1 //===- VectorToLLVM.cpp - Conversion from Vector to the LLVM dialect ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h" 10 11 #include "mlir/Conversion/ArithCommon/AttrToLLVMConverter.h" 12 #include "mlir/Conversion/LLVMCommon/PrintCallHelper.h" 13 #include "mlir/Conversion/LLVMCommon/TypeConverter.h" 14 #include "mlir/Conversion/LLVMCommon/VectorPattern.h" 15 #include "mlir/Dialect/Arith/IR/Arith.h" 16 #include "mlir/Dialect/Arith/Utils/Utils.h" 17 #include "mlir/Dialect/LLVMIR/FunctionCallUtils.h" 18 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 19 #include "mlir/Dialect/MemRef/IR/MemRef.h" 20 #include "mlir/Dialect/Vector/IR/VectorOps.h" 21 #include "mlir/Dialect/Vector/Interfaces/MaskableOpInterface.h" 22 #include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h" 23 #include "mlir/Dialect/Vector/Transforms/VectorTransforms.h" 24 #include "mlir/IR/BuiltinAttributes.h" 25 #include "mlir/IR/BuiltinTypeInterfaces.h" 26 #include "mlir/IR/BuiltinTypes.h" 27 #include "mlir/IR/TypeUtilities.h" 28 #include "mlir/Target/LLVMIR/TypeToLLVM.h" 29 #include "mlir/Transforms/DialectConversion.h" 30 #include "llvm/ADT/APFloat.h" 31 #include "llvm/Support/Casting.h" 32 #include <optional> 33 34 using namespace mlir; 35 using namespace mlir::vector; 36 37 // Helper to reduce vector type by *all* but one rank at back. 38 static VectorType reducedVectorTypeBack(VectorType tp) { 39 assert((tp.getRank() > 1) && "unlowerable vector type"); 40 return VectorType::get(tp.getShape().take_back(), tp.getElementType(), 41 tp.getScalableDims().take_back()); 42 } 43 44 // Helper that picks the proper sequence for inserting. 45 static Value insertOne(ConversionPatternRewriter &rewriter, 46 const LLVMTypeConverter &typeConverter, Location loc, 47 Value val1, Value val2, Type llvmType, int64_t rank, 48 int64_t pos) { 49 assert(rank > 0 && "0-D vector corner case should have been handled already"); 50 if (rank == 1) { 51 auto idxType = rewriter.getIndexType(); 52 auto constant = rewriter.create<LLVM::ConstantOp>( 53 loc, typeConverter.convertType(idxType), 54 rewriter.getIntegerAttr(idxType, pos)); 55 return rewriter.create<LLVM::InsertElementOp>(loc, llvmType, val1, val2, 56 constant); 57 } 58 return rewriter.create<LLVM::InsertValueOp>(loc, val1, val2, pos); 59 } 60 61 // Helper that picks the proper sequence for extracting. 62 static Value extractOne(ConversionPatternRewriter &rewriter, 63 const LLVMTypeConverter &typeConverter, Location loc, 64 Value val, Type llvmType, int64_t rank, int64_t pos) { 65 if (rank <= 1) { 66 auto idxType = rewriter.getIndexType(); 67 auto constant = rewriter.create<LLVM::ConstantOp>( 68 loc, typeConverter.convertType(idxType), 69 rewriter.getIntegerAttr(idxType, pos)); 70 return rewriter.create<LLVM::ExtractElementOp>(loc, llvmType, val, 71 constant); 72 } 73 return rewriter.create<LLVM::ExtractValueOp>(loc, val, pos); 74 } 75 76 // Helper that returns data layout alignment of a memref. 77 LogicalResult getMemRefAlignment(const LLVMTypeConverter &typeConverter, 78 MemRefType memrefType, unsigned &align) { 79 Type elementTy = typeConverter.convertType(memrefType.getElementType()); 80 if (!elementTy) 81 return failure(); 82 83 // TODO: this should use the MLIR data layout when it becomes available and 84 // stop depending on translation. 85 llvm::LLVMContext llvmContext; 86 align = LLVM::TypeToLLVMIRTranslator(llvmContext) 87 .getPreferredAlignment(elementTy, typeConverter.getDataLayout()); 88 return success(); 89 } 90 91 // Check if the last stride is non-unit and has a valid memory space. 92 static LogicalResult isMemRefTypeSupported(MemRefType memRefType, 93 const LLVMTypeConverter &converter) { 94 if (!isLastMemrefDimUnitStride(memRefType)) 95 return failure(); 96 if (failed(converter.getMemRefAddressSpace(memRefType))) 97 return failure(); 98 return success(); 99 } 100 101 // Add an index vector component to a base pointer. 102 static Value getIndexedPtrs(ConversionPatternRewriter &rewriter, Location loc, 103 const LLVMTypeConverter &typeConverter, 104 MemRefType memRefType, Value llvmMemref, Value base, 105 Value index, uint64_t vLen) { 106 assert(succeeded(isMemRefTypeSupported(memRefType, typeConverter)) && 107 "unsupported memref type"); 108 auto pType = MemRefDescriptor(llvmMemref).getElementPtrType(); 109 auto ptrsType = LLVM::getFixedVectorType(pType, vLen); 110 return rewriter.create<LLVM::GEPOp>( 111 loc, ptrsType, typeConverter.convertType(memRefType.getElementType()), 112 base, index); 113 } 114 115 /// Convert `foldResult` into a Value. Integer attribute is converted to 116 /// an LLVM constant op. 117 static Value getAsLLVMValue(OpBuilder &builder, Location loc, 118 OpFoldResult foldResult) { 119 if (auto attr = foldResult.dyn_cast<Attribute>()) { 120 auto intAttr = cast<IntegerAttr>(attr); 121 return builder.create<LLVM::ConstantOp>(loc, intAttr).getResult(); 122 } 123 124 return foldResult.get<Value>(); 125 } 126 127 namespace { 128 129 /// Trivial Vector to LLVM conversions 130 using VectorScaleOpConversion = 131 OneToOneConvertToLLVMPattern<vector::VectorScaleOp, LLVM::vscale>; 132 133 /// Conversion pattern for a vector.bitcast. 134 class VectorBitCastOpConversion 135 : public ConvertOpToLLVMPattern<vector::BitCastOp> { 136 public: 137 using ConvertOpToLLVMPattern<vector::BitCastOp>::ConvertOpToLLVMPattern; 138 139 LogicalResult 140 matchAndRewrite(vector::BitCastOp bitCastOp, OpAdaptor adaptor, 141 ConversionPatternRewriter &rewriter) const override { 142 // Only 0-D and 1-D vectors can be lowered to LLVM. 143 VectorType resultTy = bitCastOp.getResultVectorType(); 144 if (resultTy.getRank() > 1) 145 return failure(); 146 Type newResultTy = typeConverter->convertType(resultTy); 147 rewriter.replaceOpWithNewOp<LLVM::BitcastOp>(bitCastOp, newResultTy, 148 adaptor.getOperands()[0]); 149 return success(); 150 } 151 }; 152 153 /// Conversion pattern for a vector.matrix_multiply. 154 /// This is lowered directly to the proper llvm.intr.matrix.multiply. 155 class VectorMatmulOpConversion 156 : public ConvertOpToLLVMPattern<vector::MatmulOp> { 157 public: 158 using ConvertOpToLLVMPattern<vector::MatmulOp>::ConvertOpToLLVMPattern; 159 160 LogicalResult 161 matchAndRewrite(vector::MatmulOp matmulOp, OpAdaptor adaptor, 162 ConversionPatternRewriter &rewriter) const override { 163 rewriter.replaceOpWithNewOp<LLVM::MatrixMultiplyOp>( 164 matmulOp, typeConverter->convertType(matmulOp.getRes().getType()), 165 adaptor.getLhs(), adaptor.getRhs(), matmulOp.getLhsRows(), 166 matmulOp.getLhsColumns(), matmulOp.getRhsColumns()); 167 return success(); 168 } 169 }; 170 171 /// Conversion pattern for a vector.flat_transpose. 172 /// This is lowered directly to the proper llvm.intr.matrix.transpose. 173 class VectorFlatTransposeOpConversion 174 : public ConvertOpToLLVMPattern<vector::FlatTransposeOp> { 175 public: 176 using ConvertOpToLLVMPattern<vector::FlatTransposeOp>::ConvertOpToLLVMPattern; 177 178 LogicalResult 179 matchAndRewrite(vector::FlatTransposeOp transOp, OpAdaptor adaptor, 180 ConversionPatternRewriter &rewriter) const override { 181 rewriter.replaceOpWithNewOp<LLVM::MatrixTransposeOp>( 182 transOp, typeConverter->convertType(transOp.getRes().getType()), 183 adaptor.getMatrix(), transOp.getRows(), transOp.getColumns()); 184 return success(); 185 } 186 }; 187 188 /// Overloaded utility that replaces a vector.load, vector.store, 189 /// vector.maskedload and vector.maskedstore with their respective LLVM 190 /// couterparts. 191 static void replaceLoadOrStoreOp(vector::LoadOp loadOp, 192 vector::LoadOpAdaptor adaptor, 193 VectorType vectorTy, Value ptr, unsigned align, 194 ConversionPatternRewriter &rewriter) { 195 rewriter.replaceOpWithNewOp<LLVM::LoadOp>(loadOp, vectorTy, ptr, align, 196 /*volatile_=*/false, 197 loadOp.getNontemporal()); 198 } 199 200 static void replaceLoadOrStoreOp(vector::MaskedLoadOp loadOp, 201 vector::MaskedLoadOpAdaptor adaptor, 202 VectorType vectorTy, Value ptr, unsigned align, 203 ConversionPatternRewriter &rewriter) { 204 rewriter.replaceOpWithNewOp<LLVM::MaskedLoadOp>( 205 loadOp, vectorTy, ptr, adaptor.getMask(), adaptor.getPassThru(), align); 206 } 207 208 static void replaceLoadOrStoreOp(vector::StoreOp storeOp, 209 vector::StoreOpAdaptor adaptor, 210 VectorType vectorTy, Value ptr, unsigned align, 211 ConversionPatternRewriter &rewriter) { 212 rewriter.replaceOpWithNewOp<LLVM::StoreOp>(storeOp, adaptor.getValueToStore(), 213 ptr, align, /*volatile_=*/false, 214 storeOp.getNontemporal()); 215 } 216 217 static void replaceLoadOrStoreOp(vector::MaskedStoreOp storeOp, 218 vector::MaskedStoreOpAdaptor adaptor, 219 VectorType vectorTy, Value ptr, unsigned align, 220 ConversionPatternRewriter &rewriter) { 221 rewriter.replaceOpWithNewOp<LLVM::MaskedStoreOp>( 222 storeOp, adaptor.getValueToStore(), ptr, adaptor.getMask(), align); 223 } 224 225 /// Conversion pattern for a vector.load, vector.store, vector.maskedload, and 226 /// vector.maskedstore. 227 template <class LoadOrStoreOp> 228 class VectorLoadStoreConversion : public ConvertOpToLLVMPattern<LoadOrStoreOp> { 229 public: 230 using ConvertOpToLLVMPattern<LoadOrStoreOp>::ConvertOpToLLVMPattern; 231 232 LogicalResult 233 matchAndRewrite(LoadOrStoreOp loadOrStoreOp, 234 typename LoadOrStoreOp::Adaptor adaptor, 235 ConversionPatternRewriter &rewriter) const override { 236 // Only 1-D vectors can be lowered to LLVM. 237 VectorType vectorTy = loadOrStoreOp.getVectorType(); 238 if (vectorTy.getRank() > 1) 239 return failure(); 240 241 auto loc = loadOrStoreOp->getLoc(); 242 MemRefType memRefTy = loadOrStoreOp.getMemRefType(); 243 244 // Resolve alignment. 245 unsigned align; 246 if (failed(getMemRefAlignment(*this->getTypeConverter(), memRefTy, align))) 247 return failure(); 248 249 // Resolve address. 250 auto vtype = cast<VectorType>( 251 this->typeConverter->convertType(loadOrStoreOp.getVectorType())); 252 Value dataPtr = this->getStridedElementPtr(loc, memRefTy, adaptor.getBase(), 253 adaptor.getIndices(), rewriter); 254 replaceLoadOrStoreOp(loadOrStoreOp, adaptor, vtype, dataPtr, align, 255 rewriter); 256 return success(); 257 } 258 }; 259 260 /// Conversion pattern for a vector.gather. 261 class VectorGatherOpConversion 262 : public ConvertOpToLLVMPattern<vector::GatherOp> { 263 public: 264 using ConvertOpToLLVMPattern<vector::GatherOp>::ConvertOpToLLVMPattern; 265 266 LogicalResult 267 matchAndRewrite(vector::GatherOp gather, OpAdaptor adaptor, 268 ConversionPatternRewriter &rewriter) const override { 269 MemRefType memRefType = dyn_cast<MemRefType>(gather.getBaseType()); 270 assert(memRefType && "The base should be bufferized"); 271 272 if (failed(isMemRefTypeSupported(memRefType, *this->getTypeConverter()))) 273 return failure(); 274 275 auto loc = gather->getLoc(); 276 277 // Resolve alignment. 278 unsigned align; 279 if (failed(getMemRefAlignment(*getTypeConverter(), memRefType, align))) 280 return failure(); 281 282 Value ptr = getStridedElementPtr(loc, memRefType, adaptor.getBase(), 283 adaptor.getIndices(), rewriter); 284 Value base = adaptor.getBase(); 285 286 auto llvmNDVectorTy = adaptor.getIndexVec().getType(); 287 // Handle the simple case of 1-D vector. 288 if (!isa<LLVM::LLVMArrayType>(llvmNDVectorTy)) { 289 auto vType = gather.getVectorType(); 290 // Resolve address. 291 Value ptrs = getIndexedPtrs(rewriter, loc, *this->getTypeConverter(), 292 memRefType, base, ptr, adaptor.getIndexVec(), 293 /*vLen=*/vType.getDimSize(0)); 294 // Replace with the gather intrinsic. 295 rewriter.replaceOpWithNewOp<LLVM::masked_gather>( 296 gather, typeConverter->convertType(vType), ptrs, adaptor.getMask(), 297 adaptor.getPassThru(), rewriter.getI32IntegerAttr(align)); 298 return success(); 299 } 300 301 const LLVMTypeConverter &typeConverter = *this->getTypeConverter(); 302 auto callback = [align, memRefType, base, ptr, loc, &rewriter, 303 &typeConverter](Type llvm1DVectorTy, 304 ValueRange vectorOperands) { 305 // Resolve address. 306 Value ptrs = getIndexedPtrs( 307 rewriter, loc, typeConverter, memRefType, base, ptr, 308 /*index=*/vectorOperands[0], 309 LLVM::getVectorNumElements(llvm1DVectorTy).getFixedValue()); 310 // Create the gather intrinsic. 311 return rewriter.create<LLVM::masked_gather>( 312 loc, llvm1DVectorTy, ptrs, /*mask=*/vectorOperands[1], 313 /*passThru=*/vectorOperands[2], rewriter.getI32IntegerAttr(align)); 314 }; 315 SmallVector<Value> vectorOperands = { 316 adaptor.getIndexVec(), adaptor.getMask(), adaptor.getPassThru()}; 317 return LLVM::detail::handleMultidimensionalVectors( 318 gather, vectorOperands, *getTypeConverter(), callback, rewriter); 319 } 320 }; 321 322 /// Conversion pattern for a vector.scatter. 323 class VectorScatterOpConversion 324 : public ConvertOpToLLVMPattern<vector::ScatterOp> { 325 public: 326 using ConvertOpToLLVMPattern<vector::ScatterOp>::ConvertOpToLLVMPattern; 327 328 LogicalResult 329 matchAndRewrite(vector::ScatterOp scatter, OpAdaptor adaptor, 330 ConversionPatternRewriter &rewriter) const override { 331 auto loc = scatter->getLoc(); 332 MemRefType memRefType = scatter.getMemRefType(); 333 334 if (failed(isMemRefTypeSupported(memRefType, *this->getTypeConverter()))) 335 return failure(); 336 337 // Resolve alignment. 338 unsigned align; 339 if (failed(getMemRefAlignment(*getTypeConverter(), memRefType, align))) 340 return failure(); 341 342 // Resolve address. 343 VectorType vType = scatter.getVectorType(); 344 Value ptr = getStridedElementPtr(loc, memRefType, adaptor.getBase(), 345 adaptor.getIndices(), rewriter); 346 Value ptrs = getIndexedPtrs( 347 rewriter, loc, *this->getTypeConverter(), memRefType, adaptor.getBase(), 348 ptr, adaptor.getIndexVec(), /*vLen=*/vType.getDimSize(0)); 349 350 // Replace with the scatter intrinsic. 351 rewriter.replaceOpWithNewOp<LLVM::masked_scatter>( 352 scatter, adaptor.getValueToStore(), ptrs, adaptor.getMask(), 353 rewriter.getI32IntegerAttr(align)); 354 return success(); 355 } 356 }; 357 358 /// Conversion pattern for a vector.expandload. 359 class VectorExpandLoadOpConversion 360 : public ConvertOpToLLVMPattern<vector::ExpandLoadOp> { 361 public: 362 using ConvertOpToLLVMPattern<vector::ExpandLoadOp>::ConvertOpToLLVMPattern; 363 364 LogicalResult 365 matchAndRewrite(vector::ExpandLoadOp expand, OpAdaptor adaptor, 366 ConversionPatternRewriter &rewriter) const override { 367 auto loc = expand->getLoc(); 368 MemRefType memRefType = expand.getMemRefType(); 369 370 // Resolve address. 371 auto vtype = typeConverter->convertType(expand.getVectorType()); 372 Value ptr = getStridedElementPtr(loc, memRefType, adaptor.getBase(), 373 adaptor.getIndices(), rewriter); 374 375 rewriter.replaceOpWithNewOp<LLVM::masked_expandload>( 376 expand, vtype, ptr, adaptor.getMask(), adaptor.getPassThru()); 377 return success(); 378 } 379 }; 380 381 /// Conversion pattern for a vector.compressstore. 382 class VectorCompressStoreOpConversion 383 : public ConvertOpToLLVMPattern<vector::CompressStoreOp> { 384 public: 385 using ConvertOpToLLVMPattern<vector::CompressStoreOp>::ConvertOpToLLVMPattern; 386 387 LogicalResult 388 matchAndRewrite(vector::CompressStoreOp compress, OpAdaptor adaptor, 389 ConversionPatternRewriter &rewriter) const override { 390 auto loc = compress->getLoc(); 391 MemRefType memRefType = compress.getMemRefType(); 392 393 // Resolve address. 394 Value ptr = getStridedElementPtr(loc, memRefType, adaptor.getBase(), 395 adaptor.getIndices(), rewriter); 396 397 rewriter.replaceOpWithNewOp<LLVM::masked_compressstore>( 398 compress, adaptor.getValueToStore(), ptr, adaptor.getMask()); 399 return success(); 400 } 401 }; 402 403 /// Reduction neutral classes for overloading. 404 class ReductionNeutralZero {}; 405 class ReductionNeutralIntOne {}; 406 class ReductionNeutralFPOne {}; 407 class ReductionNeutralAllOnes {}; 408 class ReductionNeutralSIntMin {}; 409 class ReductionNeutralUIntMin {}; 410 class ReductionNeutralSIntMax {}; 411 class ReductionNeutralUIntMax {}; 412 class ReductionNeutralFPMin {}; 413 class ReductionNeutralFPMax {}; 414 415 /// Create the reduction neutral zero value. 416 static Value createReductionNeutralValue(ReductionNeutralZero neutral, 417 ConversionPatternRewriter &rewriter, 418 Location loc, Type llvmType) { 419 return rewriter.create<LLVM::ConstantOp>(loc, llvmType, 420 rewriter.getZeroAttr(llvmType)); 421 } 422 423 /// Create the reduction neutral integer one value. 424 static Value createReductionNeutralValue(ReductionNeutralIntOne neutral, 425 ConversionPatternRewriter &rewriter, 426 Location loc, Type llvmType) { 427 return rewriter.create<LLVM::ConstantOp>( 428 loc, llvmType, rewriter.getIntegerAttr(llvmType, 1)); 429 } 430 431 /// Create the reduction neutral fp one value. 432 static Value createReductionNeutralValue(ReductionNeutralFPOne neutral, 433 ConversionPatternRewriter &rewriter, 434 Location loc, Type llvmType) { 435 return rewriter.create<LLVM::ConstantOp>( 436 loc, llvmType, rewriter.getFloatAttr(llvmType, 1.0)); 437 } 438 439 /// Create the reduction neutral all-ones value. 440 static Value createReductionNeutralValue(ReductionNeutralAllOnes neutral, 441 ConversionPatternRewriter &rewriter, 442 Location loc, Type llvmType) { 443 return rewriter.create<LLVM::ConstantOp>( 444 loc, llvmType, 445 rewriter.getIntegerAttr( 446 llvmType, llvm::APInt::getAllOnes(llvmType.getIntOrFloatBitWidth()))); 447 } 448 449 /// Create the reduction neutral signed int minimum value. 450 static Value createReductionNeutralValue(ReductionNeutralSIntMin neutral, 451 ConversionPatternRewriter &rewriter, 452 Location loc, Type llvmType) { 453 return rewriter.create<LLVM::ConstantOp>( 454 loc, llvmType, 455 rewriter.getIntegerAttr(llvmType, llvm::APInt::getSignedMinValue( 456 llvmType.getIntOrFloatBitWidth()))); 457 } 458 459 /// Create the reduction neutral unsigned int minimum value. 460 static Value createReductionNeutralValue(ReductionNeutralUIntMin neutral, 461 ConversionPatternRewriter &rewriter, 462 Location loc, Type llvmType) { 463 return rewriter.create<LLVM::ConstantOp>( 464 loc, llvmType, 465 rewriter.getIntegerAttr(llvmType, llvm::APInt::getMinValue( 466 llvmType.getIntOrFloatBitWidth()))); 467 } 468 469 /// Create the reduction neutral signed int maximum value. 470 static Value createReductionNeutralValue(ReductionNeutralSIntMax neutral, 471 ConversionPatternRewriter &rewriter, 472 Location loc, Type llvmType) { 473 return rewriter.create<LLVM::ConstantOp>( 474 loc, llvmType, 475 rewriter.getIntegerAttr(llvmType, llvm::APInt::getSignedMaxValue( 476 llvmType.getIntOrFloatBitWidth()))); 477 } 478 479 /// Create the reduction neutral unsigned int maximum value. 480 static Value createReductionNeutralValue(ReductionNeutralUIntMax neutral, 481 ConversionPatternRewriter &rewriter, 482 Location loc, Type llvmType) { 483 return rewriter.create<LLVM::ConstantOp>( 484 loc, llvmType, 485 rewriter.getIntegerAttr(llvmType, llvm::APInt::getMaxValue( 486 llvmType.getIntOrFloatBitWidth()))); 487 } 488 489 /// Create the reduction neutral fp minimum value. 490 static Value createReductionNeutralValue(ReductionNeutralFPMin neutral, 491 ConversionPatternRewriter &rewriter, 492 Location loc, Type llvmType) { 493 auto floatType = cast<FloatType>(llvmType); 494 return rewriter.create<LLVM::ConstantOp>( 495 loc, llvmType, 496 rewriter.getFloatAttr( 497 llvmType, llvm::APFloat::getQNaN(floatType.getFloatSemantics(), 498 /*Negative=*/false))); 499 } 500 501 /// Create the reduction neutral fp maximum value. 502 static Value createReductionNeutralValue(ReductionNeutralFPMax neutral, 503 ConversionPatternRewriter &rewriter, 504 Location loc, Type llvmType) { 505 auto floatType = cast<FloatType>(llvmType); 506 return rewriter.create<LLVM::ConstantOp>( 507 loc, llvmType, 508 rewriter.getFloatAttr( 509 llvmType, llvm::APFloat::getQNaN(floatType.getFloatSemantics(), 510 /*Negative=*/true))); 511 } 512 513 /// Returns `accumulator` if it has a valid value. Otherwise, creates and 514 /// returns a new accumulator value using `ReductionNeutral`. 515 template <class ReductionNeutral> 516 static Value getOrCreateAccumulator(ConversionPatternRewriter &rewriter, 517 Location loc, Type llvmType, 518 Value accumulator) { 519 if (accumulator) 520 return accumulator; 521 522 return createReductionNeutralValue(ReductionNeutral(), rewriter, loc, 523 llvmType); 524 } 525 526 /// Creates a constant value with the 1-D vector shape provided in `llvmType`. 527 /// This is used as effective vector length by some intrinsics supporting 528 /// dynamic vector lengths at runtime. 529 static Value createVectorLengthValue(ConversionPatternRewriter &rewriter, 530 Location loc, Type llvmType) { 531 VectorType vType = cast<VectorType>(llvmType); 532 auto vShape = vType.getShape(); 533 assert(vShape.size() == 1 && "Unexpected multi-dim vector type"); 534 535 return rewriter.create<LLVM::ConstantOp>( 536 loc, rewriter.getI32Type(), 537 rewriter.getIntegerAttr(rewriter.getI32Type(), vShape[0])); 538 } 539 540 /// Helper method to lower a `vector.reduction` op that performs an arithmetic 541 /// operation like add,mul, etc.. `VectorOp` is the LLVM vector intrinsic to use 542 /// and `ScalarOp` is the scalar operation used to add the accumulation value if 543 /// non-null. 544 template <class LLVMRedIntrinOp, class ScalarOp> 545 static Value createIntegerReductionArithmeticOpLowering( 546 ConversionPatternRewriter &rewriter, Location loc, Type llvmType, 547 Value vectorOperand, Value accumulator) { 548 549 Value result = rewriter.create<LLVMRedIntrinOp>(loc, llvmType, vectorOperand); 550 551 if (accumulator) 552 result = rewriter.create<ScalarOp>(loc, accumulator, result); 553 return result; 554 } 555 556 /// Helper method to lower a `vector.reduction` operation that performs 557 /// a comparison operation like `min`/`max`. `VectorOp` is the LLVM vector 558 /// intrinsic to use and `predicate` is the predicate to use to compare+combine 559 /// the accumulator value if non-null. 560 template <class LLVMRedIntrinOp> 561 static Value createIntegerReductionComparisonOpLowering( 562 ConversionPatternRewriter &rewriter, Location loc, Type llvmType, 563 Value vectorOperand, Value accumulator, LLVM::ICmpPredicate predicate) { 564 Value result = rewriter.create<LLVMRedIntrinOp>(loc, llvmType, vectorOperand); 565 if (accumulator) { 566 Value cmp = 567 rewriter.create<LLVM::ICmpOp>(loc, predicate, accumulator, result); 568 result = rewriter.create<LLVM::SelectOp>(loc, cmp, accumulator, result); 569 } 570 return result; 571 } 572 573 namespace { 574 template <typename Source> 575 struct VectorToScalarMapper; 576 template <> 577 struct VectorToScalarMapper<LLVM::vector_reduce_fmaximum> { 578 using Type = LLVM::MaximumOp; 579 }; 580 template <> 581 struct VectorToScalarMapper<LLVM::vector_reduce_fminimum> { 582 using Type = LLVM::MinimumOp; 583 }; 584 template <> 585 struct VectorToScalarMapper<LLVM::vector_reduce_fmax> { 586 using Type = LLVM::MaxNumOp; 587 }; 588 template <> 589 struct VectorToScalarMapper<LLVM::vector_reduce_fmin> { 590 using Type = LLVM::MinNumOp; 591 }; 592 } // namespace 593 594 template <class LLVMRedIntrinOp> 595 static Value createFPReductionComparisonOpLowering( 596 ConversionPatternRewriter &rewriter, Location loc, Type llvmType, 597 Value vectorOperand, Value accumulator, LLVM::FastmathFlagsAttr fmf) { 598 Value result = 599 rewriter.create<LLVMRedIntrinOp>(loc, llvmType, vectorOperand, fmf); 600 601 if (accumulator) { 602 result = 603 rewriter.create<typename VectorToScalarMapper<LLVMRedIntrinOp>::Type>( 604 loc, result, accumulator); 605 } 606 607 return result; 608 } 609 610 /// Reduction neutral classes for overloading 611 class MaskNeutralFMaximum {}; 612 class MaskNeutralFMinimum {}; 613 614 /// Get the mask neutral floating point maximum value 615 static llvm::APFloat 616 getMaskNeutralValue(MaskNeutralFMaximum, 617 const llvm::fltSemantics &floatSemantics) { 618 return llvm::APFloat::getSmallest(floatSemantics, /*Negative=*/true); 619 } 620 /// Get the mask neutral floating point minimum value 621 static llvm::APFloat 622 getMaskNeutralValue(MaskNeutralFMinimum, 623 const llvm::fltSemantics &floatSemantics) { 624 return llvm::APFloat::getLargest(floatSemantics, /*Negative=*/false); 625 } 626 627 /// Create the mask neutral floating point MLIR vector constant 628 template <typename MaskNeutral> 629 static Value createMaskNeutralValue(ConversionPatternRewriter &rewriter, 630 Location loc, Type llvmType, 631 Type vectorType) { 632 const auto &floatSemantics = cast<FloatType>(llvmType).getFloatSemantics(); 633 auto value = getMaskNeutralValue(MaskNeutral{}, floatSemantics); 634 auto denseValue = 635 DenseElementsAttr::get(vectorType.cast<ShapedType>(), value); 636 return rewriter.create<LLVM::ConstantOp>(loc, vectorType, denseValue); 637 } 638 639 /// Lowers masked `fmaximum` and `fminimum` reductions using the non-masked 640 /// intrinsics. It is a workaround to overcome the lack of masked intrinsics for 641 /// `fmaximum`/`fminimum`. 642 /// More information: https://github.com/llvm/llvm-project/issues/64940 643 template <class LLVMRedIntrinOp, class MaskNeutral> 644 static Value 645 lowerMaskedReductionWithRegular(ConversionPatternRewriter &rewriter, 646 Location loc, Type llvmType, 647 Value vectorOperand, Value accumulator, 648 Value mask, LLVM::FastmathFlagsAttr fmf) { 649 const Value vectorMaskNeutral = createMaskNeutralValue<MaskNeutral>( 650 rewriter, loc, llvmType, vectorOperand.getType()); 651 const Value selectedVectorByMask = rewriter.create<LLVM::SelectOp>( 652 loc, mask, vectorOperand, vectorMaskNeutral); 653 return createFPReductionComparisonOpLowering<LLVMRedIntrinOp>( 654 rewriter, loc, llvmType, selectedVectorByMask, accumulator, fmf); 655 } 656 657 template <class LLVMRedIntrinOp, class ReductionNeutral> 658 static Value 659 lowerReductionWithStartValue(ConversionPatternRewriter &rewriter, Location loc, 660 Type llvmType, Value vectorOperand, 661 Value accumulator, LLVM::FastmathFlagsAttr fmf) { 662 accumulator = getOrCreateAccumulator<ReductionNeutral>(rewriter, loc, 663 llvmType, accumulator); 664 return rewriter.create<LLVMRedIntrinOp>(loc, llvmType, 665 /*startValue=*/accumulator, 666 vectorOperand, fmf); 667 } 668 669 /// Overloaded methods to lower a *predicated* reduction to an llvm instrinsic 670 /// that requires a start value. This start value format spans across fp 671 /// reductions without mask and all the masked reduction intrinsics. 672 template <class LLVMVPRedIntrinOp, class ReductionNeutral> 673 static Value 674 lowerPredicatedReductionWithStartValue(ConversionPatternRewriter &rewriter, 675 Location loc, Type llvmType, 676 Value vectorOperand, Value accumulator) { 677 accumulator = getOrCreateAccumulator<ReductionNeutral>(rewriter, loc, 678 llvmType, accumulator); 679 return rewriter.create<LLVMVPRedIntrinOp>(loc, llvmType, 680 /*startValue=*/accumulator, 681 vectorOperand); 682 } 683 684 template <class LLVMVPRedIntrinOp, class ReductionNeutral> 685 static Value lowerPredicatedReductionWithStartValue( 686 ConversionPatternRewriter &rewriter, Location loc, Type llvmType, 687 Value vectorOperand, Value accumulator, Value mask) { 688 accumulator = getOrCreateAccumulator<ReductionNeutral>(rewriter, loc, 689 llvmType, accumulator); 690 Value vectorLength = 691 createVectorLengthValue(rewriter, loc, vectorOperand.getType()); 692 return rewriter.create<LLVMVPRedIntrinOp>(loc, llvmType, 693 /*startValue=*/accumulator, 694 vectorOperand, mask, vectorLength); 695 } 696 697 template <class LLVMIntVPRedIntrinOp, class IntReductionNeutral, 698 class LLVMFPVPRedIntrinOp, class FPReductionNeutral> 699 static Value lowerPredicatedReductionWithStartValue( 700 ConversionPatternRewriter &rewriter, Location loc, Type llvmType, 701 Value vectorOperand, Value accumulator, Value mask) { 702 if (llvmType.isIntOrIndex()) 703 return lowerPredicatedReductionWithStartValue<LLVMIntVPRedIntrinOp, 704 IntReductionNeutral>( 705 rewriter, loc, llvmType, vectorOperand, accumulator, mask); 706 707 // FP dispatch. 708 return lowerPredicatedReductionWithStartValue<LLVMFPVPRedIntrinOp, 709 FPReductionNeutral>( 710 rewriter, loc, llvmType, vectorOperand, accumulator, mask); 711 } 712 713 /// Conversion pattern for all vector reductions. 714 class VectorReductionOpConversion 715 : public ConvertOpToLLVMPattern<vector::ReductionOp> { 716 public: 717 explicit VectorReductionOpConversion(const LLVMTypeConverter &typeConv, 718 bool reassociateFPRed) 719 : ConvertOpToLLVMPattern<vector::ReductionOp>(typeConv), 720 reassociateFPReductions(reassociateFPRed) {} 721 722 LogicalResult 723 matchAndRewrite(vector::ReductionOp reductionOp, OpAdaptor adaptor, 724 ConversionPatternRewriter &rewriter) const override { 725 auto kind = reductionOp.getKind(); 726 Type eltType = reductionOp.getDest().getType(); 727 Type llvmType = typeConverter->convertType(eltType); 728 Value operand = adaptor.getVector(); 729 Value acc = adaptor.getAcc(); 730 Location loc = reductionOp.getLoc(); 731 732 if (eltType.isIntOrIndex()) { 733 // Integer reductions: add/mul/min/max/and/or/xor. 734 Value result; 735 switch (kind) { 736 case vector::CombiningKind::ADD: 737 result = 738 createIntegerReductionArithmeticOpLowering<LLVM::vector_reduce_add, 739 LLVM::AddOp>( 740 rewriter, loc, llvmType, operand, acc); 741 break; 742 case vector::CombiningKind::MUL: 743 result = 744 createIntegerReductionArithmeticOpLowering<LLVM::vector_reduce_mul, 745 LLVM::MulOp>( 746 rewriter, loc, llvmType, operand, acc); 747 break; 748 case vector::CombiningKind::MINUI: 749 result = createIntegerReductionComparisonOpLowering< 750 LLVM::vector_reduce_umin>(rewriter, loc, llvmType, operand, acc, 751 LLVM::ICmpPredicate::ule); 752 break; 753 case vector::CombiningKind::MINSI: 754 result = createIntegerReductionComparisonOpLowering< 755 LLVM::vector_reduce_smin>(rewriter, loc, llvmType, operand, acc, 756 LLVM::ICmpPredicate::sle); 757 break; 758 case vector::CombiningKind::MAXUI: 759 result = createIntegerReductionComparisonOpLowering< 760 LLVM::vector_reduce_umax>(rewriter, loc, llvmType, operand, acc, 761 LLVM::ICmpPredicate::uge); 762 break; 763 case vector::CombiningKind::MAXSI: 764 result = createIntegerReductionComparisonOpLowering< 765 LLVM::vector_reduce_smax>(rewriter, loc, llvmType, operand, acc, 766 LLVM::ICmpPredicate::sge); 767 break; 768 case vector::CombiningKind::AND: 769 result = 770 createIntegerReductionArithmeticOpLowering<LLVM::vector_reduce_and, 771 LLVM::AndOp>( 772 rewriter, loc, llvmType, operand, acc); 773 break; 774 case vector::CombiningKind::OR: 775 result = 776 createIntegerReductionArithmeticOpLowering<LLVM::vector_reduce_or, 777 LLVM::OrOp>( 778 rewriter, loc, llvmType, operand, acc); 779 break; 780 case vector::CombiningKind::XOR: 781 result = 782 createIntegerReductionArithmeticOpLowering<LLVM::vector_reduce_xor, 783 LLVM::XOrOp>( 784 rewriter, loc, llvmType, operand, acc); 785 break; 786 default: 787 return failure(); 788 } 789 rewriter.replaceOp(reductionOp, result); 790 791 return success(); 792 } 793 794 if (!isa<FloatType>(eltType)) 795 return failure(); 796 797 arith::FastMathFlagsAttr fMFAttr = reductionOp.getFastMathFlagsAttr(); 798 LLVM::FastmathFlagsAttr fmf = LLVM::FastmathFlagsAttr::get( 799 reductionOp.getContext(), 800 convertArithFastMathFlagsToLLVM(fMFAttr.getValue())); 801 fmf = LLVM::FastmathFlagsAttr::get( 802 reductionOp.getContext(), 803 fmf.getValue() | (reassociateFPReductions ? LLVM::FastmathFlags::reassoc 804 : LLVM::FastmathFlags::none)); 805 806 // Floating-point reductions: add/mul/min/max 807 Value result; 808 if (kind == vector::CombiningKind::ADD) { 809 result = lowerReductionWithStartValue<LLVM::vector_reduce_fadd, 810 ReductionNeutralZero>( 811 rewriter, loc, llvmType, operand, acc, fmf); 812 } else if (kind == vector::CombiningKind::MUL) { 813 result = lowerReductionWithStartValue<LLVM::vector_reduce_fmul, 814 ReductionNeutralFPOne>( 815 rewriter, loc, llvmType, operand, acc, fmf); 816 } else if (kind == vector::CombiningKind::MINIMUMF) { 817 result = 818 createFPReductionComparisonOpLowering<LLVM::vector_reduce_fminimum>( 819 rewriter, loc, llvmType, operand, acc, fmf); 820 } else if (kind == vector::CombiningKind::MAXIMUMF) { 821 result = 822 createFPReductionComparisonOpLowering<LLVM::vector_reduce_fmaximum>( 823 rewriter, loc, llvmType, operand, acc, fmf); 824 } else if (kind == vector::CombiningKind::MINNUMF) { 825 result = createFPReductionComparisonOpLowering<LLVM::vector_reduce_fmin>( 826 rewriter, loc, llvmType, operand, acc, fmf); 827 } else if (kind == vector::CombiningKind::MAXNUMF) { 828 result = createFPReductionComparisonOpLowering<LLVM::vector_reduce_fmax>( 829 rewriter, loc, llvmType, operand, acc, fmf); 830 } else 831 return failure(); 832 833 rewriter.replaceOp(reductionOp, result); 834 return success(); 835 } 836 837 private: 838 const bool reassociateFPReductions; 839 }; 840 841 /// Base class to convert a `vector.mask` operation while matching traits 842 /// of the maskable operation nested inside. A `VectorMaskOpConversionBase` 843 /// instance matches against a `vector.mask` operation. The `matchAndRewrite` 844 /// method performs a second match against the maskable operation `MaskedOp`. 845 /// Finally, it invokes the virtual method `matchAndRewriteMaskableOp` to be 846 /// implemented by the concrete conversion classes. This method can match 847 /// against specific traits of the `vector.mask` and the maskable operation. It 848 /// must replace the `vector.mask` operation. 849 template <class MaskedOp> 850 class VectorMaskOpConversionBase 851 : public ConvertOpToLLVMPattern<vector::MaskOp> { 852 public: 853 using ConvertOpToLLVMPattern<vector::MaskOp>::ConvertOpToLLVMPattern; 854 855 LogicalResult 856 matchAndRewrite(vector::MaskOp maskOp, OpAdaptor adaptor, 857 ConversionPatternRewriter &rewriter) const final { 858 // Match against the maskable operation kind. 859 auto maskedOp = llvm::dyn_cast_or_null<MaskedOp>(maskOp.getMaskableOp()); 860 if (!maskedOp) 861 return failure(); 862 return matchAndRewriteMaskableOp(maskOp, maskedOp, rewriter); 863 } 864 865 protected: 866 virtual LogicalResult 867 matchAndRewriteMaskableOp(vector::MaskOp maskOp, 868 vector::MaskableOpInterface maskableOp, 869 ConversionPatternRewriter &rewriter) const = 0; 870 }; 871 872 class MaskedReductionOpConversion 873 : public VectorMaskOpConversionBase<vector::ReductionOp> { 874 875 public: 876 using VectorMaskOpConversionBase< 877 vector::ReductionOp>::VectorMaskOpConversionBase; 878 879 LogicalResult matchAndRewriteMaskableOp( 880 vector::MaskOp maskOp, MaskableOpInterface maskableOp, 881 ConversionPatternRewriter &rewriter) const override { 882 auto reductionOp = cast<ReductionOp>(maskableOp.getOperation()); 883 auto kind = reductionOp.getKind(); 884 Type eltType = reductionOp.getDest().getType(); 885 Type llvmType = typeConverter->convertType(eltType); 886 Value operand = reductionOp.getVector(); 887 Value acc = reductionOp.getAcc(); 888 Location loc = reductionOp.getLoc(); 889 890 arith::FastMathFlagsAttr fMFAttr = reductionOp.getFastMathFlagsAttr(); 891 LLVM::FastmathFlagsAttr fmf = LLVM::FastmathFlagsAttr::get( 892 reductionOp.getContext(), 893 convertArithFastMathFlagsToLLVM(fMFAttr.getValue())); 894 895 Value result; 896 switch (kind) { 897 case vector::CombiningKind::ADD: 898 result = lowerPredicatedReductionWithStartValue< 899 LLVM::VPReduceAddOp, ReductionNeutralZero, LLVM::VPReduceFAddOp, 900 ReductionNeutralZero>(rewriter, loc, llvmType, operand, acc, 901 maskOp.getMask()); 902 break; 903 case vector::CombiningKind::MUL: 904 result = lowerPredicatedReductionWithStartValue< 905 LLVM::VPReduceMulOp, ReductionNeutralIntOne, LLVM::VPReduceFMulOp, 906 ReductionNeutralFPOne>(rewriter, loc, llvmType, operand, acc, 907 maskOp.getMask()); 908 break; 909 case vector::CombiningKind::MINUI: 910 result = lowerPredicatedReductionWithStartValue<LLVM::VPReduceUMinOp, 911 ReductionNeutralUIntMax>( 912 rewriter, loc, llvmType, operand, acc, maskOp.getMask()); 913 break; 914 case vector::CombiningKind::MINSI: 915 result = lowerPredicatedReductionWithStartValue<LLVM::VPReduceSMinOp, 916 ReductionNeutralSIntMax>( 917 rewriter, loc, llvmType, operand, acc, maskOp.getMask()); 918 break; 919 case vector::CombiningKind::MAXUI: 920 result = lowerPredicatedReductionWithStartValue<LLVM::VPReduceUMaxOp, 921 ReductionNeutralUIntMin>( 922 rewriter, loc, llvmType, operand, acc, maskOp.getMask()); 923 break; 924 case vector::CombiningKind::MAXSI: 925 result = lowerPredicatedReductionWithStartValue<LLVM::VPReduceSMaxOp, 926 ReductionNeutralSIntMin>( 927 rewriter, loc, llvmType, operand, acc, maskOp.getMask()); 928 break; 929 case vector::CombiningKind::AND: 930 result = lowerPredicatedReductionWithStartValue<LLVM::VPReduceAndOp, 931 ReductionNeutralAllOnes>( 932 rewriter, loc, llvmType, operand, acc, maskOp.getMask()); 933 break; 934 case vector::CombiningKind::OR: 935 result = lowerPredicatedReductionWithStartValue<LLVM::VPReduceOrOp, 936 ReductionNeutralZero>( 937 rewriter, loc, llvmType, operand, acc, maskOp.getMask()); 938 break; 939 case vector::CombiningKind::XOR: 940 result = lowerPredicatedReductionWithStartValue<LLVM::VPReduceXorOp, 941 ReductionNeutralZero>( 942 rewriter, loc, llvmType, operand, acc, maskOp.getMask()); 943 break; 944 case vector::CombiningKind::MINNUMF: 945 result = lowerPredicatedReductionWithStartValue<LLVM::VPReduceFMinOp, 946 ReductionNeutralFPMax>( 947 rewriter, loc, llvmType, operand, acc, maskOp.getMask()); 948 break; 949 case vector::CombiningKind::MAXNUMF: 950 result = lowerPredicatedReductionWithStartValue<LLVM::VPReduceFMaxOp, 951 ReductionNeutralFPMin>( 952 rewriter, loc, llvmType, operand, acc, maskOp.getMask()); 953 break; 954 case CombiningKind::MAXIMUMF: 955 result = lowerMaskedReductionWithRegular<LLVM::vector_reduce_fmaximum, 956 MaskNeutralFMaximum>( 957 rewriter, loc, llvmType, operand, acc, maskOp.getMask(), fmf); 958 break; 959 case CombiningKind::MINIMUMF: 960 result = lowerMaskedReductionWithRegular<LLVM::vector_reduce_fminimum, 961 MaskNeutralFMinimum>( 962 rewriter, loc, llvmType, operand, acc, maskOp.getMask(), fmf); 963 break; 964 } 965 966 // Replace `vector.mask` operation altogether. 967 rewriter.replaceOp(maskOp, result); 968 return success(); 969 } 970 }; 971 972 class VectorShuffleOpConversion 973 : public ConvertOpToLLVMPattern<vector::ShuffleOp> { 974 public: 975 using ConvertOpToLLVMPattern<vector::ShuffleOp>::ConvertOpToLLVMPattern; 976 977 LogicalResult 978 matchAndRewrite(vector::ShuffleOp shuffleOp, OpAdaptor adaptor, 979 ConversionPatternRewriter &rewriter) const override { 980 auto loc = shuffleOp->getLoc(); 981 auto v1Type = shuffleOp.getV1VectorType(); 982 auto v2Type = shuffleOp.getV2VectorType(); 983 auto vectorType = shuffleOp.getResultVectorType(); 984 Type llvmType = typeConverter->convertType(vectorType); 985 auto maskArrayAttr = shuffleOp.getMask(); 986 987 // Bail if result type cannot be lowered. 988 if (!llvmType) 989 return failure(); 990 991 // Get rank and dimension sizes. 992 int64_t rank = vectorType.getRank(); 993 #ifndef NDEBUG 994 bool wellFormed0DCase = 995 v1Type.getRank() == 0 && v2Type.getRank() == 0 && rank == 1; 996 bool wellFormedNDCase = 997 v1Type.getRank() == rank && v2Type.getRank() == rank; 998 assert((wellFormed0DCase || wellFormedNDCase) && "op is not well-formed"); 999 #endif 1000 1001 // For rank 0 and 1, where both operands have *exactly* the same vector 1002 // type, there is direct shuffle support in LLVM. Use it! 1003 if (rank <= 1 && v1Type == v2Type) { 1004 Value llvmShuffleOp = rewriter.create<LLVM::ShuffleVectorOp>( 1005 loc, adaptor.getV1(), adaptor.getV2(), 1006 LLVM::convertArrayToIndices<int32_t>(maskArrayAttr)); 1007 rewriter.replaceOp(shuffleOp, llvmShuffleOp); 1008 return success(); 1009 } 1010 1011 // For all other cases, insert the individual values individually. 1012 int64_t v1Dim = v1Type.getDimSize(0); 1013 Type eltType; 1014 if (auto arrayType = dyn_cast<LLVM::LLVMArrayType>(llvmType)) 1015 eltType = arrayType.getElementType(); 1016 else 1017 eltType = cast<VectorType>(llvmType).getElementType(); 1018 Value insert = rewriter.create<LLVM::UndefOp>(loc, llvmType); 1019 int64_t insPos = 0; 1020 for (const auto &en : llvm::enumerate(maskArrayAttr)) { 1021 int64_t extPos = cast<IntegerAttr>(en.value()).getInt(); 1022 Value value = adaptor.getV1(); 1023 if (extPos >= v1Dim) { 1024 extPos -= v1Dim; 1025 value = adaptor.getV2(); 1026 } 1027 Value extract = extractOne(rewriter, *getTypeConverter(), loc, value, 1028 eltType, rank, extPos); 1029 insert = insertOne(rewriter, *getTypeConverter(), loc, insert, extract, 1030 llvmType, rank, insPos++); 1031 } 1032 rewriter.replaceOp(shuffleOp, insert); 1033 return success(); 1034 } 1035 }; 1036 1037 class VectorExtractElementOpConversion 1038 : public ConvertOpToLLVMPattern<vector::ExtractElementOp> { 1039 public: 1040 using ConvertOpToLLVMPattern< 1041 vector::ExtractElementOp>::ConvertOpToLLVMPattern; 1042 1043 LogicalResult 1044 matchAndRewrite(vector::ExtractElementOp extractEltOp, OpAdaptor adaptor, 1045 ConversionPatternRewriter &rewriter) const override { 1046 auto vectorType = extractEltOp.getSourceVectorType(); 1047 auto llvmType = typeConverter->convertType(vectorType.getElementType()); 1048 1049 // Bail if result type cannot be lowered. 1050 if (!llvmType) 1051 return failure(); 1052 1053 if (vectorType.getRank() == 0) { 1054 Location loc = extractEltOp.getLoc(); 1055 auto idxType = rewriter.getIndexType(); 1056 auto zero = rewriter.create<LLVM::ConstantOp>( 1057 loc, typeConverter->convertType(idxType), 1058 rewriter.getIntegerAttr(idxType, 0)); 1059 rewriter.replaceOpWithNewOp<LLVM::ExtractElementOp>( 1060 extractEltOp, llvmType, adaptor.getVector(), zero); 1061 return success(); 1062 } 1063 1064 rewriter.replaceOpWithNewOp<LLVM::ExtractElementOp>( 1065 extractEltOp, llvmType, adaptor.getVector(), adaptor.getPosition()); 1066 return success(); 1067 } 1068 }; 1069 1070 class VectorExtractOpConversion 1071 : public ConvertOpToLLVMPattern<vector::ExtractOp> { 1072 public: 1073 using ConvertOpToLLVMPattern<vector::ExtractOp>::ConvertOpToLLVMPattern; 1074 1075 LogicalResult 1076 matchAndRewrite(vector::ExtractOp extractOp, OpAdaptor adaptor, 1077 ConversionPatternRewriter &rewriter) const override { 1078 auto loc = extractOp->getLoc(); 1079 auto resultType = extractOp.getResult().getType(); 1080 auto llvmResultType = typeConverter->convertType(resultType); 1081 // Bail if result type cannot be lowered. 1082 if (!llvmResultType) 1083 return failure(); 1084 1085 SmallVector<OpFoldResult> positionVec; 1086 for (auto [idx, pos] : llvm::enumerate(extractOp.getMixedPosition())) { 1087 if (pos.is<Value>()) 1088 // Make sure we use the value that has been already converted to LLVM. 1089 positionVec.push_back(adaptor.getDynamicPosition()[idx]); 1090 else 1091 positionVec.push_back(pos); 1092 } 1093 1094 // Extract entire vector. Should be handled by folder, but just to be safe. 1095 ArrayRef<OpFoldResult> position(positionVec); 1096 if (position.empty()) { 1097 rewriter.replaceOp(extractOp, adaptor.getVector()); 1098 return success(); 1099 } 1100 1101 // One-shot extraction of vector from array (only requires extractvalue). 1102 if (isa<VectorType>(resultType)) { 1103 if (extractOp.hasDynamicPosition()) 1104 return failure(); 1105 1106 Value extracted = rewriter.create<LLVM::ExtractValueOp>( 1107 loc, adaptor.getVector(), getAsIntegers(position)); 1108 rewriter.replaceOp(extractOp, extracted); 1109 return success(); 1110 } 1111 1112 // Potential extraction of 1-D vector from array. 1113 Value extracted = adaptor.getVector(); 1114 if (position.size() > 1) { 1115 if (extractOp.hasDynamicPosition()) 1116 return failure(); 1117 1118 SmallVector<int64_t> nMinusOnePosition = 1119 getAsIntegers(position.drop_back()); 1120 extracted = rewriter.create<LLVM::ExtractValueOp>(loc, extracted, 1121 nMinusOnePosition); 1122 } 1123 1124 Value lastPosition = getAsLLVMValue(rewriter, loc, position.back()); 1125 // Remaining extraction of element from 1-D LLVM vector. 1126 rewriter.replaceOpWithNewOp<LLVM::ExtractElementOp>(extractOp, extracted, 1127 lastPosition); 1128 return success(); 1129 } 1130 }; 1131 1132 /// Conversion pattern that turns a vector.fma on a 1-D vector 1133 /// into an llvm.intr.fmuladd. This is a trivial 1-1 conversion. 1134 /// This does not match vectors of n >= 2 rank. 1135 /// 1136 /// Example: 1137 /// ``` 1138 /// vector.fma %a, %a, %a : vector<8xf32> 1139 /// ``` 1140 /// is converted to: 1141 /// ``` 1142 /// llvm.intr.fmuladd %va, %va, %va: 1143 /// (!llvm."<8 x f32>">, !llvm<"<8 x f32>">, !llvm<"<8 x f32>">) 1144 /// -> !llvm."<8 x f32>"> 1145 /// ``` 1146 class VectorFMAOp1DConversion : public ConvertOpToLLVMPattern<vector::FMAOp> { 1147 public: 1148 using ConvertOpToLLVMPattern<vector::FMAOp>::ConvertOpToLLVMPattern; 1149 1150 LogicalResult 1151 matchAndRewrite(vector::FMAOp fmaOp, OpAdaptor adaptor, 1152 ConversionPatternRewriter &rewriter) const override { 1153 VectorType vType = fmaOp.getVectorType(); 1154 if (vType.getRank() > 1) 1155 return failure(); 1156 1157 rewriter.replaceOpWithNewOp<LLVM::FMulAddOp>( 1158 fmaOp, adaptor.getLhs(), adaptor.getRhs(), adaptor.getAcc()); 1159 return success(); 1160 } 1161 }; 1162 1163 class VectorInsertElementOpConversion 1164 : public ConvertOpToLLVMPattern<vector::InsertElementOp> { 1165 public: 1166 using ConvertOpToLLVMPattern<vector::InsertElementOp>::ConvertOpToLLVMPattern; 1167 1168 LogicalResult 1169 matchAndRewrite(vector::InsertElementOp insertEltOp, OpAdaptor adaptor, 1170 ConversionPatternRewriter &rewriter) const override { 1171 auto vectorType = insertEltOp.getDestVectorType(); 1172 auto llvmType = typeConverter->convertType(vectorType); 1173 1174 // Bail if result type cannot be lowered. 1175 if (!llvmType) 1176 return failure(); 1177 1178 if (vectorType.getRank() == 0) { 1179 Location loc = insertEltOp.getLoc(); 1180 auto idxType = rewriter.getIndexType(); 1181 auto zero = rewriter.create<LLVM::ConstantOp>( 1182 loc, typeConverter->convertType(idxType), 1183 rewriter.getIntegerAttr(idxType, 0)); 1184 rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>( 1185 insertEltOp, llvmType, adaptor.getDest(), adaptor.getSource(), zero); 1186 return success(); 1187 } 1188 1189 rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>( 1190 insertEltOp, llvmType, adaptor.getDest(), adaptor.getSource(), 1191 adaptor.getPosition()); 1192 return success(); 1193 } 1194 }; 1195 1196 class VectorInsertOpConversion 1197 : public ConvertOpToLLVMPattern<vector::InsertOp> { 1198 public: 1199 using ConvertOpToLLVMPattern<vector::InsertOp>::ConvertOpToLLVMPattern; 1200 1201 LogicalResult 1202 matchAndRewrite(vector::InsertOp insertOp, OpAdaptor adaptor, 1203 ConversionPatternRewriter &rewriter) const override { 1204 auto loc = insertOp->getLoc(); 1205 auto sourceType = insertOp.getSourceType(); 1206 auto destVectorType = insertOp.getDestVectorType(); 1207 auto llvmResultType = typeConverter->convertType(destVectorType); 1208 // Bail if result type cannot be lowered. 1209 if (!llvmResultType) 1210 return failure(); 1211 1212 SmallVector<OpFoldResult> positionVec; 1213 for (auto [idx, pos] : llvm::enumerate(insertOp.getMixedPosition())) { 1214 if (pos.is<Value>()) 1215 // Make sure we use the value that has been already converted to LLVM. 1216 positionVec.push_back(adaptor.getDynamicPosition()[idx]); 1217 else 1218 positionVec.push_back(pos); 1219 } 1220 1221 // Overwrite entire vector with value. Should be handled by folder, but 1222 // just to be safe. 1223 ArrayRef<OpFoldResult> position(positionVec); 1224 if (position.empty()) { 1225 rewriter.replaceOp(insertOp, adaptor.getSource()); 1226 return success(); 1227 } 1228 1229 // One-shot insertion of a vector into an array (only requires insertvalue). 1230 if (isa<VectorType>(sourceType)) { 1231 if (insertOp.hasDynamicPosition()) 1232 return failure(); 1233 1234 Value inserted = rewriter.create<LLVM::InsertValueOp>( 1235 loc, adaptor.getDest(), adaptor.getSource(), getAsIntegers(position)); 1236 rewriter.replaceOp(insertOp, inserted); 1237 return success(); 1238 } 1239 1240 // Potential extraction of 1-D vector from array. 1241 Value extracted = adaptor.getDest(); 1242 auto oneDVectorType = destVectorType; 1243 if (position.size() > 1) { 1244 if (insertOp.hasDynamicPosition()) 1245 return failure(); 1246 1247 oneDVectorType = reducedVectorTypeBack(destVectorType); 1248 extracted = rewriter.create<LLVM::ExtractValueOp>( 1249 loc, extracted, getAsIntegers(position.drop_back())); 1250 } 1251 1252 // Insertion of an element into a 1-D LLVM vector. 1253 Value inserted = rewriter.create<LLVM::InsertElementOp>( 1254 loc, typeConverter->convertType(oneDVectorType), extracted, 1255 adaptor.getSource(), getAsLLVMValue(rewriter, loc, position.back())); 1256 1257 // Potential insertion of resulting 1-D vector into array. 1258 if (position.size() > 1) { 1259 if (insertOp.hasDynamicPosition()) 1260 return failure(); 1261 1262 inserted = rewriter.create<LLVM::InsertValueOp>( 1263 loc, adaptor.getDest(), inserted, 1264 getAsIntegers(position.drop_back())); 1265 } 1266 1267 rewriter.replaceOp(insertOp, inserted); 1268 return success(); 1269 } 1270 }; 1271 1272 /// Lower vector.scalable.insert ops to LLVM vector.insert 1273 struct VectorScalableInsertOpLowering 1274 : public ConvertOpToLLVMPattern<vector::ScalableInsertOp> { 1275 using ConvertOpToLLVMPattern< 1276 vector::ScalableInsertOp>::ConvertOpToLLVMPattern; 1277 1278 LogicalResult 1279 matchAndRewrite(vector::ScalableInsertOp insOp, OpAdaptor adaptor, 1280 ConversionPatternRewriter &rewriter) const override { 1281 rewriter.replaceOpWithNewOp<LLVM::vector_insert>( 1282 insOp, adaptor.getDest(), adaptor.getSource(), adaptor.getPos()); 1283 return success(); 1284 } 1285 }; 1286 1287 /// Lower vector.scalable.extract ops to LLVM vector.extract 1288 struct VectorScalableExtractOpLowering 1289 : public ConvertOpToLLVMPattern<vector::ScalableExtractOp> { 1290 using ConvertOpToLLVMPattern< 1291 vector::ScalableExtractOp>::ConvertOpToLLVMPattern; 1292 1293 LogicalResult 1294 matchAndRewrite(vector::ScalableExtractOp extOp, OpAdaptor adaptor, 1295 ConversionPatternRewriter &rewriter) const override { 1296 rewriter.replaceOpWithNewOp<LLVM::vector_extract>( 1297 extOp, typeConverter->convertType(extOp.getResultVectorType()), 1298 adaptor.getSource(), adaptor.getPos()); 1299 return success(); 1300 } 1301 }; 1302 1303 /// Rank reducing rewrite for n-D FMA into (n-1)-D FMA where n > 1. 1304 /// 1305 /// Example: 1306 /// ``` 1307 /// %d = vector.fma %a, %b, %c : vector<2x4xf32> 1308 /// ``` 1309 /// is rewritten into: 1310 /// ``` 1311 /// %r = splat %f0: vector<2x4xf32> 1312 /// %va = vector.extractvalue %a[0] : vector<2x4xf32> 1313 /// %vb = vector.extractvalue %b[0] : vector<2x4xf32> 1314 /// %vc = vector.extractvalue %c[0] : vector<2x4xf32> 1315 /// %vd = vector.fma %va, %vb, %vc : vector<4xf32> 1316 /// %r2 = vector.insertvalue %vd, %r[0] : vector<4xf32> into vector<2x4xf32> 1317 /// %va2 = vector.extractvalue %a2[1] : vector<2x4xf32> 1318 /// %vb2 = vector.extractvalue %b2[1] : vector<2x4xf32> 1319 /// %vc2 = vector.extractvalue %c2[1] : vector<2x4xf32> 1320 /// %vd2 = vector.fma %va2, %vb2, %vc2 : vector<4xf32> 1321 /// %r3 = vector.insertvalue %vd2, %r2[1] : vector<4xf32> into vector<2x4xf32> 1322 /// // %r3 holds the final value. 1323 /// ``` 1324 class VectorFMAOpNDRewritePattern : public OpRewritePattern<FMAOp> { 1325 public: 1326 using OpRewritePattern<FMAOp>::OpRewritePattern; 1327 1328 void initialize() { 1329 // This pattern recursively unpacks one dimension at a time. The recursion 1330 // bounded as the rank is strictly decreasing. 1331 setHasBoundedRewriteRecursion(); 1332 } 1333 1334 LogicalResult matchAndRewrite(FMAOp op, 1335 PatternRewriter &rewriter) const override { 1336 auto vType = op.getVectorType(); 1337 if (vType.getRank() < 2) 1338 return failure(); 1339 1340 auto loc = op.getLoc(); 1341 auto elemType = vType.getElementType(); 1342 Value zero = rewriter.create<arith::ConstantOp>( 1343 loc, elemType, rewriter.getZeroAttr(elemType)); 1344 Value desc = rewriter.create<vector::SplatOp>(loc, vType, zero); 1345 for (int64_t i = 0, e = vType.getShape().front(); i != e; ++i) { 1346 Value extrLHS = rewriter.create<ExtractOp>(loc, op.getLhs(), i); 1347 Value extrRHS = rewriter.create<ExtractOp>(loc, op.getRhs(), i); 1348 Value extrACC = rewriter.create<ExtractOp>(loc, op.getAcc(), i); 1349 Value fma = rewriter.create<FMAOp>(loc, extrLHS, extrRHS, extrACC); 1350 desc = rewriter.create<InsertOp>(loc, fma, desc, i); 1351 } 1352 rewriter.replaceOp(op, desc); 1353 return success(); 1354 } 1355 }; 1356 1357 /// Returns the strides if the memory underlying `memRefType` has a contiguous 1358 /// static layout. 1359 static std::optional<SmallVector<int64_t, 4>> 1360 computeContiguousStrides(MemRefType memRefType) { 1361 int64_t offset; 1362 SmallVector<int64_t, 4> strides; 1363 if (failed(getStridesAndOffset(memRefType, strides, offset))) 1364 return std::nullopt; 1365 if (!strides.empty() && strides.back() != 1) 1366 return std::nullopt; 1367 // If no layout or identity layout, this is contiguous by definition. 1368 if (memRefType.getLayout().isIdentity()) 1369 return strides; 1370 1371 // Otherwise, we must determine contiguity form shapes. This can only ever 1372 // work in static cases because MemRefType is underspecified to represent 1373 // contiguous dynamic shapes in other ways than with just empty/identity 1374 // layout. 1375 auto sizes = memRefType.getShape(); 1376 for (int index = 0, e = strides.size() - 1; index < e; ++index) { 1377 if (ShapedType::isDynamic(sizes[index + 1]) || 1378 ShapedType::isDynamic(strides[index]) || 1379 ShapedType::isDynamic(strides[index + 1])) 1380 return std::nullopt; 1381 if (strides[index] != strides[index + 1] * sizes[index + 1]) 1382 return std::nullopt; 1383 } 1384 return strides; 1385 } 1386 1387 class VectorTypeCastOpConversion 1388 : public ConvertOpToLLVMPattern<vector::TypeCastOp> { 1389 public: 1390 using ConvertOpToLLVMPattern<vector::TypeCastOp>::ConvertOpToLLVMPattern; 1391 1392 LogicalResult 1393 matchAndRewrite(vector::TypeCastOp castOp, OpAdaptor adaptor, 1394 ConversionPatternRewriter &rewriter) const override { 1395 auto loc = castOp->getLoc(); 1396 MemRefType sourceMemRefType = 1397 cast<MemRefType>(castOp.getOperand().getType()); 1398 MemRefType targetMemRefType = castOp.getType(); 1399 1400 // Only static shape casts supported atm. 1401 if (!sourceMemRefType.hasStaticShape() || 1402 !targetMemRefType.hasStaticShape()) 1403 return failure(); 1404 1405 auto llvmSourceDescriptorTy = 1406 dyn_cast<LLVM::LLVMStructType>(adaptor.getOperands()[0].getType()); 1407 if (!llvmSourceDescriptorTy) 1408 return failure(); 1409 MemRefDescriptor sourceMemRef(adaptor.getOperands()[0]); 1410 1411 auto llvmTargetDescriptorTy = dyn_cast_or_null<LLVM::LLVMStructType>( 1412 typeConverter->convertType(targetMemRefType)); 1413 if (!llvmTargetDescriptorTy) 1414 return failure(); 1415 1416 // Only contiguous source buffers supported atm. 1417 auto sourceStrides = computeContiguousStrides(sourceMemRefType); 1418 if (!sourceStrides) 1419 return failure(); 1420 auto targetStrides = computeContiguousStrides(targetMemRefType); 1421 if (!targetStrides) 1422 return failure(); 1423 // Only support static strides for now, regardless of contiguity. 1424 if (llvm::any_of(*targetStrides, ShapedType::isDynamic)) 1425 return failure(); 1426 1427 auto int64Ty = IntegerType::get(rewriter.getContext(), 64); 1428 1429 // Create descriptor. 1430 auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy); 1431 // Set allocated ptr. 1432 Value allocated = sourceMemRef.allocatedPtr(rewriter, loc); 1433 desc.setAllocatedPtr(rewriter, loc, allocated); 1434 1435 // Set aligned ptr. 1436 Value ptr = sourceMemRef.alignedPtr(rewriter, loc); 1437 desc.setAlignedPtr(rewriter, loc, ptr); 1438 // Fill offset 0. 1439 auto attr = rewriter.getIntegerAttr(rewriter.getIndexType(), 0); 1440 auto zero = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, attr); 1441 desc.setOffset(rewriter, loc, zero); 1442 1443 // Fill size and stride descriptors in memref. 1444 for (const auto &indexedSize : 1445 llvm::enumerate(targetMemRefType.getShape())) { 1446 int64_t index = indexedSize.index(); 1447 auto sizeAttr = 1448 rewriter.getIntegerAttr(rewriter.getIndexType(), indexedSize.value()); 1449 auto size = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, sizeAttr); 1450 desc.setSize(rewriter, loc, index, size); 1451 auto strideAttr = rewriter.getIntegerAttr(rewriter.getIndexType(), 1452 (*targetStrides)[index]); 1453 auto stride = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, strideAttr); 1454 desc.setStride(rewriter, loc, index, stride); 1455 } 1456 1457 rewriter.replaceOp(castOp, {desc}); 1458 return success(); 1459 } 1460 }; 1461 1462 /// Conversion pattern for a `vector.create_mask` (1-D scalable vectors only). 1463 /// Non-scalable versions of this operation are handled in Vector Transforms. 1464 class VectorCreateMaskOpRewritePattern 1465 : public OpRewritePattern<vector::CreateMaskOp> { 1466 public: 1467 explicit VectorCreateMaskOpRewritePattern(MLIRContext *context, 1468 bool enableIndexOpt) 1469 : OpRewritePattern<vector::CreateMaskOp>(context), 1470 force32BitVectorIndices(enableIndexOpt) {} 1471 1472 LogicalResult matchAndRewrite(vector::CreateMaskOp op, 1473 PatternRewriter &rewriter) const override { 1474 auto dstType = op.getType(); 1475 if (dstType.getRank() != 1 || !cast<VectorType>(dstType).isScalable()) 1476 return failure(); 1477 IntegerType idxType = 1478 force32BitVectorIndices ? rewriter.getI32Type() : rewriter.getI64Type(); 1479 auto loc = op->getLoc(); 1480 Value indices = rewriter.create<LLVM::StepVectorOp>( 1481 loc, LLVM::getVectorType(idxType, dstType.getShape()[0], 1482 /*isScalable=*/true)); 1483 auto bound = getValueOrCreateCastToIndexLike(rewriter, loc, idxType, 1484 op.getOperand(0)); 1485 Value bounds = rewriter.create<SplatOp>(loc, indices.getType(), bound); 1486 Value comp = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, 1487 indices, bounds); 1488 rewriter.replaceOp(op, comp); 1489 return success(); 1490 } 1491 1492 private: 1493 const bool force32BitVectorIndices; 1494 }; 1495 1496 class VectorPrintOpConversion : public ConvertOpToLLVMPattern<vector::PrintOp> { 1497 public: 1498 using ConvertOpToLLVMPattern<vector::PrintOp>::ConvertOpToLLVMPattern; 1499 1500 // Lowering implementation that relies on a small runtime support library, 1501 // which only needs to provide a few printing methods (single value for all 1502 // data types, opening/closing bracket, comma, newline). The lowering splits 1503 // the vector into elementary printing operations. The advantage of this 1504 // approach is that the library can remain unaware of all low-level 1505 // implementation details of vectors while still supporting output of any 1506 // shaped and dimensioned vector. 1507 // 1508 // Note: This lowering only handles scalars, n-D vectors are broken into 1509 // printing scalars in loops in VectorToSCF. 1510 // 1511 // TODO: rely solely on libc in future? something else? 1512 // 1513 LogicalResult 1514 matchAndRewrite(vector::PrintOp printOp, OpAdaptor adaptor, 1515 ConversionPatternRewriter &rewriter) const override { 1516 auto parent = printOp->getParentOfType<ModuleOp>(); 1517 if (!parent) 1518 return failure(); 1519 1520 auto loc = printOp->getLoc(); 1521 1522 if (auto value = adaptor.getSource()) { 1523 Type printType = printOp.getPrintType(); 1524 if (isa<VectorType>(printType)) { 1525 // Vectors should be broken into elementary print ops in VectorToSCF. 1526 return failure(); 1527 } 1528 if (failed(emitScalarPrint(rewriter, parent, loc, printType, value))) 1529 return failure(); 1530 } 1531 1532 auto punct = printOp.getPunctuation(); 1533 if (auto stringLiteral = printOp.getStringLiteral()) { 1534 LLVM::createPrintStrCall(rewriter, loc, parent, "vector_print_str", 1535 *stringLiteral, *getTypeConverter(), 1536 /*addNewline=*/false); 1537 } else if (punct != PrintPunctuation::NoPunctuation) { 1538 emitCall(rewriter, printOp->getLoc(), [&] { 1539 switch (punct) { 1540 case PrintPunctuation::Close: 1541 return LLVM::lookupOrCreatePrintCloseFn(parent); 1542 case PrintPunctuation::Open: 1543 return LLVM::lookupOrCreatePrintOpenFn(parent); 1544 case PrintPunctuation::Comma: 1545 return LLVM::lookupOrCreatePrintCommaFn(parent); 1546 case PrintPunctuation::NewLine: 1547 return LLVM::lookupOrCreatePrintNewlineFn(parent); 1548 default: 1549 llvm_unreachable("unexpected punctuation"); 1550 } 1551 }()); 1552 } 1553 1554 rewriter.eraseOp(printOp); 1555 return success(); 1556 } 1557 1558 private: 1559 enum class PrintConversion { 1560 // clang-format off 1561 None, 1562 ZeroExt64, 1563 SignExt64, 1564 Bitcast16 1565 // clang-format on 1566 }; 1567 1568 LogicalResult emitScalarPrint(ConversionPatternRewriter &rewriter, 1569 ModuleOp parent, Location loc, Type printType, 1570 Value value) const { 1571 if (typeConverter->convertType(printType) == nullptr) 1572 return failure(); 1573 1574 // Make sure element type has runtime support. 1575 PrintConversion conversion = PrintConversion::None; 1576 Operation *printer; 1577 if (printType.isF32()) { 1578 printer = LLVM::lookupOrCreatePrintF32Fn(parent); 1579 } else if (printType.isF64()) { 1580 printer = LLVM::lookupOrCreatePrintF64Fn(parent); 1581 } else if (printType.isF16()) { 1582 conversion = PrintConversion::Bitcast16; // bits! 1583 printer = LLVM::lookupOrCreatePrintF16Fn(parent); 1584 } else if (printType.isBF16()) { 1585 conversion = PrintConversion::Bitcast16; // bits! 1586 printer = LLVM::lookupOrCreatePrintBF16Fn(parent); 1587 } else if (printType.isIndex()) { 1588 printer = LLVM::lookupOrCreatePrintU64Fn(parent); 1589 } else if (auto intTy = dyn_cast<IntegerType>(printType)) { 1590 // Integers need a zero or sign extension on the operand 1591 // (depending on the source type) as well as a signed or 1592 // unsigned print method. Up to 64-bit is supported. 1593 unsigned width = intTy.getWidth(); 1594 if (intTy.isUnsigned()) { 1595 if (width <= 64) { 1596 if (width < 64) 1597 conversion = PrintConversion::ZeroExt64; 1598 printer = LLVM::lookupOrCreatePrintU64Fn(parent); 1599 } else { 1600 return failure(); 1601 } 1602 } else { 1603 assert(intTy.isSignless() || intTy.isSigned()); 1604 if (width <= 64) { 1605 // Note that we *always* zero extend booleans (1-bit integers), 1606 // so that true/false is printed as 1/0 rather than -1/0. 1607 if (width == 1) 1608 conversion = PrintConversion::ZeroExt64; 1609 else if (width < 64) 1610 conversion = PrintConversion::SignExt64; 1611 printer = LLVM::lookupOrCreatePrintI64Fn(parent); 1612 } else { 1613 return failure(); 1614 } 1615 } 1616 } else { 1617 return failure(); 1618 } 1619 1620 switch (conversion) { 1621 case PrintConversion::ZeroExt64: 1622 value = rewriter.create<arith::ExtUIOp>( 1623 loc, IntegerType::get(rewriter.getContext(), 64), value); 1624 break; 1625 case PrintConversion::SignExt64: 1626 value = rewriter.create<arith::ExtSIOp>( 1627 loc, IntegerType::get(rewriter.getContext(), 64), value); 1628 break; 1629 case PrintConversion::Bitcast16: 1630 value = rewriter.create<LLVM::BitcastOp>( 1631 loc, IntegerType::get(rewriter.getContext(), 16), value); 1632 break; 1633 case PrintConversion::None: 1634 break; 1635 } 1636 emitCall(rewriter, loc, printer, value); 1637 return success(); 1638 } 1639 1640 // Helper to emit a call. 1641 static void emitCall(ConversionPatternRewriter &rewriter, Location loc, 1642 Operation *ref, ValueRange params = ValueRange()) { 1643 rewriter.create<LLVM::CallOp>(loc, TypeRange(), SymbolRefAttr::get(ref), 1644 params); 1645 } 1646 }; 1647 1648 /// The Splat operation is lowered to an insertelement + a shufflevector 1649 /// operation. Splat to only 0-d and 1-d vector result types are lowered. 1650 struct VectorSplatOpLowering : public ConvertOpToLLVMPattern<vector::SplatOp> { 1651 using ConvertOpToLLVMPattern<vector::SplatOp>::ConvertOpToLLVMPattern; 1652 1653 LogicalResult 1654 matchAndRewrite(vector::SplatOp splatOp, OpAdaptor adaptor, 1655 ConversionPatternRewriter &rewriter) const override { 1656 VectorType resultType = cast<VectorType>(splatOp.getType()); 1657 if (resultType.getRank() > 1) 1658 return failure(); 1659 1660 // First insert it into an undef vector so we can shuffle it. 1661 auto vectorType = typeConverter->convertType(splatOp.getType()); 1662 Value undef = rewriter.create<LLVM::UndefOp>(splatOp.getLoc(), vectorType); 1663 auto zero = rewriter.create<LLVM::ConstantOp>( 1664 splatOp.getLoc(), 1665 typeConverter->convertType(rewriter.getIntegerType(32)), 1666 rewriter.getZeroAttr(rewriter.getIntegerType(32))); 1667 1668 // For 0-d vector, we simply do `insertelement`. 1669 if (resultType.getRank() == 0) { 1670 rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>( 1671 splatOp, vectorType, undef, adaptor.getInput(), zero); 1672 return success(); 1673 } 1674 1675 // For 1-d vector, we additionally do a `vectorshuffle`. 1676 auto v = rewriter.create<LLVM::InsertElementOp>( 1677 splatOp.getLoc(), vectorType, undef, adaptor.getInput(), zero); 1678 1679 int64_t width = cast<VectorType>(splatOp.getType()).getDimSize(0); 1680 SmallVector<int32_t> zeroValues(width, 0); 1681 1682 // Shuffle the value across the desired number of elements. 1683 rewriter.replaceOpWithNewOp<LLVM::ShuffleVectorOp>(splatOp, v, undef, 1684 zeroValues); 1685 return success(); 1686 } 1687 }; 1688 1689 /// The Splat operation is lowered to an insertelement + a shufflevector 1690 /// operation. Splat to only 2+-d vector result types are lowered by the 1691 /// SplatNdOpLowering, the 1-d case is handled by SplatOpLowering. 1692 struct VectorSplatNdOpLowering : public ConvertOpToLLVMPattern<SplatOp> { 1693 using ConvertOpToLLVMPattern<SplatOp>::ConvertOpToLLVMPattern; 1694 1695 LogicalResult 1696 matchAndRewrite(SplatOp splatOp, OpAdaptor adaptor, 1697 ConversionPatternRewriter &rewriter) const override { 1698 VectorType resultType = splatOp.getType(); 1699 if (resultType.getRank() <= 1) 1700 return failure(); 1701 1702 // First insert it into an undef vector so we can shuffle it. 1703 auto loc = splatOp.getLoc(); 1704 auto vectorTypeInfo = 1705 LLVM::detail::extractNDVectorTypeInfo(resultType, *getTypeConverter()); 1706 auto llvmNDVectorTy = vectorTypeInfo.llvmNDVectorTy; 1707 auto llvm1DVectorTy = vectorTypeInfo.llvm1DVectorTy; 1708 if (!llvmNDVectorTy || !llvm1DVectorTy) 1709 return failure(); 1710 1711 // Construct returned value. 1712 Value desc = rewriter.create<LLVM::UndefOp>(loc, llvmNDVectorTy); 1713 1714 // Construct a 1-D vector with the splatted value that we insert in all the 1715 // places within the returned descriptor. 1716 Value vdesc = rewriter.create<LLVM::UndefOp>(loc, llvm1DVectorTy); 1717 auto zero = rewriter.create<LLVM::ConstantOp>( 1718 loc, typeConverter->convertType(rewriter.getIntegerType(32)), 1719 rewriter.getZeroAttr(rewriter.getIntegerType(32))); 1720 Value v = rewriter.create<LLVM::InsertElementOp>(loc, llvm1DVectorTy, vdesc, 1721 adaptor.getInput(), zero); 1722 1723 // Shuffle the value across the desired number of elements. 1724 int64_t width = resultType.getDimSize(resultType.getRank() - 1); 1725 SmallVector<int32_t> zeroValues(width, 0); 1726 v = rewriter.create<LLVM::ShuffleVectorOp>(loc, v, v, zeroValues); 1727 1728 // Iterate of linear index, convert to coords space and insert splatted 1-D 1729 // vector in each position. 1730 nDVectorIterate(vectorTypeInfo, rewriter, [&](ArrayRef<int64_t> position) { 1731 desc = rewriter.create<LLVM::InsertValueOp>(loc, desc, v, position); 1732 }); 1733 rewriter.replaceOp(splatOp, desc); 1734 return success(); 1735 } 1736 }; 1737 1738 /// Conversion pattern for a `vector.interleave`. 1739 /// This supports fixed-sized vectors and scalable vectors. 1740 struct VectorInterleaveOpLowering 1741 : public ConvertOpToLLVMPattern<vector::InterleaveOp> { 1742 using ConvertOpToLLVMPattern::ConvertOpToLLVMPattern; 1743 1744 LogicalResult 1745 matchAndRewrite(vector::InterleaveOp interleaveOp, OpAdaptor adaptor, 1746 ConversionPatternRewriter &rewriter) const override { 1747 VectorType resultType = interleaveOp.getResultVectorType(); 1748 // n-D interleaves should have been lowered already. 1749 if (resultType.getRank() != 1) 1750 return rewriter.notifyMatchFailure(interleaveOp, 1751 "InterleaveOp not rank 1"); 1752 // If the result is rank 1, then this directly maps to LLVM. 1753 if (resultType.isScalable()) { 1754 rewriter.replaceOpWithNewOp<LLVM::experimental_vector_interleave2>( 1755 interleaveOp, typeConverter->convertType(resultType), 1756 adaptor.getLhs(), adaptor.getRhs()); 1757 return success(); 1758 } 1759 // Lower fixed-size interleaves to a shufflevector. While the 1760 // vector.interleave2 intrinsic supports fixed and scalable vectors, the 1761 // langref still recommends fixed-vectors use shufflevector, see: 1762 // https://llvm.org/docs/LangRef.html#id876. 1763 int64_t resultVectorSize = resultType.getNumElements(); 1764 SmallVector<int32_t> interleaveShuffleMask; 1765 interleaveShuffleMask.reserve(resultVectorSize); 1766 for (int i = 0, end = resultVectorSize / 2; i < end; ++i) { 1767 interleaveShuffleMask.push_back(i); 1768 interleaveShuffleMask.push_back((resultVectorSize / 2) + i); 1769 } 1770 rewriter.replaceOpWithNewOp<LLVM::ShuffleVectorOp>( 1771 interleaveOp, adaptor.getLhs(), adaptor.getRhs(), 1772 interleaveShuffleMask); 1773 return success(); 1774 } 1775 }; 1776 1777 } // namespace 1778 1779 /// Populate the given list with patterns that convert from Vector to LLVM. 1780 void mlir::populateVectorToLLVMConversionPatterns( 1781 LLVMTypeConverter &converter, RewritePatternSet &patterns, 1782 bool reassociateFPReductions, bool force32BitVectorIndices) { 1783 MLIRContext *ctx = converter.getDialect()->getContext(); 1784 patterns.add<VectorFMAOpNDRewritePattern>(ctx); 1785 populateVectorInsertExtractStridedSliceTransforms(patterns); 1786 patterns.add<VectorReductionOpConversion>(converter, reassociateFPReductions); 1787 patterns.add<VectorCreateMaskOpRewritePattern>(ctx, force32BitVectorIndices); 1788 patterns.add<VectorBitCastOpConversion, VectorShuffleOpConversion, 1789 VectorExtractElementOpConversion, VectorExtractOpConversion, 1790 VectorFMAOp1DConversion, VectorInsertElementOpConversion, 1791 VectorInsertOpConversion, VectorPrintOpConversion, 1792 VectorTypeCastOpConversion, VectorScaleOpConversion, 1793 VectorLoadStoreConversion<vector::LoadOp>, 1794 VectorLoadStoreConversion<vector::MaskedLoadOp>, 1795 VectorLoadStoreConversion<vector::StoreOp>, 1796 VectorLoadStoreConversion<vector::MaskedStoreOp>, 1797 VectorGatherOpConversion, VectorScatterOpConversion, 1798 VectorExpandLoadOpConversion, VectorCompressStoreOpConversion, 1799 VectorSplatOpLowering, VectorSplatNdOpLowering, 1800 VectorScalableInsertOpLowering, VectorScalableExtractOpLowering, 1801 MaskedReductionOpConversion, VectorInterleaveOpLowering>( 1802 converter); 1803 // Transfer ops with rank > 1 are handled by VectorToSCF. 1804 populateVectorTransferLoweringPatterns(patterns, /*maxTransferRank=*/1); 1805 } 1806 1807 void mlir::populateVectorToLLVMMatrixConversionPatterns( 1808 LLVMTypeConverter &converter, RewritePatternSet &patterns) { 1809 patterns.add<VectorMatmulOpConversion>(converter); 1810 patterns.add<VectorFlatTransposeOpConversion>(converter); 1811 } 1812