xref: /llvm-project/mlir/lib/Conversion/SCFToGPU/SCFToGPU.cpp (revision 0e944a30954e666cba2bf17497fafe835e4b3519)
14ead2cf7SAlex Zinenko //===- SCFToGPU.cpp - Convert an affine loop nest to a GPU kernel -------===//
24ead2cf7SAlex Zinenko //
34ead2cf7SAlex Zinenko // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
44ead2cf7SAlex Zinenko // See https://llvm.org/LICENSE.txt for license information.
54ead2cf7SAlex Zinenko // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
64ead2cf7SAlex Zinenko //
74ead2cf7SAlex Zinenko //===----------------------------------------------------------------------===//
84ead2cf7SAlex Zinenko //
94ead2cf7SAlex Zinenko // This implements a straightforward conversion of an loop nest into a GPU
104ead2cf7SAlex Zinenko // kernel.  The caller is expected to guarantee that the conversion is correct
114ead2cf7SAlex Zinenko // or to further transform the kernel to ensure correctness.
124ead2cf7SAlex Zinenko //
134ead2cf7SAlex Zinenko //===----------------------------------------------------------------------===//
144ead2cf7SAlex Zinenko 
154ead2cf7SAlex Zinenko #include "mlir/Conversion/SCFToGPU/SCFToGPU.h"
164ead2cf7SAlex Zinenko 
174ead2cf7SAlex Zinenko #include "mlir/Conversion/AffineToStandard/AffineToStandard.h"
184ead2cf7SAlex Zinenko #include "mlir/Dialect/Affine/IR/AffineOps.h"
19abc362a1SJakub Kuderski #include "mlir/Dialect/Arith/IR/Arith.h"
20d7ef488bSMogball #include "mlir/Dialect/GPU/IR/GPUDialect.h"
21d7ef488bSMogball #include "mlir/Dialect/GPU/Transforms/ParallelLoopMapper.h"
22e2310704SJulian Gross #include "mlir/Dialect/MemRef/IR/MemRef.h"
238b68da2cSAlex Zinenko #include "mlir/Dialect/SCF/IR/SCF.h"
244ead2cf7SAlex Zinenko #include "mlir/IR/AffineExpr.h"
254ead2cf7SAlex Zinenko #include "mlir/IR/Builders.h"
264d67b278SJeff Niu #include "mlir/IR/IRMapping.h"
27fc367dfaSMahesh Ravishankar #include "mlir/Interfaces/SideEffectInterfaces.h"
284ead2cf7SAlex Zinenko #include "mlir/Pass/Pass.h"
294ead2cf7SAlex Zinenko #include "mlir/Transforms/DialectConversion.h"
304ead2cf7SAlex Zinenko #include "mlir/Transforms/Passes.h"
314ead2cf7SAlex Zinenko #include "mlir/Transforms/RegionUtils.h"
324ead2cf7SAlex Zinenko #include "llvm/ADT/Sequence.h"
334ead2cf7SAlex Zinenko #include "llvm/Support/Debug.h"
34a1fe1f5fSKazu Hirata #include <optional>
354ead2cf7SAlex Zinenko 
364ead2cf7SAlex Zinenko #define DEBUG_TYPE "loops-to-gpu"
374ead2cf7SAlex Zinenko 
384ead2cf7SAlex Zinenko using namespace mlir;
394c48f016SMatthias Springer using namespace mlir::affine;
404ead2cf7SAlex Zinenko using namespace mlir::scf;
414ead2cf7SAlex Zinenko 
42ec03bbe8SVladislav Vinogradov // Name of internal attribute to mark visited operations during conversion.
43ec03bbe8SVladislav Vinogradov //
44ec03bbe8SVladislav Vinogradov // NOTE: The conversion originally used the following legality criteria:
45ec03bbe8SVladislav Vinogradov //   `!parallelOp->hasAttr(gpu::getMappingAttrName())`
46ec03bbe8SVladislav Vinogradov // But the provided pattern might reject some cases based on more detailed
47ec03bbe8SVladislav Vinogradov // analysis of the `mapping` attribute.
48ec03bbe8SVladislav Vinogradov // To avoid dialect conversion failure due to non-converted illegal operation
49ec03bbe8SVladislav Vinogradov // we use this extra Unit attribute as a marker, that the operation was checked
50ec03bbe8SVladislav Vinogradov // by the pattern and is should be considered as legal in the following legality
51ec03bbe8SVladislav Vinogradov // checks. The `finalizeParallelLoopToGPUConversion` function performs clean up
52ec03bbe8SVladislav Vinogradov // of this extra attributes ans is supposed to be called after the dialect
53ec03bbe8SVladislav Vinogradov // conversion.
54ec03bbe8SVladislav Vinogradov //
55ec03bbe8SVladislav Vinogradov // TODO: Implement a cleaner solution, factoring out the "matching" logic
56ec03bbe8SVladislav Vinogradov // from the pattern and its callees into a separate function that can be called
57ec03bbe8SVladislav Vinogradov // from both the pattern and the op legality check.
58ec03bbe8SVladislav Vinogradov static constexpr StringLiteral kVisitedAttrName = "SCFToGPU_visited";
59ec03bbe8SVladislav Vinogradov 
604ead2cf7SAlex Zinenko // Extract an indexed value from KernelDim3.
614ead2cf7SAlex Zinenko static Value getDim3Value(const gpu::KernelDim3 &dim3, unsigned pos) {
624ead2cf7SAlex Zinenko   switch (pos) {
634ead2cf7SAlex Zinenko   case 0:
644ead2cf7SAlex Zinenko     return dim3.x;
654ead2cf7SAlex Zinenko   case 1:
664ead2cf7SAlex Zinenko     return dim3.y;
674ead2cf7SAlex Zinenko   case 2:
684ead2cf7SAlex Zinenko     return dim3.z;
694ead2cf7SAlex Zinenko   default:
704ead2cf7SAlex Zinenko     llvm_unreachable("dim3 position out of bounds");
714ead2cf7SAlex Zinenko   }
724ead2cf7SAlex Zinenko   return nullptr;
734ead2cf7SAlex Zinenko }
744ead2cf7SAlex Zinenko 
754ead2cf7SAlex Zinenko // Get the lower bound-related operands of a loop operation.
764ead2cf7SAlex Zinenko static Operation::operand_range getLowerBoundOperands(AffineForOp forOp) {
774ead2cf7SAlex Zinenko   return forOp.getLowerBoundOperands();
784ead2cf7SAlex Zinenko }
794ead2cf7SAlex Zinenko 
804ead2cf7SAlex Zinenko // Get the upper bound-related operands of a loop operation.
814ead2cf7SAlex Zinenko static Operation::operand_range getUpperBoundOperands(AffineForOp forOp) {
824ead2cf7SAlex Zinenko   return forOp.getUpperBoundOperands();
834ead2cf7SAlex Zinenko }
844ead2cf7SAlex Zinenko 
854ead2cf7SAlex Zinenko // Get a Value that corresponds to the loop step.  If the step is an attribute,
864ead2cf7SAlex Zinenko // materialize a corresponding constant using builder.
874ead2cf7SAlex Zinenko static Value getOrCreateStep(AffineForOp forOp, OpBuilder &builder) {
88a54f4eaeSMogball   return builder.create<arith::ConstantIndexOp>(forOp.getLoc(),
8923b794f7SMatthias Springer                                                 forOp.getStepAsInt());
904ead2cf7SAlex Zinenko }
914ead2cf7SAlex Zinenko 
924ead2cf7SAlex Zinenko // Get a Value for the loop lower bound.  If the value requires computation,
934ead2cf7SAlex Zinenko // materialize the instructions using builder.
944ead2cf7SAlex Zinenko static Value getOrEmitLowerBound(AffineForOp forOp, OpBuilder &builder) {
954ead2cf7SAlex Zinenko   return lowerAffineLowerBound(forOp, builder);
964ead2cf7SAlex Zinenko }
974ead2cf7SAlex Zinenko 
984ead2cf7SAlex Zinenko // Get a Value for the loop upper bound.  If the value requires computation,
994ead2cf7SAlex Zinenko // materialize the instructions using builder.
1004ead2cf7SAlex Zinenko static Value getOrEmitUpperBound(AffineForOp forOp, OpBuilder &builder) {
1014ead2cf7SAlex Zinenko   return lowerAffineUpperBound(forOp, builder);
1024ead2cf7SAlex Zinenko }
1034ead2cf7SAlex Zinenko 
1044ead2cf7SAlex Zinenko // Check the structure of the loop nest:
1054ead2cf7SAlex Zinenko //   - there are enough loops to map to numDims;
1064ead2cf7SAlex Zinenko //   - the loops are perfectly nested;
1074ead2cf7SAlex Zinenko //   - the loop bounds can be computed above the outermost loop.
1084ead2cf7SAlex Zinenko // This roughly corresponds to the "matcher" part of the pattern-based
1094ead2cf7SAlex Zinenko // rewriting infrastructure.
1102bcd1927SMaheshRavishankar static LogicalResult checkAffineLoopNestMappableImpl(AffineForOp forOp,
1112bcd1927SMaheshRavishankar                                                      unsigned numDims) {
1128df54a6aSJacques Pienaar   Region &limit = forOp.getRegion();
1134ead2cf7SAlex Zinenko   for (unsigned i = 0, e = numDims; i < e; ++i) {
1144ead2cf7SAlex Zinenko     Operation *nested = &forOp.getBody()->front();
1154ead2cf7SAlex Zinenko     if (!areValuesDefinedAbove(getLowerBoundOperands(forOp), limit) ||
1164ead2cf7SAlex Zinenko         !areValuesDefinedAbove(getUpperBoundOperands(forOp), limit))
1174ead2cf7SAlex Zinenko       return forOp.emitError(
1184ead2cf7SAlex Zinenko           "loops with bounds depending on other mapped loops "
1194ead2cf7SAlex Zinenko           "are not supported");
1204ead2cf7SAlex Zinenko 
1214ead2cf7SAlex Zinenko     // The innermost loop can have an arbitrary body, skip the perfect nesting
1224ead2cf7SAlex Zinenko     // check for it.
1234ead2cf7SAlex Zinenko     if (i == e - 1)
1244ead2cf7SAlex Zinenko       break;
1254ead2cf7SAlex Zinenko 
1264ead2cf7SAlex Zinenko     auto begin = forOp.getBody()->begin(), end = forOp.getBody()->end();
1274ead2cf7SAlex Zinenko     if (forOp.getBody()->empty() || std::next(begin, 2) != end)
1284ead2cf7SAlex Zinenko       return forOp.emitError("expected perfectly nested loops in the body");
1294ead2cf7SAlex Zinenko 
1302bcd1927SMaheshRavishankar     if (!(forOp = dyn_cast<AffineForOp>(nested)))
1314ead2cf7SAlex Zinenko       return nested->emitError("expected a nested loop");
1324ead2cf7SAlex Zinenko   }
1334ead2cf7SAlex Zinenko   return success();
1344ead2cf7SAlex Zinenko }
1354ead2cf7SAlex Zinenko 
1362bcd1927SMaheshRavishankar static LogicalResult checkAffineLoopNestMappable(AffineForOp forOp,
1372bcd1927SMaheshRavishankar                                                  unsigned numBlockDims,
1384ead2cf7SAlex Zinenko                                                  unsigned numThreadDims) {
1394ead2cf7SAlex Zinenko   if (numBlockDims < 1 || numThreadDims < 1) {
1404ead2cf7SAlex Zinenko     LLVM_DEBUG(llvm::dbgs() << "nothing to map");
1414ead2cf7SAlex Zinenko     return success();
1424ead2cf7SAlex Zinenko   }
1434ead2cf7SAlex Zinenko 
1444ead2cf7SAlex Zinenko   if (numBlockDims > 3) {
1454ead2cf7SAlex Zinenko     return forOp.emitError("cannot map to more than 3 block dimensions");
1464ead2cf7SAlex Zinenko   }
1474ead2cf7SAlex Zinenko   if (numThreadDims > 3) {
1484ead2cf7SAlex Zinenko     return forOp.emitError("cannot map to more than 3 thread dimensions");
1494ead2cf7SAlex Zinenko   }
1502bcd1927SMaheshRavishankar   return checkAffineLoopNestMappableImpl(forOp, numBlockDims + numThreadDims);
1514ead2cf7SAlex Zinenko }
1524ead2cf7SAlex Zinenko 
1534ead2cf7SAlex Zinenko namespace {
1544ead2cf7SAlex Zinenko // Helper structure that holds common state of the loop to GPU kernel
1554ead2cf7SAlex Zinenko // conversion.
1562bcd1927SMaheshRavishankar struct AffineLoopToGpuConverter {
1570a81ace0SKazu Hirata   std::optional<AffineForOp> collectBounds(AffineForOp forOp,
1580a81ace0SKazu Hirata                                            unsigned numLoops);
1594ead2cf7SAlex Zinenko 
1602bcd1927SMaheshRavishankar   void createLaunch(AffineForOp rootForOp, AffineForOp innermostForOp,
1612bcd1927SMaheshRavishankar                     unsigned numBlockDims, unsigned numThreadDims);
1624ead2cf7SAlex Zinenko 
1634ead2cf7SAlex Zinenko   // Ranges of the loops mapped to blocks or threads.
1644ead2cf7SAlex Zinenko   SmallVector<Value, 6> dims;
1654ead2cf7SAlex Zinenko   // Lower bounds of the loops mapped to blocks or threads.
1664ead2cf7SAlex Zinenko   SmallVector<Value, 6> lbs;
1674ead2cf7SAlex Zinenko   // Induction variables of the loops mapped to blocks or threads.
1684ead2cf7SAlex Zinenko   SmallVector<Value, 6> ivs;
1694ead2cf7SAlex Zinenko   // Steps of the loops mapped to blocks or threads.
1704ead2cf7SAlex Zinenko   SmallVector<Value, 6> steps;
1714ead2cf7SAlex Zinenko };
1724ead2cf7SAlex Zinenko } // namespace
1734ead2cf7SAlex Zinenko 
1744ead2cf7SAlex Zinenko // Collect ranges, bounds, steps and induction variables in preparation for
1754ead2cf7SAlex Zinenko // mapping a loop nest of depth "numLoops" rooted at "forOp" to a GPU kernel.
1764ead2cf7SAlex Zinenko // This may fail if the IR for computing loop bounds cannot be constructed, for
1774ead2cf7SAlex Zinenko // example if an affine loop uses semi-affine maps. Return the last loop to be
178192d9dd7SKazu Hirata // mapped on success, std::nullopt on failure.
1790a81ace0SKazu Hirata std::optional<AffineForOp>
1802bcd1927SMaheshRavishankar AffineLoopToGpuConverter::collectBounds(AffineForOp forOp, unsigned numLoops) {
1814ead2cf7SAlex Zinenko   OpBuilder builder(forOp.getOperation());
1824ead2cf7SAlex Zinenko   dims.reserve(numLoops);
1834ead2cf7SAlex Zinenko   lbs.reserve(numLoops);
1844ead2cf7SAlex Zinenko   ivs.reserve(numLoops);
1854ead2cf7SAlex Zinenko   steps.reserve(numLoops);
1862bcd1927SMaheshRavishankar   AffineForOp currentLoop = forOp;
1874ead2cf7SAlex Zinenko   for (unsigned i = 0; i < numLoops; ++i) {
1884ead2cf7SAlex Zinenko     Value lowerBound = getOrEmitLowerBound(currentLoop, builder);
1894ead2cf7SAlex Zinenko     Value upperBound = getOrEmitUpperBound(currentLoop, builder);
1904ead2cf7SAlex Zinenko     if (!lowerBound || !upperBound) {
1911a36588eSKazu Hirata       return std::nullopt;
1924ead2cf7SAlex Zinenko     }
1934ead2cf7SAlex Zinenko 
194a54f4eaeSMogball     Value range = builder.create<arith::SubIOp>(currentLoop.getLoc(),
195a54f4eaeSMogball                                                 upperBound, lowerBound);
1964ead2cf7SAlex Zinenko     Value step = getOrCreateStep(currentLoop, builder);
197cb7bda2aSMatthias Springer     if (getConstantIntValue(step) != static_cast<int64_t>(1))
198477c0b67SHsiangkai Wang       range =
199477c0b67SHsiangkai Wang           builder.create<arith::CeilDivSIOp>(currentLoop.getLoc(), range, step);
2004ead2cf7SAlex Zinenko     dims.push_back(range);
2014ead2cf7SAlex Zinenko 
2024ead2cf7SAlex Zinenko     lbs.push_back(lowerBound);
2034ead2cf7SAlex Zinenko     ivs.push_back(currentLoop.getInductionVar());
2044ead2cf7SAlex Zinenko     steps.push_back(step);
2054ead2cf7SAlex Zinenko 
2064ead2cf7SAlex Zinenko     if (i != numLoops - 1)
2072bcd1927SMaheshRavishankar       currentLoop = cast<AffineForOp>(&currentLoop.getBody()->front());
2084ead2cf7SAlex Zinenko   }
2094ead2cf7SAlex Zinenko   return currentLoop;
2104ead2cf7SAlex Zinenko }
2114ead2cf7SAlex Zinenko 
2124ead2cf7SAlex Zinenko // Replace the rooted at "rootForOp" with a GPU launch operation.  This expects
2134ead2cf7SAlex Zinenko // "innermostForOp" to point to the last loop to be transformed to the kernel,
2144ead2cf7SAlex Zinenko // and to have (numBlockDims + numThreadDims) perfectly nested loops between
2154ead2cf7SAlex Zinenko // "rootForOp" and "innermostForOp".
2162bcd1927SMaheshRavishankar void AffineLoopToGpuConverter::createLaunch(AffineForOp rootForOp,
2172bcd1927SMaheshRavishankar                                             AffineForOp innermostForOp,
2184ead2cf7SAlex Zinenko                                             unsigned numBlockDims,
2194ead2cf7SAlex Zinenko                                             unsigned numThreadDims) {
2204ead2cf7SAlex Zinenko   OpBuilder builder(rootForOp.getOperation());
2214ead2cf7SAlex Zinenko   // Prepare the grid and block sizes for the launch operation.  If there is
2224ead2cf7SAlex Zinenko   // no loop mapped to a specific dimension, use constant "1" as its size.
223a54f4eaeSMogball   Value constOne =
224a54f4eaeSMogball       (numBlockDims < 3 || numThreadDims < 3)
225a54f4eaeSMogball           ? builder.create<arith::ConstantIndexOp>(rootForOp.getLoc(), 1)
2264ead2cf7SAlex Zinenko           : nullptr;
2274ead2cf7SAlex Zinenko   Value gridSizeX = numBlockDims > 0 ? dims[0] : constOne;
2284ead2cf7SAlex Zinenko   Value gridSizeY = numBlockDims > 1 ? dims[1] : constOne;
2294ead2cf7SAlex Zinenko   Value gridSizeZ = numBlockDims > 2 ? dims[2] : constOne;
2304ead2cf7SAlex Zinenko   Value blockSizeX = numThreadDims > 0 ? dims[numBlockDims] : constOne;
2314ead2cf7SAlex Zinenko   Value blockSizeY = numThreadDims > 1 ? dims[numBlockDims + 1] : constOne;
2324ead2cf7SAlex Zinenko   Value blockSizeZ = numThreadDims > 2 ? dims[numBlockDims + 2] : constOne;
2334ead2cf7SAlex Zinenko 
2344ead2cf7SAlex Zinenko   // Create a launch op and move the body region of the innermost loop to the
2354ead2cf7SAlex Zinenko   // launch op.
2364ead2cf7SAlex Zinenko   auto launchOp = builder.create<gpu::LaunchOp>(
2374ead2cf7SAlex Zinenko       rootForOp.getLoc(), gridSizeX, gridSizeY, gridSizeZ, blockSizeX,
2384ead2cf7SAlex Zinenko       blockSizeY, blockSizeZ);
2394ead2cf7SAlex Zinenko 
2404ead2cf7SAlex Zinenko   // Replace the loop terminator (loops contain only a single block) with the
2414ead2cf7SAlex Zinenko   // gpu terminator and move the operations from the loop body block to the gpu
2424ead2cf7SAlex Zinenko   // launch body block.  Do not move the entire block because of the difference
2434ead2cf7SAlex Zinenko   // in block arguments.
2444ead2cf7SAlex Zinenko   Operation &terminator = innermostForOp.getBody()->back();
2454ead2cf7SAlex Zinenko   Location terminatorLoc = terminator.getLoc();
2464ead2cf7SAlex Zinenko   terminator.erase();
2474ead2cf7SAlex Zinenko   builder.setInsertionPointToEnd(innermostForOp.getBody());
2481a36588eSKazu Hirata   builder.create<gpu::TerminatorOp>(terminatorLoc, std::nullopt);
24910c04f46SRiver Riddle   launchOp.getBody().front().getOperations().splice(
25010c04f46SRiver Riddle       launchOp.getBody().front().begin(),
2514ead2cf7SAlex Zinenko       innermostForOp.getBody()->getOperations());
2524ead2cf7SAlex Zinenko 
2534ead2cf7SAlex Zinenko   // Remap the loop iterators to use block/thread identifiers instead.  Loops
2544ead2cf7SAlex Zinenko   // may iterate from LB with step S whereas GPU thread/block ids always iterate
2554ead2cf7SAlex Zinenko   // from 0 to N with step 1.  Therefore, loop induction variables are replaced
2564ead2cf7SAlex Zinenko   // with (gpu-thread/block-id * S) + LB.
25710c04f46SRiver Riddle   builder.setInsertionPointToStart(&launchOp.getBody().front());
25802b6fb21SMehdi Amini   auto *lbArgumentIt = lbs.begin();
25902b6fb21SMehdi Amini   auto *stepArgumentIt = steps.begin();
260e4853be2SMehdi Amini   for (const auto &en : llvm::enumerate(ivs)) {
2614ead2cf7SAlex Zinenko     Value id =
2624ead2cf7SAlex Zinenko         en.index() < numBlockDims
2634ead2cf7SAlex Zinenko             ? getDim3Value(launchOp.getBlockIds(), en.index())
2644ead2cf7SAlex Zinenko             : getDim3Value(launchOp.getThreadIds(), en.index() - numBlockDims);
2654ead2cf7SAlex Zinenko     Value step = steps[en.index()];
266cb7bda2aSMatthias Springer     if (getConstantIntValue(step) != static_cast<int64_t>(1))
267a54f4eaeSMogball       id = builder.create<arith::MulIOp>(rootForOp.getLoc(), step, id);
2684ead2cf7SAlex Zinenko 
2694ead2cf7SAlex Zinenko     Value ivReplacement =
270a54f4eaeSMogball         builder.create<arith::AddIOp>(rootForOp.getLoc(), *lbArgumentIt, id);
2714ead2cf7SAlex Zinenko     en.value().replaceAllUsesWith(ivReplacement);
2724ead2cf7SAlex Zinenko     std::advance(lbArgumentIt, 1);
2734ead2cf7SAlex Zinenko     std::advance(stepArgumentIt, 1);
2744ead2cf7SAlex Zinenko   }
2754ead2cf7SAlex Zinenko 
2764ead2cf7SAlex Zinenko   // We are done and can erase the original outermost loop.
2774ead2cf7SAlex Zinenko   rootForOp.erase();
2784ead2cf7SAlex Zinenko }
2794ead2cf7SAlex Zinenko 
2804ead2cf7SAlex Zinenko // Generic loop to GPU kernel conversion function.
2812bcd1927SMaheshRavishankar static LogicalResult convertAffineLoopNestToGPULaunch(AffineForOp forOp,
2824ead2cf7SAlex Zinenko                                                       unsigned numBlockDims,
2834ead2cf7SAlex Zinenko                                                       unsigned numThreadDims) {
2842bcd1927SMaheshRavishankar   if (failed(checkAffineLoopNestMappable(forOp, numBlockDims, numThreadDims)))
2854ead2cf7SAlex Zinenko     return failure();
2864ead2cf7SAlex Zinenko 
2872bcd1927SMaheshRavishankar   AffineLoopToGpuConverter converter;
2884ead2cf7SAlex Zinenko   auto maybeInnerLoop =
2894ead2cf7SAlex Zinenko       converter.collectBounds(forOp, numBlockDims + numThreadDims);
2904ead2cf7SAlex Zinenko   if (!maybeInnerLoop)
2914ead2cf7SAlex Zinenko     return failure();
2924ead2cf7SAlex Zinenko   converter.createLaunch(forOp, *maybeInnerLoop, numBlockDims, numThreadDims);
2934ead2cf7SAlex Zinenko 
2944ead2cf7SAlex Zinenko   return success();
2954ead2cf7SAlex Zinenko }
2964ead2cf7SAlex Zinenko 
2974ead2cf7SAlex Zinenko LogicalResult mlir::convertAffineLoopNestToGPULaunch(AffineForOp forOp,
2984ead2cf7SAlex Zinenko                                                      unsigned numBlockDims,
2994ead2cf7SAlex Zinenko                                                      unsigned numThreadDims) {
3002bcd1927SMaheshRavishankar   return ::convertAffineLoopNestToGPULaunch(forOp, numBlockDims, numThreadDims);
3014ead2cf7SAlex Zinenko }
3024ead2cf7SAlex Zinenko 
3034ead2cf7SAlex Zinenko namespace {
3044ead2cf7SAlex Zinenko struct ParallelToGpuLaunchLowering : public OpRewritePattern<ParallelOp> {
3054ead2cf7SAlex Zinenko   using OpRewritePattern<ParallelOp>::OpRewritePattern;
3064ead2cf7SAlex Zinenko 
3074ead2cf7SAlex Zinenko   LogicalResult matchAndRewrite(ParallelOp parallelOp,
3084ead2cf7SAlex Zinenko                                 PatternRewriter &rewriter) const override;
3094ead2cf7SAlex Zinenko };
3104ead2cf7SAlex Zinenko } // namespace
3114ead2cf7SAlex Zinenko 
3124ead2cf7SAlex Zinenko /// Tries to derive a static upper bound from the defining operation of
3134ead2cf7SAlex Zinenko /// `upperBound`.
3144ead2cf7SAlex Zinenko static Value deriveStaticUpperBound(Value upperBound,
3154ead2cf7SAlex Zinenko                                     PatternRewriter &rewriter) {
316a54f4eaeSMogball   if (auto op = upperBound.getDefiningOp<arith::ConstantIndexOp>()) {
3174ead2cf7SAlex Zinenko     return op;
3184ead2cf7SAlex Zinenko   }
3194ead2cf7SAlex Zinenko 
3204ead2cf7SAlex Zinenko   if (auto minOp = upperBound.getDefiningOp<AffineMinOp>()) {
3218df54a6aSJacques Pienaar     for (const AffineExpr &result : minOp.getMap().getResults()) {
3221609f1c2Slong.chen       if (auto constExpr = dyn_cast<AffineConstantExpr>(result)) {
323a54f4eaeSMogball         return rewriter.create<arith::ConstantIndexOp>(minOp.getLoc(),
3244ead2cf7SAlex Zinenko                                                        constExpr.getValue());
3254ead2cf7SAlex Zinenko       }
3264ead2cf7SAlex Zinenko     }
3274ead2cf7SAlex Zinenko   }
3284ead2cf7SAlex Zinenko 
329459fd3fbSChristian Sigg   if (auto minOp = upperBound.getDefiningOp<arith::MinSIOp>()) {
330459fd3fbSChristian Sigg     for (Value operand : {minOp.getLhs(), minOp.getRhs()}) {
331459fd3fbSChristian Sigg       if (auto staticBound = deriveStaticUpperBound(operand, rewriter))
332459fd3fbSChristian Sigg         return staticBound;
333459fd3fbSChristian Sigg     }
334459fd3fbSChristian Sigg   }
335459fd3fbSChristian Sigg 
336a54f4eaeSMogball   if (auto multiplyOp = upperBound.getDefiningOp<arith::MulIOp>()) {
337a54f4eaeSMogball     if (auto lhs = dyn_cast_or_null<arith::ConstantIndexOp>(
3384ead2cf7SAlex Zinenko             deriveStaticUpperBound(multiplyOp.getOperand(0), rewriter)
3394ead2cf7SAlex Zinenko                 .getDefiningOp()))
340a54f4eaeSMogball       if (auto rhs = dyn_cast_or_null<arith::ConstantIndexOp>(
3414ead2cf7SAlex Zinenko               deriveStaticUpperBound(multiplyOp.getOperand(1), rewriter)
3424ead2cf7SAlex Zinenko                   .getDefiningOp())) {
3434ead2cf7SAlex Zinenko         // Assumptions about the upper bound of minimum computations no longer
344459fd3fbSChristian Sigg         // work if multiplied by mixed signs, so abort in this case.
34563022c48SChristian Sigg         if ((lhs.value() < 0) != (rhs.value() < 0))
3464ead2cf7SAlex Zinenko           return {};
3474ead2cf7SAlex Zinenko 
348a54f4eaeSMogball         return rewriter.create<arith::ConstantIndexOp>(
349a54f4eaeSMogball             multiplyOp.getLoc(), lhs.value() * rhs.value());
3504ead2cf7SAlex Zinenko       }
3514ead2cf7SAlex Zinenko   }
3524ead2cf7SAlex Zinenko 
3534ead2cf7SAlex Zinenko   return {};
3544ead2cf7SAlex Zinenko }
3554ead2cf7SAlex Zinenko 
3564ead2cf7SAlex Zinenko static bool isMappedToProcessor(gpu::Processor processor) {
3574ead2cf7SAlex Zinenko   return processor != gpu::Processor::Sequential;
3584ead2cf7SAlex Zinenko }
3594ead2cf7SAlex Zinenko 
3604ead2cf7SAlex Zinenko static unsigned getLaunchOpArgumentNum(gpu::Processor processor) {
3614ead2cf7SAlex Zinenko   switch (processor) {
3624ead2cf7SAlex Zinenko   case gpu::Processor::BlockX:
3634ead2cf7SAlex Zinenko     return 0;
3644ead2cf7SAlex Zinenko   case gpu::Processor::BlockY:
3654ead2cf7SAlex Zinenko     return 1;
3664ead2cf7SAlex Zinenko   case gpu::Processor::BlockZ:
3674ead2cf7SAlex Zinenko     return 2;
3684ead2cf7SAlex Zinenko   case gpu::Processor::ThreadX:
3694ead2cf7SAlex Zinenko     return 3;
3704ead2cf7SAlex Zinenko   case gpu::Processor::ThreadY:
3714ead2cf7SAlex Zinenko     return 4;
3724ead2cf7SAlex Zinenko   case gpu::Processor::ThreadZ:
3734ead2cf7SAlex Zinenko     return 5;
3744ead2cf7SAlex Zinenko   default:;
3754ead2cf7SAlex Zinenko   }
3764ead2cf7SAlex Zinenko   llvm_unreachable(
3774ead2cf7SAlex Zinenko       "invalid processor type while retrieving launch op argument number");
3784ead2cf7SAlex Zinenko }
3794ead2cf7SAlex Zinenko 
3804ead2cf7SAlex Zinenko /// Modifies the current transformation state to capture the effect of the given
3814ead2cf7SAlex Zinenko /// `scf.parallel` operation on index substitutions and the operations to be
3824ead2cf7SAlex Zinenko /// inserted.
3834ead2cf7SAlex Zinenko /// Specifically, if a dimension of a parallel loop is mapped to a hardware id,
3844ead2cf7SAlex Zinenko /// this function will
3854ead2cf7SAlex Zinenko /// - compute the loop index based on the hardware id and affine map from the
3864ead2cf7SAlex Zinenko ///   mapping and update `cloningMap` to substitute all uses.
3874ead2cf7SAlex Zinenko /// - derive a new upper bound for the hardware id and augment the provided
3884ead2cf7SAlex Zinenko ///   `gpu.launch operation` accordingly.
3894ead2cf7SAlex Zinenko /// - if the upper bound is imprecise, insert a conditional in the `gpu.launch`
3904ead2cf7SAlex Zinenko ///   and update the rewriter to insert into the conditional's body.
3914ead2cf7SAlex Zinenko /// If the dimension is mapped to sequential,
3924ead2cf7SAlex Zinenko /// - insert a for loop into the body and update the rewriter to insert into
3934ead2cf7SAlex Zinenko ///   the for loop's body.
3944ead2cf7SAlex Zinenko /// - update the `cloningMap` to replace uses of the index with the index of
3954ead2cf7SAlex Zinenko ///   the new for loop.
3964ead2cf7SAlex Zinenko /// In either case,
3974ead2cf7SAlex Zinenko /// - append the instructions from the loops body to worklist, in reverse order.
3984ead2cf7SAlex Zinenko /// To note the end of the current scope in case a loop or conditional was
3994ead2cf7SAlex Zinenko /// inserted, a sentinel (the `gpu.launch` operation) is inserted into the
4004ead2cf7SAlex Zinenko /// worklist. This signals the processor of the worklist to pop the rewriter
4014ead2cf7SAlex Zinenko /// one scope-level up.
4024ead2cf7SAlex Zinenko static LogicalResult processParallelLoop(
4034d67b278SJeff Niu     ParallelOp parallelOp, gpu::LaunchOp launchOp, IRMapping &cloningMap,
4044d67b278SJeff Niu     SmallVectorImpl<Operation *> &worklist,
4054ead2cf7SAlex Zinenko     DenseMap<gpu::Processor, Value> &bounds, PatternRewriter &rewriter) {
4069db53a18SRiver Riddle   // TODO: Verify that this is a valid GPU mapping.
4074ead2cf7SAlex Zinenko   // processor ids: 0-2 block [x/y/z], 3-5 -> thread [x/y/z], 6-> sequential
4084ead2cf7SAlex Zinenko   ArrayAttr mapping =
4090bf4a82aSChristian Sigg       parallelOp->getAttrOfType<ArrayAttr>(gpu::getMappingAttrName());
4104ead2cf7SAlex Zinenko 
411*0e944a30STuomas Kärnä   // TODO: Support multiple reductions.
412*0e944a30STuomas Kärnä   if (!mapping || parallelOp.getNumResults() > 1)
4134ead2cf7SAlex Zinenko     return failure();
4144ead2cf7SAlex Zinenko 
4154ead2cf7SAlex Zinenko   Location loc = parallelOp.getLoc();
4164ead2cf7SAlex Zinenko 
4174ead2cf7SAlex Zinenko   auto launchIndependent = [&launchOp](Value val) {
4180bf4a82aSChristian Sigg     return val.getParentRegion()->isAncestor(launchOp->getParentRegion());
4194ead2cf7SAlex Zinenko   };
4204ead2cf7SAlex Zinenko 
4214ead2cf7SAlex Zinenko   auto ensureLaunchIndependent = [&rewriter,
4224ead2cf7SAlex Zinenko                                   launchIndependent](Value val) -> Value {
4234ead2cf7SAlex Zinenko     if (launchIndependent(val))
4244ead2cf7SAlex Zinenko       return val;
425a54f4eaeSMogball     if (auto constOp = val.getDefiningOp<arith::ConstantOp>())
426a54f4eaeSMogball       return rewriter.create<arith::ConstantOp>(constOp.getLoc(),
427cfb72fd3SJacques Pienaar                                                 constOp.getValue());
4284ead2cf7SAlex Zinenko     return {};
4294ead2cf7SAlex Zinenko   };
4304ead2cf7SAlex Zinenko 
431c0342a2dSJacques Pienaar   for (auto config : llvm::zip(
432c0342a2dSJacques Pienaar            mapping, parallelOp.getInductionVars(), parallelOp.getLowerBound(),
433c0342a2dSJacques Pienaar            parallelOp.getUpperBound(), parallelOp.getStep())) {
4344ead2cf7SAlex Zinenko     Attribute mappingAttribute;
4354ead2cf7SAlex Zinenko     Value iv, lowerBound, upperBound, step;
4364ead2cf7SAlex Zinenko     std::tie(mappingAttribute, iv, lowerBound, upperBound, step) = config;
4377bdd3722SMogball     auto annotation =
4385550c821STres Popp         dyn_cast<gpu::ParallelLoopDimMappingAttr>(mappingAttribute);
4394ead2cf7SAlex Zinenko     if (!annotation)
4404ead2cf7SAlex Zinenko       return parallelOp.emitOpError()
4414ead2cf7SAlex Zinenko              << "expected mapping attribute for lowering to GPU";
4424ead2cf7SAlex Zinenko     Value newIndex;
4437bdd3722SMogball     gpu::Processor processor = annotation.getProcessor();
4444ead2cf7SAlex Zinenko 
4454ead2cf7SAlex Zinenko     if (isMappedToProcessor(processor)) {
4464ead2cf7SAlex Zinenko       // Use the corresponding thread/grid index as replacement for the loop iv.
447e2b71610SRahul Joshi       Value operand =
44810c04f46SRiver Riddle           launchOp.getBody().getArgument(getLaunchOpArgumentNum(processor));
4494ead2cf7SAlex Zinenko       // Take the indexmap and add the lower bound and step computations in.
4504ead2cf7SAlex Zinenko       // This computes operand * step + lowerBound.
4514ead2cf7SAlex Zinenko       // Use an affine map here so that it composes nicely with the provided
4524ead2cf7SAlex Zinenko       // annotation.
4534ead2cf7SAlex Zinenko       AffineMap lowerAndStep = AffineMap::get(
4544ead2cf7SAlex Zinenko           1, 2,
4554ead2cf7SAlex Zinenko           rewriter.getAffineDimExpr(0) * rewriter.getAffineSymbolExpr(0) +
4564ead2cf7SAlex Zinenko               rewriter.getAffineSymbolExpr(1));
4574ead2cf7SAlex Zinenko       newIndex = rewriter.create<AffineApplyOp>(
4587bdd3722SMogball           loc, annotation.getMap().compose(lowerAndStep),
459227bfa1fSlong.chen           ValueRange{operand, ensureLaunchIndependent(step),
460227bfa1fSlong.chen                      ensureLaunchIndependent(lowerBound)});
4614ead2cf7SAlex Zinenko       // If there was also a bound, insert that, too.
4629db53a18SRiver Riddle       // TODO: Check that we do not assign bounds twice.
4637bdd3722SMogball       if (annotation.getBound()) {
4644ead2cf7SAlex Zinenko         // We pass as the single operand to the bound-map the number of
4654ead2cf7SAlex Zinenko         // iterations, which is (upperBound - lowerBound) ceilDiv step. To
4664ead2cf7SAlex Zinenko         // support inner loops with dynamic upper bounds (as generated by e.g.
4674ead2cf7SAlex Zinenko         // tiling), try to derive a max for the bounds. If the used bound for
4684ead2cf7SAlex Zinenko         // the hardware id is imprecise, wrap the contained code into a
4694ead2cf7SAlex Zinenko         // conditional. If the lower-bound is constant or defined before the
4704ead2cf7SAlex Zinenko         // launch, we can use it in the launch bounds. Otherwise fail.
4714ead2cf7SAlex Zinenko         if (!launchIndependent(lowerBound) &&
472a54f4eaeSMogball             !isa_and_nonnull<arith::ConstantOp>(lowerBound.getDefiningOp()))
4734ead2cf7SAlex Zinenko           return failure();
4744ead2cf7SAlex Zinenko         // The step must also be constant or defined outside of the loop nest.
4754ead2cf7SAlex Zinenko         if (!launchIndependent(step) &&
476a54f4eaeSMogball             !isa_and_nonnull<arith::ConstantOp>(step.getDefiningOp()))
4774ead2cf7SAlex Zinenko           return failure();
4784ead2cf7SAlex Zinenko         // If the upper-bound is constant or defined before the launch, we can
4794ead2cf7SAlex Zinenko         // use it in the launch bounds directly. Otherwise try derive a bound.
4804ead2cf7SAlex Zinenko         bool boundIsPrecise =
4814ead2cf7SAlex Zinenko             launchIndependent(upperBound) ||
482a54f4eaeSMogball             isa_and_nonnull<arith::ConstantOp>(upperBound.getDefiningOp());
4834ead2cf7SAlex Zinenko         {
4844ead2cf7SAlex Zinenko           PatternRewriter::InsertionGuard guard(rewriter);
4854ead2cf7SAlex Zinenko           rewriter.setInsertionPoint(launchOp);
4864ead2cf7SAlex Zinenko           if (!boundIsPrecise) {
4874ead2cf7SAlex Zinenko             upperBound = deriveStaticUpperBound(upperBound, rewriter);
4884ead2cf7SAlex Zinenko             if (!upperBound) {
4895da2423bSStephan Herhut               return rewriter.notifyMatchFailure(
4905da2423bSStephan Herhut                   parallelOp,
4915da2423bSStephan Herhut                   "cannot derive loop-invariant upper bound for number of"
4925da2423bSStephan Herhut                   "iterations");
4934ead2cf7SAlex Zinenko             }
4944ead2cf7SAlex Zinenko           }
4954ead2cf7SAlex Zinenko           // Compute the number of iterations needed. We compute this as an
4964ead2cf7SAlex Zinenko           // affine expression ceilDiv (upperBound - lowerBound) step. We use
4974ead2cf7SAlex Zinenko           // affine.apply here so that it composes nicely with the provided map.
49872d5ac90STres Popp           AffineMap stepMap = AffineMap::get(
49972d5ac90STres Popp               1, 2,
50072d5ac90STres Popp               ((rewriter.getAffineDimExpr(0) - rewriter.getAffineSymbolExpr(0))
50172d5ac90STres Popp                    .ceilDiv(rewriter.getAffineSymbolExpr(1))));
5024ead2cf7SAlex Zinenko           Value launchBound = rewriter.create<AffineApplyOp>(
5037bdd3722SMogball               loc, annotation.getBound().compose(stepMap),
5044ead2cf7SAlex Zinenko               ValueRange{
5054ead2cf7SAlex Zinenko                   ensureLaunchIndependent(
5064ead2cf7SAlex Zinenko                       cloningMap.lookupOrDefault(upperBound)),
5074ead2cf7SAlex Zinenko                   ensureLaunchIndependent(
5084ead2cf7SAlex Zinenko                       cloningMap.lookupOrDefault(lowerBound)),
5094ead2cf7SAlex Zinenko                   ensureLaunchIndependent(cloningMap.lookupOrDefault(step))});
5104ead2cf7SAlex Zinenko           // todo(herhut,ravishankarm): Update the behavior of setMappingAttr
5114ead2cf7SAlex Zinenko           // when this condition is relaxed.
51201a0e85aSKazu Hirata           if (!bounds.try_emplace(processor, launchBound).second) {
5135da2423bSStephan Herhut             return rewriter.notifyMatchFailure(
5145da2423bSStephan Herhut                 parallelOp, "cannot redefine the bound for processor " +
5155da2423bSStephan Herhut                                 Twine(static_cast<int64_t>(processor)));
5164ead2cf7SAlex Zinenko           }
5174ead2cf7SAlex Zinenko         }
5184ead2cf7SAlex Zinenko         if (!boundIsPrecise) {
5194ead2cf7SAlex Zinenko           // We are using an approximation, create a surrounding conditional.
5204ead2cf7SAlex Zinenko           Value originalBound = std::get<3>(config);
521a54f4eaeSMogball           arith::CmpIOp pred = rewriter.create<arith::CmpIOp>(
522a54f4eaeSMogball               loc, arith::CmpIPredicate::slt, newIndex,
5234ead2cf7SAlex Zinenko               cloningMap.lookupOrDefault(originalBound));
5244ead2cf7SAlex Zinenko           scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, pred, false);
525c0342a2dSJacques Pienaar           rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front());
5264ead2cf7SAlex Zinenko           // Put a sentinel into the worklist so we know when to pop out of the
5274ead2cf7SAlex Zinenko           // if body again. We use the launchOp here, as that cannot be part of
5284ead2cf7SAlex Zinenko           // the bodies instruction.
5294ead2cf7SAlex Zinenko           worklist.push_back(launchOp.getOperation());
5304ead2cf7SAlex Zinenko         }
5314ead2cf7SAlex Zinenko       }
5324ead2cf7SAlex Zinenko     } else {
5334ead2cf7SAlex Zinenko       // Create a sequential for loop.
5344ead2cf7SAlex Zinenko       auto loopOp = rewriter.create<scf::ForOp>(
5354ead2cf7SAlex Zinenko           loc, cloningMap.lookupOrDefault(lowerBound),
5364ead2cf7SAlex Zinenko           cloningMap.lookupOrDefault(upperBound),
5374ead2cf7SAlex Zinenko           cloningMap.lookupOrDefault(step));
5384ead2cf7SAlex Zinenko       newIndex = loopOp.getInductionVar();
5394ead2cf7SAlex Zinenko       rewriter.setInsertionPointToStart(loopOp.getBody());
5404ead2cf7SAlex Zinenko       // Put a sentinel into the worklist so we know when to pop out of the loop
5414ead2cf7SAlex Zinenko       // body again. We use the launchOp here, as that cannot be part of the
5424ead2cf7SAlex Zinenko       // bodies instruction.
5434ead2cf7SAlex Zinenko       worklist.push_back(launchOp.getOperation());
5444ead2cf7SAlex Zinenko     }
5454ead2cf7SAlex Zinenko     cloningMap.map(iv, newIndex);
5464ead2cf7SAlex Zinenko   }
547396e7f45SArtur Bialas 
548396e7f45SArtur Bialas   // Propagate custom user defined optional attributes, that can be used at
549396e7f45SArtur Bialas   // later stage, such as extension data for GPU kernel dispatch
55056774bddSMarius Brehler   for (const auto &namedAttr : parallelOp->getAttrs()) {
5510c7890c8SRiver Riddle     if (namedAttr.getName() == gpu::getMappingAttrName() ||
5520c7890c8SRiver Riddle         namedAttr.getName() == ParallelOp::getOperandSegmentSizeAttr())
553396e7f45SArtur Bialas       continue;
5540c7890c8SRiver Riddle     launchOp->setAttr(namedAttr.getName(), namedAttr.getValue());
555396e7f45SArtur Bialas   }
556396e7f45SArtur Bialas 
5574ead2cf7SAlex Zinenko   Block *body = parallelOp.getBody();
5584ead2cf7SAlex Zinenko   worklist.reserve(worklist.size() + body->getOperations().size());
559*0e944a30STuomas Kärnä   // Include scf.reduce terminator if exists and has an operand.
560*0e944a30STuomas Kärnä   if (auto terminator = body->getTerminator();
561*0e944a30STuomas Kärnä       isa<scf::ReduceOp>(terminator) && terminator->getOperands().size() == 1) {
562*0e944a30STuomas Kärnä     worklist.push_back(terminator);
563*0e944a30STuomas Kärnä   }
5644ead2cf7SAlex Zinenko   for (Operation &op : llvm::reverse(body->without_terminator()))
5654ead2cf7SAlex Zinenko     worklist.push_back(&op);
5664ead2cf7SAlex Zinenko   return success();
5674ead2cf7SAlex Zinenko }
5684ead2cf7SAlex Zinenko 
5694ead2cf7SAlex Zinenko /// Lower a `scf.parallel` operation into a corresponding `gpu.launch`
5704ead2cf7SAlex Zinenko /// operation.
5714ead2cf7SAlex Zinenko ///
5724ead2cf7SAlex Zinenko /// This essentially transforms a loop nest into a corresponding SIMT function.
5734ead2cf7SAlex Zinenko /// The conversion is driven by mapping annotations on the `scf.parallel`
5744ead2cf7SAlex Zinenko /// operations. The mapping is provided via a `DictionaryAttribute` named
5754ead2cf7SAlex Zinenko /// `mapping`, which has three entries:
5764ead2cf7SAlex Zinenko ///  - processor: the hardware id to map to. 0-2 are block dimensions, 3-5 are
5774ead2cf7SAlex Zinenko ///               thread dimensions and 6 is sequential.
5784ead2cf7SAlex Zinenko ///  - map : An affine map that is used to pre-process hardware ids before
5794ead2cf7SAlex Zinenko ///          substitution.
5804ead2cf7SAlex Zinenko ///  - bound : An affine map that is used to compute the bound of the hardware
5814ead2cf7SAlex Zinenko ///            id based on an upper bound of the number of iterations.
5824ead2cf7SAlex Zinenko /// If the `scf.parallel` contains nested `scf.parallel` operations, those
5834ead2cf7SAlex Zinenko /// need to be annotated, as well. Structurally, the transformation works by
5844ead2cf7SAlex Zinenko /// splicing all operations from nested `scf.parallel` operations into a single
5854ead2cf7SAlex Zinenko /// sequence. Indices mapped to hardware ids are substituted with those ids,
5864ead2cf7SAlex Zinenko /// wheras sequential mappings result in a sequential for-loop. To have more
5874ead2cf7SAlex Zinenko /// flexibility when mapping code to hardware ids, the transform supports two
5884ead2cf7SAlex Zinenko /// affine maps. The first `map` is used to compute the actual index for
5894ead2cf7SAlex Zinenko /// substitution from the hardware id. The second `bound` is used to compute the
5904ead2cf7SAlex Zinenko /// launch dimension for the hardware id from the number of iterations the
5914ead2cf7SAlex Zinenko /// mapped loop is performing. Note that the number of iterations might be
5924ead2cf7SAlex Zinenko /// imprecise if the corresponding loop-bounds are loop-dependent. In such case,
5934ead2cf7SAlex Zinenko /// the hardware id might iterate over additional indices. The transformation
5944ead2cf7SAlex Zinenko /// caters for this by predicating the created sequence of instructions on
5954ead2cf7SAlex Zinenko /// the actual loop bound. This only works if an static upper bound for the
5964ead2cf7SAlex Zinenko /// dynamic loop bound can be derived, currently via analyzing `affine.min`
5974ead2cf7SAlex Zinenko /// operations.
5984ead2cf7SAlex Zinenko LogicalResult
5994ead2cf7SAlex Zinenko ParallelToGpuLaunchLowering::matchAndRewrite(ParallelOp parallelOp,
6004ead2cf7SAlex Zinenko                                              PatternRewriter &rewriter) const {
601ec03bbe8SVladislav Vinogradov   // Mark the operation as visited for recursive legality check.
602ec03bbe8SVladislav Vinogradov   parallelOp->setAttr(kVisitedAttrName, rewriter.getUnitAttr());
603ec03bbe8SVladislav Vinogradov 
6045da2423bSStephan Herhut   // We can only transform starting at the outer-most loop. Launches inside of
6055da2423bSStephan Herhut   // parallel loops are not supported.
6060bf4a82aSChristian Sigg   if (auto parentLoop = parallelOp->getParentOfType<ParallelOp>())
6075da2423bSStephan Herhut     return failure();
6084ead2cf7SAlex Zinenko   // Create a launch operation. We start with bound one for all grid/block
6094ead2cf7SAlex Zinenko   // sizes. Those will be refined later as we discover them from mappings.
6104ead2cf7SAlex Zinenko   Location loc = parallelOp.getLoc();
611a54f4eaeSMogball   Value constantOne =
612a54f4eaeSMogball       rewriter.create<arith::ConstantIndexOp>(parallelOp.getLoc(), 1);
6134ead2cf7SAlex Zinenko   gpu::LaunchOp launchOp = rewriter.create<gpu::LaunchOp>(
6144ead2cf7SAlex Zinenko       parallelOp.getLoc(), constantOne, constantOne, constantOne, constantOne,
6154ead2cf7SAlex Zinenko       constantOne, constantOne);
61610c04f46SRiver Riddle   rewriter.setInsertionPointToEnd(&launchOp.getBody().front());
6174ead2cf7SAlex Zinenko   rewriter.create<gpu::TerminatorOp>(loc);
61810c04f46SRiver Riddle   rewriter.setInsertionPointToStart(&launchOp.getBody().front());
6194ead2cf7SAlex Zinenko 
6204d67b278SJeff Niu   IRMapping cloningMap;
6214ead2cf7SAlex Zinenko   llvm::DenseMap<gpu::Processor, Value> launchBounds;
6224ead2cf7SAlex Zinenko   SmallVector<Operation *, 16> worklist;
6234ead2cf7SAlex Zinenko   if (failed(processParallelLoop(parallelOp, launchOp, cloningMap, worklist,
6244ead2cf7SAlex Zinenko                                  launchBounds, rewriter)))
6254ead2cf7SAlex Zinenko     return failure();
6264ead2cf7SAlex Zinenko 
6274ead2cf7SAlex Zinenko   // Whether we have seen any side-effects. Reset when leaving an inner scope.
6284ead2cf7SAlex Zinenko   bool seenSideeffects = false;
6294ead2cf7SAlex Zinenko   // Whether we have left a nesting scope (and hence are no longer innermost).
6304ead2cf7SAlex Zinenko   bool leftNestingScope = false;
6314ead2cf7SAlex Zinenko   while (!worklist.empty()) {
6324ead2cf7SAlex Zinenko     Operation *op = worklist.pop_back_val();
6334ead2cf7SAlex Zinenko     // Now walk over the body and clone it.
6344ead2cf7SAlex Zinenko     // TODO: This is only correct if there either is no further scf.parallel
6354ead2cf7SAlex Zinenko     //       nested or this code is side-effect free. Otherwise we might need
6364ead2cf7SAlex Zinenko     //       predication. We are overly conservative for now and only allow
6374ead2cf7SAlex Zinenko     //       side-effects in the innermost scope.
6384ead2cf7SAlex Zinenko     if (auto nestedParallel = dyn_cast<ParallelOp>(op)) {
6394ead2cf7SAlex Zinenko       // Before entering a nested scope, make sure there have been no
6404ead2cf7SAlex Zinenko       // sideeffects until now.
6414ead2cf7SAlex Zinenko       if (seenSideeffects)
6424ead2cf7SAlex Zinenko         return failure();
6434ead2cf7SAlex Zinenko       // A nested scf.parallel needs insertion of code to compute indices.
6444ead2cf7SAlex Zinenko       // Insert that now. This will also update the worklist with the loops
6454ead2cf7SAlex Zinenko       // body.
6464ead2cf7SAlex Zinenko       if (failed(processParallelLoop(nestedParallel, launchOp, cloningMap,
6474ead2cf7SAlex Zinenko                                      worklist, launchBounds, rewriter)))
6484ead2cf7SAlex Zinenko         return failure();
6494ead2cf7SAlex Zinenko     } else if (op == launchOp.getOperation()) {
6504ead2cf7SAlex Zinenko       // Found our sentinel value. We have finished the operations from one
6514ead2cf7SAlex Zinenko       // nesting level, pop one level back up.
65202b6fb21SMehdi Amini       auto *parent = rewriter.getInsertionPoint()->getParentOp();
6534ead2cf7SAlex Zinenko       rewriter.setInsertionPointAfter(parent);
6544ead2cf7SAlex Zinenko       leftNestingScope = true;
6554ead2cf7SAlex Zinenko       seenSideeffects = false;
656*0e944a30STuomas Kärnä     } else if (auto reduceOp = dyn_cast<scf::ReduceOp>(op)) {
657*0e944a30STuomas Kärnä       // Convert scf.reduction op
658*0e944a30STuomas Kärnä       auto parentLoop = op->getParentOfType<ParallelOp>();
659*0e944a30STuomas Kärnä       if (!parentLoop || op->getOperands().size() != 1)
660*0e944a30STuomas Kärnä         return failure();
661*0e944a30STuomas Kärnä       auto operand = op->getOperands().front();
662*0e944a30STuomas Kärnä       auto newValue = cloningMap.lookupOrNull(operand);
663*0e944a30STuomas Kärnä       if (!newValue || !operand.getType().isSignlessIntOrFloat())
664*0e944a30STuomas Kärnä         return failure();
665*0e944a30STuomas Kärnä       // Ensure reduction region is isolated from above.
666*0e944a30STuomas Kärnä       llvm::SetVector<Value> externalValues;
667*0e944a30STuomas Kärnä       getUsedValuesDefinedAbove(reduceOp.getRegion(0), externalValues);
668*0e944a30STuomas Kärnä       if (externalValues.size())
669*0e944a30STuomas Kärnä         return failure();
670*0e944a30STuomas Kärnä       // Replace by gpu.all_reduce.
671*0e944a30STuomas Kärnä       auto gpuRedOp = rewriter.create<gpu::AllReduceOp>(loc, newValue);
672*0e944a30STuomas Kärnä       cloningMap.map(parentLoop->getResult(0), gpuRedOp.getResult());
673*0e944a30STuomas Kärnä       // Copy region.
674*0e944a30STuomas Kärnä       rewriter.inlineRegionBefore(reduceOp.getRegion(0), gpuRedOp.getRegion(),
675*0e944a30STuomas Kärnä                                   gpuRedOp.getRegion().begin());
676*0e944a30STuomas Kärnä       // Replace src.reduce.return with gpu.yield.
677*0e944a30STuomas Kärnä       auto scfReturn = gpuRedOp.getRegion().front().getTerminator();
678*0e944a30STuomas Kärnä       auto ip = rewriter.saveInsertionPoint();
679*0e944a30STuomas Kärnä       rewriter.setInsertionPointToEnd(&gpuRedOp.getRegion().front());
680*0e944a30STuomas Kärnä       rewriter.replaceOpWithNewOp<gpu::YieldOp>(
681*0e944a30STuomas Kärnä           scfReturn, scfReturn->getOperands().front());
682*0e944a30STuomas Kärnä       rewriter.restoreInsertionPoint(ip);
6834ead2cf7SAlex Zinenko     } else {
6844ead2cf7SAlex Zinenko       // Otherwise we copy it over.
6854ead2cf7SAlex Zinenko       Operation *clone = rewriter.clone(*op, cloningMap);
6864ead2cf7SAlex Zinenko       cloningMap.map(op->getResults(), clone->getResults());
6874ead2cf7SAlex Zinenko       // Check for side effects.
6884ead2cf7SAlex Zinenko       // TODO: Handle region side effects properly.
689fc367dfaSMahesh Ravishankar       seenSideeffects |=
690fc367dfaSMahesh Ravishankar           !isMemoryEffectFree(clone) || clone->getNumRegions() != 0;
6914ead2cf7SAlex Zinenko       // If we are no longer in the innermost scope, sideeffects are disallowed.
6924ead2cf7SAlex Zinenko       if (seenSideeffects && leftNestingScope)
6934ead2cf7SAlex Zinenko         return failure();
6944ead2cf7SAlex Zinenko     }
6954ead2cf7SAlex Zinenko   }
6964ead2cf7SAlex Zinenko 
6974ead2cf7SAlex Zinenko   // Now that we succeeded creating the launch operation, also update the
6984ead2cf7SAlex Zinenko   // bounds.
6994ead2cf7SAlex Zinenko   for (auto bound : launchBounds)
7004ead2cf7SAlex Zinenko     launchOp.setOperand(getLaunchOpArgumentNum(std::get<0>(bound)),
7014ead2cf7SAlex Zinenko                         std::get<1>(bound));
7024ead2cf7SAlex Zinenko 
7034ead2cf7SAlex Zinenko   rewriter.eraseOp(parallelOp);
7044ead2cf7SAlex Zinenko   return success();
7054ead2cf7SAlex Zinenko }
7064ead2cf7SAlex Zinenko 
707dc4e913bSChris Lattner void mlir::populateParallelLoopToGPUPatterns(RewritePatternSet &patterns) {
708dc4e913bSChris Lattner   patterns.add<ParallelToGpuLaunchLowering>(patterns.getContext());
7094ead2cf7SAlex Zinenko }
7105da2423bSStephan Herhut 
7115da2423bSStephan Herhut void mlir::configureParallelLoopToGPULegality(ConversionTarget &target) {
712e2310704SJulian Gross   target.addLegalDialect<memref::MemRefDialect>();
7135da2423bSStephan Herhut   target.addDynamicallyLegalOp<scf::ParallelOp>([](scf::ParallelOp parallelOp) {
714ec03bbe8SVladislav Vinogradov     return !parallelOp->hasAttr(gpu::getMappingAttrName()) ||
715ec03bbe8SVladislav Vinogradov            parallelOp->hasAttr(kVisitedAttrName);
716ec03bbe8SVladislav Vinogradov   });
717ec03bbe8SVladislav Vinogradov }
718ec03bbe8SVladislav Vinogradov 
719ec03bbe8SVladislav Vinogradov void mlir::finalizeParallelLoopToGPUConversion(Operation *op) {
720ec03bbe8SVladislav Vinogradov   op->walk([](scf::ParallelOp parallelOp) {
721ec03bbe8SVladislav Vinogradov     parallelOp->removeAttr(kVisitedAttrName);
7225da2423bSStephan Herhut   });
7235da2423bSStephan Herhut }
724