI.getInductionVar();
1009 
1010   // Binary search to find the insertion point p.
1011   SmallVector<Value> operands{lo, i};
1012   operands.append(args.begin() + xStartIdx, args.end());
1013   FlatSymbolRefAttr searchFunc = getMangledSortHelperFunc(
1014       builder, func, {IndexType::get(context)}, kBinarySearchFuncNamePrefix, nx,
1015       ny, isCoo, operands, createBinarySearchFunc);
1016   Value p = builder
1017                 .create<func::CallOp>(loc, searchFunc, TypeRange{c1.getType()},
1018                                       operands)
1019                 .getResult(0);
1020 
1021   // Move the value at data[i] to a temporary location.
1022   operands[0] = operands[1] = i;
1023   SmallVector<Value> d;
1024   forEachIJPairInAllBuffers(
1025       builder, loc, operands, nx, ny, isCoo,
1026       [&](uint64_t unused, Value i, Value unused2, Value buffer) {
1027         d.push_back(builder.create<memref::LoadOp>(loc, buffer, i));
1028       });
1029 
1030   // Start the inner for-stmt with induction variable j, for moving data[p..i)
1031   // to data[p+1..i+1).
1032   Value imp = builder.create<arith::SubIOp>(loc, i, p);
1033   Value c0 = constantIndex(builder, loc, 0);
1034   scf::ForOp forOpJ = builder.create<scf::ForOp>(loc, c0, imp, c1);
1035   builder.setInsertionPointToStart(forOpJ.getBody());
1036   Value j = forOpJ.getInductionVar();
1037   Value imj = builder.create<arith::SubIOp>(loc, i, j);
1038   operands[1] = imj;
1039   operands[0] = builder.create<arith::SubIOp>(loc, imj, c1);
1040   forEachIJPairInAllBuffers(
1041       builder, loc, operands, nx, ny, isCoo,
1042       [&](uint64_t unused, Value imjm1, Value imj, Value buffer) {
1043         Value t = builder.create<memref::LoadOp>(loc, buffer, imjm1);
1044         builder.create<memref::StoreOp>(loc, t, buffer, imj);
1045       });
1046 
1047   // Store the value at data[i] to data[p].
1048   builder.setInsertionPointAfter(forOpJ);
1049   operands[0] = operands[1] = p;
1050   forEachIJPairInAllBuffers(
1051       builder, loc, operands, nx, ny, isCoo,
1052       [&](uint64_t k, Value p, Value usused, Value buffer) {
1053         builder.create<memref::StoreOp>(loc, d[k], buffer, p);
1054       });
1055 
1056   builder.setInsertionPointAfter(forOpI);
1057   builder.create<func::ReturnOp>(loc);
1058 }
1059 
1060 /// Creates a function to perform quick sort or a hybrid quick sort on the
1061 /// values in the range of index [lo, hi).
1062 //
1063 //
1064 // When nTrailingP == 0, the generated IR corresponds to this C like algorithm:
1065 // void quickSort(lo, hi, data) {
1066 //   while (lo + 1 < hi) {
1067 //        p = partition(low, high, data);
1068 //        if (len(lo, p) < len(p+1, hi)) {
1069 //          quickSort(lo, p, data);
1070 //          lo = p+1;
1071 //        } else {
1072 //          quickSort(p + 1, hi, data);
1073 //          hi = p;
1074 //        }
1075 //   }
1076 // }
1077 //
1078 // When nTrailingP == 1, the generated IR corresponds to this C like algorithm:
1079 // void hybridQuickSort(lo, hi, data, depthLimit) {
1080 //   while (lo + 1 < hi) {
1081 //     len = hi - lo;
1082 //     if (len <= limit) {
1083 //       insertionSort(lo, hi, data);
1084 //     } else {
1085 //       depthLimit --;
1086 //       if (depthLimit <= 0) {
1087 //         heapSort(lo, hi, data);
1088 //       } else {
1089 //          p = partition(low, high, data);
1090 //          if (len(lo, p) < len(p+1, hi)) {
1091 //            quickSort(lo, p, data, depthLimit);
1092 //            lo = p+1;
1093 //          } else {
1094 //            quickSort(p + 1, hi, data, depthLimit);
1095 //            hi = p;
1096 //          }
1097 //       }
1098 //     }
1099 //   }
1100 // }
1101 //
1102 static void createQuickSortFunc(OpBuilder &builder, ModuleOp module,
1103                                 func::FuncOp func, uint64_t nx, uint64_t ny,
1104                                 bool isCoo, uint32_t nTrailingP) {
1105   assert(nTrailingP == 1 || nTrailingP == 0);
1106   bool isHybrid = (nTrailingP == 1);
1107   OpBuilder::InsertionGuard insertionGuard(builder);
1108   Block *entryBlock = func.addEntryBlock();
1109   builder.setInsertionPointToStart(entryBlock);
1110 
1111   Location loc = func.getLoc();
1112   SmallVector<Value> args;
1113   args.append(entryBlock->getArguments().begin(),
1114               entryBlock->getArguments().end());
1115   Value lo = args[loIdx];
1116   Value hi = args[hiIdx];
1117   SmallVector<Type, 2> types(2, lo.getType()); // Only two types.
1118   scf::WhileOp whileOp =
1119       builder.create<scf::WhileOp>(loc, types, SmallVector<Value, 2>{lo, hi});
1120 
1121   // The before-region of the WhileOp.
1122   Block *before =
1123       builder.createBlock(&whileOp.getBefore(), {}, types, {loc, loc});
1124   builder.setInsertionPointToEnd(before);
1125   lo = before->getArgument(0);
1126   hi = before->getArgument(1);
1127   Value loP1 =
1128       builder.create<arith::AddIOp>(loc, lo, constantIndex(builder, loc, 1));
1129   Value needSort =
1130       builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult, loP1, hi);
1131   builder.create<scf::ConditionOp>(loc, needSort, before->getArguments());
1132 
1133   // The after-region of the WhileOp.
1134   Block *after =
1135       builder.createBlock(&whileOp.getAfter(), {}, types, {loc, loc});
1136   builder.setInsertionPointToEnd(after);
1137   lo = after->getArgument(0);
1138   hi = after->getArgument(1);
1139   args[0] = lo;
1140   args[1] = hi;
1141 
1142   if (isHybrid) {
1143     Value len = builder.create<arith::SubIOp>(loc, hi, lo);
1144     Value lenLimit = constantIndex(builder, loc, 30);
1145     Value lenCond = builder.create<arith::CmpIOp>(
1146         loc, arith::CmpIPredicate::ule, len, lenLimit);
1147     scf::IfOp lenIf =
1148         builder.create<scf::IfOp>(loc, types, lenCond, /*else=*/true);
1149 
1150     // When len <= limit.
1151     builder.setInsertionPointToStart(&lenIf.getThenRegion().front());
1152     FlatSymbolRefAttr insertionSortFunc = getMangledSortHelperFunc(
1153         builder, func, TypeRange(), kSortStableFuncNamePrefix, nx, ny, isCoo,
1154         ValueRange(args).drop_back(nTrailingP), createSortStableFunc);
1155     builder.create<func::CallOp>(loc, insertionSortFunc, TypeRange(),
1156                                  ValueRange(args).drop_back(nTrailingP));
1157     builder.create<scf::YieldOp>(loc, ValueRange{lo, lo});
1158 
1159     // When len > limit.
1160     builder.setInsertionPointToStart(&lenIf.getElseRegion().front());
1161     Value depthLimit = args.back();
1162     depthLimit = builder.create<arith::SubIOp>(loc, depthLimit,
1163                                                constantI64(builder, loc, 1));
1164     Value depthCond =
1165         builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ule,
1166                                       depthLimit, constantI64(builder, loc, 0));
1167     scf::IfOp depthIf =
1168         builder.create<scf::IfOp>(loc, types, depthCond, /*else=*/true);
1169 
1170     // When depth exceeds limit.
1171     builder.setInsertionPointToStart(&depthIf.getThenRegion().front());
1172     FlatSymbolRefAttr heapSortFunc = getMangledSortHelperFunc(
1173         builder, func, TypeRange(), kHeapSortFuncNamePrefix, nx, ny, isCoo,
1174         ValueRange(args).drop_back(nTrailingP), createHeapSortFunc);
1175     builder.create<func::CallOp>(loc, heapSortFunc, TypeRange(),
1176                                  ValueRange(args).drop_back(nTrailingP));
1177     builder.create<scf::YieldOp>(loc, ValueRange{lo, lo});
1178 
1179     // When depth doesn't exceed limit.
1180     builder.setInsertionPointToStart(&depthIf.getElseRegion().front());
1181     args.back() = depthLimit;
1182     std::tie(lo, hi) =
1183         createQuickSort(builder, module, func, args, nx, ny, isCoo, nTrailingP);
1184     builder.create<scf::YieldOp>(loc, ValueRange{lo, hi});
1185 
1186     builder.setInsertionPointAfter(depthIf);
1187     lo = depthIf.getResult(0);
1188     hi = depthIf.getResult(1);
1189     builder.create<scf::YieldOp>(loc, ValueRange{lo, hi});
1190 
1191     builder.setInsertionPointAfter(lenIf);
1192     lo = lenIf.getResult(0);
1193     hi = lenIf.getResult(1);
1194   } else {
1195     std::tie(lo, hi) =
1196         createQuickSort(builder, module, func, args, nx, ny, isCoo, nTrailingP);
1197   }
1198 
1199   // New [lo, hi) for the next while-loop iteration.
1200   builder.create<scf::YieldOp>(loc, ValueRange{lo, hi});
1201 
1202   // After the while-loop.
1203   builder.setInsertionPointAfter(whileOp);
1204   builder.create<func::ReturnOp>(loc);
1205 }
1206 
1207 /// Implements the rewriting for operator sort and sort_coo.
1208 template <typename OpTy>
1209 LogicalResult matchAndRewriteSortOp(OpTy op, ValueRange xys, uint64_t nx,
1210                                     uint64_t ny, bool isCoo,
1211                                     PatternRewriter &rewriter) {
1212   Location loc = op.getLoc();
1213   SmallVector<Value> operands{constantIndex(rewriter, loc, 0), op.getN()};
1214 
1215   // Convert `values` to have dynamic shape and append them to `operands`.
1216   for (Value v : xys) {
1217     auto mtp = getMemRefType(v);
1218     if (!mtp.isDynamicDim(0)) {
1219       auto newMtp =
1220           MemRefType::get({ShapedType::kDynamic}, mtp.getElementType());
1221       v = rewriter.create<memref::CastOp>(loc, newMtp, v);
1222     }
1223     operands.push_back(v);
1224   }
1225 
1226   auto insertPoint = op->template getParentOfType<func::FuncOp>();
1227   if (!insertPoint)
1228     return failure();
1229 
1230   SmallString<32> funcName;
1231   FuncGeneratorType funcGenerator;
1232   uint32_t nTrailingP = 0;
1233   switch (op.getAlgorithm()) {
1234   case SparseTensorSortKind::HybridQuickSort: {
1235     funcName = kHybridQuickSortFuncNamePrefix;
1236     funcGenerator = createQuickSortFunc;
1237     nTrailingP = 1;
1238     // As a heuristics, set depthLimit = 2 * log2(n).
1239     Value lo = operands[loIdx];
1240     Value hi = operands[hiIdx];
1241     Value len = rewriter.create<arith::IndexCastOp>(
1242         loc, rewriter.getI64Type(),
1243         rewriter.create<arith::SubIOp>(loc, hi, lo));
1244     Value depthLimit = rewriter.create<arith::SubIOp>(
1245         loc, constantI64(rewriter, loc, 64),
1246         rewriter.create<math::CountLeadingZerosOp>(loc, len));
1247     operands.push_back(depthLimit);
1248     break;
1249   }
1250   case SparseTensorSortKind::QuickSort:
1251     funcName = kQuickSortFuncNamePrefix;
1252     funcGenerator = createQuickSortFunc;
1253     break;
1254   case SparseTensorSortKind::InsertionSortStable:
1255     funcName = kSortStableFuncNamePrefix;
1256     funcGenerator = createSortStableFunc;
1257     break;
1258   case SparseTensorSortKind::HeapSort:
1259     funcName = kHeapSortFuncNamePrefix;
1260     funcGenerator = createHeapSortFunc;
1261     break;
1262   }
1263 
1264   FlatSymbolRefAttr func =
1265       getMangledSortHelperFunc(rewriter, insertPoint, TypeRange(), funcName, nx,
1266                                ny, isCoo, operands, funcGenerator, nTrailingP);
1267   rewriter.replaceOpWithNewOp<func::CallOp>(op, func, TypeRange(), operands);
1268   return success();
1269 }
1270 
1271 //===---------------------------------------------------------------------===//
1272 // The actual sparse buffer rewriting rules.
1273 //===---------------------------------------------------------------------===//
1274 
1275 namespace {
1276 
1277 /// Sparse rewriting rule for the push_back operator.
1278 struct PushBackRewriter : OpRewritePattern<PushBackOp> {
1279 public:
1280   using OpRewritePattern<PushBackOp>::OpRewritePattern;
1281   PushBackRewriter(MLIRContext *context, bool enableInit)
1282       : OpRewritePattern(context), enableBufferInitialization(enableInit) {}
1283   LogicalResult matchAndRewrite(PushBackOp op,
1284                                 PatternRewriter &rewriter) const override {
1285     // Rewrite push_back(buffer, value, n) to:
1286     // new_size = size(buffer) + n
1287     // if (new_size > capacity(buffer))
1288     //    while new_size > new_capacity
1289     //      new_capacity = new_capacity*2
1290     //    new_buffer = realloc(buffer, new_capacity)
1291     // buffer = new_buffer
1292     // subBuffer = subviewof(buffer)
1293     // linalg.fill subBuffer value
1294     //
1295     // size(buffer) += n
1296     //
1297     // The capacity check is skipped when the attribute inbounds is presented.
1298     Location loc = op->getLoc();
1299     Value c0 = constantIndex(rewriter, loc, 0);
1300     Value buffer = op.getInBuffer();
1301     Value capacity = rewriter.create<memref::DimOp>(loc, buffer, c0);
1302     Value size = op.getCurSize();
1303     Value value = op.getValue();
1304 
1305     Value n = op.getN() ? op.getN() : constantIndex(rewriter, loc, 1);
1306     Value newSize = rewriter.create<arith::AddIOp>(loc, size, n);
1307     auto nValue = dyn_cast_or_null<arith::ConstantIndexOp>(n.getDefiningOp());
1308     bool nIsOne = (nValue && nValue.value() == 1);
1309 
1310     if (!op.getInbounds()) {
1311       Value cond = rewriter.create<arith::CmpIOp>(
1312           loc, arith::CmpIPredicate::ugt, newSize, capacity);
1313 
1314       Value c2 = constantIndex(rewriter, loc, 2);
1315       auto bufferType =
1316           MemRefType::get({ShapedType::kDynamic}, value.getType());
1317       scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, bufferType, cond,
1318                                                   /*else=*/true);
1319       // True branch.
1320       rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front());
1321       if (nIsOne) {
1322         capacity = rewriter.create<arith::MulIOp>(loc, capacity, c2);
1323       } else {
1324         // Use a do-while loop to calculate the new capacity as follows:
1325         //   do { new_capacity *= 2 } while (size > new_capacity)
1326         scf::WhileOp whileOp =
1327             rewriter.create<scf::WhileOp>(loc, capacity.getType(), capacity);
1328 
1329         // The before-region of the WhileOp.
1330         Block *before = rewriter.createBlock(&whileOp.getBefore(), {},
1331                                              {capacity.getType()}, {loc});
1332         rewriter.setInsertionPointToEnd(before);
1333 
1334         capacity =
1335             rewriter.create<arith::MulIOp>(loc, before->getArgument(0), c2);
1336         cond = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ugt,
1337                                               newSize, capacity);
1338         rewriter.create<scf::ConditionOp>(loc, cond, ValueRange{capacity});
1339         // The after-region of the WhileOp.
1340         Block *after = rewriter.createBlock(&whileOp.getAfter(), {},
1341                                             {capacity.getType()}, {loc});
1342         rewriter.setInsertionPointToEnd(after);
1343         rewriter.create<scf::YieldOp>(loc, after->getArguments());
1344 
1345         rewriter.setInsertionPointAfter(whileOp);
1346         capacity = whileOp.getResult(0);
1347       }
1348 
1349       Value newBuffer =
1350           rewriter.create<memref::ReallocOp>(loc, bufferType, buffer, capacity);
1351       if (enableBufferInitialization) {
1352         Value fillSize = rewriter.create<arith::SubIOp>(loc, capacity, newSize);
1353         Value fillValue = constantZero(rewriter, loc, value.getType());
1354         Value subBuffer = rewriter.create<memref::SubViewOp>(
1355             loc, newBuffer, /*offset=*/ValueRange{newSize},
1356             /*size=*/ValueRange{fillSize},
1357             /*step=*/ValueRange{constantIndex(rewriter, loc, 1)});
1358         rewriter.create<linalg::FillOp>(loc, fillValue, subBuffer);
1359       }
1360       rewriter.create<scf::YieldOp>(loc, newBuffer);
1361 
1362       // False branch.
1363       rewriter.setInsertionPointToStart(&ifOp.getElseRegion().front());
1364       rewriter.create<scf::YieldOp>(loc, buffer);
1365 
1366       // Prepare for adding the value to the end of the buffer.
1367       rewriter.setInsertionPointAfter(ifOp);
1368       buffer = ifOp.getResult(0);
1369     }
1370 
1371     // Add the value to the end of the buffer.
1372     if (nIsOne) {
1373       rewriter.create<memref::StoreOp>(loc, value, buffer, size);
1374     } else {
1375       Value subBuffer = rewriter.create<memref::SubViewOp>(
1376           loc, buffer, /*offset=*/ValueRange{size}, /*size=*/ValueRange{n},
1377           /*step=*/ValueRange{constantIndex(rewriter, loc, 1)});
1378       rewriter.create<linalg::FillOp>(loc, value, subBuffer);
1379     }
1380 
1381     // Update the buffer size.
1382     rewriter.replaceOp(op, {buffer, newSize});
1383     return success();
1384   }
1385 
1386 private:
1387   bool enableBufferInitialization;
1388 };
1389 
1390 /// Sparse rewriting rule for the sort operator.
1391 struct SortRewriter : public OpRewritePattern<SortOp> {
1392 public:
1393   using OpRewritePattern<SortOp>::OpRewritePattern;
1394 
1395   LogicalResult matchAndRewrite(SortOp op,
1396                                 PatternRewriter &rewriter) const override {
1397     SmallVector<Value> xys(op.getXs());
1398     xys.append(op.getYs().begin(), op.getYs().end());
1399     return matchAndRewriteSortOp(op, xys, op.getXs().size(), /*ny=*/0,
1400                                  /*isCoo=*/false, rewriter);
1401   }
1402 };
1403 
1404 /// Sparse rewriting rule for the sort_coo operator.
1405 struct SortCooRewriter : public OpRewritePattern<SortCooOp> {
1406 public:
1407   using OpRewritePattern<SortCooOp>::OpRewritePattern;
1408 
1409   LogicalResult matchAndRewrite(SortCooOp op,
1410                                 PatternRewriter &rewriter) const override {
1411     SmallVector<Value> xys;
1412     xys.push_back(op.getXy());
1413     xys.append(op.getYs().begin(), op.getYs().end());
1414     uint64_t nx = 1;
1415     if (auto nxAttr = op.getNxAttr())
1416       nx = nxAttr.getInt();
1417 
1418     uint64_t ny = 0;
1419     if (auto nyAttr = op.getNyAttr())
1420       ny = nyAttr.getInt();
1421 
1422     return matchAndRewriteSortOp(op, xys, nx, ny,
1423                                  /*isCoo=*/true, rewriter);
1424   }
1425 };
1426 
1427 } // namespace
1428 
1429 //===---------------------------------------------------------------------===//
1430 // Methods that add patterns described in this file to a pattern list.
1431 //===---------------------------------------------------------------------===//
1432 
1433 void mlir::populateSparseBufferRewriting(RewritePatternSet &patterns,
1434                                          bool enableBufferInitialization) {
1435   patterns.add<PushBackRewriter>(patterns.getContext(),
1436                                  enableBufferInitialization);
1437   patterns.add<SortRewriter, SortCooRewriter>(patterns.getContext());
1438 }
1439