1 //===- AsyncParallelFor.cpp - Implementation of Async Parallel For --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements scf.parallel to scf.for + async.execute conversion pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <utility> 14 15 #include "PassDetail.h" 16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 17 #include "mlir/Dialect/Async/IR/Async.h" 18 #include "mlir/Dialect/Async/Passes.h" 19 #include "mlir/Dialect/Async/Transforms.h" 20 #include "mlir/Dialect/SCF/SCF.h" 21 #include "mlir/Dialect/StandardOps/IR/Ops.h" 22 #include "mlir/IR/BlockAndValueMapping.h" 23 #include "mlir/IR/ImplicitLocOpBuilder.h" 24 #include "mlir/IR/Matchers.h" 25 #include "mlir/IR/PatternMatch.h" 26 #include "mlir/Support/LLVM.h" 27 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 28 #include "mlir/Transforms/RegionUtils.h" 29 30 using namespace mlir; 31 using namespace mlir::async; 32 33 #define DEBUG_TYPE "async-parallel-for" 34 35 namespace { 36 37 // Rewrite scf.parallel operation into multiple concurrent async.execute 38 // operations over non overlapping subranges of the original loop. 39 // 40 // Example: 41 // 42 // scf.parallel (%i, %j) = (%lbi, %lbj) to (%ubi, %ubj) step (%si, %sj) { 43 // "do_some_compute"(%i, %j): () -> () 44 // } 45 // 46 // Converted to: 47 // 48 // // Parallel compute function that executes the parallel body region for 49 // // a subset of the parallel iteration space defined by the one-dimensional 50 // // compute block index. 51 // func parallel_compute_function(%block_index : index, %block_size : index, 52 // <parallel operation properties>, ...) { 53 // // Compute multi-dimensional loop bounds for %block_index. 54 // %block_lbi, %block_lbj = ... 55 // %block_ubi, %block_ubj = ... 56 // 57 // // Clone parallel operation body into the scf.for loop nest. 58 // scf.for %i = %blockLbi to %blockUbi { 59 // scf.for %j = block_lbj to %block_ubj { 60 // "do_some_compute"(%i, %j): () -> () 61 // } 62 // } 63 // } 64 // 65 // And a dispatch function depending on the `asyncDispatch` option. 66 // 67 // When async dispatch is on: (pseudocode) 68 // 69 // %block_size = ... compute parallel compute block size 70 // %block_count = ... compute the number of compute blocks 71 // 72 // func @async_dispatch(%block_start : index, %block_end : index, ...) { 73 // // Keep splitting block range until we reached a range of size 1. 74 // while (%block_end - %block_start > 1) { 75 // %mid_index = block_start + (block_end - block_start) / 2; 76 // async.execute { call @async_dispatch(%mid_index, %block_end); } 77 // %block_end = %mid_index 78 // } 79 // 80 // // Call parallel compute function for a single block. 81 // call @parallel_compute_fn(%block_start, %block_size, ...); 82 // } 83 // 84 // // Launch async dispatch for [0, block_count) range. 85 // call @async_dispatch(%c0, %block_count); 86 // 87 // When async dispatch is off: 88 // 89 // %block_size = ... compute parallel compute block size 90 // %block_count = ... compute the number of compute blocks 91 // 92 // scf.for %block_index = %c0 to %block_count { 93 // call @parallel_compute_fn(%block_index, %block_size, ...) 94 // } 95 // 96 struct AsyncParallelForPass 97 : public AsyncParallelForBase<AsyncParallelForPass> { 98 AsyncParallelForPass() = default; 99 100 AsyncParallelForPass(bool asyncDispatch, int32_t numWorkerThreads, 101 int32_t minTaskSize) { 102 this->asyncDispatch = asyncDispatch; 103 this->numWorkerThreads = numWorkerThreads; 104 this->minTaskSize = minTaskSize; 105 } 106 107 void runOnOperation() override; 108 }; 109 110 struct AsyncParallelForRewrite : public OpRewritePattern<scf::ParallelOp> { 111 public: 112 AsyncParallelForRewrite( 113 MLIRContext *ctx, bool asyncDispatch, int32_t numWorkerThreads, 114 AsyncMinTaskSizeComputationFunction computeMinTaskSize) 115 : OpRewritePattern(ctx), asyncDispatch(asyncDispatch), 116 numWorkerThreads(numWorkerThreads), 117 computeMinTaskSize(std::move(computeMinTaskSize)) {} 118 119 LogicalResult matchAndRewrite(scf::ParallelOp op, 120 PatternRewriter &rewriter) const override; 121 122 private: 123 bool asyncDispatch; 124 int32_t numWorkerThreads; 125 AsyncMinTaskSizeComputationFunction computeMinTaskSize; 126 }; 127 128 struct ParallelComputeFunctionType { 129 FunctionType type; 130 SmallVector<Value> captures; 131 }; 132 133 // Helper struct to parse parallel compute function argument list. 134 struct ParallelComputeFunctionArgs { 135 BlockArgument blockIndex(); 136 BlockArgument blockSize(); 137 ArrayRef<BlockArgument> tripCounts(); 138 ArrayRef<BlockArgument> lowerBounds(); 139 ArrayRef<BlockArgument> upperBounds(); 140 ArrayRef<BlockArgument> steps(); 141 ArrayRef<BlockArgument> captures(); 142 143 unsigned numLoops; 144 ArrayRef<BlockArgument> args; 145 }; 146 147 struct ParallelComputeFunctionBounds { 148 SmallVector<IntegerAttr> tripCounts; 149 SmallVector<IntegerAttr> lowerBounds; 150 SmallVector<IntegerAttr> upperBounds; 151 SmallVector<IntegerAttr> steps; 152 }; 153 154 struct ParallelComputeFunction { 155 unsigned numLoops; 156 FuncOp func; 157 llvm::SmallVector<Value> captures; 158 }; 159 160 } // namespace 161 162 BlockArgument ParallelComputeFunctionArgs::blockIndex() { return args[0]; } 163 BlockArgument ParallelComputeFunctionArgs::blockSize() { return args[1]; } 164 165 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::tripCounts() { 166 return args.drop_front(2).take_front(numLoops); 167 } 168 169 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::lowerBounds() { 170 return args.drop_front(2 + 1 * numLoops).take_front(numLoops); 171 } 172 173 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::upperBounds() { 174 return args.drop_front(2 + 2 * numLoops).take_front(numLoops); 175 } 176 177 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::steps() { 178 return args.drop_front(2 + 3 * numLoops).take_front(numLoops); 179 } 180 181 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::captures() { 182 return args.drop_front(2 + 4 * numLoops); 183 } 184 185 template <typename ValueRange> 186 static SmallVector<IntegerAttr> integerConstants(ValueRange values) { 187 SmallVector<IntegerAttr> attrs(values.size()); 188 for (unsigned i = 0; i < values.size(); ++i) 189 matchPattern(values[i], m_Constant(&attrs[i])); 190 return attrs; 191 } 192 193 // Converts one-dimensional iteration index in the [0, tripCount) interval 194 // into multidimensional iteration coordinate. 195 static SmallVector<Value> delinearize(ImplicitLocOpBuilder &b, Value index, 196 ArrayRef<Value> tripCounts) { 197 SmallVector<Value> coords(tripCounts.size()); 198 assert(!tripCounts.empty() && "tripCounts must be not empty"); 199 200 for (ssize_t i = tripCounts.size() - 1; i >= 0; --i) { 201 coords[i] = b.create<arith::RemSIOp>(index, tripCounts[i]); 202 index = b.create<arith::DivSIOp>(index, tripCounts[i]); 203 } 204 205 return coords; 206 } 207 208 // Returns a function type and implicit captures for a parallel compute 209 // function. We'll need a list of implicit captures to setup block and value 210 // mapping when we'll clone the body of the parallel operation. 211 static ParallelComputeFunctionType 212 getParallelComputeFunctionType(scf::ParallelOp op, PatternRewriter &rewriter) { 213 // Values implicitly captured by the parallel operation. 214 llvm::SetVector<Value> captures; 215 getUsedValuesDefinedAbove(op.getRegion(), op.getRegion(), captures); 216 217 SmallVector<Type> inputs; 218 inputs.reserve(2 + 4 * op.getNumLoops() + captures.size()); 219 220 Type indexTy = rewriter.getIndexType(); 221 222 // One-dimensional iteration space defined by the block index and size. 223 inputs.push_back(indexTy); // blockIndex 224 inputs.push_back(indexTy); // blockSize 225 226 // Multi-dimensional parallel iteration space defined by the loop trip counts. 227 for (unsigned i = 0; i < op.getNumLoops(); ++i) 228 inputs.push_back(indexTy); // loop tripCount 229 230 // Parallel operation lower bound, upper bound and step. Lower bound, upper 231 // bound and step passed as contiguous arguments: 232 // call @compute(%lb0, %lb1, ..., %ub0, %ub1, ..., %step0, %step1, ...) 233 for (unsigned i = 0; i < op.getNumLoops(); ++i) { 234 inputs.push_back(indexTy); // lower bound 235 inputs.push_back(indexTy); // upper bound 236 inputs.push_back(indexTy); // step 237 } 238 239 // Types of the implicit captures. 240 for (Value capture : captures) 241 inputs.push_back(capture.getType()); 242 243 // Convert captures to vector for later convenience. 244 SmallVector<Value> capturesVector(captures.begin(), captures.end()); 245 return {rewriter.getFunctionType(inputs, TypeRange()), capturesVector}; 246 } 247 248 // Create a parallel compute fuction from the parallel operation. 249 static ParallelComputeFunction createParallelComputeFunction( 250 scf::ParallelOp op, const ParallelComputeFunctionBounds &bounds, 251 unsigned numBlockAlignedInnerLoops, PatternRewriter &rewriter) { 252 OpBuilder::InsertionGuard guard(rewriter); 253 ImplicitLocOpBuilder b(op.getLoc(), rewriter); 254 255 ModuleOp module = op->getParentOfType<ModuleOp>(); 256 257 ParallelComputeFunctionType computeFuncType = 258 getParallelComputeFunctionType(op, rewriter); 259 260 FunctionType type = computeFuncType.type; 261 FuncOp func = FuncOp::create(op.getLoc(), 262 numBlockAlignedInnerLoops > 0 263 ? "parallel_compute_fn_with_aligned_loops" 264 : "parallel_compute_fn", 265 type); 266 func.setPrivate(); 267 268 // Insert function into the module symbol table and assign it unique name. 269 SymbolTable symbolTable(module); 270 symbolTable.insert(func); 271 rewriter.getListener()->notifyOperationInserted(func); 272 273 // Create function entry block. 274 Block *block = 275 b.createBlock(&func.getBody(), func.begin(), type.getInputs(), 276 SmallVector<Location>(type.getNumInputs(), op.getLoc())); 277 b.setInsertionPointToEnd(block); 278 279 ParallelComputeFunctionArgs args = {op.getNumLoops(), func.getArguments()}; 280 281 // Block iteration position defined by the block index and size. 282 BlockArgument blockIndex = args.blockIndex(); 283 BlockArgument blockSize = args.blockSize(); 284 285 // Constants used below. 286 Value c0 = b.create<arith::ConstantIndexOp>(0); 287 Value c1 = b.create<arith::ConstantIndexOp>(1); 288 289 // Materialize known constants as constant operation in the function body. 290 auto values = [&](ArrayRef<BlockArgument> args, ArrayRef<IntegerAttr> attrs) { 291 return llvm::to_vector( 292 llvm::map_range(llvm::zip(args, attrs), [&](auto tuple) -> Value { 293 if (IntegerAttr attr = std::get<1>(tuple)) 294 return b.create<ConstantOp>(attr); 295 return std::get<0>(tuple); 296 })); 297 }; 298 299 // Multi-dimensional parallel iteration space defined by the loop trip counts. 300 auto tripCounts = values(args.tripCounts(), bounds.tripCounts); 301 302 // Parallel operation lower bound and step. 303 auto lowerBounds = values(args.lowerBounds(), bounds.lowerBounds); 304 auto steps = values(args.steps(), bounds.steps); 305 306 // Remaining arguments are implicit captures of the parallel operation. 307 ArrayRef<BlockArgument> captures = args.captures(); 308 309 // Compute a product of trip counts to get the size of the flattened 310 // one-dimensional iteration space. 311 Value tripCount = tripCounts[0]; 312 for (unsigned i = 1; i < tripCounts.size(); ++i) 313 tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]); 314 315 // Find one-dimensional iteration bounds: [blockFirstIndex, blockLastIndex]: 316 // blockFirstIndex = blockIndex * blockSize 317 Value blockFirstIndex = b.create<arith::MulIOp>(blockIndex, blockSize); 318 319 // The last one-dimensional index in the block defined by the `blockIndex`: 320 // blockLastIndex = min(blockFirstIndex + blockSize, tripCount) - 1 321 Value blockEnd0 = b.create<arith::AddIOp>(blockFirstIndex, blockSize); 322 Value blockEnd1 = b.create<arith::MinSIOp>(blockEnd0, tripCount); 323 Value blockLastIndex = b.create<arith::SubIOp>(blockEnd1, c1); 324 325 // Convert one-dimensional indices to multi-dimensional coordinates. 326 auto blockFirstCoord = delinearize(b, blockFirstIndex, tripCounts); 327 auto blockLastCoord = delinearize(b, blockLastIndex, tripCounts); 328 329 // Compute loops upper bounds derived from the block last coordinates: 330 // blockEndCoord[i] = blockLastCoord[i] + 1 331 // 332 // Block first and last coordinates can be the same along the outer compute 333 // dimension when inner compute dimension contains multiple blocks. 334 SmallVector<Value> blockEndCoord(op.getNumLoops()); 335 for (size_t i = 0; i < blockLastCoord.size(); ++i) 336 blockEndCoord[i] = b.create<arith::AddIOp>(blockLastCoord[i], c1); 337 338 // Construct a loop nest out of scf.for operations that will iterate over 339 // all coordinates in [blockFirstCoord, blockLastCoord] range. 340 using LoopBodyBuilder = 341 std::function<void(OpBuilder &, Location, Value, ValueRange)>; 342 using LoopNestBuilder = std::function<LoopBodyBuilder(size_t loopIdx)>; 343 344 // Parallel region induction variables computed from the multi-dimensional 345 // iteration coordinate using parallel operation bounds and step: 346 // 347 // computeBlockInductionVars[loopIdx] = 348 // lowerBound[loopIdx] + blockCoord[loopIdx] * step[loopIdx] 349 SmallVector<Value> computeBlockInductionVars(op.getNumLoops()); 350 351 // We need to know if we are in the first or last iteration of the 352 // multi-dimensional loop for each loop in the nest, so we can decide what 353 // loop bounds should we use for the nested loops: bounds defined by compute 354 // block interval, or bounds defined by the parallel operation. 355 // 356 // Example: 2d parallel operation 357 // i j 358 // loop sizes: [50, 50] 359 // first coord: [25, 25] 360 // last coord: [30, 30] 361 // 362 // If `i` is equal to 25 then iteration over `j` should start at 25, when `i` 363 // is between 25 and 30 it should start at 0. The upper bound for `j` should 364 // be 50, except when `i` is equal to 30, then it should also be 30. 365 // 366 // Value at ith position specifies if all loops in [0, i) range of the loop 367 // nest are in the first/last iteration. 368 SmallVector<Value> isBlockFirstCoord(op.getNumLoops()); 369 SmallVector<Value> isBlockLastCoord(op.getNumLoops()); 370 371 // Builds inner loop nest inside async.execute operation that does all the 372 // work concurrently. 373 LoopNestBuilder workLoopBuilder = [&](size_t loopIdx) -> LoopBodyBuilder { 374 return [&, loopIdx](OpBuilder &nestedBuilder, Location loc, Value iv, 375 ValueRange args) { 376 ImplicitLocOpBuilder nb(loc, nestedBuilder); 377 378 // Compute induction variable for `loopIdx`. 379 computeBlockInductionVars[loopIdx] = nb.create<arith::AddIOp>( 380 lowerBounds[loopIdx], nb.create<arith::MulIOp>(iv, steps[loopIdx])); 381 382 // Check if we are inside first or last iteration of the loop. 383 isBlockFirstCoord[loopIdx] = nb.create<arith::CmpIOp>( 384 arith::CmpIPredicate::eq, iv, blockFirstCoord[loopIdx]); 385 isBlockLastCoord[loopIdx] = nb.create<arith::CmpIOp>( 386 arith::CmpIPredicate::eq, iv, blockLastCoord[loopIdx]); 387 388 // Check if the previous loop is in its first or last iteration. 389 if (loopIdx > 0) { 390 isBlockFirstCoord[loopIdx] = nb.create<arith::AndIOp>( 391 isBlockFirstCoord[loopIdx], isBlockFirstCoord[loopIdx - 1]); 392 isBlockLastCoord[loopIdx] = nb.create<arith::AndIOp>( 393 isBlockLastCoord[loopIdx], isBlockLastCoord[loopIdx - 1]); 394 } 395 396 // Keep building loop nest. 397 if (loopIdx < op.getNumLoops() - 1) { 398 if (loopIdx + 1 >= op.getNumLoops() - numBlockAlignedInnerLoops) { 399 // For block aligned loops we always iterate starting from 0 up to 400 // the loop trip counts. 401 nb.create<scf::ForOp>(c0, tripCounts[loopIdx + 1], c1, ValueRange(), 402 workLoopBuilder(loopIdx + 1)); 403 404 } else { 405 // Select nested loop lower/upper bounds depending on our position in 406 // the multi-dimensional iteration space. 407 auto lb = nb.create<SelectOp>(isBlockFirstCoord[loopIdx], 408 blockFirstCoord[loopIdx + 1], c0); 409 410 auto ub = nb.create<SelectOp>(isBlockLastCoord[loopIdx], 411 blockEndCoord[loopIdx + 1], 412 tripCounts[loopIdx + 1]); 413 414 nb.create<scf::ForOp>(lb, ub, c1, ValueRange(), 415 workLoopBuilder(loopIdx + 1)); 416 } 417 418 nb.create<scf::YieldOp>(loc); 419 return; 420 } 421 422 // Copy the body of the parallel op into the inner-most loop. 423 BlockAndValueMapping mapping; 424 mapping.map(op.getInductionVars(), computeBlockInductionVars); 425 mapping.map(computeFuncType.captures, captures); 426 427 for (auto &bodyOp : op.getLoopBody().getOps()) 428 nb.clone(bodyOp, mapping); 429 }; 430 }; 431 432 b.create<scf::ForOp>(blockFirstCoord[0], blockEndCoord[0], c1, ValueRange(), 433 workLoopBuilder(0)); 434 b.create<ReturnOp>(ValueRange()); 435 436 return {op.getNumLoops(), func, std::move(computeFuncType.captures)}; 437 } 438 439 // Creates recursive async dispatch function for the given parallel compute 440 // function. Dispatch function keeps splitting block range into halves until it 441 // reaches a single block, and then excecutes it inline. 442 // 443 // Function pseudocode (mix of C++ and MLIR): 444 // 445 // func @async_dispatch(%block_start : index, %block_end : index, ...) { 446 // 447 // // Keep splitting block range until we reached a range of size 1. 448 // while (%block_end - %block_start > 1) { 449 // %mid_index = block_start + (block_end - block_start) / 2; 450 // async.execute { call @async_dispatch(%mid_index, %block_end); } 451 // %block_end = %mid_index 452 // } 453 // 454 // // Call parallel compute function for a single block. 455 // call @parallel_compute_fn(%block_start, %block_size, ...); 456 // } 457 // 458 static FuncOp createAsyncDispatchFunction(ParallelComputeFunction &computeFunc, 459 PatternRewriter &rewriter) { 460 OpBuilder::InsertionGuard guard(rewriter); 461 Location loc = computeFunc.func.getLoc(); 462 ImplicitLocOpBuilder b(loc, rewriter); 463 464 ModuleOp module = computeFunc.func->getParentOfType<ModuleOp>(); 465 466 ArrayRef<Type> computeFuncInputTypes = 467 computeFunc.func.type().cast<FunctionType>().getInputs(); 468 469 // Compared to the parallel compute function async dispatch function takes 470 // additional !async.group argument. Also instead of a single `blockIndex` it 471 // takes `blockStart` and `blockEnd` arguments to define the range of 472 // dispatched blocks. 473 SmallVector<Type> inputTypes; 474 inputTypes.push_back(async::GroupType::get(rewriter.getContext())); 475 inputTypes.push_back(rewriter.getIndexType()); // add blockStart argument 476 inputTypes.append(computeFuncInputTypes.begin(), computeFuncInputTypes.end()); 477 478 FunctionType type = rewriter.getFunctionType(inputTypes, TypeRange()); 479 FuncOp func = FuncOp::create(loc, "async_dispatch_fn", type); 480 func.setPrivate(); 481 482 // Insert function into the module symbol table and assign it unique name. 483 SymbolTable symbolTable(module); 484 symbolTable.insert(func); 485 rewriter.getListener()->notifyOperationInserted(func); 486 487 // Create function entry block. 488 Block *block = b.createBlock(&func.getBody(), func.begin(), type.getInputs(), 489 SmallVector<Location>(type.getNumInputs(), loc)); 490 b.setInsertionPointToEnd(block); 491 492 Type indexTy = b.getIndexType(); 493 Value c1 = b.create<arith::ConstantIndexOp>(1); 494 Value c2 = b.create<arith::ConstantIndexOp>(2); 495 496 // Get the async group that will track async dispatch completion. 497 Value group = block->getArgument(0); 498 499 // Get the block iteration range: [blockStart, blockEnd) 500 Value blockStart = block->getArgument(1); 501 Value blockEnd = block->getArgument(2); 502 503 // Create a work splitting while loop for the [blockStart, blockEnd) range. 504 SmallVector<Type> types = {indexTy, indexTy}; 505 SmallVector<Value> operands = {blockStart, blockEnd}; 506 SmallVector<Location> locations = {loc, loc}; 507 508 // Create a recursive dispatch loop. 509 scf::WhileOp whileOp = b.create<scf::WhileOp>(types, operands); 510 Block *before = b.createBlock(&whileOp.getBefore(), {}, types, locations); 511 Block *after = b.createBlock(&whileOp.getAfter(), {}, types, locations); 512 513 // Setup dispatch loop condition block: decide if we need to go into the 514 // `after` block and launch one more async dispatch. 515 { 516 b.setInsertionPointToEnd(before); 517 Value start = before->getArgument(0); 518 Value end = before->getArgument(1); 519 Value distance = b.create<arith::SubIOp>(end, start); 520 Value dispatch = 521 b.create<arith::CmpIOp>(arith::CmpIPredicate::sgt, distance, c1); 522 b.create<scf::ConditionOp>(dispatch, before->getArguments()); 523 } 524 525 // Setup the async dispatch loop body: recursively call dispatch function 526 // for the seconds half of the original range and go to the next iteration. 527 { 528 b.setInsertionPointToEnd(after); 529 Value start = after->getArgument(0); 530 Value end = after->getArgument(1); 531 Value distance = b.create<arith::SubIOp>(end, start); 532 Value halfDistance = b.create<arith::DivSIOp>(distance, c2); 533 Value midIndex = b.create<arith::AddIOp>(start, halfDistance); 534 535 // Call parallel compute function inside the async.execute region. 536 auto executeBodyBuilder = [&](OpBuilder &executeBuilder, 537 Location executeLoc, ValueRange executeArgs) { 538 // Update the original `blockStart` and `blockEnd` with new range. 539 SmallVector<Value> operands{block->getArguments().begin(), 540 block->getArguments().end()}; 541 operands[1] = midIndex; 542 operands[2] = end; 543 544 executeBuilder.create<CallOp>(executeLoc, func.sym_name(), 545 func.getCallableResults(), operands); 546 executeBuilder.create<async::YieldOp>(executeLoc, ValueRange()); 547 }; 548 549 // Create async.execute operation to dispatch half of the block range. 550 auto execute = b.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(), 551 executeBodyBuilder); 552 b.create<AddToGroupOp>(indexTy, execute.token(), group); 553 b.create<scf::YieldOp>(ValueRange({start, midIndex})); 554 } 555 556 // After dispatching async operations to process the tail of the block range 557 // call the parallel compute function for the first block of the range. 558 b.setInsertionPointAfter(whileOp); 559 560 // Drop async dispatch specific arguments: async group, block start and end. 561 auto forwardedInputs = block->getArguments().drop_front(3); 562 SmallVector<Value> computeFuncOperands = {blockStart}; 563 computeFuncOperands.append(forwardedInputs.begin(), forwardedInputs.end()); 564 565 b.create<CallOp>(computeFunc.func.sym_name(), 566 computeFunc.func.getCallableResults(), computeFuncOperands); 567 b.create<ReturnOp>(ValueRange()); 568 569 return func; 570 } 571 572 // Launch async dispatch of the parallel compute function. 573 static void doAsyncDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter, 574 ParallelComputeFunction ¶llelComputeFunction, 575 scf::ParallelOp op, Value blockSize, 576 Value blockCount, 577 const SmallVector<Value> &tripCounts) { 578 MLIRContext *ctx = op->getContext(); 579 580 // Add one more level of indirection to dispatch parallel compute functions 581 // using async operations and recursive work splitting. 582 FuncOp asyncDispatchFunction = 583 createAsyncDispatchFunction(parallelComputeFunction, rewriter); 584 585 Value c0 = b.create<arith::ConstantIndexOp>(0); 586 Value c1 = b.create<arith::ConstantIndexOp>(1); 587 588 // Appends operands shared by async dispatch and parallel compute functions to 589 // the given operands vector. 590 auto appendBlockComputeOperands = [&](SmallVector<Value> &operands) { 591 operands.append(tripCounts); 592 operands.append(op.getLowerBound().begin(), op.getLowerBound().end()); 593 operands.append(op.getUpperBound().begin(), op.getUpperBound().end()); 594 operands.append(op.getStep().begin(), op.getStep().end()); 595 operands.append(parallelComputeFunction.captures); 596 }; 597 598 // Check if the block size is one, in this case we can skip the async dispatch 599 // completely. If this will be known statically, then canonicalization will 600 // erase async group operations. 601 Value isSingleBlock = 602 b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, blockCount, c1); 603 604 auto syncDispatch = [&](OpBuilder &nestedBuilder, Location loc) { 605 ImplicitLocOpBuilder nb(loc, nestedBuilder); 606 607 // Call parallel compute function for the single block. 608 SmallVector<Value> operands = {c0, blockSize}; 609 appendBlockComputeOperands(operands); 610 611 nb.create<CallOp>(parallelComputeFunction.func.sym_name(), 612 parallelComputeFunction.func.getCallableResults(), 613 operands); 614 nb.create<scf::YieldOp>(); 615 }; 616 617 auto asyncDispatch = [&](OpBuilder &nestedBuilder, Location loc) { 618 // Create an async.group to wait on all async tokens from the concurrent 619 // execution of multiple parallel compute function. First block will be 620 // executed synchronously in the caller thread. 621 Value groupSize = b.create<arith::SubIOp>(blockCount, c1); 622 Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize); 623 624 ImplicitLocOpBuilder nb(loc, nestedBuilder); 625 626 // Launch async dispatch function for [0, blockCount) range. 627 SmallVector<Value> operands = {group, c0, blockCount, blockSize}; 628 appendBlockComputeOperands(operands); 629 630 nb.create<CallOp>(asyncDispatchFunction.sym_name(), 631 asyncDispatchFunction.getCallableResults(), operands); 632 633 // Wait for the completion of all parallel compute operations. 634 b.create<AwaitAllOp>(group); 635 636 nb.create<scf::YieldOp>(); 637 }; 638 639 // Dispatch either single block compute function, or launch async dispatch. 640 b.create<scf::IfOp>(TypeRange(), isSingleBlock, syncDispatch, asyncDispatch); 641 } 642 643 // Dispatch parallel compute functions by submitting all async compute tasks 644 // from a simple for loop in the caller thread. 645 static void 646 doSequentialDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter, 647 ParallelComputeFunction ¶llelComputeFunction, 648 scf::ParallelOp op, Value blockSize, Value blockCount, 649 const SmallVector<Value> &tripCounts) { 650 MLIRContext *ctx = op->getContext(); 651 652 FuncOp compute = parallelComputeFunction.func; 653 654 Value c0 = b.create<arith::ConstantIndexOp>(0); 655 Value c1 = b.create<arith::ConstantIndexOp>(1); 656 657 // Create an async.group to wait on all async tokens from the concurrent 658 // execution of multiple parallel compute function. First block will be 659 // executed synchronously in the caller thread. 660 Value groupSize = b.create<arith::SubIOp>(blockCount, c1); 661 Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize); 662 663 // Call parallel compute function for all blocks. 664 using LoopBodyBuilder = 665 std::function<void(OpBuilder &, Location, Value, ValueRange)>; 666 667 // Returns parallel compute function operands to process the given block. 668 auto computeFuncOperands = [&](Value blockIndex) -> SmallVector<Value> { 669 SmallVector<Value> computeFuncOperands = {blockIndex, blockSize}; 670 computeFuncOperands.append(tripCounts); 671 computeFuncOperands.append(op.getLowerBound().begin(), 672 op.getLowerBound().end()); 673 computeFuncOperands.append(op.getUpperBound().begin(), 674 op.getUpperBound().end()); 675 computeFuncOperands.append(op.getStep().begin(), op.getStep().end()); 676 computeFuncOperands.append(parallelComputeFunction.captures); 677 return computeFuncOperands; 678 }; 679 680 // Induction variable is the index of the block: [0, blockCount). 681 LoopBodyBuilder loopBuilder = [&](OpBuilder &loopBuilder, Location loc, 682 Value iv, ValueRange args) { 683 ImplicitLocOpBuilder nb(loc, loopBuilder); 684 685 // Call parallel compute function inside the async.execute region. 686 auto executeBodyBuilder = [&](OpBuilder &executeBuilder, 687 Location executeLoc, ValueRange executeArgs) { 688 executeBuilder.create<CallOp>(executeLoc, compute.sym_name(), 689 compute.getCallableResults(), 690 computeFuncOperands(iv)); 691 executeBuilder.create<async::YieldOp>(executeLoc, ValueRange()); 692 }; 693 694 // Create async.execute operation to launch parallel computate function. 695 auto execute = nb.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(), 696 executeBodyBuilder); 697 nb.create<AddToGroupOp>(rewriter.getIndexType(), execute.token(), group); 698 nb.create<scf::YieldOp>(); 699 }; 700 701 // Iterate over all compute blocks and launch parallel compute operations. 702 b.create<scf::ForOp>(c1, blockCount, c1, ValueRange(), loopBuilder); 703 704 // Call parallel compute function for the first block in the caller thread. 705 b.create<CallOp>(compute.sym_name(), compute.getCallableResults(), 706 computeFuncOperands(c0)); 707 708 // Wait for the completion of all async compute operations. 709 b.create<AwaitAllOp>(group); 710 } 711 712 LogicalResult 713 AsyncParallelForRewrite::matchAndRewrite(scf::ParallelOp op, 714 PatternRewriter &rewriter) const { 715 // We do not currently support rewrite for parallel op with reductions. 716 if (op.getNumReductions() != 0) 717 return failure(); 718 719 ImplicitLocOpBuilder b(op.getLoc(), rewriter); 720 721 // Computing minTaskSize emits IR and can be implemented as executing a cost 722 // model on the body of the scf.parallel. Thus it needs to be computed before 723 // the body of the scf.parallel has been manipulated. 724 Value minTaskSize = computeMinTaskSize(b, op); 725 726 // Make sure that all constants will be inside the parallel operation body to 727 // reduce the number of parallel compute function arguments. 728 cloneConstantsIntoTheRegion(op.getLoopBody(), rewriter); 729 730 // Compute trip count for each loop induction variable: 731 // tripCount = ceil_div(upperBound - lowerBound, step); 732 SmallVector<Value> tripCounts(op.getNumLoops()); 733 for (size_t i = 0; i < op.getNumLoops(); ++i) { 734 auto lb = op.getLowerBound()[i]; 735 auto ub = op.getUpperBound()[i]; 736 auto step = op.getStep()[i]; 737 auto range = b.createOrFold<arith::SubIOp>(ub, lb); 738 tripCounts[i] = b.createOrFold<arith::CeilDivSIOp>(range, step); 739 } 740 741 // Compute a product of trip counts to get the 1-dimensional iteration space 742 // for the scf.parallel operation. 743 Value tripCount = tripCounts[0]; 744 for (size_t i = 1; i < tripCounts.size(); ++i) 745 tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]); 746 747 // Short circuit no-op parallel loops (zero iterations) that can arise from 748 // the memrefs with dynamic dimension(s) equal to zero. 749 Value c0 = b.create<arith::ConstantIndexOp>(0); 750 Value isZeroIterations = 751 b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, tripCount, c0); 752 753 // Do absolutely nothing if the trip count is zero. 754 auto noOp = [&](OpBuilder &nestedBuilder, Location loc) { 755 nestedBuilder.create<scf::YieldOp>(loc); 756 }; 757 758 // Compute the parallel block size and dispatch concurrent tasks computing 759 // results for each block. 760 auto dispatch = [&](OpBuilder &nestedBuilder, Location loc) { 761 ImplicitLocOpBuilder nb(loc, nestedBuilder); 762 763 // Collect statically known constants defining the loop nest in the parallel 764 // compute function. LLVM can't always push constants across the non-trivial 765 // async dispatch call graph, by providing these values explicitly we can 766 // choose to build more efficient loop nest, and rely on a better constant 767 // folding, loop unrolling and vectorization. 768 ParallelComputeFunctionBounds staticBounds = { 769 integerConstants(tripCounts), 770 integerConstants(op.getLowerBound()), 771 integerConstants(op.getUpperBound()), 772 integerConstants(op.getStep()), 773 }; 774 775 // Find how many inner iteration dimensions are statically known, and their 776 // product is smaller than the `512`. We align the parallel compute block 777 // size by the product of statically known dimensions, so that we can 778 // guarantee that the inner loops executes from 0 to the loop trip counts 779 // and we can elide dynamic loop boundaries, and give LLVM an opportunity to 780 // unroll the loops. The constant `512` is arbitrary, it should depend on 781 // how many iterations LLVM will typically decide to unroll. 782 static constexpr int64_t maxIterations = 512; 783 784 // The number of inner loops with statically known number of iterations less 785 // than the `maxIterations` value. 786 int numUnrollableLoops = 0; 787 788 auto getInt = [](IntegerAttr attr) { return attr ? attr.getInt() : 0; }; 789 790 SmallVector<int64_t> numIterations(op.getNumLoops()); 791 numIterations.back() = getInt(staticBounds.tripCounts.back()); 792 793 for (int i = op.getNumLoops() - 2; i >= 0; --i) { 794 int64_t tripCount = getInt(staticBounds.tripCounts[i]); 795 int64_t innerIterations = numIterations[i + 1]; 796 numIterations[i] = tripCount * innerIterations; 797 798 // Update the number of inner loops that we can potentially unroll. 799 if (innerIterations > 0 && innerIterations <= maxIterations) 800 numUnrollableLoops++; 801 } 802 803 Value numWorkerThreadsVal; 804 if (numWorkerThreads >= 0) 805 numWorkerThreadsVal = b.create<arith::ConstantIndexOp>(numWorkerThreads); 806 else 807 numWorkerThreadsVal = b.create<async::RuntimeNumWorkerThreadsOp>(); 808 809 // With large number of threads the value of creating many compute blocks 810 // is reduced because the problem typically becomes memory bound. For this 811 // reason we scale the number of workers using an equivalent to the 812 // following logic: 813 // float overshardingFactor = numWorkerThreads <= 4 ? 8.0 814 // : numWorkerThreads <= 8 ? 4.0 815 // : numWorkerThreads <= 16 ? 2.0 816 // : numWorkerThreads <= 32 ? 1.0 817 // : numWorkerThreads <= 64 ? 0.8 818 // : 0.6; 819 820 // Pairs of non-inclusive lower end of the bracket and factor that the 821 // number of workers needs to be scaled with if it falls in that bucket. 822 const SmallVector<std::pair<int, float>> overshardingBrackets = { 823 {4, 4.0f}, {8, 2.0f}, {16, 1.0f}, {32, 0.8f}, {64, 0.6f}}; 824 const float initialOvershardingFactor = 8.0f; 825 826 Value scalingFactor = b.create<arith::ConstantFloatOp>( 827 llvm::APFloat(initialOvershardingFactor), b.getF32Type()); 828 for (const std::pair<int, float> &p : overshardingBrackets) { 829 Value bracketBegin = b.create<arith::ConstantIndexOp>(p.first); 830 Value inBracket = b.create<arith::CmpIOp>( 831 arith::CmpIPredicate::sgt, numWorkerThreadsVal, bracketBegin); 832 Value bracketScalingFactor = b.create<arith::ConstantFloatOp>( 833 llvm::APFloat(p.second), b.getF32Type()); 834 scalingFactor = 835 b.create<SelectOp>(inBracket, bracketScalingFactor, scalingFactor); 836 } 837 Value numWorkersIndex = 838 b.create<arith::IndexCastOp>(numWorkerThreadsVal, b.getI32Type()); 839 Value numWorkersFloat = 840 b.create<arith::SIToFPOp>(numWorkersIndex, b.getF32Type()); 841 Value scaledNumWorkers = 842 b.create<arith::MulFOp>(scalingFactor, numWorkersFloat); 843 Value scaledNumInt = 844 b.create<arith::FPToSIOp>(scaledNumWorkers, b.getI32Type()); 845 Value scaledWorkers = 846 b.create<arith::IndexCastOp>(scaledNumInt, b.getIndexType()); 847 848 Value maxComputeBlocks = b.create<arith::MaxSIOp>( 849 b.create<arith::ConstantIndexOp>(1), scaledWorkers); 850 851 // Compute parallel block size from the parallel problem size: 852 // blockSize = min(tripCount, 853 // max(ceil_div(tripCount, maxComputeBlocks), 854 // minTaskSize)) 855 Value bs0 = b.create<arith::CeilDivSIOp>(tripCount, maxComputeBlocks); 856 Value bs1 = b.create<arith::MaxSIOp>(bs0, minTaskSize); 857 Value blockSize = b.create<arith::MinSIOp>(tripCount, bs1); 858 859 ParallelComputeFunction notUnrollableParallelComputeFunction = 860 createParallelComputeFunction(op, staticBounds, 0, rewriter); 861 862 // Dispatch parallel compute function using async recursive work splitting, 863 // or by submitting compute task sequentially from a caller thread. 864 auto doDispatch = asyncDispatch ? doAsyncDispatch : doSequentialDispatch; 865 866 // Create a parallel compute function that takes a block id and computes 867 // the parallel operation body for a subset of iteration space. 868 869 // Compute the number of parallel compute blocks. 870 Value blockCount = b.create<arith::CeilDivSIOp>(tripCount, blockSize); 871 872 // Unroll when numUnrollableLoops > 0 && blockSize >= maxIterations. 873 bool staticShouldUnroll = numUnrollableLoops > 0; 874 auto dispatchNotUnrollable = [&](OpBuilder &nestedBuilder, Location loc) { 875 ImplicitLocOpBuilder nb(loc, nestedBuilder); 876 doDispatch(b, rewriter, notUnrollableParallelComputeFunction, op, 877 blockSize, blockCount, tripCounts); 878 nb.create<scf::YieldOp>(); 879 }; 880 881 if (staticShouldUnroll) { 882 Value dynamicShouldUnroll = b.create<arith::CmpIOp>( 883 arith::CmpIPredicate::sge, blockSize, 884 b.create<arith::ConstantIndexOp>(maxIterations)); 885 886 ParallelComputeFunction unrollableParallelComputeFunction = 887 createParallelComputeFunction(op, staticBounds, numUnrollableLoops, 888 rewriter); 889 890 auto dispatchUnrollable = [&](OpBuilder &nestedBuilder, Location loc) { 891 ImplicitLocOpBuilder nb(loc, nestedBuilder); 892 // Align the block size to be a multiple of the statically known 893 // number of iterations in the inner loops. 894 Value numIters = nb.create<arith::ConstantIndexOp>( 895 numIterations[op.getNumLoops() - numUnrollableLoops]); 896 Value alignedBlockSize = nb.create<arith::MulIOp>( 897 nb.create<arith::CeilDivSIOp>(blockSize, numIters), numIters); 898 doDispatch(b, rewriter, unrollableParallelComputeFunction, op, 899 alignedBlockSize, blockCount, tripCounts); 900 nb.create<scf::YieldOp>(); 901 }; 902 903 b.create<scf::IfOp>(TypeRange(), dynamicShouldUnroll, dispatchUnrollable, 904 dispatchNotUnrollable); 905 nb.create<scf::YieldOp>(); 906 } else { 907 dispatchNotUnrollable(nb, loc); 908 } 909 }; 910 911 // Replace the `scf.parallel` operation with the parallel compute function. 912 b.create<scf::IfOp>(TypeRange(), isZeroIterations, noOp, dispatch); 913 914 // Parallel operation was replaced with a block iteration loop. 915 rewriter.eraseOp(op); 916 917 return success(); 918 } 919 920 void AsyncParallelForPass::runOnOperation() { 921 MLIRContext *ctx = &getContext(); 922 923 RewritePatternSet patterns(ctx); 924 populateAsyncParallelForPatterns( 925 patterns, asyncDispatch, numWorkerThreads, 926 [&](ImplicitLocOpBuilder builder, scf::ParallelOp op) { 927 return builder.create<arith::ConstantIndexOp>(minTaskSize); 928 }); 929 if (failed(applyPatternsAndFoldGreedily(getOperation(), std::move(patterns)))) 930 signalPassFailure(); 931 } 932 933 std::unique_ptr<Pass> mlir::createAsyncParallelForPass() { 934 return std::make_unique<AsyncParallelForPass>(); 935 } 936 937 std::unique_ptr<Pass> mlir::createAsyncParallelForPass(bool asyncDispatch, 938 int32_t numWorkerThreads, 939 int32_t minTaskSize) { 940 return std::make_unique<AsyncParallelForPass>(asyncDispatch, numWorkerThreads, 941 minTaskSize); 942 } 943 944 void mlir::async::populateAsyncParallelForPatterns( 945 RewritePatternSet &patterns, bool asyncDispatch, int32_t numWorkerThreads, 946 const AsyncMinTaskSizeComputationFunction &computeMinTaskSize) { 947 MLIRContext *ctx = patterns.getContext(); 948 patterns.add<AsyncParallelForRewrite>(ctx, asyncDispatch, numWorkerThreads, 949 computeMinTaskSize); 950 } 951