xref: /llvm-project/mlir/lib/Dialect/SCF/Transforms/LoopSpecialization.cpp (revision 039b969b32b64b64123dce30dd28ec4e343d893f)
1 //===- LoopSpecialization.cpp - scf.parallel/SCR.for specialization -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Specializes parallel loops and for loops for easier unrolling and
10 // vectorization.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PassDetail.h"
15 #include "mlir/Dialect/Affine/Analysis/AffineStructures.h"
16 #include "mlir/Dialect/Affine/IR/AffineOps.h"
17 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
18 #include "mlir/Dialect/SCF/IR/SCF.h"
19 #include "mlir/Dialect/SCF/Transforms/Passes.h"
20 #include "mlir/Dialect/SCF/Transforms/Transforms.h"
21 #include "mlir/Dialect/SCF/Utils/AffineCanonicalizationUtils.h"
22 #include "mlir/Dialect/Utils/StaticValueUtils.h"
23 #include "mlir/IR/AffineExpr.h"
24 #include "mlir/IR/BlockAndValueMapping.h"
25 #include "mlir/IR/PatternMatch.h"
26 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
27 #include "llvm/ADT/DenseMap.h"
28 
29 using namespace mlir;
30 using scf::ForOp;
31 using scf::ParallelOp;
32 
33 /// Rewrite a parallel loop with bounds defined by an affine.min with a constant
34 /// into 2 loops after checking if the bounds are equal to that constant. This
35 /// is beneficial if the loop will almost always have the constant bound and
36 /// that version can be fully unrolled and vectorized.
37 static void specializeParallelLoopForUnrolling(ParallelOp op) {
38   SmallVector<int64_t, 2> constantIndices;
39   constantIndices.reserve(op.getUpperBound().size());
40   for (auto bound : op.getUpperBound()) {
41     auto minOp = bound.getDefiningOp<AffineMinOp>();
42     if (!minOp)
43       return;
44     int64_t minConstant = std::numeric_limits<int64_t>::max();
45     for (AffineExpr expr : minOp.getMap().getResults()) {
46       if (auto constantIndex = expr.dyn_cast<AffineConstantExpr>())
47         minConstant = std::min(minConstant, constantIndex.getValue());
48     }
49     if (minConstant == std::numeric_limits<int64_t>::max())
50       return;
51     constantIndices.push_back(minConstant);
52   }
53 
54   OpBuilder b(op);
55   BlockAndValueMapping map;
56   Value cond;
57   for (auto bound : llvm::zip(op.getUpperBound(), constantIndices)) {
58     Value constant =
59         b.create<arith::ConstantIndexOp>(op.getLoc(), std::get<1>(bound));
60     Value cmp = b.create<arith::CmpIOp>(op.getLoc(), arith::CmpIPredicate::eq,
61                                         std::get<0>(bound), constant);
62     cond = cond ? b.create<arith::AndIOp>(op.getLoc(), cond, cmp) : cmp;
63     map.map(std::get<0>(bound), constant);
64   }
65   auto ifOp = b.create<scf::IfOp>(op.getLoc(), cond, /*withElseRegion=*/true);
66   ifOp.getThenBodyBuilder().clone(*op.getOperation(), map);
67   ifOp.getElseBodyBuilder().clone(*op.getOperation());
68   op.erase();
69 }
70 
71 /// Rewrite a for loop with bounds defined by an affine.min with a constant into
72 /// 2 loops after checking if the bounds are equal to that constant. This is
73 /// beneficial if the loop will almost always have the constant bound and that
74 /// version can be fully unrolled and vectorized.
75 static void specializeForLoopForUnrolling(ForOp op) {
76   auto bound = op.getUpperBound();
77   auto minOp = bound.getDefiningOp<AffineMinOp>();
78   if (!minOp)
79     return;
80   int64_t minConstant = std::numeric_limits<int64_t>::max();
81   for (AffineExpr expr : minOp.getMap().getResults()) {
82     if (auto constantIndex = expr.dyn_cast<AffineConstantExpr>())
83       minConstant = std::min(minConstant, constantIndex.getValue());
84   }
85   if (minConstant == std::numeric_limits<int64_t>::max())
86     return;
87 
88   OpBuilder b(op);
89   BlockAndValueMapping map;
90   Value constant = b.create<arith::ConstantIndexOp>(op.getLoc(), minConstant);
91   Value cond = b.create<arith::CmpIOp>(op.getLoc(), arith::CmpIPredicate::eq,
92                                        bound, constant);
93   map.map(bound, constant);
94   auto ifOp = b.create<scf::IfOp>(op.getLoc(), cond, /*withElseRegion=*/true);
95   ifOp.getThenBodyBuilder().clone(*op.getOperation(), map);
96   ifOp.getElseBodyBuilder().clone(*op.getOperation());
97   op.erase();
98 }
99 
100 /// Rewrite a for loop with bounds/step that potentially do not divide evenly
101 /// into a for loop where the step divides the iteration space evenly, followed
102 /// by an scf.if for the last (partial) iteration (if any).
103 ///
104 /// This function rewrites the given scf.for loop in-place and creates a new
105 /// scf.if operation for the last iteration. It replaces all uses of the
106 /// unpeeled loop with the results of the newly generated scf.if.
107 ///
108 /// The newly generated scf.if operation is returned via `ifOp`. The boundary
109 /// at which the loop is split (new upper bound) is returned via `splitBound`.
110 /// The return value indicates whether the loop was rewritten or not.
111 static LogicalResult peelForLoop(RewriterBase &b, ForOp forOp,
112                                  ForOp &partialIteration, Value &splitBound) {
113   RewriterBase::InsertionGuard guard(b);
114   auto lbInt = getConstantIntValue(forOp.getLowerBound());
115   auto ubInt = getConstantIntValue(forOp.getUpperBound());
116   auto stepInt = getConstantIntValue(forOp.getStep());
117 
118   // No specialization necessary if step already divides upper bound evenly.
119   if (lbInt && ubInt && stepInt && (*ubInt - *lbInt) % *stepInt == 0)
120     return failure();
121   // No specialization necessary if step size is 1.
122   if (stepInt == static_cast<int64_t>(1))
123     return failure();
124 
125   auto loc = forOp.getLoc();
126   AffineExpr sym0, sym1, sym2;
127   bindSymbols(b.getContext(), sym0, sym1, sym2);
128   // New upper bound: %ub - (%ub - %lb) mod %step
129   auto modMap = AffineMap::get(0, 3, {sym1 - ((sym1 - sym0) % sym2)});
130   b.setInsertionPoint(forOp);
131   splitBound = b.createOrFold<AffineApplyOp>(loc, modMap,
132                                              ValueRange{forOp.getLowerBound(),
133                                                         forOp.getUpperBound(),
134                                                         forOp.getStep()});
135 
136   // Create ForOp for partial iteration.
137   b.setInsertionPointAfter(forOp);
138   partialIteration = cast<ForOp>(b.clone(*forOp.getOperation()));
139   partialIteration.getLowerBoundMutable().assign(splitBound);
140   forOp.replaceAllUsesWith(partialIteration->getResults());
141   partialIteration.getInitArgsMutable().assign(forOp->getResults());
142 
143   // Set new upper loop bound.
144   b.updateRootInPlace(
145       forOp, [&]() { forOp.getUpperBoundMutable().assign(splitBound); });
146 
147   return success();
148 }
149 
150 template <typename OpTy, bool IsMin>
151 static void rewriteAffineOpAfterPeeling(RewriterBase &rewriter, ForOp forOp,
152                                         ForOp partialIteration,
153                                         Value previousUb) {
154   Value mainIv = forOp.getInductionVar();
155   Value partialIv = partialIteration.getInductionVar();
156   assert(forOp.getStep() == partialIteration.getStep() &&
157          "expected same step in main and partial loop");
158   Value step = forOp.getStep();
159 
160   forOp.walk([&](OpTy affineOp) {
161     AffineMap map = affineOp.getAffineMap();
162     (void)scf::rewritePeeledMinMaxOp(rewriter, affineOp, map,
163                                      affineOp.operands(), IsMin, mainIv,
164                                      previousUb, step,
165                                      /*insideLoop=*/true);
166   });
167   partialIteration.walk([&](OpTy affineOp) {
168     AffineMap map = affineOp.getAffineMap();
169     (void)scf::rewritePeeledMinMaxOp(rewriter, affineOp, map,
170                                      affineOp.operands(), IsMin, partialIv,
171                                      previousUb, step, /*insideLoop=*/false);
172   });
173 }
174 
175 LogicalResult mlir::scf::peelAndCanonicalizeForLoop(RewriterBase &rewriter,
176                                                     ForOp forOp,
177                                                     ForOp &partialIteration) {
178   Value previousUb = forOp.getUpperBound();
179   Value splitBound;
180   if (failed(peelForLoop(rewriter, forOp, partialIteration, splitBound)))
181     return failure();
182 
183   // Rewrite affine.min and affine.max ops.
184   rewriteAffineOpAfterPeeling<AffineMinOp, /*IsMin=*/true>(
185       rewriter, forOp, partialIteration, previousUb);
186   rewriteAffineOpAfterPeeling<AffineMaxOp, /*IsMin=*/false>(
187       rewriter, forOp, partialIteration, previousUb);
188 
189   return success();
190 }
191 
192 static constexpr char kPeeledLoopLabel[] = "__peeled_loop__";
193 static constexpr char kPartialIterationLabel[] = "__partial_iteration__";
194 
195 namespace {
196 struct ForLoopPeelingPattern : public OpRewritePattern<ForOp> {
197   ForLoopPeelingPattern(MLIRContext *ctx, bool skipPartial)
198       : OpRewritePattern<ForOp>(ctx), skipPartial(skipPartial) {}
199 
200   LogicalResult matchAndRewrite(ForOp forOp,
201                                 PatternRewriter &rewriter) const override {
202     // Do not peel already peeled loops.
203     if (forOp->hasAttr(kPeeledLoopLabel))
204       return failure();
205     if (skipPartial) {
206       // No peeling of loops inside the partial iteration of another peeled
207       // loop.
208       Operation *op = forOp.getOperation();
209       while ((op = op->getParentOfType<scf::ForOp>())) {
210         if (op->hasAttr(kPartialIterationLabel))
211           return failure();
212       }
213     }
214     // Apply loop peeling.
215     scf::ForOp partialIteration;
216     if (failed(peelAndCanonicalizeForLoop(rewriter, forOp, partialIteration)))
217       return failure();
218     // Apply label, so that the same loop is not rewritten a second time.
219     partialIteration->setAttr(kPeeledLoopLabel, rewriter.getUnitAttr());
220     rewriter.updateRootInPlace(forOp, [&]() {
221       forOp->setAttr(kPeeledLoopLabel, rewriter.getUnitAttr());
222     });
223     partialIteration->setAttr(kPartialIterationLabel, rewriter.getUnitAttr());
224     return success();
225   }
226 
227   /// If set to true, loops inside partial iterations of another peeled loop
228   /// are not peeled. This reduces the size of the generated code. Partial
229   /// iterations are not usually performance critical.
230   /// Note: Takes into account the entire chain of parent operations, not just
231   /// the direct parent.
232   bool skipPartial;
233 };
234 } // namespace
235 
236 namespace {
237 struct ParallelLoopSpecialization
238     : public SCFParallelLoopSpecializationBase<ParallelLoopSpecialization> {
239   void runOnOperation() override {
240     getOperation()->walk(
241         [](ParallelOp op) { specializeParallelLoopForUnrolling(op); });
242   }
243 };
244 
245 struct ForLoopSpecialization
246     : public SCFForLoopSpecializationBase<ForLoopSpecialization> {
247   void runOnOperation() override {
248     getOperation()->walk([](ForOp op) { specializeForLoopForUnrolling(op); });
249   }
250 };
251 
252 struct ForLoopPeeling : public SCFForLoopPeelingBase<ForLoopPeeling> {
253   void runOnOperation() override {
254     auto *parentOp = getOperation();
255     MLIRContext *ctx = parentOp->getContext();
256     RewritePatternSet patterns(ctx);
257     patterns.add<ForLoopPeelingPattern>(ctx, skipPartial);
258     (void)applyPatternsAndFoldGreedily(parentOp, std::move(patterns));
259 
260     // Drop the markers.
261     parentOp->walk([](Operation *op) {
262       op->removeAttr(kPeeledLoopLabel);
263       op->removeAttr(kPartialIterationLabel);
264     });
265   }
266 };
267 } // namespace
268 
269 std::unique_ptr<Pass> mlir::createParallelLoopSpecializationPass() {
270   return std::make_unique<ParallelLoopSpecialization>();
271 }
272 
273 std::unique_ptr<Pass> mlir::createForLoopSpecializationPass() {
274   return std::make_unique<ForLoopSpecialization>();
275 }
276 
277 std::unique_ptr<Pass> mlir::createForLoopPeelingPass() {
278   return std::make_unique<ForLoopPeeling>();
279 }
280