xref: /llvm-project/llvm/utils/TableGen/Common/CodeGenDAGPatterns.cpp (revision ec61311e77b39fc7f9b45ffdb8a29b2d96f67265)
1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CodeGenDAGPatterns class, which is used to read and
10 // represent the patterns present in a .td file for instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenDAGPatterns.h"
15 #include "CodeGenInstruction.h"
16 #include "CodeGenRegisters.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringMap.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/TypeSize.h"
28 #include "llvm/TableGen/Error.h"
29 #include "llvm/TableGen/Record.h"
30 #include <algorithm>
31 #include <cstdio>
32 #include <iterator>
33 #include <set>
34 using namespace llvm;
35 
36 #define DEBUG_TYPE "dag-patterns"
37 
38 static inline bool isIntegerOrPtr(MVT VT) {
39   return VT.isInteger() || VT == MVT::iPTR;
40 }
41 static inline bool isFloatingPoint(MVT VT) { return VT.isFloatingPoint(); }
42 static inline bool isVector(MVT VT) { return VT.isVector(); }
43 static inline bool isScalar(MVT VT) { return !VT.isVector(); }
44 
45 template <typename Predicate>
46 static bool berase_if(MachineValueTypeSet &S, Predicate P) {
47   bool Erased = false;
48   // It is ok to iterate over MachineValueTypeSet and remove elements from it
49   // at the same time.
50   for (MVT T : S) {
51     if (!P(T))
52       continue;
53     Erased = true;
54     S.erase(T);
55   }
56   return Erased;
57 }
58 
59 void MachineValueTypeSet::writeToStream(raw_ostream &OS) const {
60   SmallVector<MVT, 4> Types(begin(), end());
61   array_pod_sort(Types.begin(), Types.end());
62 
63   OS << '[';
64   ListSeparator LS(" ");
65   for (const MVT &T : Types)
66     OS << LS << ValueTypeByHwMode::getMVTName(T);
67   OS << ']';
68 }
69 
70 // --- TypeSetByHwMode
71 
72 // This is a parameterized type-set class. For each mode there is a list
73 // of types that are currently possible for a given tree node. Type
74 // inference will apply to each mode separately.
75 
76 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
77   // Take the address space from the first type in the list.
78   if (!VTList.empty())
79     AddrSpace = VTList[0].PtrAddrSpace;
80 
81   for (const ValueTypeByHwMode &VVT : VTList)
82     insert(VVT);
83 }
84 
85 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
86   for (const auto &I : *this) {
87     if (I.second.size() > 1)
88       return false;
89     if (!AllowEmpty && I.second.empty())
90       return false;
91   }
92   return true;
93 }
94 
95 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
96   assert(isValueTypeByHwMode(true) &&
97          "The type set has multiple types for at least one HW mode");
98   ValueTypeByHwMode VVT;
99   VVT.PtrAddrSpace = AddrSpace;
100 
101   for (const auto &I : *this) {
102     MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
103     VVT.getOrCreateTypeForMode(I.first, T);
104   }
105   return VVT;
106 }
107 
108 bool TypeSetByHwMode::isPossible() const {
109   for (const auto &I : *this)
110     if (!I.second.empty())
111       return true;
112   return false;
113 }
114 
115 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
116   bool Changed = false;
117   bool ContainsDefault = false;
118   MVT DT = MVT::Other;
119 
120   for (const auto &P : VVT) {
121     unsigned M = P.first;
122     // Make sure there exists a set for each specific mode from VVT.
123     Changed |= getOrCreate(M).insert(P.second).second;
124     // Cache VVT's default mode.
125     if (DefaultMode == M) {
126       ContainsDefault = true;
127       DT = P.second;
128     }
129   }
130 
131   // If VVT has a default mode, add the corresponding type to all
132   // modes in "this" that do not exist in VVT.
133   if (ContainsDefault)
134     for (auto &I : *this)
135       if (!VVT.hasMode(I.first))
136         Changed |= I.second.insert(DT).second;
137 
138   return Changed;
139 }
140 
141 // Constrain the type set to be the intersection with VTS.
142 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
143   bool Changed = false;
144   if (hasDefault()) {
145     for (const auto &I : VTS) {
146       unsigned M = I.first;
147       if (M == DefaultMode || hasMode(M))
148         continue;
149       Map.insert({M, Map.at(DefaultMode)});
150       Changed = true;
151     }
152   }
153 
154   for (auto &I : *this) {
155     unsigned M = I.first;
156     SetType &S = I.second;
157     if (VTS.hasMode(M) || VTS.hasDefault()) {
158       Changed |= intersect(I.second, VTS.get(M));
159     } else if (!S.empty()) {
160       S.clear();
161       Changed = true;
162     }
163   }
164   return Changed;
165 }
166 
167 template <typename Predicate> bool TypeSetByHwMode::constrain(Predicate P) {
168   bool Changed = false;
169   for (auto &I : *this)
170     Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
171   return Changed;
172 }
173 
174 template <typename Predicate>
175 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
176   assert(empty());
177   for (const auto &I : VTS) {
178     SetType &S = getOrCreate(I.first);
179     for (auto J : I.second)
180       if (P(J))
181         S.insert(J);
182   }
183   return !empty();
184 }
185 
186 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
187   SmallVector<unsigned, 4> Modes;
188   Modes.reserve(Map.size());
189 
190   for (const auto &I : *this)
191     Modes.push_back(I.first);
192   if (Modes.empty()) {
193     OS << "{}";
194     return;
195   }
196   array_pod_sort(Modes.begin(), Modes.end());
197 
198   OS << '{';
199   for (unsigned M : Modes) {
200     OS << ' ' << getModeName(M) << ':';
201     get(M).writeToStream(OS);
202   }
203   OS << " }";
204 }
205 
206 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
207   // The isSimple call is much quicker than hasDefault - check this first.
208   bool IsSimple = isSimple();
209   bool VTSIsSimple = VTS.isSimple();
210   if (IsSimple && VTSIsSimple)
211     return getSimple() == VTS.getSimple();
212 
213   // Speedup: We have a default if the set is simple.
214   bool HaveDefault = IsSimple || hasDefault();
215   bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault();
216   if (HaveDefault != VTSHaveDefault)
217     return false;
218 
219   SmallSet<unsigned, 4> Modes;
220   for (auto &I : *this)
221     Modes.insert(I.first);
222   for (const auto &I : VTS)
223     Modes.insert(I.first);
224 
225   if (HaveDefault) {
226     // Both sets have default mode.
227     for (unsigned M : Modes) {
228       if (get(M) != VTS.get(M))
229         return false;
230     }
231   } else {
232     // Neither set has default mode.
233     for (unsigned M : Modes) {
234       // If there is no default mode, an empty set is equivalent to not having
235       // the corresponding mode.
236       bool NoModeThis = !hasMode(M) || get(M).empty();
237       bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
238       if (NoModeThis != NoModeVTS)
239         return false;
240       if (!NoModeThis)
241         if (get(M) != VTS.get(M))
242           return false;
243     }
244   }
245 
246   return true;
247 }
248 
249 namespace llvm {
250 raw_ostream &operator<<(raw_ostream &OS, const MachineValueTypeSet &T) {
251   T.writeToStream(OS);
252   return OS;
253 }
254 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
255   T.writeToStream(OS);
256   return OS;
257 }
258 } // namespace llvm
259 
260 LLVM_DUMP_METHOD
261 void TypeSetByHwMode::dump() const { dbgs() << *this << '\n'; }
262 
263 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
264   auto IntersectP = [&](std::optional<MVT> WildVT, function_ref<bool(MVT)> P) {
265     // Complement of In within this partition.
266     auto CompIn = [&](MVT T) -> bool { return !In.count(T) && P(T); };
267 
268     if (!WildVT)
269       return berase_if(Out, CompIn);
270 
271     bool OutW = Out.count(*WildVT), InW = In.count(*WildVT);
272     if (OutW == InW)
273       return berase_if(Out, CompIn);
274 
275     // Compute the intersection of scalars separately to account for only one
276     // set containing WildVT.
277     // The intersection of WildVT with a set of corresponding types that does
278     // not include WildVT will result in the most specific type:
279     // - WildVT is more specific than any set with two elements or more
280     // - WildVT is less specific than any single type.
281     // For example, for iPTR and scalar integer types
282     // { iPTR } * { i32 }     -> { i32 }
283     // { iPTR } * { i32 i64 } -> { iPTR }
284     // and
285     // { iPTR i32 } * { i32 }          -> { i32 }
286     // { iPTR i32 } * { i32 i64 }      -> { i32 i64 }
287     // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
288 
289     // Looking at just this partition, let In' = elements only in In,
290     // Out' = elements only in Out, and IO = elements common to both. Normally
291     // IO would be returned as the result of the intersection, but we need to
292     // account for WildVT being a "wildcard" of sorts. Since elements in IO are
293     // those that match both sets exactly, they will all belong to the output.
294     // If any of the "leftovers" (i.e. In' or Out') contain WildVT, it means
295     // that the other set doesn't have it, but it could have (1) a more
296     // specific type, or (2) a set of types that is less specific. The
297     // "leftovers" from the other set is what we want to examine more closely.
298 
299     auto Leftovers = [&](const SetType &A, const SetType &B) {
300       SetType Diff = A;
301       berase_if(Diff, [&](MVT T) { return B.count(T) || !P(T); });
302       return Diff;
303     };
304 
305     if (InW) {
306       SetType OutLeftovers = Leftovers(Out, In);
307       if (OutLeftovers.size() < 2) {
308         // WildVT not added to Out. Keep the possible single leftover.
309         return false;
310       }
311       // WildVT replaces the leftovers.
312       berase_if(Out, CompIn);
313       Out.insert(*WildVT);
314       return true;
315     }
316 
317     // OutW == true
318     SetType InLeftovers = Leftovers(In, Out);
319     unsigned SizeOut = Out.size();
320     berase_if(Out, CompIn); // This will remove at least the WildVT.
321     if (InLeftovers.size() < 2) {
322       // WildVT deleted from Out. Add back the possible single leftover.
323       Out.insert(InLeftovers);
324       return true;
325     }
326 
327     // Keep the WildVT in Out.
328     Out.insert(*WildVT);
329     // If WildVT was the only element initially removed from Out, then Out
330     // has not changed.
331     return SizeOut != Out.size();
332   };
333 
334   // Note: must be non-overlapping
335   using WildPartT = std::pair<MVT, std::function<bool(MVT)>>;
336   static const WildPartT WildParts[] = {
337       {MVT::iPTR, [](MVT T) { return T.isScalarInteger() || T == MVT::iPTR; }},
338   };
339 
340   bool Changed = false;
341   for (const auto &I : WildParts)
342     Changed |= IntersectP(I.first, I.second);
343 
344   Changed |= IntersectP(std::nullopt, [&](MVT T) {
345     return !any_of(WildParts, [=](const WildPartT &I) { return I.second(T); });
346   });
347 
348   return Changed;
349 }
350 
351 bool TypeSetByHwMode::validate() const {
352   if (empty())
353     return true;
354   bool AllEmpty = true;
355   for (const auto &I : *this)
356     AllEmpty &= I.second.empty();
357   return !AllEmpty;
358 }
359 
360 // --- TypeInfer
361 
362 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
363                                 const TypeSetByHwMode &In) const {
364   ValidateOnExit _1(Out, *this);
365   In.validate();
366   if (In.empty() || Out == In || TP.hasError())
367     return false;
368   if (Out.empty()) {
369     Out = In;
370     return true;
371   }
372 
373   bool Changed = Out.constrain(In);
374   if (Changed && Out.empty())
375     TP.error("Type contradiction");
376 
377   return Changed;
378 }
379 
380 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
381   ValidateOnExit _1(Out, *this);
382   if (TP.hasError())
383     return false;
384   assert(!Out.empty() && "cannot pick from an empty set");
385 
386   bool Changed = false;
387   for (auto &I : Out) {
388     TypeSetByHwMode::SetType &S = I.second;
389     if (S.size() <= 1)
390       continue;
391     MVT T = *S.begin(); // Pick the first element.
392     S.clear();
393     S.insert(T);
394     Changed = true;
395   }
396   return Changed;
397 }
398 
399 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
400   ValidateOnExit _1(Out, *this);
401   if (TP.hasError())
402     return false;
403   if (!Out.empty())
404     return Out.constrain(isIntegerOrPtr);
405 
406   return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
407 }
408 
409 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
410   ValidateOnExit _1(Out, *this);
411   if (TP.hasError())
412     return false;
413   if (!Out.empty())
414     return Out.constrain(isFloatingPoint);
415 
416   return Out.assign_if(getLegalTypes(), isFloatingPoint);
417 }
418 
419 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
420   ValidateOnExit _1(Out, *this);
421   if (TP.hasError())
422     return false;
423   if (!Out.empty())
424     return Out.constrain(isScalar);
425 
426   return Out.assign_if(getLegalTypes(), isScalar);
427 }
428 
429 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
430   ValidateOnExit _1(Out, *this);
431   if (TP.hasError())
432     return false;
433   if (!Out.empty())
434     return Out.constrain(isVector);
435 
436   return Out.assign_if(getLegalTypes(), isVector);
437 }
438 
439 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
440   ValidateOnExit _1(Out, *this);
441   if (TP.hasError() || !Out.empty())
442     return false;
443 
444   Out = getLegalTypes();
445   return true;
446 }
447 
448 template <typename Iter, typename Pred, typename Less>
449 static Iter min_if(Iter B, Iter E, Pred P, Less L) {
450   if (B == E)
451     return E;
452   Iter Min = E;
453   for (Iter I = B; I != E; ++I) {
454     if (!P(*I))
455       continue;
456     if (Min == E || L(*I, *Min))
457       Min = I;
458   }
459   return Min;
460 }
461 
462 template <typename Iter, typename Pred, typename Less>
463 static Iter max_if(Iter B, Iter E, Pred P, Less L) {
464   if (B == E)
465     return E;
466   Iter Max = E;
467   for (Iter I = B; I != E; ++I) {
468     if (!P(*I))
469       continue;
470     if (Max == E || L(*Max, *I))
471       Max = I;
472   }
473   return Max;
474 }
475 
476 /// Make sure that for each type in Small, there exists a larger type in Big.
477 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big,
478                                    bool SmallIsVT) {
479   ValidateOnExit _1(Small, *this), _2(Big, *this);
480   if (TP.hasError())
481     return false;
482   bool Changed = false;
483 
484   assert((!SmallIsVT || !Small.empty()) &&
485          "Small should not be empty for SDTCisVTSmallerThanOp");
486 
487   if (Small.empty())
488     Changed |= EnforceAny(Small);
489   if (Big.empty())
490     Changed |= EnforceAny(Big);
491 
492   assert(Small.hasDefault() && Big.hasDefault());
493 
494   SmallVector<unsigned, 4> Modes;
495   union_modes(Small, Big, Modes);
496 
497   // 1. Only allow integer or floating point types and make sure that
498   //    both sides are both integer or both floating point.
499   // 2. Make sure that either both sides have vector types, or neither
500   //    of them does.
501   for (unsigned M : Modes) {
502     TypeSetByHwMode::SetType &S = Small.get(M);
503     TypeSetByHwMode::SetType &B = Big.get(M);
504 
505     assert((!SmallIsVT || !S.empty()) && "Expected non-empty type");
506 
507     if (any_of(S, isIntegerOrPtr) && any_of(B, isIntegerOrPtr)) {
508       auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
509       Changed |= berase_if(S, NotInt);
510       Changed |= berase_if(B, NotInt);
511     } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
512       auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
513       Changed |= berase_if(S, NotFP);
514       Changed |= berase_if(B, NotFP);
515     } else if (SmallIsVT && B.empty()) {
516       // B is empty and since S is a specific VT, it will never be empty. Don't
517       // report this as a change, just clear S and continue. This prevents an
518       // infinite loop.
519       S.clear();
520     } else if (S.empty() || B.empty()) {
521       Changed = !S.empty() || !B.empty();
522       S.clear();
523       B.clear();
524     } else {
525       TP.error("Incompatible types");
526       return Changed;
527     }
528 
529     if (none_of(S, isVector) || none_of(B, isVector)) {
530       Changed |= berase_if(S, isVector);
531       Changed |= berase_if(B, isVector);
532     }
533   }
534 
535   auto LT = [](MVT A, MVT B) -> bool {
536     // Always treat non-scalable MVTs as smaller than scalable MVTs for the
537     // purposes of ordering.
538     auto ASize = std::tuple(A.isScalableVector(), A.getScalarSizeInBits(),
539                             A.getSizeInBits().getKnownMinValue());
540     auto BSize = std::tuple(B.isScalableVector(), B.getScalarSizeInBits(),
541                             B.getSizeInBits().getKnownMinValue());
542     return ASize < BSize;
543   };
544   auto SameKindLE = [](MVT A, MVT B) -> bool {
545     // This function is used when removing elements: when a vector is compared
546     // to a non-vector or a scalable vector to any non-scalable MVT, it should
547     // return false (to avoid removal).
548     if (std::tuple(A.isVector(), A.isScalableVector()) !=
549         std::tuple(B.isVector(), B.isScalableVector()))
550       return false;
551 
552     return std::tuple(A.getScalarSizeInBits(),
553                       A.getSizeInBits().getKnownMinValue()) <=
554            std::tuple(B.getScalarSizeInBits(),
555                       B.getSizeInBits().getKnownMinValue());
556   };
557 
558   for (unsigned M : Modes) {
559     TypeSetByHwMode::SetType &S = Small.get(M);
560     TypeSetByHwMode::SetType &B = Big.get(M);
561     // MinS = min scalar in Small, remove all scalars from Big that are
562     // smaller-or-equal than MinS.
563     auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
564     if (MinS != S.end())
565       Changed |=
566           berase_if(B, std::bind(SameKindLE, std::placeholders::_1, *MinS));
567 
568     // MaxS = max scalar in Big, remove all scalars from Small that are
569     // larger than MaxS.
570     auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
571     if (MaxS != B.end())
572       Changed |=
573           berase_if(S, std::bind(SameKindLE, *MaxS, std::placeholders::_1));
574 
575     // MinV = min vector in Small, remove all vectors from Big that are
576     // smaller-or-equal than MinV.
577     auto MinV = min_if(S.begin(), S.end(), isVector, LT);
578     if (MinV != S.end())
579       Changed |=
580           berase_if(B, std::bind(SameKindLE, std::placeholders::_1, *MinV));
581 
582     // MaxV = max vector in Big, remove all vectors from Small that are
583     // larger than MaxV.
584     auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
585     if (MaxV != B.end())
586       Changed |=
587           berase_if(S, std::bind(SameKindLE, *MaxV, std::placeholders::_1));
588   }
589 
590   return Changed;
591 }
592 
593 /// 1. Ensure that for each type T in Vec, T is a vector type, and that
594 ///    for each type U in Elem, U is a scalar type.
595 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
596 ///    type T in Vec, such that U is the element type of T.
597 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
598                                        TypeSetByHwMode &Elem) {
599   ValidateOnExit _1(Vec, *this), _2(Elem, *this);
600   if (TP.hasError())
601     return false;
602   bool Changed = false;
603 
604   if (Vec.empty())
605     Changed |= EnforceVector(Vec);
606   if (Elem.empty())
607     Changed |= EnforceScalar(Elem);
608 
609   SmallVector<unsigned, 4> Modes;
610   union_modes(Vec, Elem, Modes);
611   for (unsigned M : Modes) {
612     TypeSetByHwMode::SetType &V = Vec.get(M);
613     TypeSetByHwMode::SetType &E = Elem.get(M);
614 
615     Changed |= berase_if(V, isScalar); // Scalar = !vector
616     Changed |= berase_if(E, isVector); // Vector = !scalar
617     assert(!V.empty() && !E.empty());
618 
619     MachineValueTypeSet VT, ST;
620     // Collect element types from the "vector" set.
621     for (MVT T : V)
622       VT.insert(T.getVectorElementType());
623     // Collect scalar types from the "element" set.
624     for (MVT T : E)
625       ST.insert(T);
626 
627     // Remove from V all (vector) types whose element type is not in S.
628     Changed |= berase_if(V, [&ST](MVT T) -> bool {
629       return !ST.count(T.getVectorElementType());
630     });
631     // Remove from E all (scalar) types, for which there is no corresponding
632     // type in V.
633     Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
634   }
635 
636   return Changed;
637 }
638 
639 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
640                                        const ValueTypeByHwMode &VVT) {
641   TypeSetByHwMode Tmp(VVT);
642   ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
643   return EnforceVectorEltTypeIs(Vec, Tmp);
644 }
645 
646 /// Ensure that for each type T in Sub, T is a vector type, and there
647 /// exists a type U in Vec such that U is a vector type with the same
648 /// element type as T and at least as many elements as T.
649 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
650                                              TypeSetByHwMode &Sub) {
651   ValidateOnExit _1(Vec, *this), _2(Sub, *this);
652   if (TP.hasError())
653     return false;
654 
655   /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
656   auto IsSubVec = [](MVT B, MVT P) -> bool {
657     if (!B.isVector() || !P.isVector())
658       return false;
659     // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
660     // but until there are obvious use-cases for this, keep the
661     // types separate.
662     if (B.isScalableVector() != P.isScalableVector())
663       return false;
664     if (B.getVectorElementType() != P.getVectorElementType())
665       return false;
666     return B.getVectorMinNumElements() < P.getVectorMinNumElements();
667   };
668 
669   /// Return true if S has no element (vector type) that T is a sub-vector of,
670   /// i.e. has the same element type as T and more elements.
671   auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
672     for (auto I : S)
673       if (IsSubVec(T, I))
674         return false;
675     return true;
676   };
677 
678   /// Return true if S has no element (vector type) that T is a super-vector
679   /// of, i.e. has the same element type as T and fewer elements.
680   auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
681     for (auto I : S)
682       if (IsSubVec(I, T))
683         return false;
684     return true;
685   };
686 
687   bool Changed = false;
688 
689   if (Vec.empty())
690     Changed |= EnforceVector(Vec);
691   if (Sub.empty())
692     Changed |= EnforceVector(Sub);
693 
694   SmallVector<unsigned, 4> Modes;
695   union_modes(Vec, Sub, Modes);
696   for (unsigned M : Modes) {
697     TypeSetByHwMode::SetType &S = Sub.get(M);
698     TypeSetByHwMode::SetType &V = Vec.get(M);
699 
700     Changed |= berase_if(S, isScalar);
701 
702     // Erase all types from S that are not sub-vectors of a type in V.
703     Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
704 
705     // Erase all types from V that are not super-vectors of a type in S.
706     Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
707   }
708 
709   return Changed;
710 }
711 
712 /// 1. Ensure that V has a scalar type iff W has a scalar type.
713 /// 2. Ensure that for each vector type T in V, there exists a vector
714 ///    type U in W, such that T and U have the same number of elements.
715 /// 3. Ensure that for each vector type U in W, there exists a vector
716 ///    type T in V, such that T and U have the same number of elements
717 ///    (reverse of 2).
718 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
719   ValidateOnExit _1(V, *this), _2(W, *this);
720   if (TP.hasError())
721     return false;
722 
723   bool Changed = false;
724   if (V.empty())
725     Changed |= EnforceAny(V);
726   if (W.empty())
727     Changed |= EnforceAny(W);
728 
729   // An actual vector type cannot have 0 elements, so we can treat scalars
730   // as zero-length vectors. This way both vectors and scalars can be
731   // processed identically.
732   auto NoLength = [](const SmallDenseSet<ElementCount> &Lengths,
733                      MVT T) -> bool {
734     return !Lengths.count(T.isVector() ? T.getVectorElementCount()
735                                        : ElementCount());
736   };
737 
738   SmallVector<unsigned, 4> Modes;
739   union_modes(V, W, Modes);
740   for (unsigned M : Modes) {
741     TypeSetByHwMode::SetType &VS = V.get(M);
742     TypeSetByHwMode::SetType &WS = W.get(M);
743 
744     SmallDenseSet<ElementCount> VN, WN;
745     for (MVT T : VS)
746       VN.insert(T.isVector() ? T.getVectorElementCount() : ElementCount());
747     for (MVT T : WS)
748       WN.insert(T.isVector() ? T.getVectorElementCount() : ElementCount());
749 
750     Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
751     Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
752   }
753   return Changed;
754 }
755 
756 namespace {
757 struct TypeSizeComparator {
758   bool operator()(const TypeSize &LHS, const TypeSize &RHS) const {
759     return std::tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
760            std::tuple(RHS.isScalable(), RHS.getKnownMinValue());
761   }
762 };
763 } // end anonymous namespace
764 
765 /// 1. Ensure that for each type T in A, there exists a type U in B,
766 ///    such that T and U have equal size in bits.
767 /// 2. Ensure that for each type U in B, there exists a type T in A
768 ///    such that T and U have equal size in bits (reverse of 1).
769 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
770   ValidateOnExit _1(A, *this), _2(B, *this);
771   if (TP.hasError())
772     return false;
773   bool Changed = false;
774   if (A.empty())
775     Changed |= EnforceAny(A);
776   if (B.empty())
777     Changed |= EnforceAny(B);
778 
779   typedef SmallSet<TypeSize, 2, TypeSizeComparator> TypeSizeSet;
780 
781   auto NoSize = [](const TypeSizeSet &Sizes, MVT T) -> bool {
782     return !Sizes.count(T.getSizeInBits());
783   };
784 
785   SmallVector<unsigned, 4> Modes;
786   union_modes(A, B, Modes);
787   for (unsigned M : Modes) {
788     TypeSetByHwMode::SetType &AS = A.get(M);
789     TypeSetByHwMode::SetType &BS = B.get(M);
790     TypeSizeSet AN, BN;
791 
792     for (MVT T : AS)
793       AN.insert(T.getSizeInBits());
794     for (MVT T : BS)
795       BN.insert(T.getSizeInBits());
796 
797     Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
798     Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
799   }
800 
801   return Changed;
802 }
803 
804 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) const {
805   ValidateOnExit _1(VTS, *this);
806   const TypeSetByHwMode &Legal = getLegalTypes();
807   assert(Legal.isSimple() && "Default-mode only expected");
808   const TypeSetByHwMode::SetType &LegalTypes = Legal.getSimple();
809 
810   for (auto &I : VTS)
811     expandOverloads(I.second, LegalTypes);
812 }
813 
814 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
815                                 const TypeSetByHwMode::SetType &Legal) const {
816   if (Out.count(MVT::iPTRAny)) {
817     Out.erase(MVT::iPTRAny);
818     Out.insert(MVT::iPTR);
819   } else if (Out.count(MVT::iAny)) {
820     Out.erase(MVT::iAny);
821     for (MVT T : MVT::integer_valuetypes())
822       if (Legal.count(T))
823         Out.insert(T);
824     for (MVT T : MVT::integer_fixedlen_vector_valuetypes())
825       if (Legal.count(T))
826         Out.insert(T);
827     for (MVT T : MVT::integer_scalable_vector_valuetypes())
828       if (Legal.count(T))
829         Out.insert(T);
830   } else if (Out.count(MVT::fAny)) {
831     Out.erase(MVT::fAny);
832     for (MVT T : MVT::fp_valuetypes())
833       if (Legal.count(T))
834         Out.insert(T);
835     for (MVT T : MVT::fp_fixedlen_vector_valuetypes())
836       if (Legal.count(T))
837         Out.insert(T);
838     for (MVT T : MVT::fp_scalable_vector_valuetypes())
839       if (Legal.count(T))
840         Out.insert(T);
841   } else if (Out.count(MVT::vAny)) {
842     Out.erase(MVT::vAny);
843     for (MVT T : MVT::vector_valuetypes())
844       if (Legal.count(T))
845         Out.insert(T);
846   } else if (Out.count(MVT::Any)) {
847     Out.erase(MVT::Any);
848     for (MVT T : MVT::all_valuetypes())
849       if (Legal.count(T))
850         Out.insert(T);
851   }
852 }
853 
854 const TypeSetByHwMode &TypeInfer::getLegalTypes() const {
855   if (!LegalTypesCached) {
856     TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode);
857     // Stuff all types from all modes into the default mode.
858     const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
859     for (const auto &I : LTS)
860       LegalTypes.insert(I.second);
861     LegalTypesCached = true;
862   }
863   assert(LegalCache.isSimple() && "Default-mode only expected");
864   return LegalCache;
865 }
866 
867 TypeInfer::ValidateOnExit::~ValidateOnExit() {
868   if (Infer.Validate && !VTS.validate()) {
869 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
870     errs() << "Type set is empty for each HW mode:\n"
871               "possible type contradiction in the pattern below "
872               "(use -print-records with llvm-tblgen to see all "
873               "expanded records).\n";
874     Infer.TP.dump();
875     errs() << "Generated from record:\n";
876     Infer.TP.getRecord()->dump();
877 #endif
878     PrintFatalError(Infer.TP.getRecord()->getLoc(),
879                     "Type set is empty for each HW mode in '" +
880                         Infer.TP.getRecord()->getName() + "'");
881   }
882 }
883 
884 //===----------------------------------------------------------------------===//
885 // ScopedName Implementation
886 //===----------------------------------------------------------------------===//
887 
888 bool ScopedName::operator==(const ScopedName &o) const {
889   return Scope == o.Scope && Identifier == o.Identifier;
890 }
891 
892 bool ScopedName::operator!=(const ScopedName &o) const { return !(*this == o); }
893 
894 //===----------------------------------------------------------------------===//
895 // TreePredicateFn Implementation
896 //===----------------------------------------------------------------------===//
897 
898 /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
899 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
900   assert(
901       (!hasPredCode() || !hasImmCode()) &&
902       ".td file corrupt: can't have a node predicate *and* an imm predicate");
903 }
904 
905 bool TreePredicateFn::hasPredCode() const {
906   return isLoad() || isStore() || isAtomic() || hasNoUse() || hasOneUse() ||
907          !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
908 }
909 
910 std::string TreePredicateFn::getPredCode() const {
911   std::string Code;
912 
913   if (!isLoad() && !isStore() && !isAtomic() && getMemoryVT())
914     PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
915                     "MemoryVT requires IsLoad or IsStore");
916 
917   if (!isLoad() && !isStore()) {
918     if (isUnindexed())
919       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
920                       "IsUnindexed requires IsLoad or IsStore");
921 
922     if (getScalarMemoryVT())
923       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
924                       "ScalarMemoryVT requires IsLoad or IsStore");
925   }
926 
927   if (isLoad() + isStore() + isAtomic() > 1)
928     PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
929                     "IsLoad, IsStore, and IsAtomic are mutually exclusive");
930 
931   if (isLoad()) {
932     if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
933         !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
934         getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr &&
935         getMinAlignment() < 1)
936       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
937                       "IsLoad cannot be used by itself");
938   } else {
939     if (isNonExtLoad())
940       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
941                       "IsNonExtLoad requires IsLoad");
942     if (isAnyExtLoad())
943       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
944                       "IsAnyExtLoad requires IsLoad");
945 
946     if (!isAtomic()) {
947       if (isSignExtLoad())
948         PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
949                         "IsSignExtLoad requires IsLoad or IsAtomic");
950       if (isZeroExtLoad())
951         PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
952                         "IsZeroExtLoad requires IsLoad or IsAtomic");
953     }
954   }
955 
956   if (isStore()) {
957     if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
958         getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr &&
959         getAddressSpaces() == nullptr && getMinAlignment() < 1)
960       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
961                       "IsStore cannot be used by itself");
962   } else {
963     if (isNonTruncStore())
964       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
965                       "IsNonTruncStore requires IsStore");
966     if (isTruncStore())
967       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
968                       "IsTruncStore requires IsStore");
969   }
970 
971   if (isAtomic()) {
972     if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
973         getAddressSpaces() == nullptr &&
974         // FIXME: Should atomic loads be IsLoad, IsAtomic, or both?
975         !isZeroExtLoad() && !isSignExtLoad() && !isAtomicOrderingAcquire() &&
976         !isAtomicOrderingRelease() && !isAtomicOrderingAcquireRelease() &&
977         !isAtomicOrderingSequentiallyConsistent() &&
978         !isAtomicOrderingAcquireOrStronger() &&
979         !isAtomicOrderingReleaseOrStronger() &&
980         !isAtomicOrderingWeakerThanAcquire() &&
981         !isAtomicOrderingWeakerThanRelease())
982       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
983                       "IsAtomic cannot be used by itself");
984   } else {
985     if (isAtomicOrderingMonotonic())
986       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
987                       "IsAtomicOrderingMonotonic requires IsAtomic");
988     if (isAtomicOrderingAcquire())
989       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
990                       "IsAtomicOrderingAcquire requires IsAtomic");
991     if (isAtomicOrderingRelease())
992       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
993                       "IsAtomicOrderingRelease requires IsAtomic");
994     if (isAtomicOrderingAcquireRelease())
995       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
996                       "IsAtomicOrderingAcquireRelease requires IsAtomic");
997     if (isAtomicOrderingSequentiallyConsistent())
998       PrintFatalError(
999           getOrigPatFragRecord()->getRecord()->getLoc(),
1000           "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
1001     if (isAtomicOrderingAcquireOrStronger())
1002       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1003                       "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
1004     if (isAtomicOrderingReleaseOrStronger())
1005       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1006                       "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
1007     if (isAtomicOrderingWeakerThanAcquire())
1008       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1009                       "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
1010   }
1011 
1012   if (isLoad() || isStore() || isAtomic()) {
1013     if (const ListInit *AddressSpaces = getAddressSpaces()) {
1014       Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n"
1015               " if (";
1016 
1017       ListSeparator LS(" && ");
1018       for (const Init *Val : AddressSpaces->getValues()) {
1019         Code += LS;
1020 
1021         const IntInit *IntVal = dyn_cast<IntInit>(Val);
1022         if (!IntVal) {
1023           PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1024                           "AddressSpaces element must be integer");
1025         }
1026 
1027         Code += "AddrSpace != " + utostr(IntVal->getValue());
1028       }
1029 
1030       Code += ")\nreturn false;\n";
1031     }
1032 
1033     int64_t MinAlign = getMinAlignment();
1034     if (MinAlign > 0) {
1035       Code += "if (cast<MemSDNode>(N)->getAlign() < Align(";
1036       Code += utostr(MinAlign);
1037       Code += "))\nreturn false;\n";
1038     }
1039 
1040     if (const Record *MemoryVT = getMemoryVT())
1041       Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" +
1042                MemoryVT->getName() + ") return false;\n")
1043                   .str();
1044   }
1045 
1046   if (isAtomic() && isAtomicOrderingMonotonic())
1047     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1048             "AtomicOrdering::Monotonic) return false;\n";
1049   if (isAtomic() && isAtomicOrderingAcquire())
1050     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1051             "AtomicOrdering::Acquire) return false;\n";
1052   if (isAtomic() && isAtomicOrderingRelease())
1053     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1054             "AtomicOrdering::Release) return false;\n";
1055   if (isAtomic() && isAtomicOrderingAcquireRelease())
1056     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1057             "AtomicOrdering::AcquireRelease) return false;\n";
1058   if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
1059     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1060             "AtomicOrdering::SequentiallyConsistent) return false;\n";
1061 
1062   if (isAtomic() && isAtomicOrderingAcquireOrStronger())
1063     Code +=
1064         "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1065         "return false;\n";
1066   if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
1067     Code +=
1068         "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1069         "return false;\n";
1070 
1071   if (isAtomic() && isAtomicOrderingReleaseOrStronger())
1072     Code +=
1073         "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1074         "return false;\n";
1075   if (isAtomic() && isAtomicOrderingWeakerThanRelease())
1076     Code +=
1077         "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1078         "return false;\n";
1079 
1080   // TODO: Handle atomic sextload/zextload normally when ATOMIC_LOAD is removed.
1081   if (isAtomic() && (isZeroExtLoad() || isSignExtLoad()))
1082     Code += "return false;\n";
1083 
1084   if (isLoad() || isStore()) {
1085     StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
1086 
1087     if (isUnindexed())
1088       Code += ("if (cast<" + SDNodeName +
1089                ">(N)->getAddressingMode() != ISD::UNINDEXED) "
1090                "return false;\n")
1091                   .str();
1092 
1093     if (isLoad()) {
1094       if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
1095            isZeroExtLoad()) > 1)
1096         PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1097                         "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
1098                         "IsZeroExtLoad are mutually exclusive");
1099       if (isNonExtLoad())
1100         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
1101                 "ISD::NON_EXTLOAD) return false;\n";
1102       if (isAnyExtLoad())
1103         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
1104                 "return false;\n";
1105       if (isSignExtLoad())
1106         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
1107                 "return false;\n";
1108       if (isZeroExtLoad())
1109         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
1110                 "return false;\n";
1111     } else {
1112       if ((isNonTruncStore() + isTruncStore()) > 1)
1113         PrintFatalError(
1114             getOrigPatFragRecord()->getRecord()->getLoc(),
1115             "IsNonTruncStore, and IsTruncStore are mutually exclusive");
1116       if (isNonTruncStore())
1117         Code +=
1118             " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1119       if (isTruncStore())
1120         Code +=
1121             " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1122     }
1123 
1124     if (const Record *ScalarMemoryVT = getScalarMemoryVT())
1125       Code += ("if (cast<" + SDNodeName +
1126                ">(N)->getMemoryVT().getScalarType() != MVT::" +
1127                ScalarMemoryVT->getName() + ") return false;\n")
1128                   .str();
1129   }
1130 
1131   if (hasNoUse())
1132     Code += "if (!SDValue(N, 0).use_empty()) return false;\n";
1133   if (hasOneUse())
1134     Code += "if (!SDValue(N, 0).hasOneUse()) return false;\n";
1135 
1136   std::string PredicateCode =
1137       std::string(PatFragRec->getRecord()->getValueAsString("PredicateCode"));
1138 
1139   Code += PredicateCode;
1140 
1141   if (PredicateCode.empty() && !Code.empty())
1142     Code += "return true;\n";
1143 
1144   return Code;
1145 }
1146 
1147 bool TreePredicateFn::hasImmCode() const {
1148   return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
1149 }
1150 
1151 std::string TreePredicateFn::getImmCode() const {
1152   return std::string(
1153       PatFragRec->getRecord()->getValueAsString("ImmediateCode"));
1154 }
1155 
1156 bool TreePredicateFn::immCodeUsesAPInt() const {
1157   return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
1158 }
1159 
1160 bool TreePredicateFn::immCodeUsesAPFloat() const {
1161   bool Unset;
1162   // The return value will be false when IsAPFloat is unset.
1163   return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
1164                                                                    Unset);
1165 }
1166 
1167 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
1168                                                    bool Value) const {
1169   bool Unset;
1170   bool Result =
1171       getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
1172   if (Unset)
1173     return false;
1174   return Result == Value;
1175 }
1176 bool TreePredicateFn::usesOperands() const {
1177   return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true);
1178 }
1179 bool TreePredicateFn::hasNoUse() const {
1180   return isPredefinedPredicateEqualTo("HasNoUse", true);
1181 }
1182 bool TreePredicateFn::hasOneUse() const {
1183   return isPredefinedPredicateEqualTo("HasOneUse", true);
1184 }
1185 bool TreePredicateFn::isLoad() const {
1186   return isPredefinedPredicateEqualTo("IsLoad", true);
1187 }
1188 bool TreePredicateFn::isStore() const {
1189   return isPredefinedPredicateEqualTo("IsStore", true);
1190 }
1191 bool TreePredicateFn::isAtomic() const {
1192   return isPredefinedPredicateEqualTo("IsAtomic", true);
1193 }
1194 bool TreePredicateFn::isUnindexed() const {
1195   return isPredefinedPredicateEqualTo("IsUnindexed", true);
1196 }
1197 bool TreePredicateFn::isNonExtLoad() const {
1198   return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
1199 }
1200 bool TreePredicateFn::isAnyExtLoad() const {
1201   return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
1202 }
1203 bool TreePredicateFn::isSignExtLoad() const {
1204   return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
1205 }
1206 bool TreePredicateFn::isZeroExtLoad() const {
1207   return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
1208 }
1209 bool TreePredicateFn::isNonTruncStore() const {
1210   return isPredefinedPredicateEqualTo("IsTruncStore", false);
1211 }
1212 bool TreePredicateFn::isTruncStore() const {
1213   return isPredefinedPredicateEqualTo("IsTruncStore", true);
1214 }
1215 bool TreePredicateFn::isAtomicOrderingMonotonic() const {
1216   return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
1217 }
1218 bool TreePredicateFn::isAtomicOrderingAcquire() const {
1219   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
1220 }
1221 bool TreePredicateFn::isAtomicOrderingRelease() const {
1222   return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
1223 }
1224 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
1225   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
1226 }
1227 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
1228   return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
1229                                       true);
1230 }
1231 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
1232   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger",
1233                                       true);
1234 }
1235 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
1236   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger",
1237                                       false);
1238 }
1239 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
1240   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger",
1241                                       true);
1242 }
1243 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
1244   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger",
1245                                       false);
1246 }
1247 const Record *TreePredicateFn::getMemoryVT() const {
1248   const Record *R = getOrigPatFragRecord()->getRecord();
1249   if (R->isValueUnset("MemoryVT"))
1250     return nullptr;
1251   return R->getValueAsDef("MemoryVT");
1252 }
1253 
1254 const ListInit *TreePredicateFn::getAddressSpaces() const {
1255   const Record *R = getOrigPatFragRecord()->getRecord();
1256   if (R->isValueUnset("AddressSpaces"))
1257     return nullptr;
1258   return R->getValueAsListInit("AddressSpaces");
1259 }
1260 
1261 int64_t TreePredicateFn::getMinAlignment() const {
1262   const Record *R = getOrigPatFragRecord()->getRecord();
1263   if (R->isValueUnset("MinAlignment"))
1264     return 0;
1265   return R->getValueAsInt("MinAlignment");
1266 }
1267 
1268 const Record *TreePredicateFn::getScalarMemoryVT() const {
1269   const Record *R = getOrigPatFragRecord()->getRecord();
1270   if (R->isValueUnset("ScalarMemoryVT"))
1271     return nullptr;
1272   return R->getValueAsDef("ScalarMemoryVT");
1273 }
1274 bool TreePredicateFn::hasGISelPredicateCode() const {
1275   return !PatFragRec->getRecord()
1276               ->getValueAsString("GISelPredicateCode")
1277               .empty();
1278 }
1279 std::string TreePredicateFn::getGISelPredicateCode() const {
1280   return std::string(
1281       PatFragRec->getRecord()->getValueAsString("GISelPredicateCode"));
1282 }
1283 
1284 StringRef TreePredicateFn::getImmType() const {
1285   if (immCodeUsesAPInt())
1286     return "const APInt &";
1287   if (immCodeUsesAPFloat())
1288     return "const APFloat &";
1289   return "int64_t";
1290 }
1291 
1292 StringRef TreePredicateFn::getImmTypeIdentifier() const {
1293   if (immCodeUsesAPInt())
1294     return "APInt";
1295   if (immCodeUsesAPFloat())
1296     return "APFloat";
1297   return "I64";
1298 }
1299 
1300 /// isAlwaysTrue - Return true if this is a noop predicate.
1301 bool TreePredicateFn::isAlwaysTrue() const {
1302   return !hasPredCode() && !hasImmCode();
1303 }
1304 
1305 /// Return the name to use in the generated code to reference this, this is
1306 /// "Predicate_foo" if from a pattern fragment "foo".
1307 std::string TreePredicateFn::getFnName() const {
1308   return "Predicate_" + PatFragRec->getRecord()->getName().str();
1309 }
1310 
1311 /// getCodeToRunOnSDNode - Return the code for the function body that
1312 /// evaluates this predicate.  The argument is expected to be in "Node",
1313 /// not N.  This handles casting and conversion to a concrete node type as
1314 /// appropriate.
1315 std::string TreePredicateFn::getCodeToRunOnSDNode() const {
1316   // Handle immediate predicates first.
1317   std::string ImmCode = getImmCode();
1318   if (!ImmCode.empty()) {
1319     if (isLoad())
1320       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1321                       "IsLoad cannot be used with ImmLeaf or its subclasses");
1322     if (isStore())
1323       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1324                       "IsStore cannot be used with ImmLeaf or its subclasses");
1325     if (isUnindexed())
1326       PrintFatalError(
1327           getOrigPatFragRecord()->getRecord()->getLoc(),
1328           "IsUnindexed cannot be used with ImmLeaf or its subclasses");
1329     if (isNonExtLoad())
1330       PrintFatalError(
1331           getOrigPatFragRecord()->getRecord()->getLoc(),
1332           "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
1333     if (isAnyExtLoad())
1334       PrintFatalError(
1335           getOrigPatFragRecord()->getRecord()->getLoc(),
1336           "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
1337     if (isSignExtLoad())
1338       PrintFatalError(
1339           getOrigPatFragRecord()->getRecord()->getLoc(),
1340           "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
1341     if (isZeroExtLoad())
1342       PrintFatalError(
1343           getOrigPatFragRecord()->getRecord()->getLoc(),
1344           "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
1345     if (isNonTruncStore())
1346       PrintFatalError(
1347           getOrigPatFragRecord()->getRecord()->getLoc(),
1348           "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
1349     if (isTruncStore())
1350       PrintFatalError(
1351           getOrigPatFragRecord()->getRecord()->getLoc(),
1352           "IsTruncStore cannot be used with ImmLeaf or its subclasses");
1353     if (getMemoryVT())
1354       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1355                       "MemoryVT cannot be used with ImmLeaf or its subclasses");
1356     if (getScalarMemoryVT())
1357       PrintFatalError(
1358           getOrigPatFragRecord()->getRecord()->getLoc(),
1359           "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
1360 
1361     std::string Result = ("    " + getImmType() + " Imm = ").str();
1362     if (immCodeUsesAPFloat())
1363       Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
1364     else if (immCodeUsesAPInt())
1365       Result += "Node->getAsAPIntVal();\n";
1366     else
1367       Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
1368     return Result + ImmCode;
1369   }
1370 
1371   // Handle arbitrary node predicates.
1372   assert(hasPredCode() && "Don't have any predicate code!");
1373 
1374   // If this is using PatFrags, there are multiple trees to search. They should
1375   // all have the same class.  FIXME: Is there a way to find a common
1376   // superclass?
1377   StringRef ClassName;
1378   for (const auto &Tree : PatFragRec->getTrees()) {
1379     StringRef TreeClassName;
1380     if (Tree->isLeaf())
1381       TreeClassName = "SDNode";
1382     else {
1383       const Record *Op = Tree->getOperator();
1384       const SDNodeInfo &Info = PatFragRec->getDAGPatterns().getSDNodeInfo(Op);
1385       TreeClassName = Info.getSDClassName();
1386     }
1387 
1388     if (ClassName.empty())
1389       ClassName = TreeClassName;
1390     else if (ClassName != TreeClassName) {
1391       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1392                       "PatFrags trees do not have consistent class");
1393     }
1394   }
1395 
1396   std::string Result;
1397   if (ClassName == "SDNode")
1398     Result = "    SDNode *N = Node;\n";
1399   else
1400     Result = "    auto *N = cast<" + ClassName.str() + ">(Node);\n";
1401 
1402   return (Twine(Result) + "    (void)N;\n" + getPredCode()).str();
1403 }
1404 
1405 //===----------------------------------------------------------------------===//
1406 // PatternToMatch implementation
1407 //
1408 
1409 static bool isImmAllOnesAllZerosMatch(const TreePatternNode &P) {
1410   if (!P.isLeaf())
1411     return false;
1412   const DefInit *DI = dyn_cast<DefInit>(P.getLeafValue());
1413   if (!DI)
1414     return false;
1415 
1416   const Record *R = DI->getDef();
1417   return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV";
1418 }
1419 
1420 /// getPatternSize - Return the 'size' of this pattern.  We want to match large
1421 /// patterns before small ones.  This is used to determine the size of a
1422 /// pattern.
1423 static unsigned getPatternSize(const TreePatternNode &P,
1424                                const CodeGenDAGPatterns &CGP) {
1425   unsigned Size = 3; // The node itself.
1426   // If the root node is a ConstantSDNode, increases its size.
1427   // e.g. (set R32:$dst, 0).
1428   if (P.isLeaf() && isa<IntInit>(P.getLeafValue()))
1429     Size += 2;
1430 
1431   if (const ComplexPattern *AM = P.getComplexPatternInfo(CGP)) {
1432     Size += AM->getComplexity();
1433     // We don't want to count any children twice, so return early.
1434     return Size;
1435   }
1436 
1437   // If this node has some predicate function that must match, it adds to the
1438   // complexity of this node.
1439   if (!P.getPredicateCalls().empty())
1440     ++Size;
1441 
1442   // Count children in the count if they are also nodes.
1443   for (unsigned i = 0, e = P.getNumChildren(); i != e; ++i) {
1444     const TreePatternNode &Child = P.getChild(i);
1445     if (!Child.isLeaf() && Child.getNumTypes()) {
1446       const TypeSetByHwMode &T0 = Child.getExtType(0);
1447       // At this point, all variable type sets should be simple, i.e. only
1448       // have a default mode.
1449       if (T0.getMachineValueType() != MVT::Other) {
1450         Size += getPatternSize(Child, CGP);
1451         continue;
1452       }
1453     }
1454     if (Child.isLeaf()) {
1455       if (isa<IntInit>(Child.getLeafValue()))
1456         Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
1457       else if (Child.getComplexPatternInfo(CGP))
1458         Size += getPatternSize(Child, CGP);
1459       else if (isImmAllOnesAllZerosMatch(Child))
1460         Size += 4; // Matches a build_vector(+3) and a predicate (+1).
1461       else if (!Child.getPredicateCalls().empty())
1462         ++Size;
1463     }
1464   }
1465 
1466   return Size;
1467 }
1468 
1469 /// Compute the complexity metric for the input pattern.  This roughly
1470 /// corresponds to the number of nodes that are covered.
1471 int PatternToMatch::getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
1472   return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
1473 }
1474 
1475 void PatternToMatch::getPredicateRecords(
1476     SmallVectorImpl<const Record *> &PredicateRecs) const {
1477   for (const Init *I : Predicates->getValues()) {
1478     if (const DefInit *Pred = dyn_cast<DefInit>(I)) {
1479       const Record *Def = Pred->getDef();
1480       if (!Def->isSubClassOf("Predicate")) {
1481 #ifndef NDEBUG
1482         Def->dump();
1483 #endif
1484         llvm_unreachable("Unknown predicate type!");
1485       }
1486       PredicateRecs.push_back(Def);
1487     }
1488   }
1489   // Sort so that different orders get canonicalized to the same string.
1490   llvm::sort(PredicateRecs, LessRecord());
1491   // Remove duplicate predicates.
1492   PredicateRecs.erase(llvm::unique(PredicateRecs), PredicateRecs.end());
1493 }
1494 
1495 /// getPredicateCheck - Return a single string containing all of this
1496 /// pattern's predicates concatenated with "&&" operators.
1497 ///
1498 std::string PatternToMatch::getPredicateCheck() const {
1499   SmallVector<const Record *, 4> PredicateRecs;
1500   getPredicateRecords(PredicateRecs);
1501 
1502   SmallString<128> PredicateCheck;
1503   raw_svector_ostream OS(PredicateCheck);
1504   ListSeparator LS(" && ");
1505   for (const Record *Pred : PredicateRecs) {
1506     StringRef CondString = Pred->getValueAsString("CondString");
1507     if (CondString.empty())
1508       continue;
1509     OS << LS << '(' << CondString << ')';
1510   }
1511 
1512   if (!HwModeFeatures.empty())
1513     OS << LS << HwModeFeatures;
1514 
1515   return std::string(PredicateCheck);
1516 }
1517 
1518 //===----------------------------------------------------------------------===//
1519 // SDTypeConstraint implementation
1520 //
1521 
1522 SDTypeConstraint::SDTypeConstraint(const Record *R, const CodeGenHwModes &CGH) {
1523   OperandNo = R->getValueAsInt("OperandNum");
1524 
1525   if (R->isSubClassOf("SDTCisVT")) {
1526     ConstraintType = SDTCisVT;
1527     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1528     for (const auto &P : VVT)
1529       if (P.second == MVT::isVoid)
1530         PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
1531   } else if (R->isSubClassOf("SDTCisPtrTy")) {
1532     ConstraintType = SDTCisPtrTy;
1533   } else if (R->isSubClassOf("SDTCisInt")) {
1534     ConstraintType = SDTCisInt;
1535   } else if (R->isSubClassOf("SDTCisFP")) {
1536     ConstraintType = SDTCisFP;
1537   } else if (R->isSubClassOf("SDTCisVec")) {
1538     ConstraintType = SDTCisVec;
1539   } else if (R->isSubClassOf("SDTCisSameAs")) {
1540     ConstraintType = SDTCisSameAs;
1541     x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
1542   } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
1543     ConstraintType = SDTCisVTSmallerThanOp;
1544     x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
1545         R->getValueAsInt("OtherOperandNum");
1546   } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
1547     ConstraintType = SDTCisOpSmallerThanOp;
1548     x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
1549         R->getValueAsInt("BigOperandNum");
1550   } else if (R->isSubClassOf("SDTCisEltOfVec")) {
1551     ConstraintType = SDTCisEltOfVec;
1552     x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1553   } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
1554     ConstraintType = SDTCisSubVecOfVec;
1555     x.SDTCisSubVecOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1556   } else if (R->isSubClassOf("SDTCVecEltisVT")) {
1557     ConstraintType = SDTCVecEltisVT;
1558     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1559     for (const auto &P : VVT) {
1560       MVT T = P.second;
1561       if (T.isVector())
1562         PrintFatalError(R->getLoc(),
1563                         "Cannot use vector type as SDTCVecEltisVT");
1564       if (!T.isInteger() && !T.isFloatingPoint())
1565         PrintFatalError(R->getLoc(), "Must use integer or floating point type "
1566                                      "as SDTCVecEltisVT");
1567     }
1568   } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
1569     ConstraintType = SDTCisSameNumEltsAs;
1570     x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
1571         R->getValueAsInt("OtherOperandNum");
1572   } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
1573     ConstraintType = SDTCisSameSizeAs;
1574     x.SDTCisSameSizeAs_Info.OtherOperandNum =
1575         R->getValueAsInt("OtherOperandNum");
1576   } else {
1577     PrintFatalError(R->getLoc(),
1578                     "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
1579   }
1580 }
1581 
1582 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
1583 /// N, and the result number in ResNo.
1584 static TreePatternNode &getOperandNum(unsigned OpNo, TreePatternNode &N,
1585                                       const SDNodeInfo &NodeInfo,
1586                                       unsigned &ResNo) {
1587   unsigned NumResults = NodeInfo.getNumResults();
1588   if (OpNo < NumResults) {
1589     ResNo = OpNo;
1590     return N;
1591   }
1592 
1593   OpNo -= NumResults;
1594 
1595   if (OpNo >= N.getNumChildren()) {
1596     PrintFatalError([&N, OpNo, NumResults](raw_ostream &OS) {
1597       OS << "Invalid operand number in type constraint " << (OpNo + NumResults);
1598       N.print(OS);
1599     });
1600   }
1601   return N.getChild(OpNo);
1602 }
1603 
1604 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
1605 /// constraint to the nodes operands.  This returns true if it makes a
1606 /// change, false otherwise.  If a type contradiction is found, flag an error.
1607 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode &N,
1608                                            const SDNodeInfo &NodeInfo,
1609                                            TreePattern &TP) const {
1610   if (TP.hasError())
1611     return false;
1612 
1613   unsigned ResNo = 0; // The result number being referenced.
1614   TreePatternNode &NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
1615   TypeInfer &TI = TP.getInfer();
1616 
1617   switch (ConstraintType) {
1618   case SDTCisVT:
1619     // Operand must be a particular type.
1620     return NodeToApply.UpdateNodeType(ResNo, VVT, TP);
1621   case SDTCisPtrTy:
1622     // Operand must be same as target pointer type.
1623     return NodeToApply.UpdateNodeType(ResNo, MVT::iPTR, TP);
1624   case SDTCisInt:
1625     // Require it to be one of the legal integer VTs.
1626     return TI.EnforceInteger(NodeToApply.getExtType(ResNo));
1627   case SDTCisFP:
1628     // Require it to be one of the legal fp VTs.
1629     return TI.EnforceFloatingPoint(NodeToApply.getExtType(ResNo));
1630   case SDTCisVec:
1631     // Require it to be one of the legal vector VTs.
1632     return TI.EnforceVector(NodeToApply.getExtType(ResNo));
1633   case SDTCisSameAs: {
1634     unsigned OResNo = 0;
1635     TreePatternNode &OtherNode =
1636         getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1637     return (int)NodeToApply.UpdateNodeType(ResNo, OtherNode.getExtType(OResNo),
1638                                            TP) |
1639            (int)OtherNode.UpdateNodeType(OResNo, NodeToApply.getExtType(ResNo),
1640                                          TP);
1641   }
1642   case SDTCisVTSmallerThanOp: {
1643     // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
1644     // have an integer type that is smaller than the VT.
1645     if (!NodeToApply.isLeaf() || !isa<DefInit>(NodeToApply.getLeafValue()) ||
1646         !cast<DefInit>(NodeToApply.getLeafValue())
1647              ->getDef()
1648              ->isSubClassOf("ValueType")) {
1649       TP.error(N.getOperator()->getName() + " expects a VT operand!");
1650       return false;
1651     }
1652     const DefInit *DI = cast<DefInit>(NodeToApply.getLeafValue());
1653     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1654     auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
1655     TypeSetByHwMode TypeListTmp(VVT);
1656 
1657     unsigned OResNo = 0;
1658     TreePatternNode &OtherNode = getOperandNum(
1659         x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, OResNo);
1660 
1661     return TI.EnforceSmallerThan(TypeListTmp, OtherNode.getExtType(OResNo),
1662                                  /*SmallIsVT*/ true);
1663   }
1664   case SDTCisOpSmallerThanOp: {
1665     unsigned BResNo = 0;
1666     TreePatternNode &BigOperand = getOperandNum(
1667         x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, BResNo);
1668     return TI.EnforceSmallerThan(NodeToApply.getExtType(ResNo),
1669                                  BigOperand.getExtType(BResNo));
1670   }
1671   case SDTCisEltOfVec: {
1672     unsigned VResNo = 0;
1673     TreePatternNode &VecOperand = getOperandNum(
1674         x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, VResNo);
1675     // Filter vector types out of VecOperand that don't have the right element
1676     // type.
1677     return TI.EnforceVectorEltTypeIs(VecOperand.getExtType(VResNo),
1678                                      NodeToApply.getExtType(ResNo));
1679   }
1680   case SDTCisSubVecOfVec: {
1681     unsigned VResNo = 0;
1682     TreePatternNode &BigVecOperand = getOperandNum(
1683         x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, VResNo);
1684 
1685     // Filter vector types out of BigVecOperand that don't have the
1686     // right subvector type.
1687     return TI.EnforceVectorSubVectorTypeIs(BigVecOperand.getExtType(VResNo),
1688                                            NodeToApply.getExtType(ResNo));
1689   }
1690   case SDTCVecEltisVT: {
1691     return TI.EnforceVectorEltTypeIs(NodeToApply.getExtType(ResNo), VVT);
1692   }
1693   case SDTCisSameNumEltsAs: {
1694     unsigned OResNo = 0;
1695     TreePatternNode &OtherNode = getOperandNum(
1696         x.SDTCisSameNumEltsAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1697     return TI.EnforceSameNumElts(OtherNode.getExtType(OResNo),
1698                                  NodeToApply.getExtType(ResNo));
1699   }
1700   case SDTCisSameSizeAs: {
1701     unsigned OResNo = 0;
1702     TreePatternNode &OtherNode = getOperandNum(
1703         x.SDTCisSameSizeAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1704     return TI.EnforceSameSize(OtherNode.getExtType(OResNo),
1705                               NodeToApply.getExtType(ResNo));
1706   }
1707   }
1708   llvm_unreachable("Invalid ConstraintType!");
1709 }
1710 
1711 // Update the node type to match an instruction operand or result as specified
1712 // in the ins or outs lists on the instruction definition. Return true if the
1713 // type was actually changed.
1714 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
1715                                              const Record *Operand,
1716                                              TreePattern &TP) {
1717   // The 'unknown' operand indicates that types should be inferred from the
1718   // context.
1719   if (Operand->isSubClassOf("unknown_class"))
1720     return false;
1721 
1722   // The Operand class specifies a type directly.
1723   if (Operand->isSubClassOf("Operand")) {
1724     const Record *R = Operand->getValueAsDef("Type");
1725     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1726     return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
1727   }
1728 
1729   // PointerLikeRegClass has a type that is determined at runtime.
1730   if (Operand->isSubClassOf("PointerLikeRegClass"))
1731     return UpdateNodeType(ResNo, MVT::iPTR, TP);
1732 
1733   // Both RegisterClass and RegisterOperand operands derive their types from a
1734   // register class def.
1735   const Record *RC = nullptr;
1736   if (Operand->isSubClassOf("RegisterClass"))
1737     RC = Operand;
1738   else if (Operand->isSubClassOf("RegisterOperand"))
1739     RC = Operand->getValueAsDef("RegClass");
1740 
1741   assert(RC && "Unknown operand type");
1742   CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1743   return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1744 }
1745 
1746 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
1747   for (unsigned i = 0, e = Types.size(); i != e; ++i)
1748     if (!TP.getInfer().isConcrete(Types[i], true))
1749       return true;
1750   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1751     if (getChild(i).ContainsUnresolvedType(TP))
1752       return true;
1753   return false;
1754 }
1755 
1756 bool TreePatternNode::hasProperTypeByHwMode() const {
1757   for (const TypeSetByHwMode &S : Types)
1758     if (!S.isSimple())
1759       return true;
1760   for (const TreePatternNodePtr &C : Children)
1761     if (C->hasProperTypeByHwMode())
1762       return true;
1763   return false;
1764 }
1765 
1766 bool TreePatternNode::hasPossibleType() const {
1767   for (const TypeSetByHwMode &S : Types)
1768     if (!S.isPossible())
1769       return false;
1770   for (const TreePatternNodePtr &C : Children)
1771     if (!C->hasPossibleType())
1772       return false;
1773   return true;
1774 }
1775 
1776 bool TreePatternNode::setDefaultMode(unsigned Mode) {
1777   for (TypeSetByHwMode &S : Types) {
1778     S.makeSimple(Mode);
1779     // Check if the selected mode had a type conflict.
1780     if (S.get(DefaultMode).empty())
1781       return false;
1782   }
1783   for (const TreePatternNodePtr &C : Children)
1784     if (!C->setDefaultMode(Mode))
1785       return false;
1786   return true;
1787 }
1788 
1789 //===----------------------------------------------------------------------===//
1790 // SDNodeInfo implementation
1791 //
1792 SDNodeInfo::SDNodeInfo(const Record *R, const CodeGenHwModes &CGH) : Def(R) {
1793   EnumName = R->getValueAsString("Opcode");
1794   SDClassName = R->getValueAsString("SDClass");
1795   const Record *TypeProfile = R->getValueAsDef("TypeProfile");
1796   NumResults = TypeProfile->getValueAsInt("NumResults");
1797   NumOperands = TypeProfile->getValueAsInt("NumOperands");
1798 
1799   // Parse the properties.
1800   Properties = parseSDPatternOperatorProperties(R);
1801 
1802   // Parse the type constraints.
1803   for (const Record *R : TypeProfile->getValueAsListOfDefs("Constraints"))
1804     TypeConstraints.emplace_back(R, CGH);
1805 }
1806 
1807 /// getKnownType - If the type constraints on this node imply a fixed type
1808 /// (e.g. all stores return void, etc), then return it as an
1809 /// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
1810 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1811   unsigned NumResults = getNumResults();
1812   assert(NumResults <= 1 &&
1813          "We only work with nodes with zero or one result so far!");
1814   assert(ResNo == 0 && "Only handles single result nodes so far");
1815 
1816   for (const SDTypeConstraint &Constraint : TypeConstraints) {
1817     // Make sure that this applies to the correct node result.
1818     if (Constraint.OperandNo >= NumResults) // FIXME: need value #
1819       continue;
1820 
1821     switch (Constraint.ConstraintType) {
1822     default:
1823       break;
1824     case SDTypeConstraint::SDTCisVT:
1825       if (Constraint.VVT.isSimple())
1826         return Constraint.VVT.getSimple().SimpleTy;
1827       break;
1828     case SDTypeConstraint::SDTCisPtrTy:
1829       return MVT::iPTR;
1830     }
1831   }
1832   return MVT::Other;
1833 }
1834 
1835 //===----------------------------------------------------------------------===//
1836 // TreePatternNode implementation
1837 //
1838 
1839 static unsigned GetNumNodeResults(const Record *Operator,
1840                                   CodeGenDAGPatterns &CDP) {
1841   if (Operator->getName() == "set" || Operator->getName() == "implicit")
1842     return 0; // All return nothing.
1843 
1844   if (Operator->isSubClassOf("Intrinsic"))
1845     return CDP.getIntrinsic(Operator).IS.RetTys.size();
1846 
1847   if (Operator->isSubClassOf("SDNode"))
1848     return CDP.getSDNodeInfo(Operator).getNumResults();
1849 
1850   if (Operator->isSubClassOf("PatFrags")) {
1851     // If we've already parsed this pattern fragment, get it.  Otherwise, handle
1852     // the forward reference case where one pattern fragment references another
1853     // before it is processed.
1854     if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) {
1855       // The number of results of a fragment with alternative records is the
1856       // maximum number of results across all alternatives.
1857       unsigned NumResults = 0;
1858       for (const auto &T : PFRec->getTrees())
1859         NumResults = std::max(NumResults, T->getNumTypes());
1860       return NumResults;
1861     }
1862 
1863     const ListInit *LI = Operator->getValueAsListInit("Fragments");
1864     assert(LI && "Invalid Fragment");
1865     unsigned NumResults = 0;
1866     for (const Init *I : LI->getValues()) {
1867       const Record *Op = nullptr;
1868       if (const DagInit *Dag = dyn_cast<DagInit>(I))
1869         if (const DefInit *DI = dyn_cast<DefInit>(Dag->getOperator()))
1870           Op = DI->getDef();
1871       assert(Op && "Invalid Fragment");
1872       NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP));
1873     }
1874     return NumResults;
1875   }
1876 
1877   if (Operator->isSubClassOf("Instruction")) {
1878     CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1879 
1880     unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1881 
1882     // Subtract any defaulted outputs.
1883     for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1884       const Record *OperandNode = InstInfo.Operands[i].Rec;
1885 
1886       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1887           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1888         --NumDefsToAdd;
1889     }
1890 
1891     // Add on one implicit def if it has a resolvable type.
1892     if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=
1893         MVT::Other)
1894       ++NumDefsToAdd;
1895     return NumDefsToAdd;
1896   }
1897 
1898   if (Operator->isSubClassOf("SDNodeXForm"))
1899     return 1; // FIXME: Generalize SDNodeXForm
1900 
1901   if (Operator->isSubClassOf("ValueType"))
1902     return 1; // A type-cast of one result.
1903 
1904   if (Operator->isSubClassOf("ComplexPattern"))
1905     return 1;
1906 
1907   errs() << *Operator;
1908   PrintFatalError("Unhandled node in GetNumNodeResults");
1909 }
1910 
1911 void TreePatternNode::print(raw_ostream &OS) const {
1912   if (isLeaf())
1913     OS << *getLeafValue();
1914   else
1915     OS << '(' << getOperator()->getName();
1916 
1917   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1918     OS << ':';
1919     getExtType(i).writeToStream(OS);
1920   }
1921 
1922   if (!isLeaf()) {
1923     if (getNumChildren() != 0) {
1924       OS << " ";
1925       ListSeparator LS;
1926       for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1927         OS << LS;
1928         getChild(i).print(OS);
1929       }
1930     }
1931     OS << ")";
1932   }
1933 
1934   for (const TreePredicateCall &Pred : PredicateCalls) {
1935     OS << "<<P:";
1936     if (Pred.Scope)
1937       OS << Pred.Scope << ":";
1938     OS << Pred.Fn.getFnName() << ">>";
1939   }
1940   if (TransformFn)
1941     OS << "<<X:" << TransformFn->getName() << ">>";
1942   if (!getName().empty())
1943     OS << ":$" << getName();
1944 
1945   for (const ScopedName &Name : NamesAsPredicateArg)
1946     OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier();
1947 }
1948 void TreePatternNode::dump() const { print(errs()); }
1949 
1950 /// isIsomorphicTo - Return true if this node is recursively
1951 /// isomorphic to the specified node.  For this comparison, the node's
1952 /// entire state is considered. The assigned name is ignored, since
1953 /// nodes with differing names are considered isomorphic. However, if
1954 /// the assigned name is present in the dependent variable set, then
1955 /// the assigned name is considered significant and the node is
1956 /// isomorphic if the names match.
1957 bool TreePatternNode::isIsomorphicTo(const TreePatternNode &N,
1958                                      const MultipleUseVarSet &DepVars) const {
1959   if (&N == this)
1960     return true;
1961   if (N.isLeaf() != isLeaf())
1962     return false;
1963 
1964   // Check operator of non-leaves early since it can be cheaper than checking
1965   // types.
1966   if (!isLeaf())
1967     if (N.getOperator() != getOperator() ||
1968         N.getNumChildren() != getNumChildren())
1969       return false;
1970 
1971   if (getExtTypes() != N.getExtTypes() ||
1972       getPredicateCalls() != N.getPredicateCalls() ||
1973       getTransformFn() != N.getTransformFn())
1974     return false;
1975 
1976   if (isLeaf()) {
1977     if (const DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1978       if (const DefInit *NDI = dyn_cast<DefInit>(N.getLeafValue())) {
1979         return ((DI->getDef() == NDI->getDef()) &&
1980                 (!DepVars.contains(getName()) || getName() == N.getName()));
1981       }
1982     }
1983     return getLeafValue() == N.getLeafValue();
1984   }
1985 
1986   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1987     if (!getChild(i).isIsomorphicTo(N.getChild(i), DepVars))
1988       return false;
1989   return true;
1990 }
1991 
1992 /// clone - Make a copy of this tree and all of its children.
1993 ///
1994 TreePatternNodePtr TreePatternNode::clone() const {
1995   TreePatternNodePtr New;
1996   if (isLeaf()) {
1997     New = makeIntrusiveRefCnt<TreePatternNode>(getLeafValue(), getNumTypes());
1998   } else {
1999     std::vector<TreePatternNodePtr> CChildren;
2000     CChildren.reserve(Children.size());
2001     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2002       CChildren.push_back(getChild(i).clone());
2003     New = makeIntrusiveRefCnt<TreePatternNode>(
2004         getOperator(), std::move(CChildren), getNumTypes());
2005   }
2006   New->setName(getName());
2007   New->setNamesAsPredicateArg(getNamesAsPredicateArg());
2008   New->Types = Types;
2009   New->setPredicateCalls(getPredicateCalls());
2010   New->setGISelFlagsRecord(getGISelFlagsRecord());
2011   New->setTransformFn(getTransformFn());
2012   return New;
2013 }
2014 
2015 /// RemoveAllTypes - Recursively strip all the types of this tree.
2016 void TreePatternNode::RemoveAllTypes() {
2017   // Reset to unknown type.
2018   std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
2019   if (isLeaf())
2020     return;
2021   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2022     getChild(i).RemoveAllTypes();
2023 }
2024 
2025 /// SubstituteFormalArguments - Replace the formal arguments in this tree
2026 /// with actual values specified by ArgMap.
2027 void TreePatternNode::SubstituteFormalArguments(
2028     std::map<std::string, TreePatternNodePtr> &ArgMap) {
2029   if (isLeaf())
2030     return;
2031 
2032   for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
2033     TreePatternNode &Child = getChild(i);
2034     if (Child.isLeaf()) {
2035       const Init *Val = Child.getLeafValue();
2036       // Note that, when substituting into an output pattern, Val might be an
2037       // UnsetInit.
2038       if (isa<UnsetInit>(Val) ||
2039           (isa<DefInit>(Val) &&
2040            cast<DefInit>(Val)->getDef()->getName() == "node")) {
2041         // We found a use of a formal argument, replace it with its value.
2042         TreePatternNodePtr NewChild = ArgMap[Child.getName()];
2043         assert(NewChild && "Couldn't find formal argument!");
2044         assert((Child.getPredicateCalls().empty() ||
2045                 NewChild->getPredicateCalls() == Child.getPredicateCalls()) &&
2046                "Non-empty child predicate clobbered!");
2047         setChild(i, std::move(NewChild));
2048       }
2049     } else {
2050       getChild(i).SubstituteFormalArguments(ArgMap);
2051     }
2052   }
2053 }
2054 
2055 /// InlinePatternFragments - If this pattern refers to any pattern
2056 /// fragments, return the set of inlined versions (this can be more than
2057 /// one if a PatFrags record has multiple alternatives).
2058 void TreePatternNode::InlinePatternFragments(
2059     TreePattern &TP, std::vector<TreePatternNodePtr> &OutAlternatives) {
2060 
2061   if (TP.hasError())
2062     return;
2063 
2064   if (isLeaf()) {
2065     OutAlternatives.push_back(this); // nothing to do.
2066     return;
2067   }
2068 
2069   const Record *Op = getOperator();
2070 
2071   if (!Op->isSubClassOf("PatFrags")) {
2072     if (getNumChildren() == 0) {
2073       OutAlternatives.push_back(this);
2074       return;
2075     }
2076 
2077     // Recursively inline children nodes.
2078     std::vector<std::vector<TreePatternNodePtr>> ChildAlternatives(
2079         getNumChildren());
2080     for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
2081       TreePatternNodePtr Child = getChildShared(i);
2082       Child->InlinePatternFragments(TP, ChildAlternatives[i]);
2083       // If there are no alternatives for any child, there are no
2084       // alternatives for this expression as whole.
2085       if (ChildAlternatives[i].empty())
2086         return;
2087 
2088       assert((Child->getPredicateCalls().empty() ||
2089               llvm::all_of(ChildAlternatives[i],
2090                            [&](const TreePatternNodePtr &NewChild) {
2091                              return NewChild->getPredicateCalls() ==
2092                                     Child->getPredicateCalls();
2093                            })) &&
2094              "Non-empty child predicate clobbered!");
2095     }
2096 
2097     // The end result is an all-pairs construction of the resultant pattern.
2098     std::vector<unsigned> Idxs(ChildAlternatives.size());
2099     bool NotDone;
2100     do {
2101       // Create the variant and add it to the output list.
2102       std::vector<TreePatternNodePtr> NewChildren;
2103       NewChildren.reserve(ChildAlternatives.size());
2104       for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i)
2105         NewChildren.push_back(ChildAlternatives[i][Idxs[i]]);
2106       TreePatternNodePtr R = makeIntrusiveRefCnt<TreePatternNode>(
2107           getOperator(), std::move(NewChildren), getNumTypes());
2108 
2109       // Copy over properties.
2110       R->setName(getName());
2111       R->setNamesAsPredicateArg(getNamesAsPredicateArg());
2112       R->setPredicateCalls(getPredicateCalls());
2113       R->setGISelFlagsRecord(getGISelFlagsRecord());
2114       R->setTransformFn(getTransformFn());
2115       for (unsigned i = 0, e = getNumTypes(); i != e; ++i)
2116         R->setType(i, getExtType(i));
2117       for (unsigned i = 0, e = getNumResults(); i != e; ++i)
2118         R->setResultIndex(i, getResultIndex(i));
2119 
2120       // Register alternative.
2121       OutAlternatives.push_back(R);
2122 
2123       // Increment indices to the next permutation by incrementing the
2124       // indices from last index backward, e.g., generate the sequence
2125       // [0, 0], [0, 1], [1, 0], [1, 1].
2126       int IdxsIdx;
2127       for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
2128         if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size())
2129           Idxs[IdxsIdx] = 0;
2130         else
2131           break;
2132       }
2133       NotDone = (IdxsIdx >= 0);
2134     } while (NotDone);
2135 
2136     return;
2137   }
2138 
2139   // Otherwise, we found a reference to a fragment.  First, look up its
2140   // TreePattern record.
2141   TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
2142 
2143   // Verify that we are passing the right number of operands.
2144   if (Frag->getNumArgs() != getNumChildren()) {
2145     TP.error("'" + Op->getName() + "' fragment requires " +
2146              Twine(Frag->getNumArgs()) + " operands!");
2147     return;
2148   }
2149 
2150   TreePredicateFn PredFn(Frag);
2151   unsigned Scope = 0;
2152   if (TreePredicateFn(Frag).usesOperands())
2153     Scope = TP.getDAGPatterns().allocateScope();
2154 
2155   // Compute the map of formal to actual arguments.
2156   std::map<std::string, TreePatternNodePtr> ArgMap;
2157   for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) {
2158     TreePatternNodePtr Child = getChildShared(i);
2159     if (Scope != 0) {
2160       Child = Child->clone();
2161       Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i)));
2162     }
2163     ArgMap[Frag->getArgName(i)] = Child;
2164   }
2165 
2166   // Loop over all fragment alternatives.
2167   for (const auto &Alternative : Frag->getTrees()) {
2168     TreePatternNodePtr FragTree = Alternative->clone();
2169 
2170     if (!PredFn.isAlwaysTrue())
2171       FragTree->addPredicateCall(PredFn, Scope);
2172 
2173     // Resolve formal arguments to their actual value.
2174     if (Frag->getNumArgs())
2175       FragTree->SubstituteFormalArguments(ArgMap);
2176 
2177     // Transfer types.  Note that the resolved alternative may have fewer
2178     // (but not more) results than the PatFrags node.
2179     FragTree->setName(getName());
2180     for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i)
2181       FragTree->UpdateNodeType(i, getExtType(i), TP);
2182 
2183     if (Op->isSubClassOf("GISelFlags"))
2184       FragTree->setGISelFlagsRecord(Op);
2185 
2186     // Transfer in the old predicates.
2187     for (const TreePredicateCall &Pred : getPredicateCalls())
2188       FragTree->addPredicateCall(Pred);
2189 
2190     // The fragment we inlined could have recursive inlining that is needed. See
2191     // if there are any pattern fragments in it and inline them as needed.
2192     FragTree->InlinePatternFragments(TP, OutAlternatives);
2193   }
2194 }
2195 
2196 /// getImplicitType - Check to see if the specified record has an implicit
2197 /// type which should be applied to it.  This will infer the type of register
2198 /// references from the register file information, for example.
2199 ///
2200 /// When Unnamed is set, return the type of a DAG operand with no name, such as
2201 /// the F8RC register class argument in:
2202 ///
2203 ///   (COPY_TO_REGCLASS GPR:$src, F8RC)
2204 ///
2205 /// When Unnamed is false, return the type of a named DAG operand such as the
2206 /// GPR:$src operand above.
2207 ///
2208 static TypeSetByHwMode getImplicitType(const Record *R, unsigned ResNo,
2209                                        bool NotRegisters, bool Unnamed,
2210                                        TreePattern &TP) {
2211   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2212 
2213   // Check to see if this is a register operand.
2214   if (R->isSubClassOf("RegisterOperand")) {
2215     assert(ResNo == 0 && "Regoperand ref only has one result!");
2216     if (NotRegisters)
2217       return TypeSetByHwMode(); // Unknown.
2218     const Record *RegClass = R->getValueAsDef("RegClass");
2219     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2220     return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
2221   }
2222 
2223   // Check to see if this is a register or a register class.
2224   if (R->isSubClassOf("RegisterClass")) {
2225     assert(ResNo == 0 && "Regclass ref only has one result!");
2226     // An unnamed register class represents itself as an i32 immediate, for
2227     // example on a COPY_TO_REGCLASS instruction.
2228     if (Unnamed)
2229       return TypeSetByHwMode(MVT::i32);
2230 
2231     // In a named operand, the register class provides the possible set of
2232     // types.
2233     if (NotRegisters)
2234       return TypeSetByHwMode(); // Unknown.
2235     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2236     return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
2237   }
2238 
2239   if (R->isSubClassOf("PatFrags")) {
2240     assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
2241     // Pattern fragment types will be resolved when they are inlined.
2242     return TypeSetByHwMode(); // Unknown.
2243   }
2244 
2245   if (R->isSubClassOf("Register")) {
2246     assert(ResNo == 0 && "Registers only produce one result!");
2247     if (NotRegisters)
2248       return TypeSetByHwMode(); // Unknown.
2249     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2250     return TypeSetByHwMode(T.getRegisterVTs(R));
2251   }
2252 
2253   if (R->isSubClassOf("SubRegIndex")) {
2254     assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
2255     return TypeSetByHwMode(MVT::i32);
2256   }
2257 
2258   if (R->isSubClassOf("ValueType")) {
2259     assert(ResNo == 0 && "This node only has one result!");
2260     // An unnamed VTSDNode represents itself as an MVT::Other immediate.
2261     //
2262     //   (sext_inreg GPR:$src, i16)
2263     //                         ~~~
2264     if (Unnamed)
2265       return TypeSetByHwMode(MVT::Other);
2266     // With a name, the ValueType simply provides the type of the named
2267     // variable.
2268     //
2269     //   (sext_inreg i32:$src, i16)
2270     //               ~~~~~~~~
2271     if (NotRegisters)
2272       return TypeSetByHwMode(); // Unknown.
2273     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2274     return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
2275   }
2276 
2277   if (R->isSubClassOf("CondCode")) {
2278     assert(ResNo == 0 && "This node only has one result!");
2279     // Using a CondCodeSDNode.
2280     return TypeSetByHwMode(MVT::Other);
2281   }
2282 
2283   if (R->isSubClassOf("ComplexPattern")) {
2284     assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
2285     if (NotRegisters)
2286       return TypeSetByHwMode(); // Unknown.
2287     const Record *T = CDP.getComplexPattern(R).getValueType();
2288     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2289     return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2290   }
2291   if (R->isSubClassOf("PointerLikeRegClass")) {
2292     assert(ResNo == 0 && "Regclass can only have one result!");
2293     TypeSetByHwMode VTS(MVT::iPTR);
2294     TP.getInfer().expandOverloads(VTS);
2295     return VTS;
2296   }
2297 
2298   if (R->getName() == "node" || R->getName() == "srcvalue" ||
2299       R->getName() == "zero_reg" || R->getName() == "immAllOnesV" ||
2300       R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") {
2301     // Placeholder.
2302     return TypeSetByHwMode(); // Unknown.
2303   }
2304 
2305   if (R->isSubClassOf("Operand")) {
2306     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2307     const Record *T = R->getValueAsDef("Type");
2308     return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2309   }
2310 
2311   TP.error("Unknown node flavor used in pattern: " + R->getName());
2312   return TypeSetByHwMode(MVT::Other);
2313 }
2314 
2315 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
2316 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
2317 const CodeGenIntrinsic *
2318 TreePatternNode::getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
2319   if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
2320       getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
2321       getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
2322     return nullptr;
2323 
2324   unsigned IID = cast<IntInit>(getChild(0).getLeafValue())->getValue();
2325   return &CDP.getIntrinsicInfo(IID);
2326 }
2327 
2328 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
2329 /// return the ComplexPattern information, otherwise return null.
2330 const ComplexPattern *
2331 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
2332   const Record *Rec;
2333   if (isLeaf()) {
2334     const DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2335     if (!DI)
2336       return nullptr;
2337     Rec = DI->getDef();
2338   } else
2339     Rec = getOperator();
2340 
2341   if (!Rec->isSubClassOf("ComplexPattern"))
2342     return nullptr;
2343   return &CGP.getComplexPattern(Rec);
2344 }
2345 
2346 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
2347   // A ComplexPattern specifically declares how many results it fills in.
2348   if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2349     return CP->getNumOperands();
2350 
2351   // If MIOperandInfo is specified, that gives the count.
2352   if (isLeaf()) {
2353     const DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2354     if (DI && DI->getDef()->isSubClassOf("Operand")) {
2355       const DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
2356       if (MIOps->getNumArgs())
2357         return MIOps->getNumArgs();
2358     }
2359   }
2360 
2361   // Otherwise there is just one result.
2362   return 1;
2363 }
2364 
2365 /// NodeHasProperty - Return true if this node has the specified property.
2366 bool TreePatternNode::NodeHasProperty(SDNP Property,
2367                                       const CodeGenDAGPatterns &CGP) const {
2368   if (isLeaf()) {
2369     if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2370       return CP->hasProperty(Property);
2371 
2372     return false;
2373   }
2374 
2375   if (Property != SDNPHasChain) {
2376     // The chain proprety is already present on the different intrinsic node
2377     // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
2378     // on the intrinsic. Anything else is specific to the individual intrinsic.
2379     if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
2380       return Int->hasProperty(Property);
2381   }
2382 
2383   if (!getOperator()->isSubClassOf("SDPatternOperator"))
2384     return false;
2385 
2386   return CGP.getSDNodeInfo(getOperator()).hasProperty(Property);
2387 }
2388 
2389 /// TreeHasProperty - Return true if any node in this tree has the specified
2390 /// property.
2391 bool TreePatternNode::TreeHasProperty(SDNP Property,
2392                                       const CodeGenDAGPatterns &CGP) const {
2393   if (NodeHasProperty(Property, CGP))
2394     return true;
2395   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2396     if (getChild(i).TreeHasProperty(Property, CGP))
2397       return true;
2398   return false;
2399 }
2400 
2401 /// isCommutativeIntrinsic - Return true if the node corresponds to a
2402 /// commutative intrinsic.
2403 bool TreePatternNode::isCommutativeIntrinsic(
2404     const CodeGenDAGPatterns &CDP) const {
2405   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
2406     return Int->isCommutative;
2407   return false;
2408 }
2409 
2410 static bool isOperandClass(const TreePatternNode &N, StringRef Class) {
2411   if (!N.isLeaf())
2412     return N.getOperator()->isSubClassOf(Class);
2413 
2414   const DefInit *DI = dyn_cast<DefInit>(N.getLeafValue());
2415   if (DI && DI->getDef()->isSubClassOf(Class))
2416     return true;
2417 
2418   return false;
2419 }
2420 
2421 static void emitTooManyOperandsError(TreePattern &TP, StringRef InstName,
2422                                      unsigned Expected, unsigned Actual) {
2423   TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
2424            " operands but expected only " + Twine(Expected) + "!");
2425 }
2426 
2427 static void emitTooFewOperandsError(TreePattern &TP, StringRef InstName,
2428                                     unsigned Actual) {
2429   TP.error("Instruction '" + InstName + "' expects more than the provided " +
2430            Twine(Actual) + " operands!");
2431 }
2432 
2433 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
2434 /// this node and its children in the tree.  This returns true if it makes a
2435 /// change, false otherwise.  If a type contradiction is found, flag an error.
2436 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
2437   if (TP.hasError())
2438     return false;
2439 
2440   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2441   if (isLeaf()) {
2442     if (const DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
2443       // If it's a regclass or something else known, include the type.
2444       bool MadeChange = false;
2445       for (unsigned i = 0, e = Types.size(); i != e; ++i)
2446         MadeChange |= UpdateNodeType(
2447             i, getImplicitType(DI->getDef(), i, NotRegisters, !hasName(), TP),
2448             TP);
2449       return MadeChange;
2450     }
2451 
2452     if (const IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
2453       assert(Types.size() == 1 && "Invalid IntInit");
2454 
2455       // Int inits are always integers. :)
2456       bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
2457 
2458       if (!TP.getInfer().isConcrete(Types[0], false))
2459         return MadeChange;
2460 
2461       ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
2462       for (auto &P : VVT) {
2463         MVT::SimpleValueType VT = P.second.SimpleTy;
2464         if (VT == MVT::iPTR || VT == MVT::iPTRAny)
2465           continue;
2466         unsigned Size = MVT(VT).getFixedSizeInBits();
2467         // Make sure that the value is representable for this type.
2468         if (Size >= 32)
2469           continue;
2470         // Check that the value doesn't use more bits than we have. It must
2471         // either be a sign- or zero-extended equivalent of the original.
2472         int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
2473         if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
2474             SignBitAndAbove == 1)
2475           continue;
2476 
2477         TP.error("Integer value '" + Twine(II->getValue()) +
2478                  "' is out of range for type '" + getEnumName(VT) + "'!");
2479         break;
2480       }
2481       return MadeChange;
2482     }
2483 
2484     return false;
2485   }
2486 
2487   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
2488     bool MadeChange = false;
2489 
2490     // Apply the result type to the node.
2491     unsigned NumRetVTs = Int->IS.RetTys.size();
2492     unsigned NumParamVTs = Int->IS.ParamTys.size();
2493 
2494     for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
2495       MadeChange |= UpdateNodeType(
2496           i, getValueType(Int->IS.RetTys[i]->getValueAsDef("VT")), TP);
2497 
2498     if (getNumChildren() != NumParamVTs + 1) {
2499       TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
2500                " operands, not " + Twine(getNumChildren() - 1) + " operands!");
2501       return false;
2502     }
2503 
2504     // Apply type info to the intrinsic ID.
2505     MadeChange |= getChild(0).UpdateNodeType(0, MVT::iPTR, TP);
2506 
2507     for (unsigned i = 0, e = getNumChildren() - 1; i != e; ++i) {
2508       MadeChange |= getChild(i + 1).ApplyTypeConstraints(TP, NotRegisters);
2509 
2510       MVT::SimpleValueType OpVT =
2511           getValueType(Int->IS.ParamTys[i]->getValueAsDef("VT"));
2512       assert(getChild(i + 1).getNumTypes() == 1 && "Unhandled case");
2513       MadeChange |= getChild(i + 1).UpdateNodeType(0, OpVT, TP);
2514     }
2515     return MadeChange;
2516   }
2517 
2518   if (getOperator()->isSubClassOf("SDNode")) {
2519     const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
2520 
2521     // Check that the number of operands is sane.  Negative operands -> varargs.
2522     if (NI.getNumOperands() >= 0 &&
2523         getNumChildren() != (unsigned)NI.getNumOperands()) {
2524       TP.error(getOperator()->getName() + " node requires exactly " +
2525                Twine(NI.getNumOperands()) + " operands!");
2526       return false;
2527     }
2528 
2529     bool MadeChange = false;
2530     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2531       MadeChange |= getChild(i).ApplyTypeConstraints(TP, NotRegisters);
2532     MadeChange |= NI.ApplyTypeConstraints(*this, TP);
2533     return MadeChange;
2534   }
2535 
2536   if (getOperator()->isSubClassOf("Instruction")) {
2537     const DAGInstruction &Inst = CDP.getInstruction(getOperator());
2538     CodeGenInstruction &InstInfo =
2539         CDP.getTargetInfo().getInstruction(getOperator());
2540 
2541     bool MadeChange = false;
2542 
2543     // Apply the result types to the node, these come from the things in the
2544     // (outs) list of the instruction.
2545     unsigned NumResultsToAdd =
2546         std::min(InstInfo.Operands.NumDefs, Inst.getNumResults());
2547     for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
2548       MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
2549 
2550     // If the instruction has implicit defs, we apply the first one as a result.
2551     // FIXME: This sucks, it should apply all implicit defs.
2552     if (!InstInfo.ImplicitDefs.empty()) {
2553       unsigned ResNo = NumResultsToAdd;
2554 
2555       // FIXME: Generalize to multiple possible types and multiple possible
2556       // ImplicitDefs.
2557       MVT::SimpleValueType VT =
2558           InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
2559 
2560       if (VT != MVT::Other)
2561         MadeChange |= UpdateNodeType(ResNo, VT, TP);
2562     }
2563 
2564     // If this is an INSERT_SUBREG, constrain the source and destination VTs to
2565     // be the same.
2566     if (getOperator()->getName() == "INSERT_SUBREG") {
2567       assert(getChild(0).getNumTypes() == 1 && "FIXME: Unhandled");
2568       MadeChange |= UpdateNodeType(0, getChild(0).getExtType(0), TP);
2569       MadeChange |= getChild(0).UpdateNodeType(0, getExtType(0), TP);
2570     } else if (getOperator()->getName() == "REG_SEQUENCE") {
2571       // We need to do extra, custom typechecking for REG_SEQUENCE since it is
2572       // variadic.
2573 
2574       unsigned NChild = getNumChildren();
2575       if (NChild < 3) {
2576         TP.error("REG_SEQUENCE requires at least 3 operands!");
2577         return false;
2578       }
2579 
2580       if (NChild % 2 == 0) {
2581         TP.error("REG_SEQUENCE requires an odd number of operands!");
2582         return false;
2583       }
2584 
2585       if (!isOperandClass(getChild(0), "RegisterClass")) {
2586         TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
2587         return false;
2588       }
2589 
2590       for (unsigned I = 1; I < NChild; I += 2) {
2591         TreePatternNode &SubIdxChild = getChild(I + 1);
2592         if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
2593           TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
2594                    Twine(I + 1) + "!");
2595           return false;
2596         }
2597       }
2598     }
2599 
2600     unsigned NumResults = Inst.getNumResults();
2601     unsigned NumFixedOperands = InstInfo.Operands.size();
2602 
2603     // If one or more operands with a default value appear at the end of the
2604     // formal operand list for an instruction, we allow them to be overridden
2605     // by optional operands provided in the pattern.
2606     //
2607     // But if an operand B without a default appears at any point after an
2608     // operand A with a default, then we don't allow A to be overridden,
2609     // because there would be no way to specify whether the next operand in
2610     // the pattern was intended to override A or skip it.
2611     unsigned NonOverridableOperands = NumFixedOperands;
2612     while (NonOverridableOperands > NumResults &&
2613            CDP.operandHasDefault(
2614                InstInfo.Operands[NonOverridableOperands - 1].Rec))
2615       --NonOverridableOperands;
2616 
2617     unsigned ChildNo = 0;
2618     assert(NumResults <= NumFixedOperands);
2619     for (unsigned i = NumResults, e = NumFixedOperands; i != e; ++i) {
2620       const Record *OperandNode = InstInfo.Operands[i].Rec;
2621 
2622       // If the operand has a default value, do we use it? We must use the
2623       // default if we've run out of children of the pattern DAG to consume,
2624       // or if the operand is followed by a non-defaulted one.
2625       if (CDP.operandHasDefault(OperandNode) &&
2626           (i < NonOverridableOperands || ChildNo >= getNumChildren()))
2627         continue;
2628 
2629       // If we have run out of child nodes and there _isn't_ a default
2630       // value we can use for the next operand, give an error.
2631       if (ChildNo >= getNumChildren()) {
2632         emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
2633         return false;
2634       }
2635 
2636       TreePatternNode *Child = &getChild(ChildNo++);
2637       unsigned ChildResNo = 0; // Instructions always use res #0 of their op.
2638 
2639       // If the operand has sub-operands, they may be provided by distinct
2640       // child patterns, so attempt to match each sub-operand separately.
2641       if (OperandNode->isSubClassOf("Operand")) {
2642         DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
2643         if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
2644           // But don't do that if the whole operand is being provided by
2645           // a single ComplexPattern-related Operand.
2646 
2647           if (Child->getNumMIResults(CDP) < NumArgs) {
2648             // Match first sub-operand against the child we already have.
2649             const Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
2650             MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2651 
2652             // And the remaining sub-operands against subsequent children.
2653             for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
2654               if (ChildNo >= getNumChildren()) {
2655                 emitTooFewOperandsError(TP, getOperator()->getName(),
2656                                         getNumChildren());
2657                 return false;
2658               }
2659               Child = &getChild(ChildNo++);
2660 
2661               SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
2662               MadeChange |=
2663                   Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2664             }
2665             continue;
2666           }
2667         }
2668       }
2669 
2670       // If we didn't match by pieces above, attempt to match the whole
2671       // operand now.
2672       MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
2673     }
2674 
2675     if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
2676       emitTooManyOperandsError(TP, getOperator()->getName(), ChildNo,
2677                                getNumChildren());
2678       return false;
2679     }
2680 
2681     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2682       MadeChange |= getChild(i).ApplyTypeConstraints(TP, NotRegisters);
2683     return MadeChange;
2684   }
2685 
2686   if (getOperator()->isSubClassOf("ComplexPattern")) {
2687     bool MadeChange = false;
2688 
2689     if (!NotRegisters) {
2690       assert(Types.size() == 1 && "ComplexPatterns only produce one result!");
2691       const Record *T = CDP.getComplexPattern(getOperator()).getValueType();
2692       const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2693       const ValueTypeByHwMode VVT = getValueTypeByHwMode(T, CGH);
2694       // TODO: AArch64 and AMDGPU use ComplexPattern<untyped, ...> and then
2695       // exclusively use those as non-leaf nodes with explicit type casts, so
2696       // for backwards compatibility we do no inference in that case. This is
2697       // not supported when the ComplexPattern is used as a leaf value,
2698       // however; this inconsistency should be resolved, either by adding this
2699       // case there or by altering the backends to not do this (e.g. using Any
2700       // instead may work).
2701       if (!VVT.isSimple() || VVT.getSimple() != MVT::Untyped)
2702         MadeChange |= UpdateNodeType(0, VVT, TP);
2703     }
2704 
2705     for (unsigned i = 0; i < getNumChildren(); ++i)
2706       MadeChange |= getChild(i).ApplyTypeConstraints(TP, NotRegisters);
2707 
2708     return MadeChange;
2709   }
2710 
2711   assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
2712 
2713   // Node transforms always take one operand.
2714   if (getNumChildren() != 1) {
2715     TP.error("Node transform '" + getOperator()->getName() +
2716              "' requires one operand!");
2717     return false;
2718   }
2719 
2720   bool MadeChange = getChild(0).ApplyTypeConstraints(TP, NotRegisters);
2721   return MadeChange;
2722 }
2723 
2724 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
2725 /// RHS of a commutative operation, not the on LHS.
2726 static bool OnlyOnRHSOfCommutative(TreePatternNode &N) {
2727   if (!N.isLeaf() && N.getOperator()->getName() == "imm")
2728     return true;
2729   if (N.isLeaf() && isa<IntInit>(N.getLeafValue()))
2730     return true;
2731   if (isImmAllOnesAllZerosMatch(N))
2732     return true;
2733   return false;
2734 }
2735 
2736 /// canPatternMatch - If it is impossible for this pattern to match on this
2737 /// target, fill in Reason and return false.  Otherwise, return true.  This is
2738 /// used as a sanity check for .td files (to prevent people from writing stuff
2739 /// that can never possibly work), and to prevent the pattern permuter from
2740 /// generating stuff that is useless.
2741 bool TreePatternNode::canPatternMatch(std::string &Reason,
2742                                       const CodeGenDAGPatterns &CDP) {
2743   if (isLeaf())
2744     return true;
2745 
2746   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2747     if (!getChild(i).canPatternMatch(Reason, CDP))
2748       return false;
2749 
2750   // If this is an intrinsic, handle cases that would make it not match.  For
2751   // example, if an operand is required to be an immediate.
2752   if (getOperator()->isSubClassOf("Intrinsic")) {
2753     // TODO:
2754     return true;
2755   }
2756 
2757   if (getOperator()->isSubClassOf("ComplexPattern"))
2758     return true;
2759 
2760   // If this node is a commutative operator, check that the LHS isn't an
2761   // immediate.
2762   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2763   bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2764   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2765     // Scan all of the operands of the node and make sure that only the last one
2766     // is a constant node, unless the RHS also is.
2767     if (!OnlyOnRHSOfCommutative(getChild(getNumChildren() - 1))) {
2768       unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2769       for (unsigned i = Skip, e = getNumChildren() - 1; i != e; ++i)
2770         if (OnlyOnRHSOfCommutative(getChild(i))) {
2771           Reason =
2772               "Immediate value must be on the RHS of commutative operators!";
2773           return false;
2774         }
2775     }
2776   }
2777 
2778   return true;
2779 }
2780 
2781 //===----------------------------------------------------------------------===//
2782 // TreePattern implementation
2783 //
2784 
2785 TreePattern::TreePattern(const Record *TheRec, const ListInit *RawPat,
2786                          bool isInput, CodeGenDAGPatterns &cdp)
2787     : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2788       Infer(*this) {
2789   for (Init *I : RawPat->getValues())
2790     Trees.push_back(ParseTreePattern(I, ""));
2791 }
2792 
2793 TreePattern::TreePattern(const Record *TheRec, DagInit *Pat, bool isInput,
2794                          CodeGenDAGPatterns &cdp)
2795     : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2796       Infer(*this) {
2797   Trees.push_back(ParseTreePattern(Pat, ""));
2798 }
2799 
2800 TreePattern::TreePattern(const Record *TheRec, TreePatternNodePtr Pat,
2801                          bool isInput, CodeGenDAGPatterns &cdp)
2802     : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2803       Infer(*this) {
2804   Trees.push_back(Pat);
2805 }
2806 
2807 void TreePattern::error(const Twine &Msg) {
2808   if (HasError)
2809     return;
2810   dump();
2811   PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2812   HasError = true;
2813 }
2814 
2815 void TreePattern::ComputeNamedNodes() {
2816   for (TreePatternNodePtr &Tree : Trees)
2817     ComputeNamedNodes(*Tree);
2818 }
2819 
2820 void TreePattern::ComputeNamedNodes(TreePatternNode &N) {
2821   if (!N.getName().empty())
2822     NamedNodes[N.getName()].push_back(&N);
2823 
2824   for (unsigned i = 0, e = N.getNumChildren(); i != e; ++i)
2825     ComputeNamedNodes(N.getChild(i));
2826 }
2827 
2828 TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit,
2829                                                  StringRef OpName) {
2830   RecordKeeper &RK = TheInit->getRecordKeeper();
2831   // Here, we are creating new records (BitsInit->InitInit), so const_cast
2832   // TheInit back to non-const pointer.
2833   if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
2834     const Record *R = DI->getDef();
2835 
2836     // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
2837     // TreePatternNode of its own.  For example:
2838     ///   (foo GPR, imm) -> (foo GPR, (imm))
2839     if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags"))
2840       return ParseTreePattern(
2841           DagInit::get(DI, nullptr,
2842                        std::vector<std::pair<Init *, StringInit *>>()),
2843           OpName);
2844 
2845     // Input argument?
2846     TreePatternNodePtr Res = makeIntrusiveRefCnt<TreePatternNode>(DI, 1);
2847     if (R->getName() == "node" && !OpName.empty()) {
2848       if (OpName.empty())
2849         error("'node' argument requires a name to match with operand list");
2850       Args.push_back(std::string(OpName));
2851     }
2852 
2853     Res->setName(OpName);
2854     return Res;
2855   }
2856 
2857   // ?:$name or just $name.
2858   if (isa<UnsetInit>(TheInit)) {
2859     if (OpName.empty())
2860       error("'?' argument requires a name to match with operand list");
2861     TreePatternNodePtr Res = makeIntrusiveRefCnt<TreePatternNode>(TheInit, 1);
2862     Args.push_back(std::string(OpName));
2863     Res->setName(OpName);
2864     return Res;
2865   }
2866 
2867   if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) {
2868     if (!OpName.empty())
2869       error("Constant int or bit argument should not have a name!");
2870     if (isa<BitInit>(TheInit))
2871       TheInit = TheInit->convertInitializerTo(IntRecTy::get(RK));
2872     return makeIntrusiveRefCnt<TreePatternNode>(TheInit, 1);
2873   }
2874 
2875   if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
2876     // Turn this into an IntInit.
2877     Init *II = BI->convertInitializerTo(IntRecTy::get(RK));
2878     if (!II || !isa<IntInit>(II))
2879       error("Bits value must be constants!");
2880     return II ? ParseTreePattern(II, OpName) : nullptr;
2881   }
2882 
2883   DagInit *Dag = dyn_cast<DagInit>(TheInit);
2884   if (!Dag) {
2885     TheInit->print(errs());
2886     error("Pattern has unexpected init kind!");
2887     return nullptr;
2888   }
2889 
2890   auto ParseCastOperand = [this](DagInit *Dag, StringRef OpName) {
2891     if (Dag->getNumArgs() != 1)
2892       error("Type cast only takes one operand!");
2893 
2894     if (!OpName.empty())
2895       error("Type cast should not have a name!");
2896 
2897     return ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0));
2898   };
2899 
2900   if (ListInit *LI = dyn_cast<ListInit>(Dag->getOperator())) {
2901     // If the operator is a list (of value types), then this must be "type cast"
2902     // of a leaf node with multiple results.
2903     TreePatternNodePtr New = ParseCastOperand(Dag, OpName);
2904 
2905     size_t NumTypes = New->getNumTypes();
2906     if (LI->empty() || LI->size() != NumTypes)
2907       error("Invalid number of type casts!");
2908 
2909     // Apply the type casts.
2910     const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
2911     for (unsigned i = 0; i < std::min(NumTypes, LI->size()); ++i)
2912       New->UpdateNodeType(
2913           i, getValueTypeByHwMode(LI->getElementAsRecord(i), CGH), *this);
2914 
2915     return New;
2916   }
2917 
2918   DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2919   if (!OpDef) {
2920     error("Pattern has unexpected operator type!");
2921     return nullptr;
2922   }
2923   const Record *Operator = OpDef->getDef();
2924 
2925   if (Operator->isSubClassOf("ValueType")) {
2926     // If the operator is a ValueType, then this must be "type cast" of a leaf
2927     // node.
2928     TreePatternNodePtr New = ParseCastOperand(Dag, OpName);
2929 
2930     if (New->getNumTypes() != 1)
2931       error("ValueType cast can only have one type!");
2932 
2933     // Apply the type cast.
2934     const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
2935     New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
2936 
2937     return New;
2938   }
2939 
2940   // Verify that this is something that makes sense for an operator.
2941   if (!Operator->isSubClassOf("PatFrags") &&
2942       !Operator->isSubClassOf("SDNode") &&
2943       !Operator->isSubClassOf("Instruction") &&
2944       !Operator->isSubClassOf("SDNodeXForm") &&
2945       !Operator->isSubClassOf("Intrinsic") &&
2946       !Operator->isSubClassOf("ComplexPattern") &&
2947       Operator->getName() != "set" && Operator->getName() != "implicit")
2948     error("Unrecognized node '" + Operator->getName() + "'!");
2949 
2950   //  Check to see if this is something that is illegal in an input pattern.
2951   if (isInputPattern) {
2952     if (Operator->isSubClassOf("Instruction") ||
2953         Operator->isSubClassOf("SDNodeXForm"))
2954       error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2955   } else {
2956     if (Operator->isSubClassOf("Intrinsic"))
2957       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2958 
2959     if (Operator->isSubClassOf("SDNode") && Operator->getName() != "imm" &&
2960         Operator->getName() != "timm" && Operator->getName() != "fpimm" &&
2961         Operator->getName() != "tglobaltlsaddr" &&
2962         Operator->getName() != "tconstpool" &&
2963         Operator->getName() != "tjumptable" &&
2964         Operator->getName() != "tframeindex" &&
2965         Operator->getName() != "texternalsym" &&
2966         Operator->getName() != "tblockaddress" &&
2967         Operator->getName() != "tglobaladdr" && Operator->getName() != "bb" &&
2968         Operator->getName() != "vt" && Operator->getName() != "mcsym")
2969       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2970   }
2971 
2972   std::vector<TreePatternNodePtr> Children;
2973 
2974   // Parse all the operands.
2975   for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2976     Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
2977 
2978   // Get the actual number of results before Operator is converted to an
2979   // intrinsic node (which is hard-coded to have either zero or one result).
2980   unsigned NumResults = GetNumNodeResults(Operator, CDP);
2981 
2982   // If the operator is an intrinsic, then this is just syntactic sugar for
2983   // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
2984   // convert the intrinsic name to a number.
2985   if (Operator->isSubClassOf("Intrinsic")) {
2986     const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2987     unsigned IID = getDAGPatterns().getIntrinsicID(Operator) + 1;
2988 
2989     // If this intrinsic returns void, it must have side-effects and thus a
2990     // chain.
2991     if (Int.IS.RetTys.empty())
2992       Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2993     else if (!Int.ME.doesNotAccessMemory() || Int.hasSideEffects)
2994       // Has side-effects, requires chain.
2995       Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2996     else // Otherwise, no chain.
2997       Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2998 
2999     Children.insert(Children.begin(), makeIntrusiveRefCnt<TreePatternNode>(
3000                                           IntInit::get(RK, IID), 1));
3001   }
3002 
3003   if (Operator->isSubClassOf("ComplexPattern")) {
3004     for (unsigned i = 0; i < Children.size(); ++i) {
3005       TreePatternNodePtr Child = Children[i];
3006 
3007       if (Child->getName().empty())
3008         error("All arguments to a ComplexPattern must be named");
3009 
3010       // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
3011       // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
3012       // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
3013       auto OperandId = std::make_pair(Operator, i);
3014       auto PrevOp = ComplexPatternOperands.find(Child->getName());
3015       if (PrevOp != ComplexPatternOperands.end()) {
3016         if (PrevOp->getValue() != OperandId)
3017           error("All ComplexPattern operands must appear consistently: "
3018                 "in the same order in just one ComplexPattern instance.");
3019       } else
3020         ComplexPatternOperands[Child->getName()] = OperandId;
3021     }
3022   }
3023 
3024   TreePatternNodePtr Result = makeIntrusiveRefCnt<TreePatternNode>(
3025       Operator, std::move(Children), NumResults);
3026   Result->setName(OpName);
3027 
3028   if (Dag->getName()) {
3029     assert(Result->getName().empty());
3030     Result->setName(Dag->getNameStr());
3031   }
3032   return Result;
3033 }
3034 
3035 /// SimplifyTree - See if we can simplify this tree to eliminate something that
3036 /// will never match in favor of something obvious that will.  This is here
3037 /// strictly as a convenience to target authors because it allows them to write
3038 /// more type generic things and have useless type casts fold away.
3039 ///
3040 /// This returns true if any change is made.
3041 static bool SimplifyTree(TreePatternNodePtr &N) {
3042   if (N->isLeaf())
3043     return false;
3044 
3045   // If we have a bitconvert with a resolved type and if the source and
3046   // destination types are the same, then the bitconvert is useless, remove it.
3047   //
3048   // We make an exception if the types are completely empty. This can come up
3049   // when the pattern being simplified is in the Fragments list of a PatFrags,
3050   // so that the operand is just an untyped "node". In that situation we leave
3051   // bitconverts unsimplified, and simplify them later once the fragment is
3052   // expanded into its true context.
3053   if (N->getOperator()->getName() == "bitconvert" &&
3054       N->getExtType(0).isValueTypeByHwMode(false) &&
3055       !N->getExtType(0).empty() &&
3056       N->getExtType(0) == N->getChild(0).getExtType(0) &&
3057       N->getName().empty()) {
3058     N = N->getChildShared(0);
3059     SimplifyTree(N);
3060     return true;
3061   }
3062 
3063   // Walk all children.
3064   bool MadeChange = false;
3065   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3066     MadeChange |= SimplifyTree(N->getChildSharedPtr(i));
3067 
3068   return MadeChange;
3069 }
3070 
3071 /// InferAllTypes - Infer/propagate as many types throughout the expression
3072 /// patterns as possible.  Return true if all types are inferred, false
3073 /// otherwise.  Flags an error if a type contradiction is found.
3074 bool TreePattern::InferAllTypes(
3075     const StringMap<SmallVector<TreePatternNode *, 1>> *InNamedTypes) {
3076   if (NamedNodes.empty())
3077     ComputeNamedNodes();
3078 
3079   bool MadeChange = true;
3080   while (MadeChange) {
3081     MadeChange = false;
3082     for (TreePatternNodePtr &Tree : Trees) {
3083       MadeChange |= Tree->ApplyTypeConstraints(*this, false);
3084       MadeChange |= SimplifyTree(Tree);
3085     }
3086 
3087     // If there are constraints on our named nodes, apply them.
3088     for (auto &Entry : NamedNodes) {
3089       SmallVectorImpl<TreePatternNode *> &Nodes = Entry.second;
3090 
3091       // If we have input named node types, propagate their types to the named
3092       // values here.
3093       if (InNamedTypes) {
3094         if (!InNamedTypes->count(Entry.getKey())) {
3095           error("Node '" + std::string(Entry.getKey()) +
3096                 "' in output pattern but not input pattern");
3097           return true;
3098         }
3099 
3100         const SmallVectorImpl<TreePatternNode *> &InNodes =
3101             InNamedTypes->find(Entry.getKey())->second;
3102 
3103         // The input types should be fully resolved by now.
3104         for (TreePatternNode *Node : Nodes) {
3105           // If this node is a register class, and it is the root of the pattern
3106           // then we're mapping something onto an input register.  We allow
3107           // changing the type of the input register in this case.  This allows
3108           // us to match things like:
3109           //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
3110           if (Node == Trees[0].get() && Node->isLeaf()) {
3111             const DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
3112             if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3113                        DI->getDef()->isSubClassOf("RegisterOperand")))
3114               continue;
3115           }
3116 
3117           assert(Node->getNumTypes() == 1 && InNodes[0]->getNumTypes() == 1 &&
3118                  "FIXME: cannot name multiple result nodes yet");
3119           MadeChange |=
3120               Node->UpdateNodeType(0, InNodes[0]->getExtType(0), *this);
3121         }
3122       }
3123 
3124       // If there are multiple nodes with the same name, they must all have the
3125       // same type.
3126       if (Entry.second.size() > 1) {
3127         for (unsigned i = 0, e = Nodes.size() - 1; i != e; ++i) {
3128           TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i + 1];
3129           assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
3130                  "FIXME: cannot name multiple result nodes yet");
3131 
3132           MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
3133           MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
3134         }
3135       }
3136     }
3137   }
3138 
3139   bool HasUnresolvedTypes = false;
3140   for (const TreePatternNodePtr &Tree : Trees)
3141     HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
3142   return !HasUnresolvedTypes;
3143 }
3144 
3145 void TreePattern::print(raw_ostream &OS) const {
3146   OS << getRecord()->getName();
3147   if (!Args.empty()) {
3148     OS << "(";
3149     ListSeparator LS;
3150     for (const std::string &Arg : Args)
3151       OS << LS << Arg;
3152     OS << ")";
3153   }
3154   OS << ": ";
3155 
3156   if (Trees.size() > 1)
3157     OS << "[\n";
3158   for (const TreePatternNodePtr &Tree : Trees) {
3159     OS << "\t";
3160     Tree->print(OS);
3161     OS << "\n";
3162   }
3163 
3164   if (Trees.size() > 1)
3165     OS << "]\n";
3166 }
3167 
3168 void TreePattern::dump() const { print(errs()); }
3169 
3170 //===----------------------------------------------------------------------===//
3171 // CodeGenDAGPatterns implementation
3172 //
3173 
3174 CodeGenDAGPatterns::CodeGenDAGPatterns(const RecordKeeper &R,
3175                                        PatternRewriterFn PatternRewriter)
3176     : Records(R), Target(R), Intrinsics(R),
3177       LegalVTS(Target.getLegalValueTypes()), PatternRewriter(PatternRewriter) {
3178   ParseNodeInfo();
3179   ParseNodeTransforms();
3180   ParseComplexPatterns();
3181   ParsePatternFragments();
3182   ParseDefaultOperands();
3183   ParseInstructions();
3184   ParsePatternFragments(/*OutFrags*/ true);
3185   ParsePatterns();
3186 
3187   // Generate variants.  For example, commutative patterns can match
3188   // multiple ways.  Add them to PatternsToMatch as well.
3189   GenerateVariants();
3190 
3191   // Break patterns with parameterized types into a series of patterns,
3192   // where each one has a fixed type and is predicated on the conditions
3193   // of the associated HW mode.
3194   ExpandHwModeBasedTypes();
3195 
3196   // Infer instruction flags.  For example, we can detect loads,
3197   // stores, and side effects in many cases by examining an
3198   // instruction's pattern.
3199   InferInstructionFlags();
3200 
3201   // Verify that instruction flags match the patterns.
3202   VerifyInstructionFlags();
3203 }
3204 
3205 const Record *CodeGenDAGPatterns::getSDNodeNamed(StringRef Name) const {
3206   const Record *N = Records.getDef(Name);
3207   if (!N || !N->isSubClassOf("SDNode"))
3208     PrintFatalError("Error getting SDNode '" + Name + "'!");
3209   return N;
3210 }
3211 
3212 // Parse all of the SDNode definitions for the target, populating SDNodes.
3213 void CodeGenDAGPatterns::ParseNodeInfo() {
3214   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
3215 
3216   for (const Record *R : reverse(Records.getAllDerivedDefinitions("SDNode")))
3217     SDNodes.insert(std::pair(R, SDNodeInfo(R, CGH)));
3218 
3219   // Get the builtin intrinsic nodes.
3220   intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
3221   intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
3222   intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
3223 }
3224 
3225 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
3226 /// map, and emit them to the file as functions.
3227 void CodeGenDAGPatterns::ParseNodeTransforms() {
3228   for (const Record *XFormNode :
3229        reverse(Records.getAllDerivedDefinitions("SDNodeXForm"))) {
3230     const Record *SDNode = XFormNode->getValueAsDef("Opcode");
3231     StringRef Code = XFormNode->getValueAsString("XFormFunction");
3232     SDNodeXForms.insert({XFormNode, NodeXForm(SDNode, std::string(Code))});
3233   }
3234 }
3235 
3236 void CodeGenDAGPatterns::ParseComplexPatterns() {
3237   for (const Record *R :
3238        reverse(Records.getAllDerivedDefinitions("ComplexPattern")))
3239     ComplexPatterns.insert({R, R});
3240 }
3241 
3242 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
3243 /// file, building up the PatternFragments map.  After we've collected them all,
3244 /// inline fragments together as necessary, so that there are no references left
3245 /// inside a pattern fragment to a pattern fragment.
3246 ///
3247 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
3248   // First step, parse all of the fragments.
3249   ArrayRef<const Record *> Fragments =
3250       Records.getAllDerivedDefinitions("PatFrags");
3251   for (const Record *Frag : Fragments) {
3252     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3253       continue;
3254 
3255     ListInit *LI = Frag->getValueAsListInit("Fragments");
3256     TreePattern *P = (PatternFragments[Frag] = std::make_unique<TreePattern>(
3257                           Frag, LI, !Frag->isSubClassOf("OutPatFrag"), *this))
3258                          .get();
3259 
3260     // Validate the argument list, converting it to set, to discard duplicates.
3261     std::vector<std::string> &Args = P->getArgList();
3262     // Copy the args so we can take StringRefs to them.
3263     auto ArgsCopy = Args;
3264     SmallDenseSet<StringRef, 4> OperandsSet;
3265     OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
3266 
3267     if (OperandsSet.count(""))
3268       P->error("Cannot have unnamed 'node' values in pattern fragment!");
3269 
3270     // Parse the operands list.
3271     DagInit *OpsList = Frag->getValueAsDag("Operands");
3272     DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
3273     // Special cases: ops == outs == ins. Different names are used to
3274     // improve readability.
3275     if (!OpsOp || (OpsOp->getDef()->getName() != "ops" &&
3276                    OpsOp->getDef()->getName() != "outs" &&
3277                    OpsOp->getDef()->getName() != "ins"))
3278       P->error("Operands list should start with '(ops ... '!");
3279 
3280     // Copy over the arguments.
3281     Args.clear();
3282     for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
3283       if (!isa<DefInit>(OpsList->getArg(j)) ||
3284           cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
3285         P->error("Operands list should all be 'node' values.");
3286       if (!OpsList->getArgName(j))
3287         P->error("Operands list should have names for each operand!");
3288       StringRef ArgNameStr = OpsList->getArgNameStr(j);
3289       if (!OperandsSet.count(ArgNameStr))
3290         P->error("'" + ArgNameStr +
3291                  "' does not occur in pattern or was multiply specified!");
3292       OperandsSet.erase(ArgNameStr);
3293       Args.push_back(std::string(ArgNameStr));
3294     }
3295 
3296     if (!OperandsSet.empty())
3297       P->error("Operands list does not contain an entry for operand '" +
3298                *OperandsSet.begin() + "'!");
3299 
3300     // If there is a node transformation corresponding to this, keep track of
3301     // it.
3302     const Record *Transform = Frag->getValueAsDef("OperandTransform");
3303     if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
3304       for (const auto &T : P->getTrees())
3305         T->setTransformFn(Transform);
3306   }
3307 
3308   // Now that we've parsed all of the tree fragments, do a closure on them so
3309   // that there are not references to PatFrags left inside of them.
3310   for (const Record *Frag : Fragments) {
3311     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3312       continue;
3313 
3314     TreePattern &ThePat = *PatternFragments[Frag];
3315     ThePat.InlinePatternFragments();
3316 
3317     // Infer as many types as possible.  Don't worry about it if we don't infer
3318     // all of them, some may depend on the inputs of the pattern.  Also, don't
3319     // validate type sets; validation may cause spurious failures e.g. if a
3320     // fragment needs floating-point types but the current target does not have
3321     // any (this is only an error if that fragment is ever used!).
3322     {
3323       TypeInfer::SuppressValidation SV(ThePat.getInfer());
3324       ThePat.InferAllTypes();
3325       ThePat.resetError();
3326     }
3327 
3328     // If debugging, print out the pattern fragment result.
3329     LLVM_DEBUG(ThePat.dump());
3330   }
3331 }
3332 
3333 void CodeGenDAGPatterns::ParseDefaultOperands() {
3334   ArrayRef<const Record *> DefaultOps =
3335       Records.getAllDerivedDefinitions("OperandWithDefaultOps");
3336 
3337   // Find some SDNode.
3338   assert(!SDNodes.empty() && "No SDNodes parsed?");
3339   Init *SomeSDNode = SDNodes.begin()->first->getDefInit();
3340 
3341   for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
3342     DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
3343 
3344     // Clone the DefaultInfo dag node, changing the operator from 'ops' to
3345     // SomeSDnode so that we can parse this.
3346     std::vector<std::pair<Init *, StringInit *>> Ops;
3347     for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
3348       Ops.push_back(
3349           std::pair(DefaultInfo->getArg(op), DefaultInfo->getArgName(op)));
3350     DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
3351 
3352     // Create a TreePattern to parse this.
3353     TreePattern P(DefaultOps[i], DI, false, *this);
3354     assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
3355 
3356     // Copy the operands over into a DAGDefaultOperand.
3357     DAGDefaultOperand DefaultOpInfo;
3358 
3359     const TreePatternNodePtr &T = P.getTree(0);
3360     for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
3361       TreePatternNodePtr TPN = T->getChildShared(op);
3362       while (TPN->ApplyTypeConstraints(P, false))
3363         /* Resolve all types */;
3364 
3365       if (TPN->ContainsUnresolvedType(P)) {
3366         PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
3367                         DefaultOps[i]->getName() +
3368                         "' doesn't have a concrete type!");
3369       }
3370       DefaultOpInfo.DefaultOps.push_back(std::move(TPN));
3371     }
3372 
3373     // Insert it into the DefaultOperands map so we can find it later.
3374     DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
3375   }
3376 }
3377 
3378 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
3379 /// instruction input.  Return true if this is a real use.
3380 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat,
3381                       std::map<std::string, TreePatternNodePtr> &InstInputs) {
3382   // No name -> not interesting.
3383   if (Pat->getName().empty()) {
3384     if (Pat->isLeaf()) {
3385       const DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3386       if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3387                  DI->getDef()->isSubClassOf("RegisterOperand")))
3388         I.error("Input " + DI->getDef()->getName() + " must be named!");
3389     }
3390     return false;
3391   }
3392 
3393   const Record *Rec;
3394   if (Pat->isLeaf()) {
3395     const DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3396     if (!DI)
3397       I.error("Input $" + Pat->getName() + " must be an identifier!");
3398     Rec = DI->getDef();
3399   } else {
3400     Rec = Pat->getOperator();
3401   }
3402 
3403   // SRCVALUE nodes are ignored.
3404   if (Rec->getName() == "srcvalue")
3405     return false;
3406 
3407   TreePatternNodePtr &Slot = InstInputs[Pat->getName()];
3408   if (!Slot) {
3409     Slot = Pat;
3410     return true;
3411   }
3412   const Record *SlotRec;
3413   if (Slot->isLeaf()) {
3414     SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
3415   } else {
3416     assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
3417     SlotRec = Slot->getOperator();
3418   }
3419 
3420   // Ensure that the inputs agree if we've already seen this input.
3421   if (Rec != SlotRec)
3422     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3423   // Ensure that the types can agree as well.
3424   Slot->UpdateNodeType(0, Pat->getExtType(0), I);
3425   Pat->UpdateNodeType(0, Slot->getExtType(0), I);
3426   if (Slot->getExtTypes() != Pat->getExtTypes())
3427     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3428   return true;
3429 }
3430 
3431 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
3432 /// part of "I", the instruction), computing the set of inputs and outputs of
3433 /// the pattern.  Report errors if we see anything naughty.
3434 void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
3435     TreePattern &I, TreePatternNodePtr Pat,
3436     std::map<std::string, TreePatternNodePtr> &InstInputs,
3437     MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3438         &InstResults,
3439     std::vector<const Record *> &InstImpResults) {
3440   // The instruction pattern still has unresolved fragments.  For *named*
3441   // nodes we must resolve those here.  This may not result in multiple
3442   // alternatives.
3443   if (!Pat->getName().empty()) {
3444     TreePattern SrcPattern(I.getRecord(), Pat, true, *this);
3445     SrcPattern.InlinePatternFragments();
3446     SrcPattern.InferAllTypes();
3447     Pat = SrcPattern.getOnlyTree();
3448   }
3449 
3450   if (Pat->isLeaf()) {
3451     bool isUse = HandleUse(I, Pat, InstInputs);
3452     if (!isUse && Pat->getTransformFn())
3453       I.error("Cannot specify a transform function for a non-input value!");
3454     return;
3455   }
3456 
3457   if (Pat->getOperator()->getName() == "implicit") {
3458     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3459       TreePatternNode &Dest = Pat->getChild(i);
3460       if (!Dest.isLeaf())
3461         I.error("implicitly defined value should be a register!");
3462 
3463       const DefInit *Val = dyn_cast<DefInit>(Dest.getLeafValue());
3464       if (!Val || !Val->getDef()->isSubClassOf("Register"))
3465         I.error("implicitly defined value should be a register!");
3466       if (Val)
3467         InstImpResults.push_back(Val->getDef());
3468     }
3469     return;
3470   }
3471 
3472   if (Pat->getOperator()->getName() != "set") {
3473     // If this is not a set, verify that the children nodes are not void typed,
3474     // and recurse.
3475     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3476       if (Pat->getChild(i).getNumTypes() == 0)
3477         I.error("Cannot have void nodes inside of patterns!");
3478       FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs,
3479                                   InstResults, InstImpResults);
3480     }
3481 
3482     // If this is a non-leaf node with no children, treat it basically as if
3483     // it were a leaf.  This handles nodes like (imm).
3484     bool isUse = HandleUse(I, Pat, InstInputs);
3485 
3486     if (!isUse && Pat->getTransformFn())
3487       I.error("Cannot specify a transform function for a non-input value!");
3488     return;
3489   }
3490 
3491   // Otherwise, this is a set, validate and collect instruction results.
3492   if (Pat->getNumChildren() == 0)
3493     I.error("set requires operands!");
3494 
3495   if (Pat->getTransformFn())
3496     I.error("Cannot specify a transform function on a set node!");
3497 
3498   // Check the set destinations.
3499   unsigned NumDests = Pat->getNumChildren() - 1;
3500   for (unsigned i = 0; i != NumDests; ++i) {
3501     TreePatternNodePtr Dest = Pat->getChildShared(i);
3502     // For set destinations we also must resolve fragments here.
3503     TreePattern DestPattern(I.getRecord(), Dest, false, *this);
3504     DestPattern.InlinePatternFragments();
3505     DestPattern.InferAllTypes();
3506     Dest = DestPattern.getOnlyTree();
3507 
3508     if (!Dest->isLeaf())
3509       I.error("set destination should be a register!");
3510 
3511     const DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3512     if (!Val) {
3513       I.error("set destination should be a register!");
3514       continue;
3515     }
3516 
3517     if (Val->getDef()->isSubClassOf("RegisterClass") ||
3518         Val->getDef()->isSubClassOf("ValueType") ||
3519         Val->getDef()->isSubClassOf("RegisterOperand") ||
3520         Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
3521       if (Dest->getName().empty())
3522         I.error("set destination must have a name!");
3523       if (InstResults.count(Dest->getName()))
3524         I.error("cannot set '" + Dest->getName() + "' multiple times");
3525       InstResults[Dest->getName()] = Dest;
3526     } else if (Val->getDef()->isSubClassOf("Register")) {
3527       InstImpResults.push_back(Val->getDef());
3528     } else {
3529       I.error("set destination should be a register!");
3530     }
3531   }
3532 
3533   // Verify and collect info from the computation.
3534   FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs,
3535                               InstResults, InstImpResults);
3536 }
3537 
3538 //===----------------------------------------------------------------------===//
3539 // Instruction Analysis
3540 //===----------------------------------------------------------------------===//
3541 
3542 class InstAnalyzer {
3543   const CodeGenDAGPatterns &CDP;
3544 
3545 public:
3546   bool hasSideEffects;
3547   bool mayStore;
3548   bool mayLoad;
3549   bool isBitcast;
3550   bool isVariadic;
3551   bool hasChain;
3552 
3553   InstAnalyzer(const CodeGenDAGPatterns &cdp)
3554       : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
3555         isBitcast(false), isVariadic(false), hasChain(false) {}
3556 
3557   void Analyze(const PatternToMatch &Pat) {
3558     const TreePatternNode &N = Pat.getSrcPattern();
3559     AnalyzeNode(N);
3560     // These properties are detected only on the root node.
3561     isBitcast = IsNodeBitcast(N);
3562   }
3563 
3564 private:
3565   bool IsNodeBitcast(const TreePatternNode &N) const {
3566     if (hasSideEffects || mayLoad || mayStore || isVariadic)
3567       return false;
3568 
3569     if (N.isLeaf())
3570       return false;
3571     if (N.getNumChildren() != 1 || !N.getChild(0).isLeaf())
3572       return false;
3573 
3574     if (N.getOperator()->isSubClassOf("ComplexPattern"))
3575       return false;
3576 
3577     const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N.getOperator());
3578     if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
3579       return false;
3580     return OpInfo.getEnumName() == "ISD::BITCAST";
3581   }
3582 
3583 public:
3584   void AnalyzeNode(const TreePatternNode &N) {
3585     if (N.isLeaf()) {
3586       if (const DefInit *DI = dyn_cast<DefInit>(N.getLeafValue())) {
3587         const Record *LeafRec = DI->getDef();
3588         // Handle ComplexPattern leaves.
3589         if (LeafRec->isSubClassOf("ComplexPattern")) {
3590           const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
3591           if (CP.hasProperty(SDNPMayStore))
3592             mayStore = true;
3593           if (CP.hasProperty(SDNPMayLoad))
3594             mayLoad = true;
3595           if (CP.hasProperty(SDNPSideEffect))
3596             hasSideEffects = true;
3597         }
3598       }
3599       return;
3600     }
3601 
3602     // Analyze children.
3603     for (unsigned i = 0, e = N.getNumChildren(); i != e; ++i)
3604       AnalyzeNode(N.getChild(i));
3605 
3606     // Notice properties of the node.
3607     if (N.NodeHasProperty(SDNPMayStore, CDP))
3608       mayStore = true;
3609     if (N.NodeHasProperty(SDNPMayLoad, CDP))
3610       mayLoad = true;
3611     if (N.NodeHasProperty(SDNPSideEffect, CDP))
3612       hasSideEffects = true;
3613     if (N.NodeHasProperty(SDNPVariadic, CDP))
3614       isVariadic = true;
3615     if (N.NodeHasProperty(SDNPHasChain, CDP))
3616       hasChain = true;
3617 
3618     if (const CodeGenIntrinsic *IntInfo = N.getIntrinsicInfo(CDP)) {
3619       ModRefInfo MR = IntInfo->ME.getModRef();
3620       // If this is an intrinsic, analyze it.
3621       if (isRefSet(MR))
3622         mayLoad = true; // These may load memory.
3623 
3624       if (isModSet(MR))
3625         mayStore = true; // Intrinsics that can write to memory are 'mayStore'.
3626 
3627       // Consider intrinsics that don't specify any restrictions on memory
3628       // effects as having a side-effect.
3629       if (IntInfo->ME == MemoryEffects::unknown() || IntInfo->hasSideEffects)
3630         hasSideEffects = true;
3631     }
3632   }
3633 };
3634 
3635 static bool InferFromPattern(CodeGenInstruction &InstInfo,
3636                              const InstAnalyzer &PatInfo,
3637                              const Record *PatDef) {
3638   bool Error = false;
3639 
3640   // Remember where InstInfo got its flags.
3641   if (InstInfo.hasUndefFlags())
3642     InstInfo.InferredFrom = PatDef;
3643 
3644   // Check explicitly set flags for consistency.
3645   if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
3646       !InstInfo.hasSideEffects_Unset) {
3647     // Allow explicitly setting hasSideEffects = 1 on instructions, even when
3648     // the pattern has no side effects. That could be useful for div/rem
3649     // instructions that may trap.
3650     if (!InstInfo.hasSideEffects) {
3651       Error = true;
3652       PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
3653                                        Twine(InstInfo.hasSideEffects));
3654     }
3655   }
3656 
3657   if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
3658     Error = true;
3659     PrintError(PatDef->getLoc(),
3660                "Pattern doesn't match mayStore = " + Twine(InstInfo.mayStore));
3661   }
3662 
3663   if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
3664     // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
3665     // Some targets translate immediates to loads.
3666     if (!InstInfo.mayLoad) {
3667       Error = true;
3668       PrintError(PatDef->getLoc(),
3669                  "Pattern doesn't match mayLoad = " + Twine(InstInfo.mayLoad));
3670     }
3671   }
3672 
3673   // Transfer inferred flags.
3674   InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
3675   InstInfo.mayStore |= PatInfo.mayStore;
3676   InstInfo.mayLoad |= PatInfo.mayLoad;
3677 
3678   // These flags are silently added without any verification.
3679   // FIXME: To match historical behavior of TableGen, for now add those flags
3680   // only when we're inferring from the primary instruction pattern.
3681   if (PatDef->isSubClassOf("Instruction")) {
3682     InstInfo.isBitcast |= PatInfo.isBitcast;
3683     InstInfo.hasChain |= PatInfo.hasChain;
3684     InstInfo.hasChain_Inferred = true;
3685   }
3686 
3687   // Don't infer isVariadic. This flag means something different on SDNodes and
3688   // instructions. For example, a CALL SDNode is variadic because it has the
3689   // call arguments as operands, but a CALL instruction is not variadic - it
3690   // has argument registers as implicit, not explicit uses.
3691 
3692   return Error;
3693 }
3694 
3695 /// hasNullFragReference - Return true if the DAG has any reference to the
3696 /// null_frag operator.
3697 static bool hasNullFragReference(DagInit *DI) {
3698   DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
3699   if (!OpDef)
3700     return false;
3701   Record *Operator = OpDef->getDef();
3702 
3703   // If this is the null fragment, return true.
3704   if (Operator->getName() == "null_frag")
3705     return true;
3706   // If any of the arguments reference the null fragment, return true.
3707   for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
3708     if (auto Arg = dyn_cast<DefInit>(DI->getArg(i)))
3709       if (Arg->getDef()->getName() == "null_frag")
3710         return true;
3711     DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
3712     if (Arg && hasNullFragReference(Arg))
3713       return true;
3714   }
3715 
3716   return false;
3717 }
3718 
3719 /// hasNullFragReference - Return true if any DAG in the list references
3720 /// the null_frag operator.
3721 static bool hasNullFragReference(ListInit *LI) {
3722   for (Init *I : LI->getValues()) {
3723     DagInit *DI = dyn_cast<DagInit>(I);
3724     assert(DI && "non-dag in an instruction Pattern list?!");
3725     if (hasNullFragReference(DI))
3726       return true;
3727   }
3728   return false;
3729 }
3730 
3731 /// Get all the instructions in a tree.
3732 static void getInstructionsInTree(TreePatternNode &Tree,
3733                                   SmallVectorImpl<const Record *> &Instrs) {
3734   if (Tree.isLeaf())
3735     return;
3736   if (Tree.getOperator()->isSubClassOf("Instruction"))
3737     Instrs.push_back(Tree.getOperator());
3738   for (unsigned i = 0, e = Tree.getNumChildren(); i != e; ++i)
3739     getInstructionsInTree(Tree.getChild(i), Instrs);
3740 }
3741 
3742 /// Check the class of a pattern leaf node against the instruction operand it
3743 /// represents.
3744 static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
3745                               const Record *Leaf) {
3746   if (OI.Rec == Leaf)
3747     return true;
3748 
3749   // Allow direct value types to be used in instruction set patterns.
3750   // The type will be checked later.
3751   if (Leaf->isSubClassOf("ValueType"))
3752     return true;
3753 
3754   // Patterns can also be ComplexPattern instances.
3755   if (Leaf->isSubClassOf("ComplexPattern"))
3756     return true;
3757 
3758   return false;
3759 }
3760 
3761 void CodeGenDAGPatterns::parseInstructionPattern(CodeGenInstruction &CGI,
3762                                                  const ListInit *Pat,
3763                                                  DAGInstMap &DAGInsts) {
3764 
3765   assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
3766 
3767   // Parse the instruction.
3768   TreePattern I(CGI.TheDef, Pat, true, *this);
3769 
3770   // InstInputs - Keep track of all of the inputs of the instruction, along
3771   // with the record they are declared as.
3772   std::map<std::string, TreePatternNodePtr> InstInputs;
3773 
3774   // InstResults - Keep track of all the virtual registers that are 'set'
3775   // in the instruction, including what reg class they are.
3776   MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3777       InstResults;
3778 
3779   std::vector<const Record *> InstImpResults;
3780 
3781   // Verify that the top-level forms in the instruction are of void type, and
3782   // fill in the InstResults map.
3783   SmallString<32> TypesString;
3784   for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) {
3785     TypesString.clear();
3786     TreePatternNodePtr Pat = I.getTree(j);
3787     if (Pat->getNumTypes() != 0) {
3788       raw_svector_ostream OS(TypesString);
3789       ListSeparator LS;
3790       for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
3791         OS << LS;
3792         Pat->getExtType(k).writeToStream(OS);
3793       }
3794       I.error("Top-level forms in instruction pattern should have"
3795               " void types, has types " +
3796               OS.str());
3797     }
3798 
3799     // Find inputs and outputs, and verify the structure of the uses/defs.
3800     FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
3801                                 InstImpResults);
3802   }
3803 
3804   // Now that we have inputs and outputs of the pattern, inspect the operands
3805   // list for the instruction.  This determines the order that operands are
3806   // added to the machine instruction the node corresponds to.
3807   unsigned NumResults = InstResults.size();
3808 
3809   // Parse the operands list from the (ops) list, validating it.
3810   assert(I.getArgList().empty() && "Args list should still be empty here!");
3811 
3812   // Check that all of the results occur first in the list.
3813   std::vector<const Record *> Results;
3814   std::vector<unsigned> ResultIndices;
3815   SmallVector<TreePatternNodePtr, 2> ResNodes;
3816   for (unsigned i = 0; i != NumResults; ++i) {
3817     if (i == CGI.Operands.size()) {
3818       const std::string &OpName =
3819           llvm::find_if(
3820               InstResults,
3821               [](const std::pair<std::string, TreePatternNodePtr> &P) {
3822                 return P.second;
3823               })
3824               ->first;
3825 
3826       I.error("'" + OpName + "' set but does not appear in operand list!");
3827     }
3828 
3829     const std::string &OpName = CGI.Operands[i].Name;
3830 
3831     // Check that it exists in InstResults.
3832     auto InstResultIter = InstResults.find(OpName);
3833     if (InstResultIter == InstResults.end() || !InstResultIter->second)
3834       I.error("Operand $" + OpName + " does not exist in operand list!");
3835 
3836     TreePatternNodePtr RNode = InstResultIter->second;
3837     const Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3838     ResNodes.push_back(std::move(RNode));
3839     if (!R)
3840       I.error("Operand $" + OpName +
3841               " should be a set destination: all "
3842               "outputs must occur before inputs in operand list!");
3843 
3844     if (!checkOperandClass(CGI.Operands[i], R))
3845       I.error("Operand $" + OpName + " class mismatch!");
3846 
3847     // Remember the return type.
3848     Results.push_back(CGI.Operands[i].Rec);
3849 
3850     // Remember the result index.
3851     ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter));
3852 
3853     // Okay, this one checks out.
3854     InstResultIter->second = nullptr;
3855   }
3856 
3857   // Loop over the inputs next.
3858   std::vector<TreePatternNodePtr> ResultNodeOperands;
3859   std::vector<const Record *> Operands;
3860   for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3861     CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3862     const std::string &OpName = Op.Name;
3863     if (OpName.empty()) {
3864       I.error("Operand #" + Twine(i) + " in operands list has no name!");
3865       continue;
3866     }
3867 
3868     if (!InstInputs.count(OpName)) {
3869       // If this is an operand with a DefaultOps set filled in, we can ignore
3870       // this.  When we codegen it, we will do so as always executed.
3871       if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3872         // Does it have a non-empty DefaultOps field?  If so, ignore this
3873         // operand.
3874         if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3875           continue;
3876       }
3877       I.error("Operand $" + OpName +
3878               " does not appear in the instruction pattern");
3879       continue;
3880     }
3881     TreePatternNodePtr InVal = InstInputs[OpName];
3882     InstInputs.erase(OpName); // It occurred, remove from map.
3883 
3884     if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3885       const Record *InRec = cast<DefInit>(InVal->getLeafValue())->getDef();
3886       if (!checkOperandClass(Op, InRec)) {
3887         I.error("Operand $" + OpName +
3888                 "'s register class disagrees"
3889                 " between the operand and pattern");
3890         continue;
3891       }
3892     }
3893     Operands.push_back(Op.Rec);
3894 
3895     // Construct the result for the dest-pattern operand list.
3896     TreePatternNodePtr OpNode = InVal->clone();
3897 
3898     // No predicate is useful on the result.
3899     OpNode->clearPredicateCalls();
3900 
3901     // Promote the xform function to be an explicit node if set.
3902     if (const Record *Xform = OpNode->getTransformFn()) {
3903       OpNode->setTransformFn(nullptr);
3904       std::vector<TreePatternNodePtr> Children;
3905       Children.push_back(OpNode);
3906       OpNode = makeIntrusiveRefCnt<TreePatternNode>(Xform, std::move(Children),
3907                                                     OpNode->getNumTypes());
3908     }
3909 
3910     ResultNodeOperands.push_back(std::move(OpNode));
3911   }
3912 
3913   if (!InstInputs.empty())
3914     I.error("Input operand $" + InstInputs.begin()->first +
3915             " occurs in pattern but not in operands list!");
3916 
3917   TreePatternNodePtr ResultPattern = makeIntrusiveRefCnt<TreePatternNode>(
3918       I.getRecord(), std::move(ResultNodeOperands),
3919       GetNumNodeResults(I.getRecord(), *this));
3920   // Copy fully inferred output node types to instruction result pattern.
3921   for (unsigned i = 0; i != NumResults; ++i) {
3922     assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
3923     ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3924     ResultPattern->setResultIndex(i, ResultIndices[i]);
3925   }
3926 
3927   // FIXME: Assume only the first tree is the pattern. The others are clobber
3928   // nodes.
3929   TreePatternNodePtr Pattern = I.getTree(0);
3930   TreePatternNodePtr SrcPattern;
3931   if (Pattern->getOperator()->getName() == "set") {
3932     SrcPattern = Pattern->getChild(Pattern->getNumChildren() - 1).clone();
3933   } else {
3934     // Not a set (store or something?)
3935     SrcPattern = Pattern;
3936   }
3937 
3938   // Create and insert the instruction.
3939   // FIXME: InstImpResults should not be part of DAGInstruction.
3940   DAGInsts.try_emplace(I.getRecord(), std::move(Results), std::move(Operands),
3941                        std::move(InstImpResults), SrcPattern, ResultPattern);
3942 
3943   LLVM_DEBUG(I.dump());
3944 }
3945 
3946 /// ParseInstructions - Parse all of the instructions, inlining and resolving
3947 /// any fragments involved.  This populates the Instructions list with fully
3948 /// resolved instructions.
3949 void CodeGenDAGPatterns::ParseInstructions() {
3950   for (const Record *Instr : Records.getAllDerivedDefinitions("Instruction")) {
3951     ListInit *LI = nullptr;
3952 
3953     if (isa<ListInit>(Instr->getValueInit("Pattern")))
3954       LI = Instr->getValueAsListInit("Pattern");
3955 
3956     // If there is no pattern, only collect minimal information about the
3957     // instruction for its operand list.  We have to assume that there is one
3958     // result, as we have no detailed info. A pattern which references the
3959     // null_frag operator is as-if no pattern were specified. Normally this
3960     // is from a multiclass expansion w/ a SDPatternOperator passed in as
3961     // null_frag.
3962     if (!LI || LI->empty() || hasNullFragReference(LI)) {
3963       std::vector<const Record *> Results;
3964       std::vector<const Record *> Operands;
3965 
3966       CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3967 
3968       if (InstInfo.Operands.size() != 0) {
3969         for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3970           Results.push_back(InstInfo.Operands[j].Rec);
3971 
3972         // The rest are inputs.
3973         for (unsigned j = InstInfo.Operands.NumDefs,
3974                       e = InstInfo.Operands.size();
3975              j < e; ++j)
3976           Operands.push_back(InstInfo.Operands[j].Rec);
3977       }
3978 
3979       // Create and insert the instruction.
3980       Instructions.try_emplace(Instr, std::move(Results), std::move(Operands),
3981                                std::vector<const Record *>());
3982       continue; // no pattern.
3983     }
3984 
3985     CodeGenInstruction &CGI = Target.getInstruction(Instr);
3986     parseInstructionPattern(CGI, LI, Instructions);
3987   }
3988 
3989   // If we can, convert the instructions to be patterns that are matched!
3990   for (const auto &[Instr, TheInst] : Instructions) {
3991     TreePatternNodePtr SrcPattern = TheInst.getSrcPattern();
3992     TreePatternNodePtr ResultPattern = TheInst.getResultPattern();
3993 
3994     if (SrcPattern && ResultPattern) {
3995       TreePattern Pattern(Instr, SrcPattern, true, *this);
3996       TreePattern Result(Instr, ResultPattern, false, *this);
3997       ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults());
3998     }
3999   }
4000 }
4001 
4002 typedef std::pair<TreePatternNode *, unsigned> NameRecord;
4003 
4004 static void FindNames(TreePatternNode &P,
4005                       std::map<std::string, NameRecord> &Names,
4006                       TreePattern *PatternTop) {
4007   if (!P.getName().empty()) {
4008     NameRecord &Rec = Names[P.getName()];
4009     // If this is the first instance of the name, remember the node.
4010     if (Rec.second++ == 0)
4011       Rec.first = &P;
4012     else if (Rec.first->getExtTypes() != P.getExtTypes())
4013       PatternTop->error("repetition of value: $" + P.getName() +
4014                         " where different uses have different types!");
4015   }
4016 
4017   if (!P.isLeaf()) {
4018     for (unsigned i = 0, e = P.getNumChildren(); i != e; ++i)
4019       FindNames(P.getChild(i), Names, PatternTop);
4020   }
4021 }
4022 
4023 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
4024                                            PatternToMatch &&PTM) {
4025   // Do some sanity checking on the pattern we're about to match.
4026   std::string Reason;
4027   if (!PTM.getSrcPattern().canPatternMatch(Reason, *this)) {
4028     PrintWarning(Pattern->getRecord()->getLoc(),
4029                  Twine("Pattern can never match: ") + Reason);
4030     return;
4031   }
4032 
4033   // If the source pattern's root is a complex pattern, that complex pattern
4034   // must specify the nodes it can potentially match.
4035   if (const ComplexPattern *CP =
4036           PTM.getSrcPattern().getComplexPatternInfo(*this))
4037     if (CP->getRootNodes().empty())
4038       Pattern->error("ComplexPattern at root must specify list of opcodes it"
4039                      " could match");
4040 
4041   // Find all of the named values in the input and output, ensure they have the
4042   // same type.
4043   std::map<std::string, NameRecord> SrcNames, DstNames;
4044   FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
4045   FindNames(PTM.getDstPattern(), DstNames, Pattern);
4046 
4047   // Scan all of the named values in the destination pattern, rejecting them if
4048   // they don't exist in the input pattern.
4049   for (const auto &Entry : DstNames) {
4050     if (SrcNames[Entry.first].first == nullptr)
4051       Pattern->error("Pattern has input without matching name in output: $" +
4052                      Entry.first);
4053   }
4054 
4055   // Scan all of the named values in the source pattern, rejecting them if the
4056   // name isn't used in the dest, and isn't used to tie two values together.
4057   for (const auto &Entry : SrcNames)
4058     if (DstNames[Entry.first].first == nullptr &&
4059         SrcNames[Entry.first].second == 1)
4060       Pattern->error("Pattern has dead named input: $" + Entry.first);
4061 
4062   PatternsToMatch.push_back(std::move(PTM));
4063 }
4064 
4065 void CodeGenDAGPatterns::InferInstructionFlags() {
4066   ArrayRef<const CodeGenInstruction *> Instructions =
4067       Target.getInstructionsByEnumValue();
4068 
4069   unsigned Errors = 0;
4070 
4071   // Try to infer flags from all patterns in PatternToMatch.  These include
4072   // both the primary instruction patterns (which always come first) and
4073   // patterns defined outside the instruction.
4074   for (const PatternToMatch &PTM : ptms()) {
4075     // We can only infer from single-instruction patterns, otherwise we won't
4076     // know which instruction should get the flags.
4077     SmallVector<const Record *, 8> PatInstrs;
4078     getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
4079     if (PatInstrs.size() != 1)
4080       continue;
4081 
4082     // Get the single instruction.
4083     CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
4084 
4085     // Only infer properties from the first pattern. We'll verify the others.
4086     if (InstInfo.InferredFrom)
4087       continue;
4088 
4089     InstAnalyzer PatInfo(*this);
4090     PatInfo.Analyze(PTM);
4091     Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
4092   }
4093 
4094   if (Errors)
4095     PrintFatalError("pattern conflicts");
4096 
4097   // If requested by the target, guess any undefined properties.
4098   if (Target.guessInstructionProperties()) {
4099     for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
4100       CodeGenInstruction *InstInfo =
4101           const_cast<CodeGenInstruction *>(Instructions[i]);
4102       if (InstInfo->InferredFrom)
4103         continue;
4104       // The mayLoad and mayStore flags default to false.
4105       // Conservatively assume hasSideEffects if it wasn't explicit.
4106       if (InstInfo->hasSideEffects_Unset)
4107         InstInfo->hasSideEffects = true;
4108     }
4109     return;
4110   }
4111 
4112   // Complain about any flags that are still undefined.
4113   for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
4114     CodeGenInstruction *InstInfo =
4115         const_cast<CodeGenInstruction *>(Instructions[i]);
4116     if (InstInfo->InferredFrom)
4117       continue;
4118     if (InstInfo->hasSideEffects_Unset)
4119       PrintError(InstInfo->TheDef->getLoc(),
4120                  "Can't infer hasSideEffects from patterns");
4121     if (InstInfo->mayStore_Unset)
4122       PrintError(InstInfo->TheDef->getLoc(),
4123                  "Can't infer mayStore from patterns");
4124     if (InstInfo->mayLoad_Unset)
4125       PrintError(InstInfo->TheDef->getLoc(),
4126                  "Can't infer mayLoad from patterns");
4127   }
4128 }
4129 
4130 /// Verify instruction flags against pattern node properties.
4131 void CodeGenDAGPatterns::VerifyInstructionFlags() {
4132   unsigned Errors = 0;
4133   for (const PatternToMatch &PTM : ptms()) {
4134     SmallVector<const Record *, 8> Instrs;
4135     getInstructionsInTree(PTM.getDstPattern(), Instrs);
4136     if (Instrs.empty())
4137       continue;
4138 
4139     // Count the number of instructions with each flag set.
4140     unsigned NumSideEffects = 0;
4141     unsigned NumStores = 0;
4142     unsigned NumLoads = 0;
4143     for (const Record *Instr : Instrs) {
4144       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4145       NumSideEffects += InstInfo.hasSideEffects;
4146       NumStores += InstInfo.mayStore;
4147       NumLoads += InstInfo.mayLoad;
4148     }
4149 
4150     // Analyze the source pattern.
4151     InstAnalyzer PatInfo(*this);
4152     PatInfo.Analyze(PTM);
4153 
4154     // Collect error messages.
4155     SmallVector<std::string, 4> Msgs;
4156 
4157     // Check for missing flags in the output.
4158     // Permit extra flags for now at least.
4159     if (PatInfo.hasSideEffects && !NumSideEffects)
4160       Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
4161 
4162     // Don't verify store flags on instructions with side effects. At least for
4163     // intrinsics, side effects implies mayStore.
4164     if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
4165       Msgs.push_back("pattern may store, but mayStore isn't set");
4166 
4167     // Similarly, mayStore implies mayLoad on intrinsics.
4168     if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
4169       Msgs.push_back("pattern may load, but mayLoad isn't set");
4170 
4171     // Print error messages.
4172     if (Msgs.empty())
4173       continue;
4174     ++Errors;
4175 
4176     for (const std::string &Msg : Msgs)
4177       PrintError(
4178           PTM.getSrcRecord()->getLoc(),
4179           Twine(Msg) + " on the " +
4180               (Instrs.size() == 1 ? "instruction" : "output instructions"));
4181     // Provide the location of the relevant instruction definitions.
4182     for (const Record *Instr : Instrs) {
4183       if (Instr != PTM.getSrcRecord())
4184         PrintError(Instr->getLoc(), "defined here");
4185       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4186       if (InstInfo.InferredFrom && InstInfo.InferredFrom != InstInfo.TheDef &&
4187           InstInfo.InferredFrom != PTM.getSrcRecord())
4188         PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
4189     }
4190   }
4191   if (Errors)
4192     PrintFatalError("Errors in DAG patterns");
4193 }
4194 
4195 /// Given a pattern result with an unresolved type, see if we can find one
4196 /// instruction with an unresolved result type.  Force this result type to an
4197 /// arbitrary element if it's possible types to converge results.
4198 static bool ForceArbitraryInstResultType(TreePatternNode &N, TreePattern &TP) {
4199   if (N.isLeaf())
4200     return false;
4201 
4202   // Analyze children.
4203   for (unsigned i = 0, e = N.getNumChildren(); i != e; ++i)
4204     if (ForceArbitraryInstResultType(N.getChild(i), TP))
4205       return true;
4206 
4207   if (!N.getOperator()->isSubClassOf("Instruction"))
4208     return false;
4209 
4210   // If this type is already concrete or completely unknown we can't do
4211   // anything.
4212   TypeInfer &TI = TP.getInfer();
4213   for (unsigned i = 0, e = N.getNumTypes(); i != e; ++i) {
4214     if (N.getExtType(i).empty() || TI.isConcrete(N.getExtType(i), false))
4215       continue;
4216 
4217     // Otherwise, force its type to an arbitrary choice.
4218     if (TI.forceArbitrary(N.getExtType(i)))
4219       return true;
4220   }
4221 
4222   return false;
4223 }
4224 
4225 // Promote xform function to be an explicit node wherever set.
4226 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) {
4227   if (const Record *Xform = N->getTransformFn()) {
4228     N->setTransformFn(nullptr);
4229     std::vector<TreePatternNodePtr> Children;
4230     Children.push_back(PromoteXForms(N));
4231     return makeIntrusiveRefCnt<TreePatternNode>(Xform, std::move(Children),
4232                                                 N->getNumTypes());
4233   }
4234 
4235   if (!N->isLeaf())
4236     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4237       TreePatternNodePtr Child = N->getChildShared(i);
4238       N->setChild(i, PromoteXForms(Child));
4239     }
4240   return N;
4241 }
4242 
4243 void CodeGenDAGPatterns::ParseOnePattern(
4244     const Record *TheDef, TreePattern &Pattern, TreePattern &Result,
4245     ArrayRef<const Record *> InstImpResults, bool ShouldIgnore) {
4246   // Inline pattern fragments and expand multiple alternatives.
4247   Pattern.InlinePatternFragments();
4248   Result.InlinePatternFragments();
4249 
4250   if (Result.getNumTrees() != 1) {
4251     Result.error("Cannot use multi-alternative fragments in result pattern!");
4252     return;
4253   }
4254 
4255   // Infer types.
4256   bool IterateInference;
4257   bool InferredAllPatternTypes, InferredAllResultTypes;
4258   do {
4259     // Infer as many types as possible.  If we cannot infer all of them, we
4260     // can never do anything with this pattern: report it to the user.
4261     InferredAllPatternTypes =
4262         Pattern.InferAllTypes(&Pattern.getNamedNodesMap());
4263 
4264     // Infer as many types as possible.  If we cannot infer all of them, we
4265     // can never do anything with this pattern: report it to the user.
4266     InferredAllResultTypes = Result.InferAllTypes(&Pattern.getNamedNodesMap());
4267 
4268     IterateInference = false;
4269 
4270     // Apply the type of the result to the source pattern.  This helps us
4271     // resolve cases where the input type is known to be a pointer type (which
4272     // is considered resolved), but the result knows it needs to be 32- or
4273     // 64-bits.  Infer the other way for good measure.
4274     for (const auto &T : Pattern.getTrees())
4275       for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(),
4276                                         T->getNumTypes());
4277            i != e; ++i) {
4278         IterateInference |=
4279             T->UpdateNodeType(i, Result.getOnlyTree()->getExtType(i), Result);
4280         IterateInference |=
4281             Result.getOnlyTree()->UpdateNodeType(i, T->getExtType(i), Result);
4282       }
4283 
4284     // If our iteration has converged and the input pattern's types are fully
4285     // resolved but the result pattern is not fully resolved, we may have a
4286     // situation where we have two instructions in the result pattern and
4287     // the instructions require a common register class, but don't care about
4288     // what actual MVT is used.  This is actually a bug in our modelling:
4289     // output patterns should have register classes, not MVTs.
4290     //
4291     // In any case, to handle this, we just go through and disambiguate some
4292     // arbitrary types to the result pattern's nodes.
4293     if (!IterateInference && InferredAllPatternTypes && !InferredAllResultTypes)
4294       IterateInference =
4295           ForceArbitraryInstResultType(*Result.getTree(0), Result);
4296   } while (IterateInference);
4297 
4298   // Verify that we inferred enough types that we can do something with the
4299   // pattern and result.  If these fire the user has to add type casts.
4300   if (!InferredAllPatternTypes)
4301     Pattern.error("Could not infer all types in pattern!");
4302   if (!InferredAllResultTypes) {
4303     Pattern.dump();
4304     Result.error("Could not infer all types in pattern result!");
4305   }
4306 
4307   // Promote xform function to be an explicit node wherever set.
4308   TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree());
4309 
4310   TreePattern Temp(Result.getRecord(), DstShared, false, *this);
4311   Temp.InferAllTypes();
4312 
4313   ListInit *Preds = TheDef->getValueAsListInit("Predicates");
4314   int Complexity = TheDef->getValueAsInt("AddedComplexity");
4315 
4316   if (PatternRewriter)
4317     PatternRewriter(&Pattern);
4318 
4319   // A pattern may end up with an "impossible" type, i.e. a situation
4320   // where all types have been eliminated for some node in this pattern.
4321   // This could occur for intrinsics that only make sense for a specific
4322   // value type, and use a specific register class. If, for some mode,
4323   // that register class does not accept that type, the type inference
4324   // will lead to a contradiction, which is not an error however, but
4325   // a sign that this pattern will simply never match.
4326   if (Temp.getOnlyTree()->hasPossibleType()) {
4327     for (const auto &T : Pattern.getTrees()) {
4328       if (T->hasPossibleType())
4329         AddPatternToMatch(&Pattern,
4330                           PatternToMatch(TheDef, Preds, T, Temp.getOnlyTree(),
4331                                          InstImpResults, Complexity,
4332                                          TheDef->getID(), ShouldIgnore));
4333     }
4334   } else {
4335     // Show a message about a dropped pattern with some info to make it
4336     // easier to identify it in the .td files.
4337     LLVM_DEBUG({
4338       dbgs() << "Dropping: ";
4339       Pattern.dump();
4340       Temp.getOnlyTree()->dump();
4341       dbgs() << "\n";
4342     });
4343   }
4344 }
4345 
4346 void CodeGenDAGPatterns::ParsePatterns() {
4347   for (const Record *CurPattern : Records.getAllDerivedDefinitions("Pattern")) {
4348     DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
4349 
4350     // If the pattern references the null_frag, there's nothing to do.
4351     if (hasNullFragReference(Tree))
4352       continue;
4353 
4354     TreePattern Pattern(CurPattern, Tree, true, *this);
4355 
4356     ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
4357     if (LI->empty())
4358       continue; // no pattern.
4359 
4360     // Parse the instruction.
4361     TreePattern Result(CurPattern, LI, false, *this);
4362 
4363     if (Result.getNumTrees() != 1)
4364       Result.error("Cannot handle instructions producing instructions "
4365                    "with temporaries yet!");
4366 
4367     // Validate that the input pattern is correct.
4368     std::map<std::string, TreePatternNodePtr> InstInputs;
4369     MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
4370         InstResults;
4371     std::vector<const Record *> InstImpResults;
4372     for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j)
4373       FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs,
4374                                   InstResults, InstImpResults);
4375 
4376     ParseOnePattern(CurPattern, Pattern, Result, InstImpResults,
4377                     CurPattern->getValueAsBit("GISelShouldIgnore"));
4378   }
4379 }
4380 
4381 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode &N) {
4382   for (const TypeSetByHwMode &VTS : N.getExtTypes())
4383     for (const auto &I : VTS)
4384       Modes.insert(I.first);
4385 
4386   for (unsigned i = 0, e = N.getNumChildren(); i != e; ++i)
4387     collectModes(Modes, N.getChild(i));
4388 }
4389 
4390 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
4391   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
4392   if (CGH.getNumModeIds() == 1)
4393     return;
4394 
4395   std::vector<PatternToMatch> Copy;
4396   PatternsToMatch.swap(Copy);
4397 
4398   auto AppendPattern = [this](PatternToMatch &P, unsigned Mode,
4399                               StringRef Check) {
4400     TreePatternNodePtr NewSrc = P.getSrcPattern().clone();
4401     TreePatternNodePtr NewDst = P.getDstPattern().clone();
4402     if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
4403       return;
4404     }
4405 
4406     PatternsToMatch.emplace_back(P.getSrcRecord(), P.getPredicates(),
4407                                  std::move(NewSrc), std::move(NewDst),
4408                                  P.getDstRegs(), P.getAddedComplexity(),
4409                                  getNewUID(), P.getGISelShouldIgnore(), Check);
4410   };
4411 
4412   for (PatternToMatch &P : Copy) {
4413     const TreePatternNode *SrcP = nullptr, *DstP = nullptr;
4414     if (P.getSrcPattern().hasProperTypeByHwMode())
4415       SrcP = &P.getSrcPattern();
4416     if (P.getDstPattern().hasProperTypeByHwMode())
4417       DstP = &P.getDstPattern();
4418     if (!SrcP && !DstP) {
4419       PatternsToMatch.push_back(P);
4420       continue;
4421     }
4422 
4423     std::set<unsigned> Modes;
4424     if (SrcP)
4425       collectModes(Modes, *SrcP);
4426     if (DstP)
4427       collectModes(Modes, *DstP);
4428 
4429     // The predicate for the default mode needs to be constructed for each
4430     // pattern separately.
4431     // Since not all modes must be present in each pattern, if a mode m is
4432     // absent, then there is no point in constructing a check for m. If such
4433     // a check was created, it would be equivalent to checking the default
4434     // mode, except not all modes' predicates would be a part of the checking
4435     // code. The subsequently generated check for the default mode would then
4436     // have the exact same patterns, but a different predicate code. To avoid
4437     // duplicated patterns with different predicate checks, construct the
4438     // default check as a negation of all predicates that are actually present
4439     // in the source/destination patterns.
4440     SmallString<128> DefaultCheck;
4441 
4442     for (unsigned M : Modes) {
4443       if (M == DefaultMode)
4444         continue;
4445 
4446       // Fill the map entry for this mode.
4447       const HwMode &HM = CGH.getMode(M);
4448       AppendPattern(P, M, HM.Predicates);
4449 
4450       // Add negations of the HM's predicates to the default predicate.
4451       if (!DefaultCheck.empty())
4452         DefaultCheck += " && ";
4453       DefaultCheck += "!(";
4454       DefaultCheck += HM.Predicates;
4455       DefaultCheck += ")";
4456     }
4457 
4458     bool HasDefault = Modes.count(DefaultMode);
4459     if (HasDefault)
4460       AppendPattern(P, DefaultMode, DefaultCheck);
4461   }
4462 }
4463 
4464 /// Dependent variable map for CodeGenDAGPattern variant generation
4465 typedef StringMap<int> DepVarMap;
4466 
4467 static void FindDepVarsOf(TreePatternNode &N, DepVarMap &DepMap) {
4468   if (N.isLeaf()) {
4469     if (N.hasName() && isa<DefInit>(N.getLeafValue()))
4470       DepMap[N.getName()]++;
4471   } else {
4472     for (size_t i = 0, e = N.getNumChildren(); i != e; ++i)
4473       FindDepVarsOf(N.getChild(i), DepMap);
4474   }
4475 }
4476 
4477 /// Find dependent variables within child patterns
4478 static void FindDepVars(TreePatternNode &N, MultipleUseVarSet &DepVars) {
4479   DepVarMap depcounts;
4480   FindDepVarsOf(N, depcounts);
4481   for (const auto &Pair : depcounts) {
4482     if (Pair.getValue() > 1)
4483       DepVars.insert(Pair.getKey());
4484   }
4485 }
4486 
4487 #ifndef NDEBUG
4488 /// Dump the dependent variable set:
4489 static void DumpDepVars(MultipleUseVarSet &DepVars) {
4490   if (DepVars.empty()) {
4491     LLVM_DEBUG(errs() << "<empty set>");
4492   } else {
4493     LLVM_DEBUG(errs() << "[ ");
4494     for (const auto &DepVar : DepVars) {
4495       LLVM_DEBUG(errs() << DepVar.getKey() << " ");
4496     }
4497     LLVM_DEBUG(errs() << "]");
4498   }
4499 }
4500 #endif
4501 
4502 /// CombineChildVariants - Given a bunch of permutations of each child of the
4503 /// 'operator' node, put them together in all possible ways.
4504 static void CombineChildVariants(
4505     TreePatternNodePtr Orig,
4506     const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants,
4507     std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP,
4508     const MultipleUseVarSet &DepVars) {
4509   // Make sure that each operand has at least one variant to choose from.
4510   for (const auto &Variants : ChildVariants)
4511     if (Variants.empty())
4512       return;
4513 
4514   // The end result is an all-pairs construction of the resultant pattern.
4515   std::vector<unsigned> Idxs(ChildVariants.size());
4516   bool NotDone;
4517   do {
4518 #ifndef NDEBUG
4519     LLVM_DEBUG(if (!Idxs.empty()) {
4520       errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
4521       for (unsigned Idx : Idxs) {
4522         errs() << Idx << " ";
4523       }
4524       errs() << "]\n";
4525     });
4526 #endif
4527     // Create the variant and add it to the output list.
4528     std::vector<TreePatternNodePtr> NewChildren;
4529     NewChildren.reserve(ChildVariants.size());
4530     for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
4531       NewChildren.push_back(ChildVariants[i][Idxs[i]]);
4532     TreePatternNodePtr R = makeIntrusiveRefCnt<TreePatternNode>(
4533         Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes());
4534 
4535     // Copy over properties.
4536     R->setName(Orig->getName());
4537     R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg());
4538     R->setPredicateCalls(Orig->getPredicateCalls());
4539     R->setGISelFlagsRecord(Orig->getGISelFlagsRecord());
4540     R->setTransformFn(Orig->getTransformFn());
4541     for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
4542       R->setType(i, Orig->getExtType(i));
4543 
4544     // If this pattern cannot match, do not include it as a variant.
4545     std::string ErrString;
4546     // Scan to see if this pattern has already been emitted.  We can get
4547     // duplication due to things like commuting:
4548     //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
4549     // which are the same pattern.  Ignore the dups.
4550     if (R->canPatternMatch(ErrString, CDP) &&
4551         none_of(OutVariants, [&](TreePatternNodePtr Variant) {
4552           return R->isIsomorphicTo(*Variant, DepVars);
4553         }))
4554       OutVariants.push_back(R);
4555 
4556     // Increment indices to the next permutation by incrementing the
4557     // indices from last index backward, e.g., generate the sequence
4558     // [0, 0], [0, 1], [1, 0], [1, 1].
4559     int IdxsIdx;
4560     for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
4561       if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
4562         Idxs[IdxsIdx] = 0;
4563       else
4564         break;
4565     }
4566     NotDone = (IdxsIdx >= 0);
4567   } while (NotDone);
4568 }
4569 
4570 /// CombineChildVariants - A helper function for binary operators.
4571 ///
4572 static void CombineChildVariants(TreePatternNodePtr Orig,
4573                                  const std::vector<TreePatternNodePtr> &LHS,
4574                                  const std::vector<TreePatternNodePtr> &RHS,
4575                                  std::vector<TreePatternNodePtr> &OutVariants,
4576                                  CodeGenDAGPatterns &CDP,
4577                                  const MultipleUseVarSet &DepVars) {
4578   std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4579   ChildVariants.push_back(LHS);
4580   ChildVariants.push_back(RHS);
4581   CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
4582 }
4583 
4584 static void
4585 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,
4586                                   std::vector<TreePatternNodePtr> &Children) {
4587   assert(N->getNumChildren() == 2 &&
4588          "Associative but doesn't have 2 children!");
4589   const Record *Operator = N->getOperator();
4590 
4591   // Only permit raw nodes.
4592   if (!N->getName().empty() || !N->getPredicateCalls().empty() ||
4593       N->getTransformFn()) {
4594     Children.push_back(N);
4595     return;
4596   }
4597 
4598   if (N->getChild(0).isLeaf() || N->getChild(0).getOperator() != Operator)
4599     Children.push_back(N->getChildShared(0));
4600   else
4601     GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children);
4602 
4603   if (N->getChild(1).isLeaf() || N->getChild(1).getOperator() != Operator)
4604     Children.push_back(N->getChildShared(1));
4605   else
4606     GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children);
4607 }
4608 
4609 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
4610 /// the (potentially recursive) pattern by using algebraic laws.
4611 ///
4612 static void GenerateVariantsOf(TreePatternNodePtr N,
4613                                std::vector<TreePatternNodePtr> &OutVariants,
4614                                CodeGenDAGPatterns &CDP,
4615                                const MultipleUseVarSet &DepVars) {
4616   // We cannot permute leaves or ComplexPattern uses.
4617   if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
4618     OutVariants.push_back(N);
4619     return;
4620   }
4621 
4622   // Look up interesting info about the node.
4623   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
4624 
4625   // If this node is associative, re-associate.
4626   if (NodeInfo.hasProperty(SDNPAssociative)) {
4627     // Re-associate by pulling together all of the linked operators
4628     std::vector<TreePatternNodePtr> MaximalChildren;
4629     GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
4630 
4631     // Only handle child sizes of 3.  Otherwise we'll end up trying too many
4632     // permutations.
4633     if (MaximalChildren.size() == 3) {
4634       // Find the variants of all of our maximal children.
4635       std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants;
4636       GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
4637       GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
4638       GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
4639 
4640       // There are only two ways we can permute the tree:
4641       //   (A op B) op C    and    A op (B op C)
4642       // Within these forms, we can also permute A/B/C.
4643 
4644       // Generate legal pair permutations of A/B/C.
4645       std::vector<TreePatternNodePtr> ABVariants;
4646       std::vector<TreePatternNodePtr> BAVariants;
4647       std::vector<TreePatternNodePtr> ACVariants;
4648       std::vector<TreePatternNodePtr> CAVariants;
4649       std::vector<TreePatternNodePtr> BCVariants;
4650       std::vector<TreePatternNodePtr> CBVariants;
4651       CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
4652       CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
4653       CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
4654       CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
4655       CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
4656       CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
4657 
4658       // Combine those into the result: (x op x) op x
4659       CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
4660       CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
4661       CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
4662       CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
4663       CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
4664       CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
4665 
4666       // Combine those into the result: x op (x op x)
4667       CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
4668       CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
4669       CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
4670       CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
4671       CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
4672       CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
4673       return;
4674     }
4675   }
4676 
4677   // Compute permutations of all children.
4678   std::vector<std::vector<TreePatternNodePtr>> ChildVariants(
4679       N->getNumChildren());
4680   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4681     GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars);
4682 
4683   // Build all permutations based on how the children were formed.
4684   CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4685 
4686   // If this node is commutative, consider the commuted order.
4687   bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
4688   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
4689     unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
4690     assert(N->getNumChildren() >= (2 + Skip) &&
4691            "Commutative but doesn't have 2 children!");
4692     // Don't allow commuting children which are actually register references.
4693     bool NoRegisters = true;
4694     unsigned i = 0 + Skip;
4695     unsigned e = 2 + Skip;
4696     for (; i != e; ++i) {
4697       TreePatternNode &Child = N->getChild(i);
4698       if (Child.isLeaf())
4699         if (const DefInit *DI = dyn_cast<DefInit>(Child.getLeafValue())) {
4700           const Record *RR = DI->getDef();
4701           if (RR->isSubClassOf("Register"))
4702             NoRegisters = false;
4703         }
4704     }
4705     // Consider the commuted order.
4706     if (NoRegisters) {
4707       // Swap the first two operands after the intrinsic id, if present.
4708       unsigned i = isCommIntrinsic ? 1 : 0;
4709       std::swap(ChildVariants[i], ChildVariants[i + 1]);
4710       CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4711     }
4712   }
4713 }
4714 
4715 // GenerateVariants - Generate variants.  For example, commutative patterns can
4716 // match multiple ways.  Add them to PatternsToMatch as well.
4717 void CodeGenDAGPatterns::GenerateVariants() {
4718   LLVM_DEBUG(errs() << "Generating instruction variants.\n");
4719 
4720   // Loop over all of the patterns we've collected, checking to see if we can
4721   // generate variants of the instruction, through the exploitation of
4722   // identities.  This permits the target to provide aggressive matching without
4723   // the .td file having to contain tons of variants of instructions.
4724   //
4725   // Note that this loop adds new patterns to the PatternsToMatch list, but we
4726   // intentionally do not reconsider these.  Any variants of added patterns have
4727   // already been added.
4728   //
4729   for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
4730     MultipleUseVarSet DepVars;
4731     std::vector<TreePatternNodePtr> Variants;
4732     FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
4733     LLVM_DEBUG(errs() << "Dependent/multiply used variables: ");
4734     LLVM_DEBUG(DumpDepVars(DepVars));
4735     LLVM_DEBUG(errs() << "\n");
4736     GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants,
4737                        *this, DepVars);
4738 
4739     assert(PatternsToMatch[i].getHwModeFeatures().empty() &&
4740            "HwModes should not have been expanded yet!");
4741 
4742     assert(!Variants.empty() && "Must create at least original variant!");
4743     if (Variants.size() == 1) // No additional variants for this pattern.
4744       continue;
4745 
4746     LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";
4747                PatternsToMatch[i].getSrcPattern().dump(); errs() << "\n");
4748 
4749     for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
4750       TreePatternNodePtr Variant = Variants[v];
4751 
4752       LLVM_DEBUG(errs() << "  VAR#" << v << ": "; Variant->dump();
4753                  errs() << "\n");
4754 
4755       // Scan to see if an instruction or explicit pattern already matches this.
4756       bool AlreadyExists = false;
4757       for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
4758         // Skip if the top level predicates do not match.
4759         if ((i != p) && (PatternsToMatch[i].getPredicates() !=
4760                          PatternsToMatch[p].getPredicates()))
4761           continue;
4762         // Check to see if this variant already exists.
4763         if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
4764                                     DepVars)) {
4765           LLVM_DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
4766           AlreadyExists = true;
4767           break;
4768         }
4769       }
4770       // If we already have it, ignore the variant.
4771       if (AlreadyExists)
4772         continue;
4773 
4774       // Otherwise, add it to the list of patterns we have.
4775       PatternsToMatch.emplace_back(
4776           PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
4777           Variant, PatternsToMatch[i].getDstPatternShared(),
4778           PatternsToMatch[i].getDstRegs(),
4779           PatternsToMatch[i].getAddedComplexity(), getNewUID(),
4780           PatternsToMatch[i].getGISelShouldIgnore(),
4781           PatternsToMatch[i].getHwModeFeatures());
4782     }
4783 
4784     LLVM_DEBUG(errs() << "\n");
4785   }
4786 }
4787 
4788 unsigned CodeGenDAGPatterns::getNewUID() {
4789   RecordKeeper &MutableRC = const_cast<RecordKeeper &>(Records);
4790   return Record::getNewUID(MutableRC);
4791 }
4792