xref: /llvm-project/mlir/lib/Dialect/SparseTensor/Transforms/SparseBufferRewriting.cpp (revision 2ef416273f85ed355f4cbaa996fd8d9c229dbfab)
1 //===- SparseBufferRewriting.cpp - Sparse buffer rewriting rules ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements rewriting rules that are specific to sparse tensor
10 // primitives with memref operands.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodegenUtils.h"
15 
16 #include "mlir/Dialect/Arith/IR/Arith.h"
17 #include "mlir/Dialect/Func/IR/FuncOps.h"
18 #include "mlir/Dialect/Linalg/IR/Linalg.h"
19 #include "mlir/Dialect/Math/IR/Math.h"
20 #include "mlir/Dialect/MemRef/IR/MemRef.h"
21 #include "mlir/Dialect/SCF/IR/SCF.h"
22 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
23 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
24 #include "mlir/Support/LLVM.h"
25 
26 using namespace mlir;
27 using namespace mlir::sparse_tensor;
28 
29 //===---------------------------------------------------------------------===//
30 // Helper methods for the actual rewriting rules.
31 //===---------------------------------------------------------------------===//
32 
33 static constexpr uint64_t loIdx = 0;
34 static constexpr uint64_t hiIdx = 1;
35 static constexpr uint64_t xStartIdx = 2;
36 
37 static constexpr const char kPartitionFuncNamePrefix[] = "_sparse_partition_";
38 static constexpr const char kBinarySearchFuncNamePrefix[] =
39     "_sparse_binary_search_";
40 static constexpr const char kHybridQuickSortFuncNamePrefix[] =
41     "_sparse_hybrid_qsort_";
42 static constexpr const char kSortStableFuncNamePrefix[] =
43     "_sparse_sort_stable_";
44 static constexpr const char kShiftDownFuncNamePrefix[] = "_sparse_shift_down_";
45 static constexpr const char kHeapSortFuncNamePrefix[] = "_sparse_heap_sort_";
46 static constexpr const char kQuickSortFuncNamePrefix[] = "_sparse_qsort_";
47 
48 using FuncGeneratorType = function_ref<void(
49     OpBuilder &, ModuleOp, func::FuncOp, uint64_t, uint64_t, bool, uint32_t)>;
50 
51 /// Constructs a function name with this format to facilitate quick sort:
52 ///   <namePrefix><nx>_<x type>_<y0 type>..._<yn type> for sort
53 ///   <namePrefix><nx>_<x type>_coo_<ny>_<y0 type>..._<yn type> for sort_coo
54 static void getMangledSortHelperFuncName(llvm::raw_svector_ostream &nameOstream,
55                                          StringRef namePrefix, uint64_t nx,
56                                          uint64_t ny, bool isCoo,
57                                          ValueRange operands) {
58   nameOstream << namePrefix << nx << "_"
59               << getMemRefType(operands[xStartIdx]).getElementType();
60 
61   if (isCoo)
62     nameOstream << "_coo_" << ny;
63 
64   uint64_t yBufferOffset = isCoo ? 1 : nx;
65   for (Value v : operands.drop_front(xStartIdx + yBufferOffset))
66     nameOstream << "_" << getMemRefType(v).getElementType();
67 }
68 
69 /// Looks up a function that is appropriate for the given operands being
70 /// sorted, and creates such a function if it doesn't exist yet. The
71 /// parameters `nx` and `ny` tell the number of x and y values provided
72 /// by the buffer in xStartIdx, and `isCoo` indicates whether the instruction
73 /// being processed is a sparse_tensor.sort or sparse_tensor.sort_coo.
74 //
75 // All sorting function generators take (lo, hi, xs, ys) in `operands` as
76 // parameters for the sorting functions. Other parameters, such as the recursive
77 // call depth, are appended to the end of the parameter list as
78 // "trailing parameters".
79 static FlatSymbolRefAttr
80 getMangledSortHelperFunc(OpBuilder &builder, func::FuncOp insertPoint,
81                          TypeRange resultTypes, StringRef namePrefix,
82                          uint64_t nx, uint64_t ny, bool isCoo,
83                          ValueRange operands, FuncGeneratorType createFunc,
84                          uint32_t nTrailingP = 0) {
85   SmallString<32> nameBuffer;
86   llvm::raw_svector_ostream nameOstream(nameBuffer);
87   getMangledSortHelperFuncName(nameOstream, namePrefix, nx, ny, isCoo,
88                                operands.drop_back(nTrailingP));
89 
90   ModuleOp module = insertPoint->getParentOfType<ModuleOp>();
91   MLIRContext *context = module.getContext();
92   auto result = SymbolRefAttr::get(context, nameOstream.str());
93   auto func = module.lookupSymbol<func::FuncOp>(result.getAttr());
94 
95   if (!func) {
96     // Create the function.
97     OpBuilder::InsertionGuard insertionGuard(builder);
98     builder.setInsertionPoint(insertPoint);
99     Location loc = insertPoint.getLoc();
100     func = builder.create<func::FuncOp>(
101         loc, nameOstream.str(),
102         FunctionType::get(context, operands.getTypes(), resultTypes));
103     func.setPrivate();
104     createFunc(builder, module, func, nx, ny, isCoo, nTrailingP);
105   }
106 
107   return result;
108 }
109 
110 /// Creates a code block to process each pair of (xs[i], xs[j]) for sorting.
111 /// The code to process the value pairs is generated by `bodyBuilder`.
112 static void forEachIJPairInXs(
113     OpBuilder &builder, Location loc, ValueRange args, uint64_t nx, uint64_t ny,
114     bool isCoo, function_ref<void(uint64_t, Value, Value, Value)> bodyBuilder) {
115   Value iOffset, jOffset;
116   if (isCoo) {
117     Value cstep = constantIndex(builder, loc, nx + ny);
118     iOffset = builder.create<arith::MulIOp>(loc, args[0], cstep);
119     jOffset = builder.create<arith::MulIOp>(loc, args[1], cstep);
120   }
121   for (uint64_t k = 0; k < nx; k++) {
122     scf::IfOp ifOp;
123     Value i, j, buffer;
124     if (isCoo) {
125       Value ck = constantIndex(builder, loc, k);
126       i = builder.create<arith::AddIOp>(loc, ck, iOffset);
127       j = builder.create<arith::AddIOp>(loc, ck, jOffset);
128       buffer = args[xStartIdx];
129     } else {
130       i = args[0];
131       j = args[1];
132       buffer = args[xStartIdx + k];
133     }
134     bodyBuilder(k, i, j, buffer);
135   }
136 }
137 
138 /// Creates a code block to process each pair of (xys[i], xys[j]) for sorting.
139 /// The code to process the value pairs is generated by `bodyBuilder`.
140 static void forEachIJPairInAllBuffers(
141     OpBuilder &builder, Location loc, ValueRange args, uint64_t nx, uint64_t ny,
142     bool isCoo, function_ref<void(uint64_t, Value, Value, Value)> bodyBuilder) {
143 
144   // Create code for the first (nx + ny) buffers. When isCoo==true, these
145   // logical buffers are all from the xy buffer of the sort_coo operator.
146   forEachIJPairInXs(builder, loc, args, nx + ny, 0, isCoo, bodyBuilder);
147 
148   uint64_t numHandledBuffers = isCoo ? 1 : nx + ny;
149 
150   // Create code for the remaining buffers.
151   Value i = args[0];
152   Value j = args[1];
153   for (const auto &arg :
154        llvm::enumerate(args.drop_front(xStartIdx + numHandledBuffers))) {
155     bodyBuilder(arg.index() + nx + ny, i, j, arg.value());
156   }
157 }
158 
159 /// Creates a code block for swapping the values in index i and j for all the
160 /// buffers.
161 //
162 // The generated IR corresponds to this C like algorithm:
163 //     swap(x0[i], x0[j]);
164 //     swap(x1[i], x1[j]);
165 //     ...
166 //     swap(xn[i], xn[j]);
167 //     swap(y0[i], y0[j]);
168 //     ...
169 //     swap(yn[i], yn[j]);
170 static void createSwap(OpBuilder &builder, Location loc, ValueRange args,
171                        uint64_t nx, uint64_t ny, bool isCoo) {
172   auto swapOnePair = [&](uint64_t unused, Value i, Value j, Value buffer) {
173     Value vi = builder.create<memref::LoadOp>(loc, buffer, i);
174     Value vj = builder.create<memref::LoadOp>(loc, buffer, j);
175     builder.create<memref::StoreOp>(loc, vj, buffer, i);
176     builder.create<memref::StoreOp>(loc, vi, buffer, j);
177   };
178 
179   forEachIJPairInAllBuffers(builder, loc, args, nx, ny, isCoo, swapOnePair);
180 }
181 
182 /// Creates code to compare all the (xs[i], xs[j]) pairs. The method to compare
183 /// each pair is create via `compareBuilder`.
184 static Value createInlinedCompareImplementation(
185     OpBuilder &builder, Location loc, ValueRange args, uint64_t nx, uint64_t ny,
186     bool isCoo,
187     function_ref<Value(OpBuilder &, Location, Value, Value, Value, bool, bool)>
188         compareBuilder) {
189   Value result;
190   auto bodyBuilder = [&](uint64_t k, Value i, Value j, Value buffer) {
191     bool isFirstDim = (k == 0);
192     bool isLastDim = (k == nx - 1);
193     Value val =
194         compareBuilder(builder, loc, i, j, buffer, isFirstDim, isLastDim);
195     if (isFirstDim) {
196       result = val;
197     } else if (!isLastDim) {
198       OpBuilder::InsertionGuard insertionGuard(builder);
199       auto ifOp = cast<scf::IfOp>(val.getDefiningOp());
200       builder.setInsertionPointAfter(ifOp);
201       builder.create<scf::YieldOp>(loc, ifOp.getResult(0));
202     }
203   };
204 
205   forEachIJPairInXs(builder, loc, args, nx, ny, isCoo, bodyBuilder);
206 
207   builder.setInsertionPointAfterValue(result);
208   return result;
209 }
210 
211 /// Generates code to compare whether x[i] is equal to x[j] and returns the
212 /// result of the comparison.
213 static Value createEqCompare(OpBuilder &builder, Location loc, Value i, Value j,
214                              Value x, bool isFirstDim, bool isLastDim) {
215   Value vi = builder.create<memref::LoadOp>(loc, x, i);
216   Value vj = builder.create<memref::LoadOp>(loc, x, j);
217 
218   Value res;
219   if (isLastDim) {
220     res = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, vi, vj);
221     // For 1D, we create a compare without any control flow. Otherwise, we
222     // create YieldOp to return the result in the nested if-stmt.
223     if (!isFirstDim)
224       builder.create<scf::YieldOp>(loc, res);
225   } else {
226     Value ne =
227         builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ne, vi, vj);
228     scf::IfOp ifOp = builder.create<scf::IfOp>(loc, builder.getIntegerType(1),
229                                                ne, /*else=*/true);
230     // If (x[i] != x[j]).
231     builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
232     Value f = constantI1(builder, loc, false);
233     builder.create<scf::YieldOp>(loc, f);
234 
235     // If (x[i] == x[j]). Set up the insertion point for the nested if-stmt that
236     // checks the remaining dimensions.
237     builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
238     res = ifOp.getResult(0);
239   }
240 
241   return res;
242 }
243 
244 /// Creates code to compare whether xs[i] is equal to xs[j].
245 //
246 // The generate IR corresponds to this C like algorithm:
247 //   if (x0[i] != x0[j])
248 //     return false;
249 //   else
250 //     if (x1[i] != x1[j])
251 //       return false;
252 //     else if (x2[2] != x2[j]))
253 //       and so on ...
254 static Value createInlinedEqCompare(OpBuilder &builder, Location loc,
255                                     ValueRange args, uint64_t nx, uint64_t ny,
256                                     bool isCoo, uint32_t nTrailingP = 0) {
257   // Compare functions don't use trailing parameters.
258   (void)nTrailingP;
259   assert(nTrailingP == 0);
260   return createInlinedCompareImplementation(builder, loc, args, nx, ny, isCoo,
261                                             createEqCompare);
262 }
263 
264 /// Generates code to compare whether x[i] is less than x[j] and returns the
265 /// result of the comparison.
266 static Value createLessThanCompare(OpBuilder &builder, Location loc, Value i,
267                                    Value j, Value x, bool isFirstDim,
268                                    bool isLastDim) {
269   Value vi = builder.create<memref::LoadOp>(loc, x, i);
270   Value vj = builder.create<memref::LoadOp>(loc, x, j);
271 
272   Value res;
273   if (isLastDim) {
274     res = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult, vi, vj);
275     // For 1D, we create a compare without any control flow. Otherwise, we
276     // create YieldOp to return the result in the nested if-stmt.
277     if (!isFirstDim)
278       builder.create<scf::YieldOp>(loc, res);
279   } else {
280     Value ne =
281         builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ne, vi, vj);
282     scf::IfOp ifOp = builder.create<scf::IfOp>(loc, builder.getIntegerType(1),
283                                                ne, /*else=*/true);
284     // If (x[i] != x[j]).
285     builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
286     Value lt =
287         builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult, vi, vj);
288     builder.create<scf::YieldOp>(loc, lt);
289 
290     // If (x[i] == x[j]). Set up the insertion point for the nested if-stmt that
291     // checks the remaining dimensions.
292     builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
293     res = ifOp.getResult(0);
294   }
295 
296   return res;
297 }
298 
299 /// Creates code to compare whether xs[i] is less than xs[j].
300 //
301 // The generate IR corresponds to this C like algorithm:
302 //   if (x0[i] != x0[j])
303 //     return x0[i] < x0[j];
304 //   else if (x1[j] != x1[i])
305 //     return x1[i] < x1[j];
306 //   else
307 //       and so on ...
308 static Value createInlinedLessThan(OpBuilder &builder, Location loc,
309                                    ValueRange args, uint64_t nx, uint64_t ny,
310                                    bool isCoo, uint32_t nTrailingP = 0) {
311   // Compare functions don't use trailing parameters.
312   (void)nTrailingP;
313   assert(nTrailingP == 0);
314   return createInlinedCompareImplementation(builder, loc, args, nx, ny, isCoo,
315                                             createLessThanCompare);
316 }
317 
318 /// Creates a function to use a binary search to find the insertion point for
319 /// inserting xs[hi] to the sorted values xs[lo..hi).
320 //
321 // The generate IR corresponds to this C like algorithm:
322 //   p = hi
323 //   while (lo < hi)
324 //      mid = (lo + hi) >> 1
325 //      if (xs[p] < xs[mid])
326 //        hi = mid
327 //      else
328 //        lo = mid - 1
329 //   return lo;
330 //
331 static void createBinarySearchFunc(OpBuilder &builder, ModuleOp module,
332                                    func::FuncOp func, uint64_t nx, uint64_t ny,
333                                    bool isCoo, uint32_t nTrailingP = 0) {
334   // Binary search doesn't use trailing parameters.
335   (void)nTrailingP;
336   assert(nTrailingP == 0);
337   OpBuilder::InsertionGuard insertionGuard(builder);
338   Block *entryBlock = func.addEntryBlock();
339   builder.setInsertionPointToStart(entryBlock);
340 
341   Location loc = func.getLoc();
342   ValueRange args = entryBlock->getArguments();
343   Value p = args[hiIdx];
344   SmallVector<Type, 2> types(2, p.getType()); // Only two types.
345   scf::WhileOp whileOp = builder.create<scf::WhileOp>(
346       loc, types, SmallVector<Value, 2>{args[loIdx], args[hiIdx]});
347 
348   // The before-region of the WhileOp.
349   Block *before =
350       builder.createBlock(&whileOp.getBefore(), {}, types, {loc, loc});
351   builder.setInsertionPointToEnd(before);
352   Value cond1 = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult,
353                                               before->getArgument(0),
354                                               before->getArgument(1));
355   builder.create<scf::ConditionOp>(loc, cond1, before->getArguments());
356 
357   // The after-region of the WhileOp.
358   Block *after =
359       builder.createBlock(&whileOp.getAfter(), {}, types, {loc, loc});
360   builder.setInsertionPointToEnd(after);
361   Value lo = after->getArgument(0);
362   Value hi = after->getArgument(1);
363   // Compute mid = (lo + hi) >> 1.
364   Value c1 = constantIndex(builder, loc, 1);
365   Value mid = builder.create<arith::ShRUIOp>(
366       loc, builder.create<arith::AddIOp>(loc, lo, hi), c1);
367   Value midp1 = builder.create<arith::AddIOp>(loc, mid, c1);
368 
369   // Compare xs[p] < xs[mid].
370   SmallVector<Value> compareOperands{p, mid};
371   uint64_t numXBuffers = isCoo ? 1 : nx;
372   compareOperands.append(args.begin() + xStartIdx,
373                          args.begin() + xStartIdx + numXBuffers);
374   Value cond2 =
375       createInlinedLessThan(builder, loc, compareOperands, nx, ny, isCoo);
376   // Update lo and hi for the WhileOp as follows:
377   //   if (xs[p] < xs[mid]))
378   //     hi = mid;
379   //   else
380   //     lo = mid + 1;
381   Value newLo = builder.create<arith::SelectOp>(loc, cond2, lo, midp1);
382   Value newHi = builder.create<arith::SelectOp>(loc, cond2, mid, hi);
383   builder.create<scf::YieldOp>(loc, ValueRange{newLo, newHi});
384 
385   builder.setInsertionPointAfter(whileOp);
386   builder.create<func::ReturnOp>(loc, whileOp.getResult(0));
387 }
388 
389 /// Creates code to advance i in a loop based on xs[p] as follows:
390 ///   while (xs[i] < xs[p]) i += step (step > 0)
391 /// or
392 ///   while (xs[i] > xs[p]) i += step (step < 0)
393 /// The routine returns i as well as a boolean value to indicate whether
394 /// xs[i] == xs[p].
395 static std::pair<Value, Value>
396 createScanLoop(OpBuilder &builder, ModuleOp module, func::FuncOp func,
397                ValueRange xs, Value i, Value p, uint64_t nx, uint64_t ny,
398                bool isCoo, int step) {
399   Location loc = func.getLoc();
400   scf::WhileOp whileOp =
401       builder.create<scf::WhileOp>(loc, TypeRange{i.getType()}, ValueRange{i});
402 
403   Block *before =
404       builder.createBlock(&whileOp.getBefore(), {}, {i.getType()}, {loc});
405   builder.setInsertionPointToEnd(before);
406   SmallVector<Value> compareOperands;
407   if (step > 0) {
408     compareOperands.push_back(before->getArgument(0));
409     compareOperands.push_back(p);
410   } else {
411     assert(step < 0);
412     compareOperands.push_back(p);
413     compareOperands.push_back(before->getArgument(0));
414   }
415   compareOperands.append(xs.begin(), xs.end());
416   Value cond =
417       createInlinedLessThan(builder, loc, compareOperands, nx, ny, isCoo);
418   builder.create<scf::ConditionOp>(loc, cond, before->getArguments());
419 
420   Block *after =
421       builder.createBlock(&whileOp.getAfter(), {}, {i.getType()}, {loc});
422   builder.setInsertionPointToEnd(after);
423   Value cs = constantIndex(builder, loc, step);
424   i = builder.create<arith::AddIOp>(loc, after->getArgument(0), cs);
425   builder.create<scf::YieldOp>(loc, ValueRange{i});
426   i = whileOp.getResult(0);
427 
428   builder.setInsertionPointAfter(whileOp);
429   compareOperands[0] = i;
430   compareOperands[1] = p;
431   Value compareEq =
432       createInlinedEqCompare(builder, loc, compareOperands, nx, ny, isCoo);
433 
434   return std::make_pair(whileOp.getResult(0), compareEq);
435 }
436 
437 /// Creates a code block to swap the values so that data[mi] is the median among
438 /// data[lo], data[hi], and data[mi].
439 //  The generated code corresponds to this C-like algorithm:
440 //  median = mi
441 //  if (data[mi] < data[lo]).                               (if1)
442 //    if (data[hi] < data[lo])                              (if2)
443 //       median = data[hi] < data[mi] ? mi : hi
444 //    else
445 //       median = lo
446 //  else
447 //    if data[hi] < data[mi]                                (if3)
448 //      median = data[hi] < data[lo] ? lo : hi
449 //  if median != mi swap data[median] with data[mi]
450 static void createChoosePivot(OpBuilder &builder, ModuleOp module,
451                               func::FuncOp func, uint64_t nx, uint64_t ny,
452                               bool isCoo, Value lo, Value hi, Value mi,
453                               ValueRange args) {
454   SmallVector<Value> compareOperands{mi, lo};
455   uint64_t numXBuffers = isCoo ? 1 : nx;
456   compareOperands.append(args.begin() + xStartIdx,
457                          args.begin() + xStartIdx + numXBuffers);
458   Type i1Type = IntegerType::get(module.getContext(), 1, IntegerType::Signless);
459   SmallVector<Type, 1> cmpTypes{i1Type};
460   Location loc = func.getLoc();
461   // Compare data[mi] < data[lo].
462   Value cond1 =
463       createInlinedLessThan(builder, loc, compareOperands, nx, ny, isCoo);
464   SmallVector<Type, 1> ifTypes{lo.getType()};
465   scf::IfOp ifOp1 =
466       builder.create<scf::IfOp>(loc, ifTypes, cond1, /*else=*/true);
467 
468   // Generate an if-stmt to find the median value, assuming we already know that
469   // data[b] < data[a] and we haven't compare data[c] yet.
470   auto createFindMedian = [&](Value a, Value b, Value c) -> scf::IfOp {
471     compareOperands[0] = c;
472     compareOperands[1] = a;
473     // Compare data[c] < data[b].
474     Value cond2 =
475         createInlinedLessThan(builder, loc, compareOperands, nx, ny, isCoo);
476     scf::IfOp ifOp2 =
477         builder.create<scf::IfOp>(loc, ifTypes, cond2, /*else=*/true);
478     builder.setInsertionPointToStart(&ifOp2.getThenRegion().front());
479     compareOperands[0] = c;
480     compareOperands[1] = b;
481     // Compare data[c] < data[b].
482     Value cond3 =
483         createInlinedLessThan(builder, loc, compareOperands, nx, ny, isCoo);
484     builder.create<scf::YieldOp>(
485         loc, ValueRange{builder.create<arith::SelectOp>(loc, cond3, b, c)});
486     builder.setInsertionPointToStart(&ifOp2.getElseRegion().front());
487     builder.create<scf::YieldOp>(loc, ValueRange{a});
488     return ifOp2;
489   };
490 
491   builder.setInsertionPointToStart(&ifOp1.getThenRegion().front());
492   scf::IfOp ifOp2 = createFindMedian(lo, mi, hi);
493   builder.setInsertionPointAfter(ifOp2);
494   builder.create<scf::YieldOp>(loc, ValueRange{ifOp2.getResult(0)});
495 
496   builder.setInsertionPointToStart(&ifOp1.getElseRegion().front());
497   scf::IfOp ifOp3 = createFindMedian(mi, lo, hi);
498 
499   builder.setInsertionPointAfter(ifOp3);
500   builder.create<scf::YieldOp>(loc, ValueRange{ifOp3.getResult(0)});
501 
502   builder.setInsertionPointAfter(ifOp1);
503   Value median = ifOp1.getResult(0);
504   Value cond =
505       builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ne, mi, median);
506   scf::IfOp ifOp =
507       builder.create<scf::IfOp>(loc, TypeRange(), cond, /*else=*/false);
508 
509   SmallVector<Value> swapOperands{median, mi};
510   swapOperands.append(args.begin() + xStartIdx, args.end());
511   builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
512   createSwap(builder, loc, swapOperands, nx, ny, isCoo);
513   builder.setInsertionPointAfter(ifOp);
514 }
515 
516 /// Creates a function to perform quick sort partition on the values in the
517 /// range of index [lo, hi), assuming lo < hi.
518 //
519 // The generated IR corresponds to this C like algorithm:
520 // int partition(lo, hi, xs) {
521 //   p = (lo+hi)/2  // pivot index
522 //   i = lo
523 //   j = hi-1
524 //   while (i < j) do {
525 //     while (xs[i] < xs[p]) i ++;
526 //     i_eq = (xs[i] == xs[p]);
527 //     while (xs[j] > xs[p]) j --;
528 //     j_eq = (xs[j] == xs[p]);
529 //     if (i < j) {
530 //       swap(xs[i], xs[j])
531 //       if (i == p) {
532 //         p = j;
533 //       } else if (j == p) {
534 //         p = i;
535 //       }
536 //       if (i_eq && j_eq) {
537 //         ++i;
538 //         --j;
539 //       }
540 //     }
541 //   }
542 //   return p
543 //   }
544 static void createPartitionFunc(OpBuilder &builder, ModuleOp module,
545                                 func::FuncOp func, uint64_t nx, uint64_t ny,
546                                 bool isCoo, uint32_t nTrailingP = 0) {
547   // Quick sort partition doesn't use trailing parameters.
548   (void)nTrailingP;
549   assert(nTrailingP == 0);
550   OpBuilder::InsertionGuard insertionGuard(builder);
551 
552   Block *entryBlock = func.addEntryBlock();
553   builder.setInsertionPointToStart(entryBlock);
554 
555   Location loc = func.getLoc();
556   ValueRange args = entryBlock->getArguments();
557   Value lo = args[loIdx];
558   Value hi = args[hiIdx];
559   Value sum = builder.create<arith::AddIOp>(loc, lo, hi);
560   Value c1 = constantIndex(builder, loc, 1);
561   Value p = builder.create<arith::ShRUIOp>(loc, sum, c1);
562 
563   Value i = lo;
564   Value j = builder.create<arith::SubIOp>(loc, hi, c1);
565   createChoosePivot(builder, module, func, nx, ny, isCoo, i, j, p, args);
566   SmallVector<Value, 3> operands{i, j, p}; // Exactly three values.
567   SmallVector<Type, 3> types{i.getType(), j.getType(), p.getType()};
568   scf::WhileOp whileOp = builder.create<scf::WhileOp>(loc, types, operands);
569 
570   // The before-region of the WhileOp.
571   Block *before =
572       builder.createBlock(&whileOp.getBefore(), {}, types, {loc, loc, loc});
573   builder.setInsertionPointToEnd(before);
574   Value cond = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult,
575                                              before->getArgument(0),
576                                              before->getArgument(1));
577   builder.create<scf::ConditionOp>(loc, cond, before->getArguments());
578 
579   // The after-region of the WhileOp.
580   Block *after =
581       builder.createBlock(&whileOp.getAfter(), {}, types, {loc, loc, loc});
582   builder.setInsertionPointToEnd(after);
583   i = after->getArgument(0);
584   j = after->getArgument(1);
585   p = after->getArgument(2);
586 
587   uint64_t numXBuffers = isCoo ? 1 : nx;
588   auto [iresult, iCompareEq] =
589       createScanLoop(builder, module, func, args.slice(xStartIdx, numXBuffers),
590                      i, p, nx, ny, isCoo, 1);
591   i = iresult;
592   auto [jresult, jCompareEq] =
593       createScanLoop(builder, module, func, args.slice(xStartIdx, numXBuffers),
594                      j, p, nx, ny, isCoo, -1);
595   j = jresult;
596 
597   // If i < j:
598   cond = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult, i, j);
599   scf::IfOp ifOp = builder.create<scf::IfOp>(loc, types, cond, /*else=*/true);
600   builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
601   SmallVector<Value> swapOperands{i, j};
602   swapOperands.append(args.begin() + xStartIdx, args.end());
603   createSwap(builder, loc, swapOperands, nx, ny, isCoo);
604   // If the pivot is moved, update p with the new pivot.
605   Value icond =
606       builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, i, p);
607   scf::IfOp ifOpI = builder.create<scf::IfOp>(loc, TypeRange{p.getType()},
608                                               icond, /*else=*/true);
609   builder.setInsertionPointToStart(&ifOpI.getThenRegion().front());
610   builder.create<scf::YieldOp>(loc, ValueRange{j});
611   builder.setInsertionPointToStart(&ifOpI.getElseRegion().front());
612   Value jcond =
613       builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, j, p);
614   scf::IfOp ifOpJ = builder.create<scf::IfOp>(loc, TypeRange{p.getType()},
615                                               jcond, /*else=*/true);
616   builder.setInsertionPointToStart(&ifOpJ.getThenRegion().front());
617   builder.create<scf::YieldOp>(loc, ValueRange{i});
618   builder.setInsertionPointToStart(&ifOpJ.getElseRegion().front());
619   builder.create<scf::YieldOp>(loc, ValueRange{p});
620   builder.setInsertionPointAfter(ifOpJ);
621   builder.create<scf::YieldOp>(loc, ifOpJ.getResults());
622   builder.setInsertionPointAfter(ifOpI);
623   Value compareEqIJ =
624       builder.create<arith::AndIOp>(loc, iCompareEq, jCompareEq);
625   scf::IfOp ifOp2 = builder.create<scf::IfOp>(
626       loc, TypeRange{i.getType(), j.getType()}, compareEqIJ, /*else=*/true);
627   builder.setInsertionPointToStart(&ifOp2.getThenRegion().front());
628   Value i2 = builder.create<arith::AddIOp>(loc, i, c1);
629   Value j2 = builder.create<arith::SubIOp>(loc, j, c1);
630   builder.create<scf::YieldOp>(loc, ValueRange{i2, j2});
631   builder.setInsertionPointToStart(&ifOp2.getElseRegion().front());
632   builder.create<scf::YieldOp>(loc, ValueRange{i, j});
633   builder.setInsertionPointAfter(ifOp2);
634   builder.create<scf::YieldOp>(
635       loc,
636       ValueRange{ifOp2.getResult(0), ifOp2.getResult(1), ifOpI.getResult(0)});
637 
638   // False branch for if i < j:
639   builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
640   builder.create<scf::YieldOp>(loc, ValueRange{i, j, p});
641 
642   // Return for the whileOp.
643   builder.setInsertionPointAfter(ifOp);
644   builder.create<scf::YieldOp>(loc, ifOp.getResults());
645 
646   // Return for the function.
647   builder.setInsertionPointAfter(whileOp);
648   builder.create<func::ReturnOp>(loc, whileOp.getResult(2));
649 }
650 
651 /// Computes (n-2)/n, assuming n has index type.
652 static Value createSubTwoDividedByTwo(OpBuilder &builder, Location loc,
653                                       Value n) {
654   Value i2 = constantIndex(builder, loc, 2);
655   Value res = builder.create<arith::SubIOp>(loc, n, i2);
656   Value i1 = constantIndex(builder, loc, 1);
657   return builder.create<arith::ShRUIOp>(loc, res, i1);
658 }
659 
660 /// Creates a function to heapify the subtree with root `start` within the full
661 /// binary tree in the range of index [first, first + n).
662 //
663 // The generated IR corresponds to this C like algorithm:
664 // void shiftDown(first, start, n, data) {
665 //   if (n >= 2) {
666 //     child = start - first
667 //     if ((n-2)/2 >= child) {
668 //       // Left child exists.
669 //       child = child * 2 + 1 // Initialize the bigger child to left child.
670 //       childIndex = child + first
671 //       if (child+1 < n && data[childIndex] < data[childIndex+1])
672 //         // Right child exits and is bigger.
673 //         childIndex++; child++;
674 //       // Shift data[start] down to where it belongs in the subtree.
675 //       while (data[start] < data[childIndex) {
676 //         swap(data[start], data[childIndex])
677 //         start = childIndex
678 //         if ((n - 2)/2 >= child) {
679 //           // Left child exists.
680 //           child = 2*child + 1
681 //           childIndex = child + 1
682 //           if (child + 1) < n && data[childIndex] < data[childIndex+1]
683 //             childIndex++; child++;
684 //         }
685 //       }
686 //     }
687 //   }
688 // }
689 //
690 static void createShiftDownFunc(OpBuilder &builder, ModuleOp module,
691                                 func::FuncOp func, uint64_t nx, uint64_t ny,
692                                 bool isCoo, uint32_t nTrailingP) {
693   // The value n is passed in as a trailing parameter.
694   assert(nTrailingP == 1);
695   OpBuilder::InsertionGuard insertionGuard(builder);
696   Block *entryBlock = func.addEntryBlock();
697   builder.setInsertionPointToStart(entryBlock);
698 
699   Location loc = func.getLoc();
700   Value n = entryBlock->getArguments().back();
701   ValueRange args = entryBlock->getArguments().drop_back();
702   Value first = args[loIdx];
703   Value start = args[hiIdx];
704 
705   // If (n >= 2).
706   Value c2 = constantIndex(builder, loc, 2);
707   Value condN =
708       builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::uge, n, c2);
709   scf::IfOp ifN = builder.create<scf::IfOp>(loc, condN, /*else=*/false);
710   builder.setInsertionPointToStart(&ifN.getThenRegion().front());
711   Value child = builder.create<arith::SubIOp>(loc, start, first);
712 
713   // If ((n-2)/2 >= child).
714   Value t = createSubTwoDividedByTwo(builder, loc, n);
715   Value condNc =
716       builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::uge, t, child);
717   scf::IfOp ifNc = builder.create<scf::IfOp>(loc, condNc, /*else=*/false);
718 
719   builder.setInsertionPointToStart(&ifNc.getThenRegion().front());
720   Value c1 = constantIndex(builder, loc, 1);
721   SmallVector<Value> compareOperands{start, start};
722   uint64_t numXBuffers = isCoo ? 1 : nx;
723   compareOperands.append(args.begin() + xStartIdx,
724                          args.begin() + xStartIdx + numXBuffers);
725 
726   // Generate code to inspect the children of 'r' and return the larger child
727   // as follows:
728   //   child = r * 2 + 1 // Left child.
729   //   childIndex = child + first
730   //   if (child+1 < n && data[childIndex] < data[childIndex+1])
731   //     childIndex ++; child ++ // Right child is bigger.
732   auto getLargerChild = [&](Value r) -> std::pair<Value, Value> {
733     Value lChild = builder.create<arith::ShLIOp>(loc, r, c1);
734     lChild = builder.create<arith::AddIOp>(loc, lChild, c1);
735     Value lChildIdx = builder.create<arith::AddIOp>(loc, lChild, first);
736     Value rChild = builder.create<arith::AddIOp>(loc, lChild, c1);
737     Value cond1 = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult,
738                                                 rChild, n);
739     SmallVector<Type, 2> ifTypes(2, r.getType());
740     scf::IfOp if1 =
741         builder.create<scf::IfOp>(loc, ifTypes, cond1, /*else=*/true);
742     builder.setInsertionPointToStart(&if1.getThenRegion().front());
743     Value rChildIdx = builder.create<arith::AddIOp>(loc, rChild, first);
744     // Compare data[left] < data[right].
745     compareOperands[0] = lChildIdx;
746     compareOperands[1] = rChildIdx;
747     Value cond2 =
748         createInlinedLessThan(builder, loc, compareOperands, nx, ny, isCoo);
749     scf::IfOp if2 =
750         builder.create<scf::IfOp>(loc, ifTypes, cond2, /*else=*/true);
751     builder.setInsertionPointToStart(&if2.getThenRegion().front());
752     builder.create<scf::YieldOp>(loc, ValueRange{rChild, rChildIdx});
753     builder.setInsertionPointToStart(&if2.getElseRegion().front());
754     builder.create<scf::YieldOp>(loc, ValueRange{lChild, lChildIdx});
755     builder.setInsertionPointAfter(if2);
756     builder.create<scf::YieldOp>(loc, if2.getResults());
757     builder.setInsertionPointToStart(&if1.getElseRegion().front());
758     builder.create<scf::YieldOp>(loc, ValueRange{lChild, lChildIdx});
759     builder.setInsertionPointAfter(if1);
760     return std::make_pair(if1.getResult(0), if1.getResult(1));
761   };
762 
763   Value childIdx;
764   std::tie(child, childIdx) = getLargerChild(child);
765 
766   // While (data[start] < data[childIndex]).
767   SmallVector<Type, 3> types(3, child.getType());
768   scf::WhileOp whileOp = builder.create<scf::WhileOp>(
769       loc, types, SmallVector<Value, 2>{start, child, childIdx});
770 
771   // The before-region of the WhileOp.
772   SmallVector<Location, 3> locs(3, loc);
773   Block *before = builder.createBlock(&whileOp.getBefore(), {}, types, locs);
774   builder.setInsertionPointToEnd(before);
775   start = before->getArgument(0);
776   childIdx = before->getArgument(2);
777   compareOperands[0] = start;
778   compareOperands[1] = childIdx;
779   Value cond =
780       createInlinedLessThan(builder, loc, compareOperands, nx, ny, isCoo);
781   builder.create<scf::ConditionOp>(loc, cond, before->getArguments());
782 
783   // The after-region of the WhileOp.
784   Block *after = builder.createBlock(&whileOp.getAfter(), {}, types, locs);
785   start = after->getArgument(0);
786   child = after->getArgument(1);
787   childIdx = after->getArgument(2);
788   SmallVector<Value> swapOperands{start, childIdx};
789   swapOperands.append(args.begin() + xStartIdx, args.end());
790   createSwap(builder, loc, swapOperands, nx, ny, isCoo);
791   start = childIdx;
792   Value cond2 =
793       builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::uge, t, child);
794   scf::IfOp if2 = builder.create<scf::IfOp>(
795       loc, TypeRange{child.getType(), child.getType()}, cond2, /*else=*/true);
796   builder.setInsertionPointToStart(&if2.getThenRegion().front());
797   auto [newChild, newChildIdx] = getLargerChild(child);
798   builder.create<scf::YieldOp>(loc, ValueRange{newChild, newChildIdx});
799   builder.setInsertionPointToStart(&if2.getElseRegion().front());
800   builder.create<scf::YieldOp>(loc, ValueRange{child, childIdx});
801   builder.setInsertionPointAfter(if2);
802   builder.create<scf::YieldOp>(
803       loc, ValueRange{start, if2.getResult(0), if2.getResult(1)});
804 
805   builder.setInsertionPointAfter(ifN);
806   builder.create<func::ReturnOp>(loc);
807 }
808 
809 /// Creates a function to perform heap sort on the values in the range of index
810 /// [lo, hi) with the assumption hi - lo >= 2.
811 //
812 // The generate IR corresponds to this C like algorithm:
813 // void heapSort(lo, hi, data) {
814 //   n = hi - lo
815 //   for i = (n-2)/2 downto 0
816 //     shiftDown(lo, lo+i, n)
817 //
818 //   for l = n downto 2
819 //      swap(lo, lo+l-1)
820 //      shiftdown(lo, lo, l-1)
821 // }
822 static void createHeapSortFunc(OpBuilder &builder, ModuleOp module,
823                                func::FuncOp func, uint64_t nx, uint64_t ny,
824                                bool isCoo, uint32_t nTrailingP) {
825   // Heap sort function doesn't have trailing parameters.
826   (void)nTrailingP;
827   assert(nTrailingP == 0);
828   OpBuilder::InsertionGuard insertionGuard(builder);
829   Block *entryBlock = func.addEntryBlock();
830   builder.setInsertionPointToStart(entryBlock);
831 
832   Location loc = func.getLoc();
833   ValueRange args = entryBlock->getArguments();
834   Value lo = args[loIdx];
835   Value hi = args[hiIdx];
836   Value n = builder.create<arith::SubIOp>(loc, hi, lo);
837 
838   // For i = (n-2)/2 downto 0.
839   Value c0 = constantIndex(builder, loc, 0);
840   Value c1 = constantIndex(builder, loc, 1);
841   Value s = createSubTwoDividedByTwo(builder, loc, n);
842   Value up = builder.create<arith::AddIOp>(loc, s, c1);
843   scf::ForOp forI = builder.create<scf::ForOp>(loc, c0, up, c1);
844   builder.setInsertionPointToStart(forI.getBody());
845   Value i = builder.create<arith::SubIOp>(loc, s, forI.getInductionVar());
846   Value lopi = builder.create<arith::AddIOp>(loc, lo, i);
847   SmallVector<Value> shiftDownOperands = {lo, lopi};
848   shiftDownOperands.append(args.begin() + xStartIdx, args.end());
849   shiftDownOperands.push_back(n);
850   FlatSymbolRefAttr shiftDownFunc = getMangledSortHelperFunc(
851       builder, func, TypeRange(), kShiftDownFuncNamePrefix, nx, ny, isCoo,
852       shiftDownOperands, createShiftDownFunc, /*nTrailingP=*/1);
853   builder.create<func::CallOp>(loc, shiftDownFunc, TypeRange(),
854                                shiftDownOperands);
855 
856   builder.setInsertionPointAfter(forI);
857   // For l = n downto 2.
858   up = builder.create<arith::SubIOp>(loc, n, c1);
859   scf::ForOp forL = builder.create<scf::ForOp>(loc, c0, up, c1);
860   builder.setInsertionPointToStart(forL.getBody());
861   Value l = builder.create<arith::SubIOp>(loc, n, forL.getInductionVar());
862   Value loplm1 = builder.create<arith::AddIOp>(loc, lo, l);
863   loplm1 = builder.create<arith::SubIOp>(loc, loplm1, c1);
864   SmallVector<Value> swapOperands{lo, loplm1};
865   swapOperands.append(args.begin() + xStartIdx, args.end());
866   createSwap(builder, loc, swapOperands, nx, ny, isCoo);
867   shiftDownOperands[1] = lo;
868   shiftDownOperands[shiftDownOperands.size() - 1] =
869       builder.create<arith::SubIOp>(loc, l, c1);
870   builder.create<func::CallOp>(loc, shiftDownFunc, TypeRange(),
871                                shiftDownOperands);
872 
873   builder.setInsertionPointAfter(forL);
874   builder.create<func::ReturnOp>(loc);
875 }
876 
877 /// A helper for generating code to perform quick sort. It partitions [lo, hi),
878 /// recursively calls quick sort to process the smaller partition and returns
879 /// the bigger partition to be processed by the enclosed while-loop.
880 static std::pair<Value, Value>
881 createQuickSort(OpBuilder &builder, ModuleOp module, func::FuncOp func,
882                 ValueRange args, uint64_t nx, uint64_t ny, bool isCoo,
883                 uint32_t nTrailingP) {
884   MLIRContext *context = module.getContext();
885   Location loc = func.getLoc();
886   Value lo = args[loIdx];
887   Value hi = args[hiIdx];
888   FlatSymbolRefAttr partitionFunc = getMangledSortHelperFunc(
889       builder, func, {IndexType::get(context)}, kPartitionFuncNamePrefix, nx,
890       ny, isCoo, args.drop_back(nTrailingP), createPartitionFunc);
891   Value p = builder
892                 .create<func::CallOp>(loc, partitionFunc,
893                                       TypeRange{IndexType::get(context)},
894                                       args.drop_back(nTrailingP))
895                 .getResult(0);
896   Value pP1 =
897       builder.create<arith::AddIOp>(loc, p, constantIndex(builder, loc, 1));
898   Value lenLow = builder.create<arith::SubIOp>(loc, p, lo);
899   Value lenHigh = builder.create<arith::SubIOp>(loc, hi, p);
900   Value cond = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ule,
901                                              lenLow, lenHigh);
902 
903   SmallVector<Type, 2> types(2, lo.getType()); // Only two types.
904   scf::IfOp ifOp = builder.create<scf::IfOp>(loc, types, cond, /*else=*/true);
905 
906   Value c0 = constantIndex(builder, loc, 0);
907   auto mayRecursion = [&](Value low, Value high, Value len) {
908     Value cond =
909         builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ne, len, c0);
910     scf::IfOp ifOp = builder.create<scf::IfOp>(loc, cond, /*else=*/false);
911     builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
912     SmallVector<Value> operands{low, high};
913     operands.append(args.begin() + xStartIdx, args.end());
914     builder.create<func::CallOp>(loc, func, operands);
915     builder.setInsertionPointAfter(ifOp);
916   };
917 
918   // Recursively call quickSort to process the smaller partition and return
919   // the bigger partition to be processed by the enclosed while-loop.
920   builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
921   mayRecursion(lo, p, lenLow);
922   builder.create<scf::YieldOp>(loc, ValueRange{pP1, hi});
923 
924   builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
925   mayRecursion(pP1, hi, lenHigh);
926   builder.create<scf::YieldOp>(loc, ValueRange{lo, p});
927 
928   builder.setInsertionPointAfter(ifOp);
929   return std::make_pair(ifOp.getResult(0), ifOp.getResult(1));
930 }
931 
932 /// Creates a function to perform insertion sort on the values in the range of
933 /// index [lo, hi).
934 //
935 // The generate IR corresponds to this C like algorithm:
936 // void insertionSort(lo, hi, data) {
937 //   for (i = lo+1; i < hi; i++) {
938 //      d = data[i];
939 //      p = binarySearch(lo, i-1, data)
940 //      for (j = 0; j > i - p; j++)
941 //        data[i-j] = data[i-j-1]
942 //      data[p] = d
943 //   }
944 // }
945 static void createSortStableFunc(OpBuilder &builder, ModuleOp module,
946                                  func::FuncOp func, uint64_t nx, uint64_t ny,
947                                  bool isCoo, uint32_t nTrailingP) {
948   // Stable sort function doesn't use trailing parameters.
949   (void)nTrailingP;
950   assert(nTrailingP == 0);
951   OpBuilder::InsertionGuard insertionGuard(builder);
952   Block *entryBlock = func.addEntryBlock();
953   builder.setInsertionPointToStart(entryBlock);
954 
955   MLIRContext *context = module.getContext();
956   Location loc = func.getLoc();
957   ValueRange args = entryBlock->getArguments();
958   Value c1 = constantIndex(builder, loc, 1);
959   Value lo = args[loIdx];
960   Value hi = args[hiIdx];
961   Value lop1 = builder.create<arith::AddIOp>(loc, lo, c1);
962 
963   // Start the outer for-stmt with induction variable i.
964   scf::ForOp forOpI = builder.create<scf::ForOp>(loc, lop1, hi, c1);
965   builder.setInsertionPointToStart(forOpI.getBody());
966   Value i = forOpI.getInductionVar();
967 
968   // Binary search to find the insertion point p.
969   SmallVector<Value> operands{lo, i};
970   operands.append(args.begin() + xStartIdx, args.end());
971   FlatSymbolRefAttr searchFunc = getMangledSortHelperFunc(
972       builder, func, {IndexType::get(context)}, kBinarySearchFuncNamePrefix, nx,
973       ny, isCoo, operands, createBinarySearchFunc);
974   Value p = builder
975                 .create<func::CallOp>(loc, searchFunc, TypeRange{c1.getType()},
976                                       operands)
977                 .getResult(0);
978 
979   // Move the value at data[i] to a temporary location.
980   operands[0] = operands[1] = i;
981   SmallVector<Value> d;
982   forEachIJPairInAllBuffers(
983       builder, loc, operands, nx, ny, isCoo,
984       [&](uint64_t unused, Value i, Value unused2, Value buffer) {
985         d.push_back(builder.create<memref::LoadOp>(loc, buffer, i));
986       });
987 
988   // Start the inner for-stmt with induction variable j, for moving data[p..i)
989   // to data[p+1..i+1).
990   Value imp = builder.create<arith::SubIOp>(loc, i, p);
991   Value c0 = constantIndex(builder, loc, 0);
992   scf::ForOp forOpJ = builder.create<scf::ForOp>(loc, c0, imp, c1);
993   builder.setInsertionPointToStart(forOpJ.getBody());
994   Value j = forOpJ.getInductionVar();
995   Value imj = builder.create<arith::SubIOp>(loc, i, j);
996   operands[1] = imj;
997   operands[0] = builder.create<arith::SubIOp>(loc, imj, c1);
998   forEachIJPairInAllBuffers(
999       builder, loc, operands, nx, ny, isCoo,
1000       [&](uint64_t unused, Value imjm1, Value imj, Value buffer) {
1001         Value t = builder.create<memref::LoadOp>(loc, buffer, imjm1);
1002         builder.create<memref::StoreOp>(loc, t, buffer, imj);
1003       });
1004 
1005   // Store the value at data[i] to data[p].
1006   builder.setInsertionPointAfter(forOpJ);
1007   operands[0] = operands[1] = p;
1008   forEachIJPairInAllBuffers(
1009       builder, loc, operands, nx, ny, isCoo,
1010       [&](uint64_t k, Value p, Value usused, Value buffer) {
1011         builder.create<memref::StoreOp>(loc, d[k], buffer, p);
1012       });
1013 
1014   builder.setInsertionPointAfter(forOpI);
1015   builder.create<func::ReturnOp>(loc);
1016 }
1017 
1018 /// Creates a function to perform quick sort or a hybrid quick sort on the
1019 /// values in the range of index [lo, hi).
1020 //
1021 //
1022 // When nTrailingP == 0, the generated IR corresponds to this C like algorithm:
1023 // void quickSort(lo, hi, data) {
1024 //   while (lo + 1 < hi) {
1025 //        p = partition(low, high, data);
1026 //        if (len(lo, p) < len(p+1, hi)) {
1027 //          quickSort(lo, p, data);
1028 //          lo = p+1;
1029 //        } else {
1030 //          quickSort(p + 1, hi, data);
1031 //          hi = p;
1032 //        }
1033 //   }
1034 // }
1035 //
1036 // When nTrailingP == 1, the generated IR corresponds to this C like algorithm:
1037 // void hybridQuickSort(lo, hi, data, depthLimit) {
1038 //   while (lo + 1 < hi) {
1039 //     len = hi - lo;
1040 //     if (len <= limit) {
1041 //       insertionSort(lo, hi, data);
1042 //     } else {
1043 //       depthLimit --;
1044 //       if (depthLimit <= 0) {
1045 //         heapSort(lo, hi, data);
1046 //       } else {
1047 //          p = partition(low, high, data);
1048 //          if (len(lo, p) < len(p+1, hi)) {
1049 //            quickSort(lo, p, data, depthLimit);
1050 //            lo = p+1;
1051 //          } else {
1052 //            quickSort(p + 1, hi, data, depthLimit);
1053 //            hi = p;
1054 //          }
1055 //       }
1056 //     }
1057 //   }
1058 // }
1059 //
1060 static void createQuickSortFunc(OpBuilder &builder, ModuleOp module,
1061                                 func::FuncOp func, uint64_t nx, uint64_t ny,
1062                                 bool isCoo, uint32_t nTrailingP) {
1063   assert(nTrailingP == 1 || nTrailingP == 0);
1064   bool isHybrid = (nTrailingP == 1);
1065   OpBuilder::InsertionGuard insertionGuard(builder);
1066   Block *entryBlock = func.addEntryBlock();
1067   builder.setInsertionPointToStart(entryBlock);
1068 
1069   Location loc = func.getLoc();
1070   SmallVector<Value> args;
1071   args.append(entryBlock->getArguments().begin(),
1072               entryBlock->getArguments().end());
1073   Value lo = args[loIdx];
1074   Value hi = args[hiIdx];
1075   SmallVector<Type, 2> types(2, lo.getType()); // Only two types.
1076   scf::WhileOp whileOp =
1077       builder.create<scf::WhileOp>(loc, types, SmallVector<Value, 2>{lo, hi});
1078 
1079   // The before-region of the WhileOp.
1080   Block *before =
1081       builder.createBlock(&whileOp.getBefore(), {}, types, {loc, loc});
1082   builder.setInsertionPointToEnd(before);
1083   lo = before->getArgument(0);
1084   hi = before->getArgument(1);
1085   Value loP1 =
1086       builder.create<arith::AddIOp>(loc, lo, constantIndex(builder, loc, 1));
1087   Value needSort =
1088       builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult, loP1, hi);
1089   builder.create<scf::ConditionOp>(loc, needSort, before->getArguments());
1090 
1091   // The after-region of the WhileOp.
1092   Block *after =
1093       builder.createBlock(&whileOp.getAfter(), {}, types, {loc, loc});
1094   builder.setInsertionPointToEnd(after);
1095   lo = after->getArgument(0);
1096   hi = after->getArgument(1);
1097   args[0] = lo;
1098   args[1] = hi;
1099 
1100   if (isHybrid) {
1101     Value len = builder.create<arith::SubIOp>(loc, hi, lo);
1102     Value lenLimit = constantIndex(builder, loc, 30);
1103     Value lenCond = builder.create<arith::CmpIOp>(
1104         loc, arith::CmpIPredicate::ule, len, lenLimit);
1105     scf::IfOp lenIf =
1106         builder.create<scf::IfOp>(loc, types, lenCond, /*else=*/true);
1107 
1108     // When len <= limit.
1109     builder.setInsertionPointToStart(&lenIf.getThenRegion().front());
1110     FlatSymbolRefAttr insertionSortFunc = getMangledSortHelperFunc(
1111         builder, func, TypeRange(), kSortStableFuncNamePrefix, nx, ny, isCoo,
1112         ValueRange(args).drop_back(nTrailingP), createSortStableFunc);
1113     builder.create<func::CallOp>(loc, insertionSortFunc, TypeRange(),
1114                                  ValueRange(args).drop_back(nTrailingP));
1115     builder.create<scf::YieldOp>(loc, ValueRange{lo, lo});
1116 
1117     // When len > limit.
1118     builder.setInsertionPointToStart(&lenIf.getElseRegion().front());
1119     Value depthLimit = args.back();
1120     depthLimit = builder.create<arith::SubIOp>(loc, depthLimit,
1121                                                constantI64(builder, loc, 1));
1122     Value depthCond =
1123         builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ule,
1124                                       depthLimit, constantI64(builder, loc, 0));
1125     scf::IfOp depthIf =
1126         builder.create<scf::IfOp>(loc, types, depthCond, /*else=*/true);
1127 
1128     // When depth exceeds limit.
1129     builder.setInsertionPointToStart(&depthIf.getThenRegion().front());
1130     FlatSymbolRefAttr heapSortFunc = getMangledSortHelperFunc(
1131         builder, func, TypeRange(), kHeapSortFuncNamePrefix, nx, ny, isCoo,
1132         ValueRange(args).drop_back(nTrailingP), createHeapSortFunc);
1133     builder.create<func::CallOp>(loc, heapSortFunc, TypeRange(),
1134                                  ValueRange(args).drop_back(nTrailingP));
1135     builder.create<scf::YieldOp>(loc, ValueRange{lo, lo});
1136 
1137     // When depth doesn't exceed limit.
1138     builder.setInsertionPointToStart(&depthIf.getElseRegion().front());
1139     args.back() = depthLimit;
1140     std::tie(lo, hi) =
1141         createQuickSort(builder, module, func, args, nx, ny, isCoo, nTrailingP);
1142     builder.create<scf::YieldOp>(loc, ValueRange{lo, hi});
1143 
1144     builder.setInsertionPointAfter(depthIf);
1145     lo = depthIf.getResult(0);
1146     hi = depthIf.getResult(1);
1147     builder.create<scf::YieldOp>(loc, ValueRange{lo, hi});
1148 
1149     builder.setInsertionPointAfter(lenIf);
1150     lo = lenIf.getResult(0);
1151     hi = lenIf.getResult(1);
1152   } else {
1153     std::tie(lo, hi) =
1154         createQuickSort(builder, module, func, args, nx, ny, isCoo, nTrailingP);
1155   }
1156 
1157   // New [lo, hi) for the next while-loop iteration.
1158   builder.create<scf::YieldOp>(loc, ValueRange{lo, hi});
1159 
1160   // After the while-loop.
1161   builder.setInsertionPointAfter(whileOp);
1162   builder.create<func::ReturnOp>(loc);
1163 }
1164 
1165 /// Implements the rewriting for operator sort and sort_coo.
1166 template <typename OpTy>
1167 LogicalResult matchAndRewriteSortOp(OpTy op, ValueRange xys, uint64_t nx,
1168                                     uint64_t ny, bool isCoo,
1169                                     PatternRewriter &rewriter) {
1170   Location loc = op.getLoc();
1171   SmallVector<Value> operands{constantIndex(rewriter, loc, 0), op.getN()};
1172 
1173   // Convert `values` to have dynamic shape and append them to `operands`.
1174   for (Value v : xys) {
1175     auto mtp = getMemRefType(v);
1176     if (!mtp.isDynamicDim(0)) {
1177       auto newMtp =
1178           MemRefType::get({ShapedType::kDynamic}, mtp.getElementType());
1179       v = rewriter.create<memref::CastOp>(loc, newMtp, v);
1180     }
1181     operands.push_back(v);
1182   }
1183 
1184   auto insertPoint = op->template getParentOfType<func::FuncOp>();
1185   if (!insertPoint)
1186     return failure();
1187 
1188   SmallString<32> funcName;
1189   FuncGeneratorType funcGenerator;
1190   uint32_t nTrailingP = 0;
1191   switch (op.getAlgorithm()) {
1192   case SparseTensorSortKind::HybridQuickSort: {
1193     funcName = kHybridQuickSortFuncNamePrefix;
1194     funcGenerator = createQuickSortFunc;
1195     nTrailingP = 1;
1196     // As a heuristics, set depthLimit = 2 * log2(n).
1197     Value lo = operands[loIdx];
1198     Value hi = operands[hiIdx];
1199     Value len = rewriter.create<arith::IndexCastOp>(
1200         loc, rewriter.getI64Type(),
1201         rewriter.create<arith::SubIOp>(loc, hi, lo));
1202     Value depthLimit = rewriter.create<arith::SubIOp>(
1203         loc, constantI64(rewriter, loc, 64),
1204         rewriter.create<math::CountLeadingZerosOp>(loc, len));
1205     operands.push_back(depthLimit);
1206     break;
1207   }
1208   case SparseTensorSortKind::QuickSort:
1209     funcName = kQuickSortFuncNamePrefix;
1210     funcGenerator = createQuickSortFunc;
1211     break;
1212   case SparseTensorSortKind::InsertionSortStable:
1213     funcName = kSortStableFuncNamePrefix;
1214     funcGenerator = createSortStableFunc;
1215     break;
1216   case SparseTensorSortKind::HeapSort:
1217     funcName = kHeapSortFuncNamePrefix;
1218     funcGenerator = createHeapSortFunc;
1219     break;
1220   }
1221 
1222   FlatSymbolRefAttr func =
1223       getMangledSortHelperFunc(rewriter, insertPoint, TypeRange(), funcName, nx,
1224                                ny, isCoo, operands, funcGenerator, nTrailingP);
1225   rewriter.replaceOpWithNewOp<func::CallOp>(op, func, TypeRange(), operands);
1226   return success();
1227 }
1228 
1229 //===---------------------------------------------------------------------===//
1230 // The actual sparse buffer rewriting rules.
1231 //===---------------------------------------------------------------------===//
1232 
1233 namespace {
1234 
1235 /// Sparse rewriting rule for the push_back operator.
1236 struct PushBackRewriter : OpRewritePattern<PushBackOp> {
1237 public:
1238   using OpRewritePattern<PushBackOp>::OpRewritePattern;
1239   PushBackRewriter(MLIRContext *context, bool enableInit)
1240       : OpRewritePattern(context), enableBufferInitialization(enableInit) {}
1241   LogicalResult matchAndRewrite(PushBackOp op,
1242                                 PatternRewriter &rewriter) const override {
1243     // Rewrite push_back(buffer, value, n) to:
1244     // new_size = size(buffer) + n
1245     // if (new_size > capacity(buffer))
1246     //    while new_size > new_capacity
1247     //      new_capacity = new_capacity*2
1248     //    new_buffer = realloc(buffer, new_capacity)
1249     // buffer = new_buffer
1250     // subBuffer = subviewof(buffer)
1251     // linalg.fill subBuffer value
1252     //
1253     // size(buffer) += n
1254     //
1255     // The capacity check is skipped when the attribute inbounds is presented.
1256     Location loc = op->getLoc();
1257     Value c0 = constantIndex(rewriter, loc, 0);
1258     Value buffer = op.getInBuffer();
1259     Value capacity = rewriter.create<memref::DimOp>(loc, buffer, c0);
1260     Value size = op.getCurSize();
1261     Value value = op.getValue();
1262 
1263     Value n = op.getN() ? op.getN() : constantIndex(rewriter, loc, 1);
1264     Value newSize = rewriter.create<arith::AddIOp>(loc, size, n);
1265     auto nValue = dyn_cast_or_null<arith::ConstantIndexOp>(n.getDefiningOp());
1266     bool nIsOne = (nValue && nValue.value() == 1);
1267 
1268     if (!op.getInbounds()) {
1269       Value cond = rewriter.create<arith::CmpIOp>(
1270           loc, arith::CmpIPredicate::ugt, newSize, capacity);
1271 
1272       Value c2 = constantIndex(rewriter, loc, 2);
1273       auto bufferType =
1274           MemRefType::get({ShapedType::kDynamic}, value.getType());
1275       scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, bufferType, cond,
1276                                                   /*else=*/true);
1277       // True branch.
1278       rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front());
1279       if (nIsOne) {
1280         capacity = rewriter.create<arith::MulIOp>(loc, capacity, c2);
1281       } else {
1282         // Use a do-while loop to calculate the new capacity as follows:
1283         //   do { new_capacity *= 2 } while (size > new_capacity)
1284         scf::WhileOp whileOp =
1285             rewriter.create<scf::WhileOp>(loc, capacity.getType(), capacity);
1286 
1287         // The before-region of the WhileOp.
1288         Block *before = rewriter.createBlock(&whileOp.getBefore(), {},
1289                                              {capacity.getType()}, {loc});
1290         rewriter.setInsertionPointToEnd(before);
1291 
1292         capacity =
1293             rewriter.create<arith::MulIOp>(loc, before->getArgument(0), c2);
1294         cond = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ugt,
1295                                               newSize, capacity);
1296         rewriter.create<scf::ConditionOp>(loc, cond, ValueRange{capacity});
1297         // The after-region of the WhileOp.
1298         Block *after = rewriter.createBlock(&whileOp.getAfter(), {},
1299                                             {capacity.getType()}, {loc});
1300         rewriter.setInsertionPointToEnd(after);
1301         rewriter.create<scf::YieldOp>(loc, after->getArguments());
1302 
1303         rewriter.setInsertionPointAfter(whileOp);
1304         capacity = whileOp.getResult(0);
1305       }
1306 
1307       Value newBuffer =
1308           rewriter.create<memref::ReallocOp>(loc, bufferType, buffer, capacity);
1309       if (enableBufferInitialization) {
1310         Value fillSize = rewriter.create<arith::SubIOp>(loc, capacity, newSize);
1311         Value fillValue = constantZero(rewriter, loc, value.getType());
1312         Value subBuffer = rewriter.create<memref::SubViewOp>(
1313             loc, newBuffer, /*offset=*/ValueRange{newSize},
1314             /*size=*/ValueRange{fillSize},
1315             /*step=*/ValueRange{constantIndex(rewriter, loc, 1)});
1316         rewriter.create<linalg::FillOp>(loc, fillValue, subBuffer);
1317       }
1318       rewriter.create<scf::YieldOp>(loc, newBuffer);
1319 
1320       // False branch.
1321       rewriter.setInsertionPointToStart(&ifOp.getElseRegion().front());
1322       rewriter.create<scf::YieldOp>(loc, buffer);
1323 
1324       // Prepare for adding the value to the end of the buffer.
1325       rewriter.setInsertionPointAfter(ifOp);
1326       buffer = ifOp.getResult(0);
1327     }
1328 
1329     // Add the value to the end of the buffer.
1330     if (nIsOne) {
1331       rewriter.create<memref::StoreOp>(loc, value, buffer, size);
1332     } else {
1333       Value subBuffer = rewriter.create<memref::SubViewOp>(
1334           loc, buffer, /*offset=*/ValueRange{size}, /*size=*/ValueRange{n},
1335           /*step=*/ValueRange{constantIndex(rewriter, loc, 1)});
1336       rewriter.create<linalg::FillOp>(loc, value, subBuffer);
1337     }
1338 
1339     // Update the buffer size.
1340     rewriter.replaceOp(op, {buffer, newSize});
1341     return success();
1342   }
1343 
1344 private:
1345   bool enableBufferInitialization;
1346 };
1347 
1348 /// Sparse rewriting rule for the sort operator.
1349 struct SortRewriter : public OpRewritePattern<SortOp> {
1350 public:
1351   using OpRewritePattern<SortOp>::OpRewritePattern;
1352 
1353   LogicalResult matchAndRewrite(SortOp op,
1354                                 PatternRewriter &rewriter) const override {
1355     SmallVector<Value> xys(op.getXs());
1356     xys.append(op.getYs().begin(), op.getYs().end());
1357     return matchAndRewriteSortOp(op, xys, op.getXs().size(), /*ny=*/0,
1358                                  /*isCoo=*/false, rewriter);
1359   }
1360 };
1361 
1362 /// Sparse rewriting rule for the sort_coo operator.
1363 struct SortCooRewriter : public OpRewritePattern<SortCooOp> {
1364 public:
1365   using OpRewritePattern<SortCooOp>::OpRewritePattern;
1366 
1367   LogicalResult matchAndRewrite(SortCooOp op,
1368                                 PatternRewriter &rewriter) const override {
1369     SmallVector<Value> xys;
1370     xys.push_back(op.getXy());
1371     xys.append(op.getYs().begin(), op.getYs().end());
1372     uint64_t nx = 1;
1373     if (auto nxAttr = op.getNxAttr())
1374       nx = nxAttr.getInt();
1375 
1376     uint64_t ny = 0;
1377     if (auto nyAttr = op.getNyAttr())
1378       ny = nyAttr.getInt();
1379 
1380     return matchAndRewriteSortOp(op, xys, nx, ny,
1381                                  /*isCoo=*/true, rewriter);
1382   }
1383 };
1384 
1385 } // namespace
1386 
1387 //===---------------------------------------------------------------------===//
1388 // Methods that add patterns described in this file to a pattern list.
1389 //===---------------------------------------------------------------------===//
1390 
1391 void mlir::populateSparseBufferRewriting(RewritePatternSet &patterns,
1392                                          bool enableBufferInitialization) {
1393   patterns.add<PushBackRewriter>(patterns.getContext(),
1394                                  enableBufferInitialization);
1395   patterns.add<SortRewriter, SortCooRewriter>(patterns.getContext());
1396 }
1397