1 //===- AsyncParallelFor.cpp - Implementation of Async Parallel For --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements scf.parallel to scf.for + async.execute conversion pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Dialect/Async/Passes.h" 14 15 #include "PassDetail.h" 16 #include "mlir/Dialect/Arith/IR/Arith.h" 17 #include "mlir/Dialect/Async/IR/Async.h" 18 #include "mlir/Dialect/Async/Transforms.h" 19 #include "mlir/Dialect/Func/IR/FuncOps.h" 20 #include "mlir/Dialect/SCF/IR/SCF.h" 21 #include "mlir/IR/IRMapping.h" 22 #include "mlir/IR/ImplicitLocOpBuilder.h" 23 #include "mlir/IR/Matchers.h" 24 #include "mlir/IR/PatternMatch.h" 25 #include "mlir/Support/LLVM.h" 26 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 27 #include "mlir/Transforms/RegionUtils.h" 28 #include <utility> 29 30 namespace mlir { 31 #define GEN_PASS_DEF_ASYNCPARALLELFOR 32 #include "mlir/Dialect/Async/Passes.h.inc" 33 } // namespace mlir 34 35 using namespace mlir; 36 using namespace mlir::async; 37 38 #define DEBUG_TYPE "async-parallel-for" 39 40 namespace { 41 42 // Rewrite scf.parallel operation into multiple concurrent async.execute 43 // operations over non overlapping subranges of the original loop. 44 // 45 // Example: 46 // 47 // scf.parallel (%i, %j) = (%lbi, %lbj) to (%ubi, %ubj) step (%si, %sj) { 48 // "do_some_compute"(%i, %j): () -> () 49 // } 50 // 51 // Converted to: 52 // 53 // // Parallel compute function that executes the parallel body region for 54 // // a subset of the parallel iteration space defined by the one-dimensional 55 // // compute block index. 56 // func parallel_compute_function(%block_index : index, %block_size : index, 57 // <parallel operation properties>, ...) { 58 // // Compute multi-dimensional loop bounds for %block_index. 59 // %block_lbi, %block_lbj = ... 60 // %block_ubi, %block_ubj = ... 61 // 62 // // Clone parallel operation body into the scf.for loop nest. 63 // scf.for %i = %blockLbi to %blockUbi { 64 // scf.for %j = block_lbj to %block_ubj { 65 // "do_some_compute"(%i, %j): () -> () 66 // } 67 // } 68 // } 69 // 70 // And a dispatch function depending on the `asyncDispatch` option. 71 // 72 // When async dispatch is on: (pseudocode) 73 // 74 // %block_size = ... compute parallel compute block size 75 // %block_count = ... compute the number of compute blocks 76 // 77 // func @async_dispatch(%block_start : index, %block_end : index, ...) { 78 // // Keep splitting block range until we reached a range of size 1. 79 // while (%block_end - %block_start > 1) { 80 // %mid_index = block_start + (block_end - block_start) / 2; 81 // async.execute { call @async_dispatch(%mid_index, %block_end); } 82 // %block_end = %mid_index 83 // } 84 // 85 // // Call parallel compute function for a single block. 86 // call @parallel_compute_fn(%block_start, %block_size, ...); 87 // } 88 // 89 // // Launch async dispatch for [0, block_count) range. 90 // call @async_dispatch(%c0, %block_count); 91 // 92 // When async dispatch is off: 93 // 94 // %block_size = ... compute parallel compute block size 95 // %block_count = ... compute the number of compute blocks 96 // 97 // scf.for %block_index = %c0 to %block_count { 98 // call @parallel_compute_fn(%block_index, %block_size, ...) 99 // } 100 // 101 struct AsyncParallelForPass 102 : public impl::AsyncParallelForBase<AsyncParallelForPass> { 103 AsyncParallelForPass() = default; 104 105 AsyncParallelForPass(bool asyncDispatch, int32_t numWorkerThreads, 106 int32_t minTaskSize) { 107 this->asyncDispatch = asyncDispatch; 108 this->numWorkerThreads = numWorkerThreads; 109 this->minTaskSize = minTaskSize; 110 } 111 112 void runOnOperation() override; 113 }; 114 115 struct AsyncParallelForRewrite : public OpRewritePattern<scf::ParallelOp> { 116 public: 117 AsyncParallelForRewrite( 118 MLIRContext *ctx, bool asyncDispatch, int32_t numWorkerThreads, 119 AsyncMinTaskSizeComputationFunction computeMinTaskSize) 120 : OpRewritePattern(ctx), asyncDispatch(asyncDispatch), 121 numWorkerThreads(numWorkerThreads), 122 computeMinTaskSize(std::move(computeMinTaskSize)) {} 123 124 LogicalResult matchAndRewrite(scf::ParallelOp op, 125 PatternRewriter &rewriter) const override; 126 127 private: 128 bool asyncDispatch; 129 int32_t numWorkerThreads; 130 AsyncMinTaskSizeComputationFunction computeMinTaskSize; 131 }; 132 133 struct ParallelComputeFunctionType { 134 FunctionType type; 135 SmallVector<Value> captures; 136 }; 137 138 // Helper struct to parse parallel compute function argument list. 139 struct ParallelComputeFunctionArgs { 140 BlockArgument blockIndex(); 141 BlockArgument blockSize(); 142 ArrayRef<BlockArgument> tripCounts(); 143 ArrayRef<BlockArgument> lowerBounds(); 144 ArrayRef<BlockArgument> upperBounds(); 145 ArrayRef<BlockArgument> steps(); 146 ArrayRef<BlockArgument> captures(); 147 148 unsigned numLoops; 149 ArrayRef<BlockArgument> args; 150 }; 151 152 struct ParallelComputeFunctionBounds { 153 SmallVector<IntegerAttr> tripCounts; 154 SmallVector<IntegerAttr> lowerBounds; 155 SmallVector<IntegerAttr> upperBounds; 156 SmallVector<IntegerAttr> steps; 157 }; 158 159 struct ParallelComputeFunction { 160 unsigned numLoops; 161 func::FuncOp func; 162 llvm::SmallVector<Value> captures; 163 }; 164 165 } // namespace 166 167 BlockArgument ParallelComputeFunctionArgs::blockIndex() { return args[0]; } 168 BlockArgument ParallelComputeFunctionArgs::blockSize() { return args[1]; } 169 170 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::tripCounts() { 171 return args.drop_front(2).take_front(numLoops); 172 } 173 174 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::lowerBounds() { 175 return args.drop_front(2 + 1 * numLoops).take_front(numLoops); 176 } 177 178 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::upperBounds() { 179 return args.drop_front(2 + 2 * numLoops).take_front(numLoops); 180 } 181 182 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::steps() { 183 return args.drop_front(2 + 3 * numLoops).take_front(numLoops); 184 } 185 186 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::captures() { 187 return args.drop_front(2 + 4 * numLoops); 188 } 189 190 template <typename ValueRange> 191 static SmallVector<IntegerAttr> integerConstants(ValueRange values) { 192 SmallVector<IntegerAttr> attrs(values.size()); 193 for (unsigned i = 0; i < values.size(); ++i) 194 matchPattern(values[i], m_Constant(&attrs[i])); 195 return attrs; 196 } 197 198 // Converts one-dimensional iteration index in the [0, tripCount) interval 199 // into multidimensional iteration coordinate. 200 static SmallVector<Value> delinearize(ImplicitLocOpBuilder &b, Value index, 201 ArrayRef<Value> tripCounts) { 202 SmallVector<Value> coords(tripCounts.size()); 203 assert(!tripCounts.empty() && "tripCounts must be not empty"); 204 205 for (ssize_t i = tripCounts.size() - 1; i >= 0; --i) { 206 coords[i] = b.create<arith::RemSIOp>(index, tripCounts[i]); 207 index = b.create<arith::DivSIOp>(index, tripCounts[i]); 208 } 209 210 return coords; 211 } 212 213 // Returns a function type and implicit captures for a parallel compute 214 // function. We'll need a list of implicit captures to setup block and value 215 // mapping when we'll clone the body of the parallel operation. 216 static ParallelComputeFunctionType 217 getParallelComputeFunctionType(scf::ParallelOp op, PatternRewriter &rewriter) { 218 // Values implicitly captured by the parallel operation. 219 llvm::SetVector<Value> captures; 220 getUsedValuesDefinedAbove(op.getRegion(), op.getRegion(), captures); 221 222 SmallVector<Type> inputs; 223 inputs.reserve(2 + 4 * op.getNumLoops() + captures.size()); 224 225 Type indexTy = rewriter.getIndexType(); 226 227 // One-dimensional iteration space defined by the block index and size. 228 inputs.push_back(indexTy); // blockIndex 229 inputs.push_back(indexTy); // blockSize 230 231 // Multi-dimensional parallel iteration space defined by the loop trip counts. 232 for (unsigned i = 0; i < op.getNumLoops(); ++i) 233 inputs.push_back(indexTy); // loop tripCount 234 235 // Parallel operation lower bound, upper bound and step. Lower bound, upper 236 // bound and step passed as contiguous arguments: 237 // call @compute(%lb0, %lb1, ..., %ub0, %ub1, ..., %step0, %step1, ...) 238 for (unsigned i = 0; i < op.getNumLoops(); ++i) { 239 inputs.push_back(indexTy); // lower bound 240 inputs.push_back(indexTy); // upper bound 241 inputs.push_back(indexTy); // step 242 } 243 244 // Types of the implicit captures. 245 for (Value capture : captures) 246 inputs.push_back(capture.getType()); 247 248 // Convert captures to vector for later convenience. 249 SmallVector<Value> capturesVector(captures.begin(), captures.end()); 250 return {rewriter.getFunctionType(inputs, TypeRange()), capturesVector}; 251 } 252 253 // Create a parallel compute fuction from the parallel operation. 254 static ParallelComputeFunction createParallelComputeFunction( 255 scf::ParallelOp op, const ParallelComputeFunctionBounds &bounds, 256 unsigned numBlockAlignedInnerLoops, PatternRewriter &rewriter) { 257 OpBuilder::InsertionGuard guard(rewriter); 258 ImplicitLocOpBuilder b(op.getLoc(), rewriter); 259 260 ModuleOp module = op->getParentOfType<ModuleOp>(); 261 262 ParallelComputeFunctionType computeFuncType = 263 getParallelComputeFunctionType(op, rewriter); 264 265 FunctionType type = computeFuncType.type; 266 func::FuncOp func = func::FuncOp::create( 267 op.getLoc(), 268 numBlockAlignedInnerLoops > 0 ? "parallel_compute_fn_with_aligned_loops" 269 : "parallel_compute_fn", 270 type); 271 func.setPrivate(); 272 273 // Insert function into the module symbol table and assign it unique name. 274 SymbolTable symbolTable(module); 275 symbolTable.insert(func); 276 rewriter.getListener()->notifyOperationInserted(func, /*previous=*/{}); 277 278 // Create function entry block. 279 Block *block = 280 b.createBlock(&func.getBody(), func.begin(), type.getInputs(), 281 SmallVector<Location>(type.getNumInputs(), op.getLoc())); 282 b.setInsertionPointToEnd(block); 283 284 ParallelComputeFunctionArgs args = {op.getNumLoops(), func.getArguments()}; 285 286 // Block iteration position defined by the block index and size. 287 BlockArgument blockIndex = args.blockIndex(); 288 BlockArgument blockSize = args.blockSize(); 289 290 // Constants used below. 291 Value c0 = b.create<arith::ConstantIndexOp>(0); 292 Value c1 = b.create<arith::ConstantIndexOp>(1); 293 294 // Materialize known constants as constant operation in the function body. 295 auto values = [&](ArrayRef<BlockArgument> args, ArrayRef<IntegerAttr> attrs) { 296 return llvm::to_vector( 297 llvm::map_range(llvm::zip(args, attrs), [&](auto tuple) -> Value { 298 if (IntegerAttr attr = std::get<1>(tuple)) 299 return b.create<arith::ConstantOp>(attr); 300 return std::get<0>(tuple); 301 })); 302 }; 303 304 // Multi-dimensional parallel iteration space defined by the loop trip counts. 305 auto tripCounts = values(args.tripCounts(), bounds.tripCounts); 306 307 // Parallel operation lower bound and step. 308 auto lowerBounds = values(args.lowerBounds(), bounds.lowerBounds); 309 auto steps = values(args.steps(), bounds.steps); 310 311 // Remaining arguments are implicit captures of the parallel operation. 312 ArrayRef<BlockArgument> captures = args.captures(); 313 314 // Compute a product of trip counts to get the size of the flattened 315 // one-dimensional iteration space. 316 Value tripCount = tripCounts[0]; 317 for (unsigned i = 1; i < tripCounts.size(); ++i) 318 tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]); 319 320 // Find one-dimensional iteration bounds: [blockFirstIndex, blockLastIndex]: 321 // blockFirstIndex = blockIndex * blockSize 322 Value blockFirstIndex = b.create<arith::MulIOp>(blockIndex, blockSize); 323 324 // The last one-dimensional index in the block defined by the `blockIndex`: 325 // blockLastIndex = min(blockFirstIndex + blockSize, tripCount) - 1 326 Value blockEnd0 = b.create<arith::AddIOp>(blockFirstIndex, blockSize); 327 Value blockEnd1 = b.create<arith::MinSIOp>(blockEnd0, tripCount); 328 Value blockLastIndex = b.create<arith::SubIOp>(blockEnd1, c1); 329 330 // Convert one-dimensional indices to multi-dimensional coordinates. 331 auto blockFirstCoord = delinearize(b, blockFirstIndex, tripCounts); 332 auto blockLastCoord = delinearize(b, blockLastIndex, tripCounts); 333 334 // Compute loops upper bounds derived from the block last coordinates: 335 // blockEndCoord[i] = blockLastCoord[i] + 1 336 // 337 // Block first and last coordinates can be the same along the outer compute 338 // dimension when inner compute dimension contains multiple blocks. 339 SmallVector<Value> blockEndCoord(op.getNumLoops()); 340 for (size_t i = 0; i < blockLastCoord.size(); ++i) 341 blockEndCoord[i] = b.create<arith::AddIOp>(blockLastCoord[i], c1); 342 343 // Construct a loop nest out of scf.for operations that will iterate over 344 // all coordinates in [blockFirstCoord, blockLastCoord] range. 345 using LoopBodyBuilder = 346 std::function<void(OpBuilder &, Location, Value, ValueRange)>; 347 using LoopNestBuilder = std::function<LoopBodyBuilder(size_t loopIdx)>; 348 349 // Parallel region induction variables computed from the multi-dimensional 350 // iteration coordinate using parallel operation bounds and step: 351 // 352 // computeBlockInductionVars[loopIdx] = 353 // lowerBound[loopIdx] + blockCoord[loopIdx] * step[loopIdx] 354 SmallVector<Value> computeBlockInductionVars(op.getNumLoops()); 355 356 // We need to know if we are in the first or last iteration of the 357 // multi-dimensional loop for each loop in the nest, so we can decide what 358 // loop bounds should we use for the nested loops: bounds defined by compute 359 // block interval, or bounds defined by the parallel operation. 360 // 361 // Example: 2d parallel operation 362 // i j 363 // loop sizes: [50, 50] 364 // first coord: [25, 25] 365 // last coord: [30, 30] 366 // 367 // If `i` is equal to 25 then iteration over `j` should start at 25, when `i` 368 // is between 25 and 30 it should start at 0. The upper bound for `j` should 369 // be 50, except when `i` is equal to 30, then it should also be 30. 370 // 371 // Value at ith position specifies if all loops in [0, i) range of the loop 372 // nest are in the first/last iteration. 373 SmallVector<Value> isBlockFirstCoord(op.getNumLoops()); 374 SmallVector<Value> isBlockLastCoord(op.getNumLoops()); 375 376 // Builds inner loop nest inside async.execute operation that does all the 377 // work concurrently. 378 LoopNestBuilder workLoopBuilder = [&](size_t loopIdx) -> LoopBodyBuilder { 379 return [&, loopIdx](OpBuilder &nestedBuilder, Location loc, Value iv, 380 ValueRange args) { 381 ImplicitLocOpBuilder b(loc, nestedBuilder); 382 383 // Compute induction variable for `loopIdx`. 384 computeBlockInductionVars[loopIdx] = b.create<arith::AddIOp>( 385 lowerBounds[loopIdx], b.create<arith::MulIOp>(iv, steps[loopIdx])); 386 387 // Check if we are inside first or last iteration of the loop. 388 isBlockFirstCoord[loopIdx] = b.create<arith::CmpIOp>( 389 arith::CmpIPredicate::eq, iv, blockFirstCoord[loopIdx]); 390 isBlockLastCoord[loopIdx] = b.create<arith::CmpIOp>( 391 arith::CmpIPredicate::eq, iv, blockLastCoord[loopIdx]); 392 393 // Check if the previous loop is in its first or last iteration. 394 if (loopIdx > 0) { 395 isBlockFirstCoord[loopIdx] = b.create<arith::AndIOp>( 396 isBlockFirstCoord[loopIdx], isBlockFirstCoord[loopIdx - 1]); 397 isBlockLastCoord[loopIdx] = b.create<arith::AndIOp>( 398 isBlockLastCoord[loopIdx], isBlockLastCoord[loopIdx - 1]); 399 } 400 401 // Keep building loop nest. 402 if (loopIdx < op.getNumLoops() - 1) { 403 if (loopIdx + 1 >= op.getNumLoops() - numBlockAlignedInnerLoops) { 404 // For block aligned loops we always iterate starting from 0 up to 405 // the loop trip counts. 406 b.create<scf::ForOp>(c0, tripCounts[loopIdx + 1], c1, ValueRange(), 407 workLoopBuilder(loopIdx + 1)); 408 409 } else { 410 // Select nested loop lower/upper bounds depending on our position in 411 // the multi-dimensional iteration space. 412 auto lb = b.create<arith::SelectOp>(isBlockFirstCoord[loopIdx], 413 blockFirstCoord[loopIdx + 1], c0); 414 415 auto ub = b.create<arith::SelectOp>(isBlockLastCoord[loopIdx], 416 blockEndCoord[loopIdx + 1], 417 tripCounts[loopIdx + 1]); 418 419 b.create<scf::ForOp>(lb, ub, c1, ValueRange(), 420 workLoopBuilder(loopIdx + 1)); 421 } 422 423 b.create<scf::YieldOp>(loc); 424 return; 425 } 426 427 // Copy the body of the parallel op into the inner-most loop. 428 IRMapping mapping; 429 mapping.map(op.getInductionVars(), computeBlockInductionVars); 430 mapping.map(computeFuncType.captures, captures); 431 432 for (auto &bodyOp : op.getRegion().front().without_terminator()) 433 b.clone(bodyOp, mapping); 434 b.create<scf::YieldOp>(loc); 435 }; 436 }; 437 438 b.create<scf::ForOp>(blockFirstCoord[0], blockEndCoord[0], c1, ValueRange(), 439 workLoopBuilder(0)); 440 b.create<func::ReturnOp>(ValueRange()); 441 442 return {op.getNumLoops(), func, std::move(computeFuncType.captures)}; 443 } 444 445 // Creates recursive async dispatch function for the given parallel compute 446 // function. Dispatch function keeps splitting block range into halves until it 447 // reaches a single block, and then excecutes it inline. 448 // 449 // Function pseudocode (mix of C++ and MLIR): 450 // 451 // func @async_dispatch(%block_start : index, %block_end : index, ...) { 452 // 453 // // Keep splitting block range until we reached a range of size 1. 454 // while (%block_end - %block_start > 1) { 455 // %mid_index = block_start + (block_end - block_start) / 2; 456 // async.execute { call @async_dispatch(%mid_index, %block_end); } 457 // %block_end = %mid_index 458 // } 459 // 460 // // Call parallel compute function for a single block. 461 // call @parallel_compute_fn(%block_start, %block_size, ...); 462 // } 463 // 464 static func::FuncOp 465 createAsyncDispatchFunction(ParallelComputeFunction &computeFunc, 466 PatternRewriter &rewriter) { 467 OpBuilder::InsertionGuard guard(rewriter); 468 Location loc = computeFunc.func.getLoc(); 469 ImplicitLocOpBuilder b(loc, rewriter); 470 471 ModuleOp module = computeFunc.func->getParentOfType<ModuleOp>(); 472 473 ArrayRef<Type> computeFuncInputTypes = 474 computeFunc.func.getFunctionType().getInputs(); 475 476 // Compared to the parallel compute function async dispatch function takes 477 // additional !async.group argument. Also instead of a single `blockIndex` it 478 // takes `blockStart` and `blockEnd` arguments to define the range of 479 // dispatched blocks. 480 SmallVector<Type> inputTypes; 481 inputTypes.push_back(async::GroupType::get(rewriter.getContext())); 482 inputTypes.push_back(rewriter.getIndexType()); // add blockStart argument 483 inputTypes.append(computeFuncInputTypes.begin(), computeFuncInputTypes.end()); 484 485 FunctionType type = rewriter.getFunctionType(inputTypes, TypeRange()); 486 func::FuncOp func = func::FuncOp::create(loc, "async_dispatch_fn", type); 487 func.setPrivate(); 488 489 // Insert function into the module symbol table and assign it unique name. 490 SymbolTable symbolTable(module); 491 symbolTable.insert(func); 492 rewriter.getListener()->notifyOperationInserted(func, /*previous=*/{}); 493 494 // Create function entry block. 495 Block *block = b.createBlock(&func.getBody(), func.begin(), type.getInputs(), 496 SmallVector<Location>(type.getNumInputs(), loc)); 497 b.setInsertionPointToEnd(block); 498 499 Type indexTy = b.getIndexType(); 500 Value c1 = b.create<arith::ConstantIndexOp>(1); 501 Value c2 = b.create<arith::ConstantIndexOp>(2); 502 503 // Get the async group that will track async dispatch completion. 504 Value group = block->getArgument(0); 505 506 // Get the block iteration range: [blockStart, blockEnd) 507 Value blockStart = block->getArgument(1); 508 Value blockEnd = block->getArgument(2); 509 510 // Create a work splitting while loop for the [blockStart, blockEnd) range. 511 SmallVector<Type> types = {indexTy, indexTy}; 512 SmallVector<Value> operands = {blockStart, blockEnd}; 513 SmallVector<Location> locations = {loc, loc}; 514 515 // Create a recursive dispatch loop. 516 scf::WhileOp whileOp = b.create<scf::WhileOp>(types, operands); 517 Block *before = b.createBlock(&whileOp.getBefore(), {}, types, locations); 518 Block *after = b.createBlock(&whileOp.getAfter(), {}, types, locations); 519 520 // Setup dispatch loop condition block: decide if we need to go into the 521 // `after` block and launch one more async dispatch. 522 { 523 b.setInsertionPointToEnd(before); 524 Value start = before->getArgument(0); 525 Value end = before->getArgument(1); 526 Value distance = b.create<arith::SubIOp>(end, start); 527 Value dispatch = 528 b.create<arith::CmpIOp>(arith::CmpIPredicate::sgt, distance, c1); 529 b.create<scf::ConditionOp>(dispatch, before->getArguments()); 530 } 531 532 // Setup the async dispatch loop body: recursively call dispatch function 533 // for the seconds half of the original range and go to the next iteration. 534 { 535 b.setInsertionPointToEnd(after); 536 Value start = after->getArgument(0); 537 Value end = after->getArgument(1); 538 Value distance = b.create<arith::SubIOp>(end, start); 539 Value halfDistance = b.create<arith::DivSIOp>(distance, c2); 540 Value midIndex = b.create<arith::AddIOp>(start, halfDistance); 541 542 // Call parallel compute function inside the async.execute region. 543 auto executeBodyBuilder = [&](OpBuilder &executeBuilder, 544 Location executeLoc, ValueRange executeArgs) { 545 // Update the original `blockStart` and `blockEnd` with new range. 546 SmallVector<Value> operands{block->getArguments().begin(), 547 block->getArguments().end()}; 548 operands[1] = midIndex; 549 operands[2] = end; 550 551 executeBuilder.create<func::CallOp>(executeLoc, func.getSymName(), 552 func.getResultTypes(), operands); 553 executeBuilder.create<async::YieldOp>(executeLoc, ValueRange()); 554 }; 555 556 // Create async.execute operation to dispatch half of the block range. 557 auto execute = b.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(), 558 executeBodyBuilder); 559 b.create<AddToGroupOp>(indexTy, execute.getToken(), group); 560 b.create<scf::YieldOp>(ValueRange({start, midIndex})); 561 } 562 563 // After dispatching async operations to process the tail of the block range 564 // call the parallel compute function for the first block of the range. 565 b.setInsertionPointAfter(whileOp); 566 567 // Drop async dispatch specific arguments: async group, block start and end. 568 auto forwardedInputs = block->getArguments().drop_front(3); 569 SmallVector<Value> computeFuncOperands = {blockStart}; 570 computeFuncOperands.append(forwardedInputs.begin(), forwardedInputs.end()); 571 572 b.create<func::CallOp>(computeFunc.func.getSymName(), 573 computeFunc.func.getResultTypes(), 574 computeFuncOperands); 575 b.create<func::ReturnOp>(ValueRange()); 576 577 return func; 578 } 579 580 // Launch async dispatch of the parallel compute function. 581 static void doAsyncDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter, 582 ParallelComputeFunction ¶llelComputeFunction, 583 scf::ParallelOp op, Value blockSize, 584 Value blockCount, 585 const SmallVector<Value> &tripCounts) { 586 MLIRContext *ctx = op->getContext(); 587 588 // Add one more level of indirection to dispatch parallel compute functions 589 // using async operations and recursive work splitting. 590 func::FuncOp asyncDispatchFunction = 591 createAsyncDispatchFunction(parallelComputeFunction, rewriter); 592 593 Value c0 = b.create<arith::ConstantIndexOp>(0); 594 Value c1 = b.create<arith::ConstantIndexOp>(1); 595 596 // Appends operands shared by async dispatch and parallel compute functions to 597 // the given operands vector. 598 auto appendBlockComputeOperands = [&](SmallVector<Value> &operands) { 599 operands.append(tripCounts); 600 operands.append(op.getLowerBound().begin(), op.getLowerBound().end()); 601 operands.append(op.getUpperBound().begin(), op.getUpperBound().end()); 602 operands.append(op.getStep().begin(), op.getStep().end()); 603 operands.append(parallelComputeFunction.captures); 604 }; 605 606 // Check if the block size is one, in this case we can skip the async dispatch 607 // completely. If this will be known statically, then canonicalization will 608 // erase async group operations. 609 Value isSingleBlock = 610 b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, blockCount, c1); 611 612 auto syncDispatch = [&](OpBuilder &nestedBuilder, Location loc) { 613 ImplicitLocOpBuilder b(loc, nestedBuilder); 614 615 // Call parallel compute function for the single block. 616 SmallVector<Value> operands = {c0, blockSize}; 617 appendBlockComputeOperands(operands); 618 619 b.create<func::CallOp>(parallelComputeFunction.func.getSymName(), 620 parallelComputeFunction.func.getResultTypes(), 621 operands); 622 b.create<scf::YieldOp>(); 623 }; 624 625 auto asyncDispatch = [&](OpBuilder &nestedBuilder, Location loc) { 626 ImplicitLocOpBuilder b(loc, nestedBuilder); 627 628 // Create an async.group to wait on all async tokens from the concurrent 629 // execution of multiple parallel compute function. First block will be 630 // executed synchronously in the caller thread. 631 Value groupSize = b.create<arith::SubIOp>(blockCount, c1); 632 Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize); 633 634 // Launch async dispatch function for [0, blockCount) range. 635 SmallVector<Value> operands = {group, c0, blockCount, blockSize}; 636 appendBlockComputeOperands(operands); 637 638 b.create<func::CallOp>(asyncDispatchFunction.getSymName(), 639 asyncDispatchFunction.getResultTypes(), operands); 640 641 // Wait for the completion of all parallel compute operations. 642 b.create<AwaitAllOp>(group); 643 644 b.create<scf::YieldOp>(); 645 }; 646 647 // Dispatch either single block compute function, or launch async dispatch. 648 b.create<scf::IfOp>(isSingleBlock, syncDispatch, asyncDispatch); 649 } 650 651 // Dispatch parallel compute functions by submitting all async compute tasks 652 // from a simple for loop in the caller thread. 653 static void 654 doSequentialDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter, 655 ParallelComputeFunction ¶llelComputeFunction, 656 scf::ParallelOp op, Value blockSize, Value blockCount, 657 const SmallVector<Value> &tripCounts) { 658 MLIRContext *ctx = op->getContext(); 659 660 func::FuncOp compute = parallelComputeFunction.func; 661 662 Value c0 = b.create<arith::ConstantIndexOp>(0); 663 Value c1 = b.create<arith::ConstantIndexOp>(1); 664 665 // Create an async.group to wait on all async tokens from the concurrent 666 // execution of multiple parallel compute function. First block will be 667 // executed synchronously in the caller thread. 668 Value groupSize = b.create<arith::SubIOp>(blockCount, c1); 669 Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize); 670 671 // Call parallel compute function for all blocks. 672 using LoopBodyBuilder = 673 std::function<void(OpBuilder &, Location, Value, ValueRange)>; 674 675 // Returns parallel compute function operands to process the given block. 676 auto computeFuncOperands = [&](Value blockIndex) -> SmallVector<Value> { 677 SmallVector<Value> computeFuncOperands = {blockIndex, blockSize}; 678 computeFuncOperands.append(tripCounts); 679 computeFuncOperands.append(op.getLowerBound().begin(), 680 op.getLowerBound().end()); 681 computeFuncOperands.append(op.getUpperBound().begin(), 682 op.getUpperBound().end()); 683 computeFuncOperands.append(op.getStep().begin(), op.getStep().end()); 684 computeFuncOperands.append(parallelComputeFunction.captures); 685 return computeFuncOperands; 686 }; 687 688 // Induction variable is the index of the block: [0, blockCount). 689 LoopBodyBuilder loopBuilder = [&](OpBuilder &loopBuilder, Location loc, 690 Value iv, ValueRange args) { 691 ImplicitLocOpBuilder b(loc, loopBuilder); 692 693 // Call parallel compute function inside the async.execute region. 694 auto executeBodyBuilder = [&](OpBuilder &executeBuilder, 695 Location executeLoc, ValueRange executeArgs) { 696 executeBuilder.create<func::CallOp>(executeLoc, compute.getSymName(), 697 compute.getResultTypes(), 698 computeFuncOperands(iv)); 699 executeBuilder.create<async::YieldOp>(executeLoc, ValueRange()); 700 }; 701 702 // Create async.execute operation to launch parallel computate function. 703 auto execute = b.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(), 704 executeBodyBuilder); 705 b.create<AddToGroupOp>(rewriter.getIndexType(), execute.getToken(), group); 706 b.create<scf::YieldOp>(); 707 }; 708 709 // Iterate over all compute blocks and launch parallel compute operations. 710 b.create<scf::ForOp>(c1, blockCount, c1, ValueRange(), loopBuilder); 711 712 // Call parallel compute function for the first block in the caller thread. 713 b.create<func::CallOp>(compute.getSymName(), compute.getResultTypes(), 714 computeFuncOperands(c0)); 715 716 // Wait for the completion of all async compute operations. 717 b.create<AwaitAllOp>(group); 718 } 719 720 LogicalResult 721 AsyncParallelForRewrite::matchAndRewrite(scf::ParallelOp op, 722 PatternRewriter &rewriter) const { 723 // We do not currently support rewrite for parallel op with reductions. 724 if (op.getNumReductions() != 0) 725 return failure(); 726 727 ImplicitLocOpBuilder b(op.getLoc(), rewriter); 728 729 // Computing minTaskSize emits IR and can be implemented as executing a cost 730 // model on the body of the scf.parallel. Thus it needs to be computed before 731 // the body of the scf.parallel has been manipulated. 732 Value minTaskSize = computeMinTaskSize(b, op); 733 734 // Make sure that all constants will be inside the parallel operation body to 735 // reduce the number of parallel compute function arguments. 736 cloneConstantsIntoTheRegion(op.getRegion(), rewriter); 737 738 // Compute trip count for each loop induction variable: 739 // tripCount = ceil_div(upperBound - lowerBound, step); 740 SmallVector<Value> tripCounts(op.getNumLoops()); 741 for (size_t i = 0; i < op.getNumLoops(); ++i) { 742 auto lb = op.getLowerBound()[i]; 743 auto ub = op.getUpperBound()[i]; 744 auto step = op.getStep()[i]; 745 auto range = b.createOrFold<arith::SubIOp>(ub, lb); 746 tripCounts[i] = b.createOrFold<arith::CeilDivSIOp>(range, step); 747 } 748 749 // Compute a product of trip counts to get the 1-dimensional iteration space 750 // for the scf.parallel operation. 751 Value tripCount = tripCounts[0]; 752 for (size_t i = 1; i < tripCounts.size(); ++i) 753 tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]); 754 755 // Short circuit no-op parallel loops (zero iterations) that can arise from 756 // the memrefs with dynamic dimension(s) equal to zero. 757 Value c0 = b.create<arith::ConstantIndexOp>(0); 758 Value isZeroIterations = 759 b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, tripCount, c0); 760 761 // Do absolutely nothing if the trip count is zero. 762 auto noOp = [&](OpBuilder &nestedBuilder, Location loc) { 763 nestedBuilder.create<scf::YieldOp>(loc); 764 }; 765 766 // Compute the parallel block size and dispatch concurrent tasks computing 767 // results for each block. 768 auto dispatch = [&](OpBuilder &nestedBuilder, Location loc) { 769 ImplicitLocOpBuilder b(loc, nestedBuilder); 770 771 // Collect statically known constants defining the loop nest in the parallel 772 // compute function. LLVM can't always push constants across the non-trivial 773 // async dispatch call graph, by providing these values explicitly we can 774 // choose to build more efficient loop nest, and rely on a better constant 775 // folding, loop unrolling and vectorization. 776 ParallelComputeFunctionBounds staticBounds = { 777 integerConstants(tripCounts), 778 integerConstants(op.getLowerBound()), 779 integerConstants(op.getUpperBound()), 780 integerConstants(op.getStep()), 781 }; 782 783 // Find how many inner iteration dimensions are statically known, and their 784 // product is smaller than the `512`. We align the parallel compute block 785 // size by the product of statically known dimensions, so that we can 786 // guarantee that the inner loops executes from 0 to the loop trip counts 787 // and we can elide dynamic loop boundaries, and give LLVM an opportunity to 788 // unroll the loops. The constant `512` is arbitrary, it should depend on 789 // how many iterations LLVM will typically decide to unroll. 790 static constexpr int64_t maxUnrollableIterations = 512; 791 792 // The number of inner loops with statically known number of iterations less 793 // than the `maxUnrollableIterations` value. 794 int numUnrollableLoops = 0; 795 796 auto getInt = [](IntegerAttr attr) { return attr ? attr.getInt() : 0; }; 797 798 SmallVector<int64_t> numIterations(op.getNumLoops()); 799 numIterations.back() = getInt(staticBounds.tripCounts.back()); 800 801 for (int i = op.getNumLoops() - 2; i >= 0; --i) { 802 int64_t tripCount = getInt(staticBounds.tripCounts[i]); 803 int64_t innerIterations = numIterations[i + 1]; 804 numIterations[i] = tripCount * innerIterations; 805 806 // Update the number of inner loops that we can potentially unroll. 807 if (innerIterations > 0 && innerIterations <= maxUnrollableIterations) 808 numUnrollableLoops++; 809 } 810 811 Value numWorkerThreadsVal; 812 if (numWorkerThreads >= 0) 813 numWorkerThreadsVal = b.create<arith::ConstantIndexOp>(numWorkerThreads); 814 else 815 numWorkerThreadsVal = b.create<async::RuntimeNumWorkerThreadsOp>(); 816 817 // With large number of threads the value of creating many compute blocks 818 // is reduced because the problem typically becomes memory bound. For this 819 // reason we scale the number of workers using an equivalent to the 820 // following logic: 821 // float overshardingFactor = numWorkerThreads <= 4 ? 8.0 822 // : numWorkerThreads <= 8 ? 4.0 823 // : numWorkerThreads <= 16 ? 2.0 824 // : numWorkerThreads <= 32 ? 1.0 825 // : numWorkerThreads <= 64 ? 0.8 826 // : 0.6; 827 828 // Pairs of non-inclusive lower end of the bracket and factor that the 829 // number of workers needs to be scaled with if it falls in that bucket. 830 const SmallVector<std::pair<int, float>> overshardingBrackets = { 831 {4, 4.0f}, {8, 2.0f}, {16, 1.0f}, {32, 0.8f}, {64, 0.6f}}; 832 const float initialOvershardingFactor = 8.0f; 833 834 Value scalingFactor = b.create<arith::ConstantFloatOp>( 835 llvm::APFloat(initialOvershardingFactor), b.getF32Type()); 836 for (const std::pair<int, float> &p : overshardingBrackets) { 837 Value bracketBegin = b.create<arith::ConstantIndexOp>(p.first); 838 Value inBracket = b.create<arith::CmpIOp>( 839 arith::CmpIPredicate::sgt, numWorkerThreadsVal, bracketBegin); 840 Value bracketScalingFactor = b.create<arith::ConstantFloatOp>( 841 llvm::APFloat(p.second), b.getF32Type()); 842 scalingFactor = b.create<arith::SelectOp>(inBracket, bracketScalingFactor, 843 scalingFactor); 844 } 845 Value numWorkersIndex = 846 b.create<arith::IndexCastOp>(b.getI32Type(), numWorkerThreadsVal); 847 Value numWorkersFloat = 848 b.create<arith::SIToFPOp>(b.getF32Type(), numWorkersIndex); 849 Value scaledNumWorkers = 850 b.create<arith::MulFOp>(scalingFactor, numWorkersFloat); 851 Value scaledNumInt = 852 b.create<arith::FPToSIOp>(b.getI32Type(), scaledNumWorkers); 853 Value scaledWorkers = 854 b.create<arith::IndexCastOp>(b.getIndexType(), scaledNumInt); 855 856 Value maxComputeBlocks = b.create<arith::MaxSIOp>( 857 b.create<arith::ConstantIndexOp>(1), scaledWorkers); 858 859 // Compute parallel block size from the parallel problem size: 860 // blockSize = min(tripCount, 861 // max(ceil_div(tripCount, maxComputeBlocks), 862 // minTaskSize)) 863 Value bs0 = b.create<arith::CeilDivSIOp>(tripCount, maxComputeBlocks); 864 Value bs1 = b.create<arith::MaxSIOp>(bs0, minTaskSize); 865 Value blockSize = b.create<arith::MinSIOp>(tripCount, bs1); 866 867 // Dispatch parallel compute function using async recursive work splitting, 868 // or by submitting compute task sequentially from a caller thread. 869 auto doDispatch = asyncDispatch ? doAsyncDispatch : doSequentialDispatch; 870 871 // Create a parallel compute function that takes a block id and computes 872 // the parallel operation body for a subset of iteration space. 873 874 // Compute the number of parallel compute blocks. 875 Value blockCount = b.create<arith::CeilDivSIOp>(tripCount, blockSize); 876 877 // Dispatch parallel compute function without hints to unroll inner loops. 878 auto dispatchDefault = [&](OpBuilder &nestedBuilder, Location loc) { 879 ParallelComputeFunction compute = 880 createParallelComputeFunction(op, staticBounds, 0, rewriter); 881 882 ImplicitLocOpBuilder b(loc, nestedBuilder); 883 doDispatch(b, rewriter, compute, op, blockSize, blockCount, tripCounts); 884 b.create<scf::YieldOp>(); 885 }; 886 887 // Dispatch parallel compute function with hints for unrolling inner loops. 888 auto dispatchBlockAligned = [&](OpBuilder &nestedBuilder, Location loc) { 889 ParallelComputeFunction compute = createParallelComputeFunction( 890 op, staticBounds, numUnrollableLoops, rewriter); 891 892 ImplicitLocOpBuilder b(loc, nestedBuilder); 893 // Align the block size to be a multiple of the statically known 894 // number of iterations in the inner loops. 895 Value numIters = b.create<arith::ConstantIndexOp>( 896 numIterations[op.getNumLoops() - numUnrollableLoops]); 897 Value alignedBlockSize = b.create<arith::MulIOp>( 898 b.create<arith::CeilDivSIOp>(blockSize, numIters), numIters); 899 doDispatch(b, rewriter, compute, op, alignedBlockSize, blockCount, 900 tripCounts); 901 b.create<scf::YieldOp>(); 902 }; 903 904 // Dispatch to block aligned compute function only if the computed block 905 // size is larger than the number of iterations in the unrollable inner 906 // loops, because otherwise it can reduce the available parallelism. 907 if (numUnrollableLoops > 0) { 908 Value numIters = b.create<arith::ConstantIndexOp>( 909 numIterations[op.getNumLoops() - numUnrollableLoops]); 910 Value useBlockAlignedComputeFn = b.create<arith::CmpIOp>( 911 arith::CmpIPredicate::sge, blockSize, numIters); 912 913 b.create<scf::IfOp>(useBlockAlignedComputeFn, dispatchBlockAligned, 914 dispatchDefault); 915 b.create<scf::YieldOp>(); 916 } else { 917 dispatchDefault(b, loc); 918 } 919 }; 920 921 // Replace the `scf.parallel` operation with the parallel compute function. 922 b.create<scf::IfOp>(isZeroIterations, noOp, dispatch); 923 924 // Parallel operation was replaced with a block iteration loop. 925 rewriter.eraseOp(op); 926 927 return success(); 928 } 929 930 void AsyncParallelForPass::runOnOperation() { 931 MLIRContext *ctx = &getContext(); 932 933 RewritePatternSet patterns(ctx); 934 populateAsyncParallelForPatterns( 935 patterns, asyncDispatch, numWorkerThreads, 936 [&](ImplicitLocOpBuilder builder, scf::ParallelOp op) { 937 return builder.create<arith::ConstantIndexOp>(minTaskSize); 938 }); 939 if (failed(applyPatternsAndFoldGreedily(getOperation(), std::move(patterns)))) 940 signalPassFailure(); 941 } 942 943 std::unique_ptr<Pass> mlir::createAsyncParallelForPass() { 944 return std::make_unique<AsyncParallelForPass>(); 945 } 946 947 std::unique_ptr<Pass> mlir::createAsyncParallelForPass(bool asyncDispatch, 948 int32_t numWorkerThreads, 949 int32_t minTaskSize) { 950 return std::make_unique<AsyncParallelForPass>(asyncDispatch, numWorkerThreads, 951 minTaskSize); 952 } 953 954 void mlir::async::populateAsyncParallelForPatterns( 955 RewritePatternSet &patterns, bool asyncDispatch, int32_t numWorkerThreads, 956 const AsyncMinTaskSizeComputationFunction &computeMinTaskSize) { 957 MLIRContext *ctx = patterns.getContext(); 958 patterns.add<AsyncParallelForRewrite>(ctx, asyncDispatch, numWorkerThreads, 959 computeMinTaskSize); 960 } 961