16841eff1SOleksandr "Alex" Zinenko# Chapter H: Reproducing Halide Schedule 26841eff1SOleksandr "Alex" Zinenko 36841eff1SOleksandr "Alex" ZinenkoThis chapter demonstrates how a schedule from the [Halide 439298b09SAndrzej WarzyńskiDSL](http://halide-lang.org) can be implemented using Transform dialect for 56841eff1SOleksandr "Alex" Zinenkostructured ops. 66841eff1SOleksandr "Alex" Zinenko 76841eff1SOleksandr "Alex" ZinenkoNote that the IR below is pseudo-code with types removed for brevity. It may 86841eff1SOleksandr "Alex" Zinenkoalso get out of sync with the current syntax. Always refer to the source code in 96841eff1SOleksandr "Alex" Zinenko[mlir/examples/transform/ChH](https://github.com/llvm/llvm-project/tree/main/mlir/test/Examples/transform/ChH) 106841eff1SOleksandr "Alex" Zinenkoas the source of truth. 116841eff1SOleksandr "Alex" Zinenko 126841eff1SOleksandr "Alex" Zinenko## Channeled Convolution 136841eff1SOleksandr "Alex" Zinenko 146841eff1SOleksandr "Alex" ZinenkoThe Transform dialect provides a substrate for implementing “transformation 156841eff1SOleksandr "Alex" Zinenkodirective” domain-specific languages (DSLs) in MLIR. Such a DSL, at least in its 166841eff1SOleksandr "Alex" Zinenkoscheduling part, can target the operations in the Transform dialect that are 176841eff1SOleksandr "Alex" Zinenkolater applied by the compiler. Sets of transform operations, or even new 186841eff1SOleksandr "Alex" Zinenkodialects leveraging the same interfaces and infrastructure, can be added to 196841eff1SOleksandr "Alex" Zinenkosupport a specific DSL for a particular scheduling model. In this chapter, we 206841eff1SOleksandr "Alex" Zinenkowill revisit the Halide DSL that has (re)popularized separate specification of 216841eff1SOleksandr "Alex" Zinenkoschedules originally for image processing programs. 226841eff1SOleksandr "Alex" Zinenko 236841eff1SOleksandr "Alex" ZinenkoTwo approaches Halide to the Transform dialect are possible: 246841eff1SOleksandr "Alex" Zinenko 256841eff1SOleksandr "Alex" Zinenko* Create a new dialect that corresponds to the computational part of Halide 266841eff1SOleksandr "Alex" Zinenko DSL, and define a set of transformations wrapped into Transform dialect 276841eff1SOleksandr "Alex" Zinenko operations, that correspond to the scheduling part of the DSL. 286841eff1SOleksandr "Alex" Zinenko* Map the Halide abstractions to the existing MLIR abstractions, for both 296841eff1SOleksandr "Alex" Zinenko parts of the DSL. 306841eff1SOleksandr "Alex" Zinenko 316841eff1SOleksandr "Alex" ZinenkoWe will consider the latter approach as the computational part of the DSL easily 326841eff1SOleksandr "Alex" Zinenkomaps to the structured ops in the Linalg dialect. This also gives us the 336841eff1SOleksandr "Alex" Zinenkoopportunity to discuss how Linalg transformations on the so-called structured 346841eff1SOleksandr "Alex" Zinenkooperations are similar to or different from the existing transformations. 356841eff1SOleksandr "Alex" Zinenko 366841eff1SOleksandr "Alex" ZinenkoWe will consider the 2D channeled convolution example extracted from Halide 376841eff1SOleksandr "Alex" Zinenko[application 386841eff1SOleksandr "Alex" Zinenkoexamples](https://github.com/halide/Halide/tree/294f80c49bf3bb8582446613c25fcce03b82bcd8/apps/conv_layer). 396841eff1SOleksandr "Alex" Zinenko 406841eff1SOleksandr "Alex" Zinenko```cpp 416841eff1SOleksandr "Alex" Zinenko// Sizes of the problem. 426841eff1SOleksandr "Alex" Zinenkoconst int N = 5, CI = 128, CO = 128, W = 100, H = 80; 436841eff1SOleksandr "Alex" Zinenko 446841eff1SOleksandr "Alex" Zinenko// Sized inputs. Note that the order of dimensions is 456841eff1SOleksandr "Alex" Zinenko// inverted in Halide with respect to C++, so the last dimension 466841eff1SOleksandr "Alex" Zinenko// in the list (N for input, CI for filter) is the least 476841eff1SOleksandr "Alex" Zinenko// frequently varying. The C++ equivalent is input[N][H+2][W+2][CI]. 486841eff1SOleksandr "Alex" ZinenkoBuffer<float, 4> input({CI, W+2, H+2, N}, "input"); 496841eff1SOleksandr "Alex" ZinenkoBuffer<float, 4> filter({CO, 3, 3, CI}, "filter"); 506841eff1SOleksandr "Alex" ZinenkoBuffer<float, 1> bias(std::vector<int>{CO}, "bias"); 516841eff1SOleksandr "Alex" Zinenko 526841eff1SOleksandr "Alex" Zinenko// ... data initialization happens here ... 536841eff1SOleksandr "Alex" Zinenko 546841eff1SOleksandr "Alex" Zinenko// Declarations of "mathematical functions" for convolution and relu. 556841eff1SOleksandr "Alex" ZinenkoFunc conv("conv"), relu("relu"); 566841eff1SOleksandr "Alex" Zinenko 576841eff1SOleksandr "Alex" Zinenko// Iterators/subscripts. 586841eff1SOleksandr "Alex" ZinenkoVar x("x"), y("y"), c("c"), n("n"); 596841eff1SOleksandr "Alex" Zinenko 606841eff1SOleksandr "Alex" Zinenko// 3D reduction domain (channels and 2 window dimensions), 616841eff1SOleksandr "Alex" Zinenko// dimensions are later referred to as r.x, r.y, r.z. 626841eff1SOleksandr "Alex" ZinenkoRDom r(0, CI, 0, 3, 0, 3); 636841eff1SOleksandr "Alex" Zinenko 646841eff1SOleksandr "Alex" Zinenko// Core convolution with the result initialized to the bias value. 656841eff1SOleksandr "Alex" Zinenko// Note that the order of iterators is inverted in Halide DSL, 666841eff1SOleksandr "Alex" Zinenko// i.e. `n` corresponds to the lest frequently-varying (outermost) dimension 676841eff1SOleksandr "Alex" Zinenko// here and below. 686841eff1SOleksandr "Alex" Zinenkoconv(c, x, y, n) = bias(c); 696841eff1SOleksandr "Alex" Zinenkoconv(c, x, y, n) += filter(c, r.y, r.z, r.x) * input(r.x, x + r.y, y + r.z, n); 706841eff1SOleksandr "Alex" Zinenko 716841eff1SOleksandr "Alex" Zinenko// ReLU rectification, an elementwise operation. 726841eff1SOleksandr "Alex" Zinenkorelu(c, x, y, n) = max(0, conv(c, x, y, n)); 736841eff1SOleksandr "Alex" Zinenko``` 746841eff1SOleksandr "Alex" Zinenko 756841eff1SOleksandr "Alex" ZinenkoThis can be almost directly converted to Linalg dialect operating on tensors, 766841eff1SOleksandr "Alex" Zinenkowhich is conceptually closer to the “mathematical function” abstraction and is 776841eff1SOleksandr "Alex" Zinenkowhere the majority of transformations are available. 786841eff1SOleksandr "Alex" Zinenko 796841eff1SOleksandr "Alex" Zinenko```mlir 806841eff1SOleksandr "Alex" Zinenko// Bias. Using a named Linalg operation for brevity. 816841eff1SOleksandr "Alex" Zinenko%bias_init = tensor.empty() : !toutput 826841eff1SOleksandr "Alex" Zinenko%biased = linalg.broadcast ins(%bias : !tbias) 836841eff1SOleksandr "Alex" Zinenko outs(%bias_init : !toutput) dimensions = [0, 1, 2] 846841eff1SOleksandr "Alex" Zinenko 856841eff1SOleksandr "Alex" Zinenko// Convolution proper. While Linalg has named operations for 2D convolutions, 866841eff1SOleksandr "Alex" Zinenko// the one in the Halide example has an uncommon order of filter dimensions 876841eff1SOleksandr "Alex" Zinenko// and is not supported. It also takes the filter as first argument. This 886841eff1SOleksandr "Alex" Zinenko// code recreates it faithfully using the generic form. 896841eff1SOleksandr "Alex" Zinenko%convolved = linalg.generic { 906841eff1SOleksandr "Alex" Zinenko iterator_types = ["parallel", "parallel", "parallel", "parallel", 916841eff1SOleksandr "Alex" Zinenko "reduction", "reduction", "reduction"], 926841eff1SOleksandr "Alex" Zinenko indexing_maps = [ 936841eff1SOleksandr "Alex" Zinenko affine_map<(n, y, x, c, rz, ry, rx) -> (rx, rz, ry, c)>, 946841eff1SOleksandr "Alex" Zinenko affine_map<(n, y, x, c, rz, ry, rx) -> (n, y+rz, x+ry, rx)>, 956841eff1SOleksandr "Alex" Zinenko affine_map<(n, y, x, c, rz, ry, rx) -> (n, y, x, c)> 966841eff1SOleksandr "Alex" Zinenko ] 976841eff1SOleksandr "Alex" Zinenko} ins(%filter, %input: !tfilter, !tinput) 986841eff1SOleksandr "Alex" Zinenko outs(%biased : !toutput) { 996841eff1SOleksandr "Alex" Zinenko^bb0(%in: f32, %f: f32, %b: f32): 1006841eff1SOleksandr "Alex" Zinenko // Note the fastmath attributes that allow operations to be recombined into 1016841eff1SOleksandr "Alex" Zinenko // %0 = math.fma %in, %f, %b : f32 1026841eff1SOleksandr "Alex" Zinenko // later on and to reorder reductions. 1036841eff1SOleksandr "Alex" Zinenko %m1 = arith.mulf %in, %f {fastmath = #arith.fastmath<fast>} : f32 1046841eff1SOleksandr "Alex" Zinenko %0 = arith.addf %b, %m1 {fastmath = #arith.fastmath<fast>} : f32 1056841eff1SOleksandr "Alex" Zinenko linalg.yield %0 : f32 1066841eff1SOleksandr "Alex" Zinenko} -> !toutput 1076841eff1SOleksandr "Alex" Zinenko 1086841eff1SOleksandr "Alex" Zinenko// ReLU is just a max(0, x). 1096841eff1SOleksandr "Alex" Zinenko%c0 = arith.constant 0.0 : f32 1106841eff1SOleksandr "Alex" Zinenko%relued = linalg.generic { 1116841eff1SOleksandr "Alex" Zinenko iterator_types = ["parallel", "parallel", "parallel", "parallel"], 1126841eff1SOleksandr "Alex" Zinenko indexing_maps = [ 1136841eff1SOleksandr "Alex" Zinenko affine_map<(d0, d1, d2, d3) -> ()>, 1146841eff1SOleksandr "Alex" Zinenko affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>, 1156841eff1SOleksandr "Alex" Zinenko affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> 1166841eff1SOleksandr "Alex" Zinenko ] 1176841eff1SOleksandr "Alex" Zinenko} ins(%c0, %convolved : f32, !toutput) 1186841eff1SOleksandr "Alex" Zinenko outs(%output : !toutput) { 1196841eff1SOleksandr "Alex" Zinenko^bb0(%cst: f32, %in: f32, %out: f32): 1206841eff1SOleksandr "Alex" Zinenko %0 = llvm.intr.maxnum(%cst, %in) : (f32, f32) -> f32 1216841eff1SOleksandr "Alex" Zinenko linalg.yield %0 : f32 1226841eff1SOleksandr "Alex" Zinenko} -> !toutput 1236841eff1SOleksandr "Alex" Zinenko``` 1246841eff1SOleksandr "Alex" Zinenko 1256841eff1SOleksandr "Alex" ZinenkoIn Halide, a function such as `conv` may consist of two parts: a “functional” 1266841eff1SOleksandr "Alex" Zinenkoinitialization computation and an in-place update for reductions. This is 1276841eff1SOleksandr "Alex" Zinenkoexpressed as two C++ statements in the embedded DSL, but internally is 1286841eff1SOleksandr "Alex" Zinenkorepresented in a single object. Linalg doesn’t have such a capability to the 1296841eff1SOleksandr "Alex" Zinenkoinitialization and the update are represented as two distinct Linalg operations 1306841eff1SOleksandr "Alex" Zinenkothat are not connected to each other. Furthermore, the `x`, `y`, `c`, `n` 1316841eff1SOleksandr "Alex" Zinenkovariables in Halide DSL correspond to implicit loops iterating over the 1326841eff1SOleksandr "Alex" Zinenkocorresponding objects, which implies that functions sharing these variables in 1336841eff1SOleksandr "Alex" Zinenkotheir definitions also share the corresponding loops. In other words, the loop 1346841eff1SOleksandr "Alex" Zinenkoequivalent of the Halide definition starts in a fully-fused form. The Linalg 1356841eff1SOleksandr "Alex" Zinenkomodel is the opposite with each structured operation corresponding to its own 1366841eff1SOleksandr "Alex" Zinenkoloop nest, resulting in a fully-distributed form. This will affect how the 1376841eff1SOleksandr "Alex" Zinenkoschedule is constructed later on. 1386841eff1SOleksandr "Alex" Zinenko 1396841eff1SOleksandr "Alex" ZinenkoThe loop structure for Halide computation resembles the following (adapted from 1406841eff1SOleksandr "Alex" Zinenkodebug dump with `HL_DEBUG_CODEGEN=1`) 1416841eff1SOleksandr "Alex" Zinenko 1426841eff1SOleksandr "Alex" Zinenko```python 1436841eff1SOleksandr "Alex" Zinenkofor n 1446841eff1SOleksandr "Alex" Zinenko for y 1456841eff1SOleksandr "Alex" Zinenko for x 1466841eff1SOleksandr "Alex" Zinenko for c 1476841eff1SOleksandr "Alex" Zinenko conv[n, y, x, c] = bias[c] 1486841eff1SOleksandr "Alex" Zinenko for rz 1496841eff1SOleksandr "Alex" Zinenko for ry 1506841eff1SOleksandr "Alex" Zinenko for rx 1516841eff1SOleksandr "Alex" Zinenko conv[n, y, x, c] += filter[rx, rz, ry, c] * input[n, y+rz, x+ry, rx] 1526841eff1SOleksandr "Alex" Zinenko relu[n, y, x, c] = max(0, conv[n, y, x, c]) 1536841eff1SOleksandr "Alex" Zinenko``` 1546841eff1SOleksandr "Alex" Zinenko 1556841eff1SOleksandr "Alex" ZinenkoThe loop structure for the Linalg computation is as follows (obtained by 1566841eff1SOleksandr "Alex" Zinenko`mlir-opt --linalg-generalize-named-ops --empty-tensor-to-alloc-tensor 1576841eff1SOleksandr "Alex" Zinenko--one-shot-bufferize --convert-linalg-to-loops`) 1586841eff1SOleksandr "Alex" Zinenko 1596841eff1SOleksandr "Alex" Zinenko```python 1606841eff1SOleksandr "Alex" Zinenkofor n 1616841eff1SOleksandr "Alex" Zinenko for y 1626841eff1SOleksandr "Alex" Zinenko for x 1636841eff1SOleksandr "Alex" Zinenko for c 1646841eff1SOleksandr "Alex" Zinenko init[n, y, x, c] = bias[c] 1656841eff1SOleksandr "Alex" Zinenkofor n 1666841eff1SOleksandr "Alex" Zinenko for y 1676841eff1SOleksandr "Alex" Zinenko for x 1686841eff1SOleksandr "Alex" Zinenko for c 1696841eff1SOleksandr "Alex" Zinenko for rz 1706841eff1SOleksandr "Alex" Zinenko for ry 1716841eff1SOleksandr "Alex" Zinenko for rx 1726841eff1SOleksandr "Alex" Zinenko conv[n, y, x, c] += filter[rx, rz, ry, c] * input[n, y+rz, x+ry, rx] 1736841eff1SOleksandr "Alex" Zinenkofor n 1746841eff1SOleksandr "Alex" Zinenko for y 1756841eff1SOleksandr "Alex" Zinenko for x 1766841eff1SOleksandr "Alex" Zinenko for c 1776841eff1SOleksandr "Alex" Zinenko relu[n, y, x, c] = max(0, conv[n, y, x, c]) 1786841eff1SOleksandr "Alex" Zinenko 1796841eff1SOleksandr "Alex" Zinenko``` 1806841eff1SOleksandr "Alex" Zinenko 1816841eff1SOleksandr "Alex" Zinenko## Mapping Halide Scheduling Primitives to Linalg Structured Transforms 1826841eff1SOleksandr "Alex" Zinenko 1836841eff1SOleksandr "Alex" ZinenkoThe complete Halide schedule listed in the example is as follows 1846841eff1SOleksandr "Alex" Zinenko 1856841eff1SOleksandr "Alex" Zinenko```cpp 1866841eff1SOleksandr "Alex" ZinenkoVar co, ci, xo, xi; 1876841eff1SOleksandr "Alex" Zinenkorelu.split(c, co, ci, vec * tile_w) 1886841eff1SOleksandr "Alex" Zinenko .split(x, xo, xi, tile_h) 1896841eff1SOleksandr "Alex" Zinenko .reorder(ci, xi, xo, y, n, co) 1906841eff1SOleksandr "Alex" Zinenko .vectorize(ci, vec) 1916841eff1SOleksandr "Alex" Zinenko .unroll(ci) 1926841eff1SOleksandr "Alex" Zinenko .unroll(xi) 1936841eff1SOleksandr "Alex" Zinenko .parallel(y) 1946841eff1SOleksandr "Alex" Zinenko .parallel(n) 1956841eff1SOleksandr "Alex" Zinenko .parallel(co); 1966841eff1SOleksandr "Alex" Zinenko 1976841eff1SOleksandr "Alex" Zinenkoconv.compute_at(relu, xo) 1986841eff1SOleksandr "Alex" Zinenko .vectorize(c, vec) 1996841eff1SOleksandr "Alex" Zinenko .unroll(c) 2006841eff1SOleksandr "Alex" Zinenko .unroll(x) 2016841eff1SOleksandr "Alex" Zinenko .unroll(y) 2026841eff1SOleksandr "Alex" Zinenko .update() 2036841eff1SOleksandr "Alex" Zinenko .reorder(c, x, y, r.x, r.y, r.z, n) 2046841eff1SOleksandr "Alex" Zinenko .vectorize(c, vec) 2056841eff1SOleksandr "Alex" Zinenko .unroll(c) 2066841eff1SOleksandr "Alex" Zinenko .unroll(x) 2076841eff1SOleksandr "Alex" Zinenko .unroll(y) 2086841eff1SOleksandr "Alex" Zinenko .unroll(r.x, 2); 2096841eff1SOleksandr "Alex" Zinenko``` 2106841eff1SOleksandr "Alex" Zinenko 2116841eff1SOleksandr "Alex" ZinenkoWe will consider only the case without parallelization to avoid the difference 2126841eff1SOleksandr "Alex" Zinenkoin parallel runtimes generated by Halide and used by MLIR. This schedule 2136841eff1SOleksandr "Alex" Zinenkocorresponds to a sequence of loop manipulations, unrolling and vectorization. 2146841eff1SOleksandr "Alex" ZinenkoThe following directives are present and can be mapped to transformations on 2156841eff1SOleksandr "Alex" ZinenkoLinalg as described below. 2166841eff1SOleksandr "Alex" Zinenko 2176841eff1SOleksandr "Alex" Zinenko* `split` decomposes a loop dimension into two immediately nested loops with 2186841eff1SOleksandr "Alex" Zinenko the inner loop having at most the given number of iterations. This can be 2196841eff1SOleksandr "Alex" Zinenko understood as loop _strip-mining_ or a degenerate case of tiling a single 2206841eff1SOleksandr "Alex" Zinenko dimension using any of `linalg.tile_` transform ops. We will be using 22196ff0255SOleksandr "Alex" Zinenko `transform.structured.tile_using_forall` as this kind of loop is best 2226841eff1SOleksandr "Alex" Zinenko supported by bufferization and can also be turned into a parallel loop later 2236841eff1SOleksandr "Alex" Zinenko on. Unlike Halide, this doesn’t add new dimensions to the original 2246841eff1SOleksandr "Alex" Zinenko operation, but rather creates a loop around it and rewrites the operation 2256841eff1SOleksandr "Alex" Zinenko itself to operate on a subset of the original data. 2266841eff1SOleksandr "Alex" Zinenko* `reorder` rearranges the loops arbitrarily. In Linalg representation, loops 2276841eff1SOleksandr "Alex" Zinenko are implicit and are intended to remain so as long as possible to target 2286841eff1SOleksandr "Alex" Zinenko microkernels. The order of implicit loops in a `linalg.generic` operation 2296841eff1SOleksandr "Alex" Zinenko can be changed by using `transform.structured.interchange`, but this does 2306841eff1SOleksandr "Alex" Zinenko not apply to named operations that need to be “generalized” first by calling 2316841eff1SOleksandr "Alex" Zinenko `transform.structured.generalize`. However, this can only reorder implicit 2326841eff1SOleksandr "Alex" Zinenko dimensions and not the explicit loops materialized by tiling operations that 2336841eff1SOleksandr "Alex" Zinenko can no longer be “folded” into the original operation. Instead, we can 2346841eff1SOleksandr "Alex" Zinenko leverage this behavior by materializing loops directly in the desired order 2356841eff1SOleksandr "Alex" Zinenko by “tiling” to size 1. 2366841eff1SOleksandr "Alex" Zinenko* `vectorize` indicates that the given dimension should be vectorized with the 2376841eff1SOleksandr "Alex" Zinenko given factor; if the loop extent is larger than the factor, the loop is 2386841eff1SOleksandr "Alex" Zinenko effectively split into two parts and the inner one is vectorized. On the 2396841eff1SOleksandr "Alex" Zinenko contrary, structured Linalg op vectorization applies as a global 2406841eff1SOleksandr "Alex" Zinenko transformation to all suitable operations at, e.g., a function scope via 2416841eff1SOleksandr "Alex" Zinenko `transform.structured.vectorize_children_and_apply_patterns`. It relies on 2426841eff1SOleksandr "Alex" Zinenko MLIR’s support for multidimensional vectors to directly map multidimensional 2436841eff1SOleksandr "Alex" Zinenko tensors, which are later decomposed into operations on smaller 2446841eff1SOleksandr "Alex" Zinenko hardware-compatible vectors during lowering. 2456841eff1SOleksandr "Alex" Zinenko* `unroll` performs loop unrolling, fully or up to the given factor. It is 2466841eff1SOleksandr "Alex" Zinenko equivalent to `transform.loop.unroll`. 2476841eff1SOleksandr "Alex" Zinenko* `compute_at` indicates that the value of the function must be computed 2486841eff1SOleksandr "Alex" Zinenko within the given loop that will be produced for another function; depending 2496841eff1SOleksandr "Alex" Zinenko on the relation between loops surrounding functions, this corresponds to 2506841eff1SOleksandr "Alex" Zinenko either a loop distribution or a producer/consumer fusion. Given that the 2516841eff1SOleksandr "Alex" Zinenko Linalg representation starts in the fully distributed form, it can be 2526841eff1SOleksandr "Alex" Zinenko represented as a sequence of `transform.structured.fuse_into_containing_op` 2536841eff1SOleksandr "Alex" Zinenko that operates on `forall` loops materialized by tiling beforehand. 2546841eff1SOleksandr "Alex" Zinenko 2556841eff1SOleksandr "Alex" Zinenko 2566841eff1SOleksandr "Alex" Zinenko## Recreating the Loop Structure 2576841eff1SOleksandr "Alex" Zinenko 2586841eff1SOleksandr "Alex" ZinenkoThe three first transformation directives for `relu` in the Halide schedule aim 2596841eff1SOleksandr "Alex" Zinenkoat producing the following loop structure. 2606841eff1SOleksandr "Alex" Zinenko 2616841eff1SOleksandr "Alex" Zinenko```python 2626841eff1SOleksandr "Alex" Zinenkofor co 2636841eff1SOleksandr "Alex" Zinenko for n 2646841eff1SOleksandr "Alex" Zinenko for y 2656841eff1SOleksandr "Alex" Zinenko for xo 2666841eff1SOleksandr "Alex" Zinenko for xi 2676841eff1SOleksandr "Alex" Zinenko for ci 2686841eff1SOleksandr "Alex" Zinenko relu[n, y, xo*tile_h + xi, co*tile_w*vec + ci] = ... 2696841eff1SOleksandr "Alex" Zinenko``` 2706841eff1SOleksandr "Alex" Zinenko 2716841eff1SOleksandr "Alex" ZinenkoNote that the outer part of the `c` gets hoisted from all of the surrounding 2726841eff1SOleksandr "Alex" Zinenkoloops. The implicit loop order for the operation is `n, y, x, c`, so the `co` 2736841eff1SOleksandr "Alex" Zinenkoloop needs to be materialized first in order to achieve the desired reordering. 2746841eff1SOleksandr "Alex" ZinenkoThe remaining dimensions can be materialized as loops in one transformation. 2756841eff1SOleksandr "Alex" Zinenko 2766841eff1SOleksandr "Alex" Zinenko```mlir 2776841eff1SOleksandr "Alex" Zinenko // [n y x c] 27896ff0255SOleksandr "Alex" Zinenko %co, %relu2 = transform.structured.tile_using_forall %relu 2796841eff1SOleksandr "Alex" Zinenko tile_sizes [0, 0, 0, 64] 28096ff0255SOleksandr "Alex" Zinenko %n_y_xo, %relu3 = transform.structured.tile_using_forall %relu2 2816841eff1SOleksandr "Alex" Zinenko tile_sizes [1, 1, 5, 0] 2826841eff1SOleksandr "Alex" Zinenko``` 2836841eff1SOleksandr "Alex" Zinenko 2846841eff1SOleksandr "Alex" ZinenkoThis will result in the following loops being created in the IR with the nested 2856841eff1SOleksandr "Alex" Zinenkoelementwise operation operating on a smaller subset of original data via 2866841eff1SOleksandr "Alex" Zinenkoimplicit loops. 2876841eff1SOleksandr "Alex" Zinenko 2886841eff1SOleksandr "Alex" Zinenko```mlir 2896841eff1SOleksandr "Alex" Zinenkoscf.forall (%co) in (2) { 2906841eff1SOleksandr "Alex" Zinenko scf.forall (%n, %y, %xo) in (5, 80, 20) { 2916841eff1SOleksandr "Alex" Zinenko tensor.extract_slice 2926841eff1SOleksandr "Alex" Zinenko // Implicit dimensions [ni=0:1, y=0:1, xi=0:5, ci=0:64] 2936841eff1SOleksandr "Alex" Zinenko %relued = linalg.elemwise_binary { fun = #linalg.binary_fn<max_signed> } // ... 2946841eff1SOleksandr "Alex" Zinenko scf.forall.in_parallel { 2956841eff1SOleksandr "Alex" Zinenko tensor.parallel_insert_slice // ... 2966841eff1SOleksandr "Alex" Zinenko } 2976841eff1SOleksandr "Alex" Zinenko } 2986841eff1SOleksandr "Alex" Zinenko} 2996841eff1SOleksandr "Alex" Zinenko``` 3006841eff1SOleksandr "Alex" Zinenko 3016841eff1SOleksandr "Alex" ZinenkoThe following loop restructuring transformations are `compute_at` and `reorder` 3026841eff1SOleksandr "Alex" Zinenkoon the `conv` function that need to happen before loops are destroyed by 3036841eff1SOleksandr "Alex" Zinenkounrolling and vectorization. They intend to produce the final desired loop 3046841eff1SOleksandr "Alex" Zinenkostructure. 3056841eff1SOleksandr "Alex" Zinenko 3066841eff1SOleksandr "Alex" Zinenko```python 3076841eff1SOleksandr "Alex" Zinenkofor co 3086841eff1SOleksandr "Alex" Zinenko for n 3096841eff1SOleksandr "Alex" Zinenko for y 3106841eff1SOleksandr "Alex" Zinenko for xo 3116841eff1SOleksandr "Alex" Zinenko for xi 3126841eff1SOleksandr "Alex" Zinenko for ci 3136841eff1SOleksandr "Alex" Zinenko conv[n, y, x*tile_h + xi, co*tile_w*vec + ci] = ... 3146841eff1SOleksandr "Alex" Zinenko for rz 3156841eff1SOleksandr "Alex" Zinenko for ry 3166841eff1SOleksandr "Alex" Zinenko for rx 3176841eff1SOleksandr "Alex" Zinenko for xi 3186841eff1SOleksandr "Alex" Zinenko for ci 3196841eff1SOleksandr "Alex" Zinenko conv[n, y, x*tile_h + xi, co*tile_w*vec + ci] += ... 3206841eff1SOleksandr "Alex" Zinenko for xi 3216841eff1SOleksandr "Alex" Zinenko for ci 3226841eff1SOleksandr "Alex" Zinenko relu[n, y, xo*tile_h + xi, co*tile_w*vec + ci] = ... 3236841eff1SOleksandr "Alex" Zinenko``` 3246841eff1SOleksandr "Alex" Zinenko 3256841eff1SOleksandr "Alex" ZinenkoPractically, this corresponds to fusing the convolution initialization and 3266841eff1SOleksandr "Alex" Zinenkoupdate into the `co, n, y, xo` loops materialized by tiling earlier. Structured 3276841eff1SOleksandr "Alex" Zinenkoop transformation set supports fusing the producer of a value into its consumer, 3286841eff1SOleksandr "Alex" Zinenkoso fusion happens in two stages: 3296841eff1SOleksandr "Alex" Zinenko 3306841eff1SOleksandr "Alex" Zinenko* first the main convolution update is fused into ReLU that uses it and has 3316841eff1SOleksandr "Alex" Zinenko loops materialized; 3326841eff1SOleksandr "Alex" Zinenko* then the bias initialization is fused into the convolution+relu loop nest. 3336841eff1SOleksandr "Alex" Zinenko 3346841eff1SOleksandr "Alex" ZinenkoEach stage consists of two transformations fusing the computational operation 3356841eff1SOleksandr "Alex" Zinenkointo the outer loop, then the inner loop. 3366841eff1SOleksandr "Alex" Zinenko 3376841eff1SOleksandr "Alex" Zinenko```mlir 3386841eff1SOleksandr "Alex" Zinenko%conv2, %co2 = transform.structured.fuse_into_containing_op %conv into %co 3396841eff1SOleksandr "Alex" Zinenko%conv3, %n_y_xo2 = transform.structured.fuse_into_containing_op %conv2 3406841eff1SOleksandr "Alex" Zinenko into %n_y_xo 3416841eff1SOleksandr "Alex" Zinenko 3426841eff1SOleksandr "Alex" Zinenko%bias2, %co3 = transform.structured.fuse_into_containing_op %bias into %co2 3436841eff1SOleksandr "Alex" Zinenko%bias3, %n_y_xo3 = transform.structured.fuse_into_containing_op %bias2 3446841eff1SOleksandr "Alex" Zinenko into %n_y_xo2 3456841eff1SOleksandr "Alex" Zinenko``` 3466841eff1SOleksandr "Alex" Zinenko 3476841eff1SOleksandr "Alex" ZinenkoTo complete the structure, we need to put the `rz, ry, rx` loops outside the 3486841eff1SOleksandr "Alex" Zinenko“tile” loops `xi, ci`. This can be achieved materializing the corresponding 3496841eff1SOleksandr "Alex" Zinenkoloops from the convolution operation. However, these are reduction loops and it 3506841eff1SOleksandr "Alex" Zinenkowouldn’t be valid to materialize them as intrinsically parallel “forall” loops. 3516841eff1SOleksandr "Alex" ZinenkoInstead, we use the dedicated “reduction tiling” transformation and produce 3526841eff1SOleksandr "Alex" Zinenkosequential `scf.for` loops. (`scf.forall` loops can also express parallel 3536841eff1SOleksandr "Alex" Zinenkoreductions, but the corresponding transformation doesn’t handle reductions along 3546841eff1SOleksandr "Alex" Zinenkomore than one dimension at the moment of writing.) 3556841eff1SOleksandr "Alex" Zinenko 3566841eff1SOleksandr "Alex" Zinenko```mlir 3576841eff1SOleksandr "Alex" Zinenko%rz_ry_rx, %red_fill, %conv4, %comb 35896ff0255SOleksandr "Alex" Zinenko = transform.structured.tile_reduction_using_for %conv3 3596841eff1SOleksandr "Alex" Zinenko// n y x c rz ry rx 3606841eff1SOleksandr "Alex" Zinenko by tile_sizes=[0, 0, 0, 0, 1, 1, 1] 3616841eff1SOleksandr "Alex" Zinenko``` 3626841eff1SOleksandr "Alex" Zinenko 3636841eff1SOleksandr "Alex" ZinenkoThis transformation materializes the desired loops around the convolution 3646841eff1SOleksandr "Alex" Zinenkooperation. It is also more capable than merely producing (reduction) loops: the 3656841eff1SOleksandr "Alex" Zinenkotransformed code performs `tile_size` partial reductions of `N / tile_size` 3666841eff1SOleksandr "Alex" Zinenkoelements, potentially in parallel by changing the dimension kind of the 3676841eff1SOleksandr "Alex" Zinenkostructured operation inside the loop, and then performs a final reduction of 3686841eff1SOleksandr "Alex" Zinenkothese partial results by producing a new “combiner” structured operation after 3696841eff1SOleksandr "Alex" Zinenkothe loops. In our case, `tile_size = 1` along all dimensions, so the reduction 3706841eff1SOleksandr "Alex" Zinenkois entirely performed by the generated loops. The combiner structured operation 3716841eff1SOleksandr "Alex" Zinenkois still produced and adds up the reduction result with the initial value. This 3726841eff1SOleksandr "Alex" Zinenkochanges the order of floating point operations (so would reduction tiling with 3736841eff1SOleksandr "Alex" Zinenkonon-unit size) and may affect the final result due to non-commutativity of these 3746841eff1SOleksandr "Alex" Zinenkooperations, but is explicitly allowed by `fastmath` flags. Halide also emits 3756841eff1SOleksandr "Alex" ZinenkoLLVM IR with full `fastmath` flags. 3766841eff1SOleksandr "Alex" Zinenko 3776841eff1SOleksandr "Alex" ZinenkoFinally, we need to produce innermost loops `xi` and `ci` that are still not 3786841eff1SOleksandr "Alex" Zinenkoexplicit. As our next step is going to be vectorization along `ci`, we need to 3796841eff1SOleksandr "Alex" Zinenkotake into account the way it operates on MLIR structured operations: rather than 3806841eff1SOleksandr "Alex" Zinenkoselecting a specific vector size and loop/dimension to vectorize, it directly 3816841eff1SOleksandr "Alex" Zinenkosubstitutes multidimensional vector types for tensor types and updates the 3826841eff1SOleksandr "Alex" Zinenkooperations accordingly. Therefore, our tensor type should not become trivial, 3836841eff1SOleksandr "Alex" Zinenkoi.e. size-1, and retain a `vector_size` sized dimension along the desired axis, 3846841eff1SOleksandr "Alex" Zinenko`ci`. This can be achieved by tiling with `vector_size` as tile size in that 3856841eff1SOleksandr "Alex" Zinenkodimension: 3866841eff1SOleksandr "Alex" Zinenko 3876841eff1SOleksandr "Alex" Zinenko```mlir 3886841eff1SOleksandr "Alex" Zinenko// n y xi ci 38996ff0255SOleksandr "Alex" Zinenko%1, %c5 = transform.structured.tile_using_forall %conv4 tile_sizes [0, 0, 1, 16] 39096ff0255SOleksandr "Alex" Zinenko%2, %b4 = transform.structured.tile_using_forall %bias3 tile_sizes [0, 0, 1, 16] 39196ff0255SOleksandr "Alex" Zinenko%3, %r4 = transform.structured.tile_using_forall %relu3 tile_sizes [0, 0, 1, 16] 39296ff0255SOleksandr "Alex" Zinenko%4, %c2 = transform.structured.tile_using_forall %comb tile_sizes [0, 0, 1, 16] 3936841eff1SOleksandr "Alex" Zinenko``` 3946841eff1SOleksandr "Alex" Zinenko 3956841eff1SOleksandr "Alex" ZinenkoNote that the combiner operation produced by reduction tiling is also tiled here. 3966841eff1SOleksandr "Alex" Zinenko 3976841eff1SOleksandr "Alex" Zinenko 3986841eff1SOleksandr "Alex" Zinenko## Explicit Loop Unrolling 3996841eff1SOleksandr "Alex" Zinenko 4006841eff1SOleksandr "Alex" ZinenkoThe remaining unhandled loop transformation is unrolling. Specifically, 4016841eff1SOleksandr "Alex" Zinenkounrolling is requested for the innermost loops that form the 4x5 tile of 4026841eff1SOleksandr "Alex" Zinenko16-element vector operations to ensure a contiguous sequence of `vfma` 4036841eff1SOleksandr "Alex" Zinenkoinstructions using 20 512-bit vector registers as accumulators. Unrolling 4046841eff1SOleksandr "Alex" Zinenkoadditional loops,, `unroll(y)` and `unroll(r.x, 2)`, is requested in the 4056841eff1SOleksandr "Alex" Zinenkoschedule but _has no practical effect_. That is, the code, and all intermediate 4066841eff1SOleksandr "Alex" Zinenkorepresentations, produced by Halide with these directives removed is _strictly 4076841eff1SOleksandr "Alex" Zinenkoidentical_ to the code with the full schedule. Therefore, we will only unroll 4086841eff1SOleksandr "Alex" Zinenkothe corresponding loops corresponding to `xi` and `ci` dimensions that actually 4096841eff1SOleksandr "Alex" Zinenkoget unrolled by Halide. 4106841eff1SOleksandr "Alex" Zinenko 41139298b09SAndrzej WarzyńskiAs tiling in the Transform dialect produces handles to the loops materialized by 4126841eff1SOleksandr "Alex" Zinenkotiling, unrolling those loops is just a matter of chaining the corresponding 4136841eff1SOleksandr "Alex" Zinenkotransformation. Note that the inner loop must be unrolled first as unrolling the 4146841eff1SOleksandr "Alex" Zinenkoouter loop will invalidate the handles to the inner loop. 4156841eff1SOleksandr "Alex" Zinenko 4166841eff1SOleksandr "Alex" Zinenko```mlir 4176841eff1SOleksandr "Alex" Zinenkotransform.loop.unroll %bias_ci {factor = 4} 4186841eff1SOleksandr "Alex" Zinenkotransform.loop.unroll %bias_xi {factor = 5} 4196841eff1SOleksandr "Alex" Zinenkotransform.loop.unroll %conv_ci {factor = 4} 4206841eff1SOleksandr "Alex" Zinenkotransform.loop.unroll %conv_xi {factor = 5} 4216841eff1SOleksandr "Alex" Zinenkotransform.loop.unroll %relu_ci {factor = 4} 4226841eff1SOleksandr "Alex" Zinenkotransform.loop.unroll %relu_xi {factor = 5} 4236841eff1SOleksandr "Alex" Zinenkotransform.loop.unroll %comb_ci {factor = 4} 4246841eff1SOleksandr "Alex" Zinenkotransform.loop.unroll %comb_xi {factor = 5} 4256841eff1SOleksandr "Alex" Zinenko``` 4266841eff1SOleksandr "Alex" Zinenko 4276841eff1SOleksandr "Alex" Zinenko## Vectorization 4286841eff1SOleksandr "Alex" Zinenko 4296841eff1SOleksandr "Alex" ZinenkoThese transformations produced the desired loop structure and we are now ready 4306841eff1SOleksandr "Alex" Zinenkoto vectorize. Before proceeding it is desirable to simplify the code as tiling 4316841eff1SOleksandr "Alex" Zinenkoand fusion may have produced a lot of operations computing tensor subsets and 4326841eff1SOleksandr "Alex" Zinenkoloop ranges, some of which may be duplicated or excessively complex. 4336841eff1SOleksandr "Alex" ZinenkoSimplification involving canonicalization, common subexpression elimination, 4346841eff1SOleksandr "Alex" Zinenkoloop invariant code motion and various rewrite patterns can be applied directly 4356841eff1SOleksandr "Alex" Zinenkofrom the transform dialect. Furthermore, an arbitrary combination of rewrite 4366841eff1SOleksandr "Alex" Zinenkopatterns can be applied _in one sweep_ to a given scope, a functionality that 4376841eff1SOleksandr "Alex" Zinenko_cannot be achieved with conventional compiler passes_ that apply each group of 4386841eff1SOleksandr "Alex" Zinenkopatterns separately (at least without creating a new pass for each combination 4396841eff1SOleksandr "Alex" Zinenkoof pattern groups). 4406841eff1SOleksandr "Alex" Zinenko 4416841eff1SOleksandr "Alex" Zinenko```mlir 4426841eff1SOleksandr "Alex" Zinenko%f00 = transform.structured.match ops{["func.func"]} in %arg0 4436841eff1SOleksandr "Alex" Zinenkotransform.apply_patterns to %f00 { 4446841eff1SOleksandr "Alex" Zinenko transform.apply_patterns.canonicalization 4456841eff1SOleksandr "Alex" Zinenko transform.apply_patterns.linalg.tiling_canonicalization 4466841eff1SOleksandr "Alex" Zinenko} 4476841eff1SOleksandr "Alex" Zinenkotransform.apply_cse to %f00 4486841eff1SOleksandr "Alex" Zinenko 4496841eff1SOleksandr "Alex" Zinenko%all_loops = transform.structured.match interface{LoopLikeInterface} in %arg0 4506841eff1SOleksandr "Alex" Zinenkotransform.apply_licm to %all_loops 4516841eff1SOleksandr "Alex" Zinenko``` 4526841eff1SOleksandr "Alex" Zinenko 4536841eff1SOleksandr "Alex" ZinenkoOne final simplification is necessary to produce good vectorized code. 4546841eff1SOleksandr "Alex" ZinenkoTiling-by-one as a way of materializing loops produced structured (`linalg`) 4556841eff1SOleksandr "Alex" Zinenkooperations processing 4D types where only one dimension isn’t unit-sized, e.g., 4566841eff1SOleksandr "Alex" Zinenko`tensor<1x1x1x16xf32>` where 16 is the vector size corresponding to AVX512, 4576841eff1SOleksandr "Alex" Zinenkoas structured tiling doesn’t modify the rank of the operation in order to 4586841eff1SOleksandr "Alex" Zinenkopreserve the original structure. Even though the core computation is the same, 4596841eff1SOleksandr "Alex" Zinenkothe produced code may end up more complicated than necessary, in particular when 4606841eff1SOleksandr "Alex" Zinenkodecomposing multidimensional vectors into single-dimensional vectors supported 4616841eff1SOleksandr "Alex" Zinenkoby hardware. Such unit dimensions can be explicitly folded away using the 4626841eff1SOleksandr "Alex" Zinenkocorresponding pattern set before vectorization. 4636841eff1SOleksandr "Alex" Zinenko 4646841eff1SOleksandr "Alex" Zinenko```mlir 4656841eff1SOleksandr "Alex" Zinenkotransform.apply_patterns to %f00 { 4666841eff1SOleksandr "Alex" Zinenko transform.apply_patterns.linalg.fold_unit_extent_dims_via_reshapes 4676841eff1SOleksandr "Alex" Zinenko} 4686841eff1SOleksandr "Alex" Zinenko 4696841eff1SOleksandr "Alex" Zinenko%fv = transform.structured.vectorize_children_and_apply_patterns %f00 4706841eff1SOleksandr "Alex" Zinenko``` 4716841eff1SOleksandr "Alex" Zinenko 4726841eff1SOleksandr "Alex" ZinenkoThis produces the desired code performing arithmetic operations on 4736841eff1SOleksandr "Alex" Zinenko`vector<16xf32>` types that can be easily lowered to AVX512 instructions by the 4746841eff1SOleksandr "Alex" Zinenkodownstream compiler. Vectorization may have created new opportunities for code 4756841eff1SOleksandr "Alex" Zinenkosimplification, in particular combining tensor subsetting and vector slicing 4766841eff1SOleksandr "Alex" Zinenkooperations. Another round of simplification can be applied post vectorization. 4776841eff1SOleksandr "Alex" Zinenko 4786841eff1SOleksandr "Alex" Zinenko```mlir 4796841eff1SOleksandr "Alex" Zinenkotransform.apply_patterns to %fv { 4806841eff1SOleksandr "Alex" Zinenko transform.apply_patterns.canonicalization 4816841eff1SOleksandr "Alex" Zinenko transform.apply_patterns.tensor.fold_tensor_subset_ops_into_vector_transfers 4826841eff1SOleksandr "Alex" Zinenko} 4836841eff1SOleksandr "Alex" Zinenkotransform.apply_cse to %fv 4846841eff1SOleksandr "Alex" Zinenkotransform.structured.hoist_redundant_vector_transfers %fv 4856841eff1SOleksandr "Alex" Zinenko``` 4866841eff1SOleksandr "Alex" Zinenko 4876841eff1SOleksandr "Alex" Zinenko## Lowering to LLVM and The Bufferization Hurdle 4886841eff1SOleksandr "Alex" Zinenko 4896841eff1SOleksandr "Alex" ZinenkoWith the loop restructuring done, the program now needs to be converted to the 4906841eff1SOleksandr "Alex" Zinenkoexecutable form. The first step in doing so is _bufferization_, the process that 4916841eff1SOleksandr "Alex" Zinenkoassociates a memory buffer with every tensor in the payload IR. MLIR’s one-shot 4926841eff1SOleksandr "Alex" Zinenkobufferization is directly available as a transform operation. 4936841eff1SOleksandr "Alex" Zinenko 4946841eff1SOleksandr "Alex" Zinenko```mlir 4956841eff1SOleksandr "Alex" Zinenko%arg1 = transform.bufferization.one_shot_bufferize %arg0 { 4966841eff1SOleksandr "Alex" Zinenko bufferize_function_boundaries = true, 4976841eff1SOleksandr "Alex" Zinenko function_boundary_type_conversion = 1 : i32 } 4986841eff1SOleksandr "Alex" Zinenko``` 4996841eff1SOleksandr "Alex" Zinenko 500aab795a8SOleksandr "Alex" ZinenkoOne-shot bufferization itself does not produce buffer deallocations, which may 501aab795a8SOleksandr "Alex" Zinenkolead to leaks. So we have to run the buffer deallocation pass pipeline to avoid 50239298b09SAndrzej Warzyńskithem. Note that the Transform dialect seamlessly runs named passes and pass 503aab795a8SOleksandr "Alex" Zinenkopipelines: if desired, one could replace complex `--pass-pipeline expressions` 504aab795a8SOleksandr "Alex" Zinenkowith operations. Note that we apply the pipeline to functions rather than entire 505aab795a8SOleksandr "Alex" Zinenkomodule to avoid running it on the transform IR that is contained in the module. 506aab795a8SOleksandr "Alex" Zinenko 507aab795a8SOleksandr "Alex" Zinenko```mlir 508aab795a8SOleksandr "Alex" Zinenko%f = transform.structured.match ops{["func.func"]} in %arg1 509aab795a8SOleksandr "Alex" Zinenko : (!transform.any_op) -> !transform.any_op 510aab795a8SOleksandr "Alex" Zinenkotransform.apply_registered_pass "buffer-deallocation-pipeline" to %f 511aab795a8SOleksandr "Alex" Zinenko : (!transform.any_op) -> !transform.any_op 512aab795a8SOleksandr "Alex" Zinenko``` 513aab795a8SOleksandr "Alex" Zinenko 5146841eff1SOleksandr "Alex" ZinenkoIn this particular case, the transformed IR could be directly bufferized. This 5156841eff1SOleksandr "Alex" Zinenkois not always the case in general as some operations, in particular 5166841eff1SOleksandr "Alex" Zinenko`tensor.empty` may not be bufferizable. Such operations need to be removed 5176841eff1SOleksandr "Alex" Zinenkobefore running the bufferization, which can often be achieved by sufficient 5186841eff1SOleksandr "Alex" Zinenkofusion (as in our case), or by running dedicated transformations 5196841eff1SOleksandr "Alex" Zinenko`transform.bufferization.eliminate_empty_tensors` that removes the 5206841eff1SOleksandr "Alex" Zinenko`tensor.empty` operations only serving for defining the size of a computation or 5216841eff1SOleksandr "Alex" Zinenko`transform.bufferization.empty_tensor_to_alloc_tensor` that materializes a new 5226841eff1SOleksandr "Alex" Zinenkotemporary buffer for empty tensors to be used as local caches. 5236841eff1SOleksandr "Alex" Zinenko 5246841eff1SOleksandr "Alex" Zinenko```mlir 5256841eff1SOleksandr "Alex" Zinenko// Apply general canonicalization and CSE to each function after 5266841eff1SOleksandr "Alex" Zinenko// bufferization as new simplification opportunities may have appeared. 5276841eff1SOleksandr "Alex" Zinenko%fb = transform.structured.match ops{["func.func"]} in %arg1 5286841eff1SOleksandr "Alex" Zinenkotransform.apply_patterns to %fb { 5296841eff1SOleksandr "Alex" Zinenko transform.apply_patterns.canonicalization 5306841eff1SOleksandr "Alex" Zinenko} 5316841eff1SOleksandr "Alex" Zinenkotransform.apply_cse to %fb 5326841eff1SOleksandr "Alex" Zinenko 5336841eff1SOleksandr "Alex" Zinenko// Lower complex, multidimensional vector operations into simpler 5346841eff1SOleksandr "Alex" Zinenko// primitives. This particular selection of the pattern groups corresponds 5356841eff1SOleksandr "Alex" Zinenko// to vector dialect operations present in the payload IR at this stage. 5366841eff1SOleksandr "Alex" Zinenko// Many of these groups can be parameterized to use different strategies or 5376841eff1SOleksandr "Alex" Zinenko// lower-level primitives offering performance trade-offs. In this case, we 5386841eff1SOleksandr "Alex" Zinenko// are selecting the simplest strategies. 5396841eff1SOleksandr "Alex" Zinenkotransform.apply_patterns to %fb { 5406841eff1SOleksandr "Alex" Zinenko transform.apply_patterns.vector.lower_contraction 5416841eff1SOleksandr "Alex" Zinenko lowering_strategy = parallelarith 5426841eff1SOleksandr "Alex" Zinenko transform.apply_patterns.vector.lower_transfer 5436841eff1SOleksandr "Alex" Zinenko max_transfer_rank = 1 5446841eff1SOleksandr "Alex" Zinenko transform.apply_patterns.vector.lower_transpose 5456841eff1SOleksandr "Alex" Zinenko lowering_strategy = eltwise 5466841eff1SOleksandr "Alex" Zinenko transform.apply_patterns.vector.lower_shape_cast 5476841eff1SOleksandr "Alex" Zinenko} 5486841eff1SOleksandr "Alex" Zinenko 5496841eff1SOleksandr "Alex" Zinenko// These patterns apply in a separate sweep to avoid transfer-to-scf 5506841eff1SOleksandr "Alex" Zinenko// patterns overlap with lower-transfer patterns as they apply to the same 5516841eff1SOleksandr "Alex" Zinenko// kind of operations. These patterns may produce local allocations to act 5526841eff1SOleksandr "Alex" Zinenko// as temporary caches deep inside loops, which could lead to catastrophic 5536841eff1SOleksandr "Alex" Zinenko// performance. Such allocations are moved onto the stack and hoisted from 5546841eff1SOleksandr "Alex" Zinenko// all the surrounding loops. 5556841eff1SOleksandr "Alex" Zinenkotransform.apply_patterns to %fb { 5566841eff1SOleksandr "Alex" Zinenko transform.apply_patterns.vector.transfer_to_scf 5576841eff1SOleksandr "Alex" Zinenko transform.apply_patterns.memref.alloc_to_alloca 5586841eff1SOleksandr "Alex" Zinenko } 5596841eff1SOleksandr "Alex" Zinenkotransform.bufferization.buffer_loop_hoisting %fb 5606841eff1SOleksandr "Alex" Zinenko 5616841eff1SOleksandr "Alex" Zinenko// A final round of cleanups additionally includes patterns to simplify 5626841eff1SOleksandr "Alex" Zinenko// buffer aliasing operations that may have been introduced during 5636841eff1SOleksandr "Alex" Zinenko// bufferization and could result in excessively complex address 5646841eff1SOleksandr "Alex" Zinenko// computation. 5656841eff1SOleksandr "Alex" Zinenkotransform.apply_patterns to %fb { 5666841eff1SOleksandr "Alex" Zinenko transform.apply_patterns.memref.fold_memref_alias_ops 5676841eff1SOleksandr "Alex" Zinenko transform.apply_patterns.canonicalization 5686841eff1SOleksandr "Alex" Zinenko} 5696841eff1SOleksandr "Alex" Zinenkotransform.apply_cse to %fb 5706841eff1SOleksandr "Alex" Zinenko``` 5716841eff1SOleksandr "Alex" Zinenko 5726841eff1SOleksandr "Alex" ZinenkoDue to its inter-procedural nature, one-bufferization processes the entire 5736841eff1SOleksandr "Alex" Zinenkopayload module and thus invalidates all previously created handles. Therefore, 5746841eff1SOleksandr "Alex" Zinenkoit is typically a late step in the transformation sequence where precise 5756841eff1SOleksandr "Alex" Zinenkotargeting of transformation is no longer required. The following transformations 5766841eff1SOleksandr "Alex" Zinenkoare typically module- or function-wide rewrites that are often pattern-based 5776841eff1SOleksandr "Alex" Zinenkolowerings. This part of the sequence can be seen as a pass pipeline specified 5786841eff1SOleksandr "Alex" Zinenkodirectly in the transform dialect, with pattern-based lowering passes 5796841eff1SOleksandr "Alex" Zinenkoconstructed _on-the-fly_ from named groups of patterns. 5806841eff1SOleksandr "Alex" Zinenko 5816841eff1SOleksandr "Alex" ZinenkoThe resulting IR can be further completely lowered to the LLVM dialect, then to 5826841eff1SOleksandr "Alex" ZinenkoLLVM IR and processed by the LLVM compiler to produce an executable or JITted. 5836841eff1SOleksandr "Alex" Zinenko 5846841eff1SOleksandr "Alex" ZinenkoThe generated code runs in ~420ms on an Intel processor with Skylake 5856841eff1SOleksandr "Alex" Zinenkomicroarchitecture clocked at 2.0GHz. Given that the computation performs 586*e8b31fb3SOleksandr "Alex" Zinenko$`5 \cdot 80 \cdot 100 \cdot 128 \cdot (2 \cdot 3 \cdot 3 \cdot 128 + 2) \approx 5.9 * 10^9`$ 587*e8b31fb3SOleksandr "Alex" Zinenkofloating point operations, it reaches ~14 GFlops. With 1 FMA unit available, 588*e8b31fb3SOleksandr "Alex" Zinenkothe single-core performance of the test processor is 64 GFlops 589*e8b31fb3SOleksandr "Alex" Zinenko($`16 \cdot 2 \cdot 2 \cdot 10^9`$, where 16 is the vector width), so only 590*e8b31fb3SOleksandr "Alex" Zinenko22% of the theoretical peak is achieved. 5916841eff1SOleksandr "Alex" Zinenko 5926841eff1SOleksandr "Alex" ZinenkoThe code produced by Halide runs in ~120ms on the same processor, a 3.5x 5936841eff1SOleksandr "Alex" Zinenkoimprovement and 77% of peak. Let us analyze the generated assembly to understand 5946841eff1SOleksandr "Alex" Zinenkothe source of the difference. The main computational effort is expected to 5956841eff1SOleksandr "Alex" Zinenkohappen around floating point multiplications and additions in the convolution. 5966841eff1SOleksandr "Alex" ZinenkoIn both cases, the assembly features AVX512 `vfma231ps` instructions operating 5976841eff1SOleksandr "Alex" Zinenkoon `%zmm` 512-bit vector registers. In the MLIR-generated code, they are 5986841eff1SOleksandr "Alex" Zinenkointerspersed with memory accesses loading _two _of the `fma` operands before 5996841eff1SOleksandr "Alex" Zinenkoeach operation and leading to increased latency. 6006841eff1SOleksandr "Alex" Zinenko 6016841eff1SOleksandr "Alex" Zinenko```asm 6026841eff1SOleksandr "Alex" Zinenkovmovups -192(%r10), %zmm0 6036841eff1SOleksandr "Alex" Zinenkovbroadcastss -1536(%rdi,%r9), %zmm1 6046841eff1SOleksandr "Alex" Zinenkovmovups 112(%rsp), %zmm2 6056841eff1SOleksandr "Alex" Zinenkovfmadd231ps %zmm1, %zmm0, %zmm2 # zmm2 = (zmm0 * zmm1) + zmm2 6066841eff1SOleksandr "Alex" Zinenkovmovups %ymm2, 112(%rsp) 6076841eff1SOleksandr "Alex" Zinenkovextractf64x4 $1, %zmm2, 144(%rsp) 6086841eff1SOleksandr "Alex" Zinenko// 19 more blocks of either 6096841eff1SOleksandr "Alex" Zinenko// (a) vmovups,vbroadcast,vfma(z,z),vextract, 6106841eff1SOleksandr "Alex" Zinenko// (b) vbroadcast,vfma(z,mem),vextract 6116841eff1SOleksandr "Alex" Zinenko``` 6126841eff1SOleksandr "Alex" Zinenko 6136841eff1SOleksandr "Alex" ZinenkoThe Halide-generated code however features compact blocks of `vfma231ps` and 6146841eff1SOleksandr "Alex" Zinenko`vbroadcastss` loading one of the operands while the other two are resident in 6156841eff1SOleksandr "Alex" Zinenkoregisters and loaded before `fma`. 6166841eff1SOleksandr "Alex" Zinenko 6176841eff1SOleksandr "Alex" Zinenko```asm 6186841eff1SOleksandr "Alex" Zinenkovbroadcastss -1536(%rsi,%rbx), %zmm25 6196841eff1SOleksandr "Alex" Zinenkovmovups -192(%rdi), %zmm26 6206841eff1SOleksandr "Alex" Zinenkovmovups -128(%rdi), %zmm27 6216841eff1SOleksandr "Alex" Zinenkovmovups -64(%rdi), %zmm28 6226841eff1SOleksandr "Alex" Zinenkovmovups (%rdi), %zmm29 6236841eff1SOleksandr "Alex" Zinenkovfmadd231ps %zmm25, %zmm26, %zmm24 # zmm24 = (zmm26 * zmm25) + zmm24 6246841eff1SOleksandr "Alex" Zinenkovfmadd231ps %zmm25, %zmm27, %zmm23 # zmm23 = (zmm27 * zmm25) + zmm23 6256841eff1SOleksandr "Alex" Zinenkovfmadd231ps %zmm25, %zmm28, %zmm22 # zmm22 = (zmm28 * zmm25) + zmm22 6266841eff1SOleksandr "Alex" Zinenkovfmadd231ps %zmm25, %zmm29, %zmm21 # zmm21 = (zmm29 * zmm25) + zmm21 6276841eff1SOleksandr "Alex" Zinenkovbroadcastss -1024(%rsi,%rbx), %zmm25 6286841eff1SOleksandr "Alex" Zinenkovfmadd231ps %zmm25, %zmm26, %zmm20 # zmm20 = (zmm26 * zmm25) + zmm20 6296841eff1SOleksandr "Alex" Zinenkovfmadd231ps %zmm25, %zmm27, %zmm19 # zmm19 = (zmm27 * zmm25) + zmm19 6306841eff1SOleksandr "Alex" Zinenkovfmadd231ps %zmm25, %zmm28, %zmm18 # zmm18 = (zmm28 * zmm25) + zmm18 6316841eff1SOleksandr "Alex" Zinenkovfmadd231ps %zmm25, %zmm29, %zmm17 # zmm17 = (zmm29 * zmm25) + zmm17 6326841eff1SOleksandr "Alex" Zinenkovbroadcastss -512(%rsi,%rbx), %zmm25 6336841eff1SOleksandr "Alex" Zinenko 6346841eff1SOleksandr "Alex" Zinenko// 3 more blocks of 4 vfmadd231 followed by a vbroadcast 6356841eff1SOleksandr "Alex" Zinenko``` 6366841eff1SOleksandr "Alex" Zinenko 6376841eff1SOleksandr "Alex" ZinenkoInspecting the progressive intermediate representations produced by MLIR, one 6386841eff1SOleksandr "Alex" Zinenkocan observe the load(transfer)/fma interspersing at all levels starting after 6396841eff1SOleksandr "Alex" Zinenkoschedule application. The repeated tensor subsetting operations, that are later 6406841eff1SOleksandr "Alex" Zinenkotransformed into vector transfer operations, and vector memory loads, are 6416841eff1SOleksandr "Alex" Zinenkoproduced by loop unrolling that was explicitly requested in the schedule! The 6426841eff1SOleksandr "Alex" Zinenkoissue is the single-assignment model of tensors (and vectors) that results in 6436841eff1SOleksandr "Alex" Zinenkolong and complex chains of access and update operations that become so long that 6446841eff1SOleksandr "Alex" Zinenkothe lower-level transformations and the downstream compiler can no longer 6456841eff1SOleksandr "Alex" Zinenkosimplify them. In fact, unrolling loops early in the transformation sequence can 6466841eff1SOleksandr "Alex" Zinenkolead to all sorts of compiler-performance related problems (including the 6476841eff1SOleksandr "Alex" Zinenkocompiler failing to perform some optimizations due to excessive code length) in 6486841eff1SOleksandr "Alex" Zinenkothe process. 6496841eff1SOleksandr "Alex" Zinenko 6506841eff1SOleksandr "Alex" ZinenkoIt is therefore desirable to perform loop unrolling at a later stage, 6516841eff1SOleksandr "Alex" Zinenkospecifically after bufferization and relevant simplification. However, 6526841eff1SOleksandr "Alex" Zinenkobufferization invalidates all loop handles including to loops that we are 6536841eff1SOleksandr "Alex" Zinenkowilling to unroll. This hurdle can be overcome by matching the payload IR 6546841eff1SOleksandr "Alex" Zinenkooperations after bufferization to produce new handles. We will first change the 6556841eff1SOleksandr "Alex" Zinenkokind of loops produced in the schedule from `scf.for` to `scf.forall` to have 65696ff0255SOleksandr "Alex" Zinenkoless operations to match by using `transform.structured.tile_using_forall` 6576841eff1SOleksandr "Alex" Zinenkoinstead of `transform.structured.tile` when tiling with sizes `[0, 0, 1, 16]`. 6586841eff1SOleksandr "Alex" ZinenkoThen we can match all `scf.forall` operations in the payload IR and transform 6596841eff1SOleksandr "Alex" Zinenkothem into single-iterator `scf.for` loops _after bufferization_. 6606841eff1SOleksandr "Alex" Zinenko 6616841eff1SOleksandr "Alex" Zinenko```mlir 6626841eff1SOleksandr "Alex" Zinenko%foralls = transform.structured.match ops{["scf.forall"]} in %arg1 6636841eff1SOleksandr "Alex" Zinenko%xi_bias, %ci_bias = transform.loop.forall_to_for %xi_ci_bias 6646841eff1SOleksandr "Alex" Zinenko%xi_conv, %ci_conv = transform.loop.forall_to_for %xi_ci_conv 6656841eff1SOleksandr "Alex" Zinenko%xi_relu, %ci_relu = transform.loop.forall_to_for %xi_ci_relu 6666841eff1SOleksandr "Alex" Zinenko%xi_comb, %ci_comb = transform.loop.forall_to_for %xi_ci_comb 6676841eff1SOleksandr "Alex" Zinenko``` 6686841eff1SOleksandr "Alex" Zinenko 6696841eff1SOleksandr "Alex" ZinenkoWe can then move our loop unrolling transformations later in the transformation 6706841eff1SOleksandr "Alex" Zinenkosequence as desired. Compiling this new version to assembly produces exactly the 6716841eff1SOleksandr "Alex" Zinenkosame core computation around `vfmadd231ps` as Halide’s version, which only 6726841eff1SOleksandr "Alex" Zinenkodiffers slightly in allocated registers. Unsurprisingly, this version runs 6736841eff1SOleksandr "Alex" Zinenkoroughly in 120ms on the same machine. 6746841eff1SOleksandr "Alex" Zinenko 6756841eff1SOleksandr "Alex" Zinenko 6766841eff1SOleksandr "Alex" Zinenko## Multi-Dimensional Vectors to the Rescue 6776841eff1SOleksandr "Alex" Zinenko 6786841eff1SOleksandr "Alex" ZinenkoWhile we managed to produce similar code to Halide in the previous section, we 6796841eff1SOleksandr "Alex" Zinenkodid so by rematching generated loops after bufferization, which partially defies 6806841eff1SOleksandr "Alex" Zinenkothe purpose of using handles to chain transformations in the Transform dialect. 6816841eff1SOleksandr "Alex" ZinenkoLuckily, this step is not really necessary. It only served as an exercise in 6826841eff1SOleksandr "Alex" Zinenkoproducing the desired loop structure. 6836841eff1SOleksandr "Alex" Zinenko 6846841eff1SOleksandr "Alex" ZinenkoMultidimensional structured operations on vectors are lowered to target-specific 6856841eff1SOleksandr "Alex" Zinenkovectors by unrolling and splitting. For example, an elementwise arithmetic 6866841eff1SOleksandr "Alex" Zinenkooperation on `vector<5x64xf32>` is replaced with 5 operations on 6876841eff1SOleksandr "Alex" Zinenko`vector<64xf32>` and additional vector value manipulations to recreate the 6886841eff1SOleksandr "Alex" Zinenkorequired type at the MLIR level. Each of these operations is then split into 4 6896841eff1SOleksandr "Alex" Zinenkooperations on `vector<16xf32>` at the LLVM level where the information about 6906841eff1SOleksandr "Alex" Zinenkothe target vector width becomes available. Collectively, this has exactly the 6916841eff1SOleksandr "Alex" Zinenkosame effect as first materializing the 5x4 loop nest, and then fully unrolling 6926841eff1SOleksandr "Alex" Zinenkothese loops. Therefore, the last stage of tiling, re-matching and unrolling can 6936841eff1SOleksandr "Alex" Zinenkobe removed from the schedule. 6946841eff1SOleksandr "Alex" Zinenko 6956841eff1SOleksandr "Alex" ZinenkoThe resulting assembly has all `vbroadcast` grouped together before `vfmadd231` 6966841eff1SOleksandr "Alex" Zinenkobut otherwise has a similar structure. This grouping is due to each 6976841eff1SOleksandr "Alex" Zinenkomulti-dimensional vector operation being “unrolled” separately. When executed, 6986841eff1SOleksandr "Alex" Zinenkoit runs in ~110ms, a slight improvement of 8% over both the previous version and 6996841eff1SOleksandr "Alex" ZinenkoHalide, and reaches ~53.7 GFlop/s or 84% of peak single-core performance. The 7006841eff1SOleksandr "Alex" Zinenkoimprovement is largely due to the intermediate representation being shorter and 7016841eff1SOleksandr "Alex" Zinenkosimpler in presence of large-vector operations, which allowed for more 7026841eff1SOleksandr "Alex" Zinenkoaggressive address computation and load placement optimization. 7036841eff1SOleksandr "Alex" Zinenko 7046841eff1SOleksandr "Alex" ZinenkoThe final transformation strategy is checked into the repository at 7056841eff1SOleksandr "Alex" Zinenko[mlir/examples/transform/ChH/full.mlir]( 7066841eff1SOleksandr "Alex" Zinenkohttps://github.com/llvm/llvm-project/tree/main/mlir/test/Examples/transform/ChH/full.mlir). 707