1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the CodeGenDAGPatterns class, which is used to read and 10 // represent the patterns present in a .td file for instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenDAGPatterns.h" 15 #include "CodeGenInstruction.h" 16 #include "CodeGenRegisters.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallString.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/ADT/StringMap.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/TypeSize.h" 28 #include "llvm/TableGen/Error.h" 29 #include "llvm/TableGen/Record.h" 30 #include <algorithm> 31 #include <cstdio> 32 #include <iterator> 33 #include <set> 34 using namespace llvm; 35 36 #define DEBUG_TYPE "dag-patterns" 37 38 static inline bool isIntegerOrPtr(MVT VT) { 39 return VT.isInteger() || VT == MVT::iPTR; 40 } 41 static inline bool isFloatingPoint(MVT VT) { return VT.isFloatingPoint(); } 42 static inline bool isVector(MVT VT) { return VT.isVector(); } 43 static inline bool isScalar(MVT VT) { return !VT.isVector(); } 44 45 template <typename Predicate> 46 static bool berase_if(MachineValueTypeSet &S, Predicate P) { 47 bool Erased = false; 48 // It is ok to iterate over MachineValueTypeSet and remove elements from it 49 // at the same time. 50 for (MVT T : S) { 51 if (!P(T)) 52 continue; 53 Erased = true; 54 S.erase(T); 55 } 56 return Erased; 57 } 58 59 void MachineValueTypeSet::writeToStream(raw_ostream &OS) const { 60 SmallVector<MVT, 4> Types(begin(), end()); 61 array_pod_sort(Types.begin(), Types.end()); 62 63 OS << '['; 64 ListSeparator LS(" "); 65 for (const MVT &T : Types) 66 OS << LS << ValueTypeByHwMode::getMVTName(T); 67 OS << ']'; 68 } 69 70 // --- TypeSetByHwMode 71 72 // This is a parameterized type-set class. For each mode there is a list 73 // of types that are currently possible for a given tree node. Type 74 // inference will apply to each mode separately. 75 76 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) { 77 // Take the address space from the first type in the list. 78 if (!VTList.empty()) 79 AddrSpace = VTList[0].PtrAddrSpace; 80 81 for (const ValueTypeByHwMode &VVT : VTList) 82 insert(VVT); 83 } 84 85 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const { 86 for (const auto &I : *this) { 87 if (I.second.size() > 1) 88 return false; 89 if (!AllowEmpty && I.second.empty()) 90 return false; 91 } 92 return true; 93 } 94 95 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const { 96 assert(isValueTypeByHwMode(true) && 97 "The type set has multiple types for at least one HW mode"); 98 ValueTypeByHwMode VVT; 99 VVT.PtrAddrSpace = AddrSpace; 100 101 for (const auto &I : *this) { 102 MVT T = I.second.empty() ? MVT::Other : *I.second.begin(); 103 VVT.getOrCreateTypeForMode(I.first, T); 104 } 105 return VVT; 106 } 107 108 bool TypeSetByHwMode::isPossible() const { 109 for (const auto &I : *this) 110 if (!I.second.empty()) 111 return true; 112 return false; 113 } 114 115 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) { 116 bool Changed = false; 117 bool ContainsDefault = false; 118 MVT DT = MVT::Other; 119 120 for (const auto &P : VVT) { 121 unsigned M = P.first; 122 // Make sure there exists a set for each specific mode from VVT. 123 Changed |= getOrCreate(M).insert(P.second).second; 124 // Cache VVT's default mode. 125 if (DefaultMode == M) { 126 ContainsDefault = true; 127 DT = P.second; 128 } 129 } 130 131 // If VVT has a default mode, add the corresponding type to all 132 // modes in "this" that do not exist in VVT. 133 if (ContainsDefault) 134 for (auto &I : *this) 135 if (!VVT.hasMode(I.first)) 136 Changed |= I.second.insert(DT).second; 137 138 return Changed; 139 } 140 141 // Constrain the type set to be the intersection with VTS. 142 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) { 143 bool Changed = false; 144 if (hasDefault()) { 145 for (const auto &I : VTS) { 146 unsigned M = I.first; 147 if (M == DefaultMode || hasMode(M)) 148 continue; 149 Map.insert({M, Map.at(DefaultMode)}); 150 Changed = true; 151 } 152 } 153 154 for (auto &I : *this) { 155 unsigned M = I.first; 156 SetType &S = I.second; 157 if (VTS.hasMode(M) || VTS.hasDefault()) { 158 Changed |= intersect(I.second, VTS.get(M)); 159 } else if (!S.empty()) { 160 S.clear(); 161 Changed = true; 162 } 163 } 164 return Changed; 165 } 166 167 template <typename Predicate> bool TypeSetByHwMode::constrain(Predicate P) { 168 bool Changed = false; 169 for (auto &I : *this) 170 Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); }); 171 return Changed; 172 } 173 174 template <typename Predicate> 175 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) { 176 assert(empty()); 177 for (const auto &I : VTS) { 178 SetType &S = getOrCreate(I.first); 179 for (auto J : I.second) 180 if (P(J)) 181 S.insert(J); 182 } 183 return !empty(); 184 } 185 186 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const { 187 SmallVector<unsigned, 4> Modes; 188 Modes.reserve(Map.size()); 189 190 for (const auto &I : *this) 191 Modes.push_back(I.first); 192 if (Modes.empty()) { 193 OS << "{}"; 194 return; 195 } 196 array_pod_sort(Modes.begin(), Modes.end()); 197 198 OS << '{'; 199 for (unsigned M : Modes) { 200 OS << ' ' << getModeName(M) << ':'; 201 get(M).writeToStream(OS); 202 } 203 OS << " }"; 204 } 205 206 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const { 207 // The isSimple call is much quicker than hasDefault - check this first. 208 bool IsSimple = isSimple(); 209 bool VTSIsSimple = VTS.isSimple(); 210 if (IsSimple && VTSIsSimple) 211 return getSimple() == VTS.getSimple(); 212 213 // Speedup: We have a default if the set is simple. 214 bool HaveDefault = IsSimple || hasDefault(); 215 bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault(); 216 if (HaveDefault != VTSHaveDefault) 217 return false; 218 219 SmallSet<unsigned, 4> Modes; 220 for (auto &I : *this) 221 Modes.insert(I.first); 222 for (const auto &I : VTS) 223 Modes.insert(I.first); 224 225 if (HaveDefault) { 226 // Both sets have default mode. 227 for (unsigned M : Modes) { 228 if (get(M) != VTS.get(M)) 229 return false; 230 } 231 } else { 232 // Neither set has default mode. 233 for (unsigned M : Modes) { 234 // If there is no default mode, an empty set is equivalent to not having 235 // the corresponding mode. 236 bool NoModeThis = !hasMode(M) || get(M).empty(); 237 bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty(); 238 if (NoModeThis != NoModeVTS) 239 return false; 240 if (!NoModeThis) 241 if (get(M) != VTS.get(M)) 242 return false; 243 } 244 } 245 246 return true; 247 } 248 249 namespace llvm { 250 raw_ostream &operator<<(raw_ostream &OS, const MachineValueTypeSet &T) { 251 T.writeToStream(OS); 252 return OS; 253 } 254 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) { 255 T.writeToStream(OS); 256 return OS; 257 } 258 } // namespace llvm 259 260 LLVM_DUMP_METHOD 261 void TypeSetByHwMode::dump() const { dbgs() << *this << '\n'; } 262 263 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) { 264 auto IntersectP = [&](std::optional<MVT> WildVT, function_ref<bool(MVT)> P) { 265 // Complement of In within this partition. 266 auto CompIn = [&](MVT T) -> bool { return !In.count(T) && P(T); }; 267 268 if (!WildVT) 269 return berase_if(Out, CompIn); 270 271 bool OutW = Out.count(*WildVT), InW = In.count(*WildVT); 272 if (OutW == InW) 273 return berase_if(Out, CompIn); 274 275 // Compute the intersection of scalars separately to account for only one 276 // set containing WildVT. 277 // The intersection of WildVT with a set of corresponding types that does 278 // not include WildVT will result in the most specific type: 279 // - WildVT is more specific than any set with two elements or more 280 // - WildVT is less specific than any single type. 281 // For example, for iPTR and scalar integer types 282 // { iPTR } * { i32 } -> { i32 } 283 // { iPTR } * { i32 i64 } -> { iPTR } 284 // and 285 // { iPTR i32 } * { i32 } -> { i32 } 286 // { iPTR i32 } * { i32 i64 } -> { i32 i64 } 287 // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 } 288 289 // Looking at just this partition, let In' = elements only in In, 290 // Out' = elements only in Out, and IO = elements common to both. Normally 291 // IO would be returned as the result of the intersection, but we need to 292 // account for WildVT being a "wildcard" of sorts. Since elements in IO are 293 // those that match both sets exactly, they will all belong to the output. 294 // If any of the "leftovers" (i.e. In' or Out') contain WildVT, it means 295 // that the other set doesn't have it, but it could have (1) a more 296 // specific type, or (2) a set of types that is less specific. The 297 // "leftovers" from the other set is what we want to examine more closely. 298 299 auto Leftovers = [&](const SetType &A, const SetType &B) { 300 SetType Diff = A; 301 berase_if(Diff, [&](MVT T) { return B.count(T) || !P(T); }); 302 return Diff; 303 }; 304 305 if (InW) { 306 SetType OutLeftovers = Leftovers(Out, In); 307 if (OutLeftovers.size() < 2) { 308 // WildVT not added to Out. Keep the possible single leftover. 309 return false; 310 } 311 // WildVT replaces the leftovers. 312 berase_if(Out, CompIn); 313 Out.insert(*WildVT); 314 return true; 315 } 316 317 // OutW == true 318 SetType InLeftovers = Leftovers(In, Out); 319 unsigned SizeOut = Out.size(); 320 berase_if(Out, CompIn); // This will remove at least the WildVT. 321 if (InLeftovers.size() < 2) { 322 // WildVT deleted from Out. Add back the possible single leftover. 323 Out.insert(InLeftovers); 324 return true; 325 } 326 327 // Keep the WildVT in Out. 328 Out.insert(*WildVT); 329 // If WildVT was the only element initially removed from Out, then Out 330 // has not changed. 331 return SizeOut != Out.size(); 332 }; 333 334 // Note: must be non-overlapping 335 using WildPartT = std::pair<MVT, std::function<bool(MVT)>>; 336 static const WildPartT WildParts[] = { 337 {MVT::iPTR, [](MVT T) { return T.isScalarInteger() || T == MVT::iPTR; }}, 338 }; 339 340 bool Changed = false; 341 for (const auto &I : WildParts) 342 Changed |= IntersectP(I.first, I.second); 343 344 Changed |= IntersectP(std::nullopt, [&](MVT T) { 345 return !any_of(WildParts, [=](const WildPartT &I) { return I.second(T); }); 346 }); 347 348 return Changed; 349 } 350 351 bool TypeSetByHwMode::validate() const { 352 if (empty()) 353 return true; 354 bool AllEmpty = true; 355 for (const auto &I : *this) 356 AllEmpty &= I.second.empty(); 357 return !AllEmpty; 358 } 359 360 // --- TypeInfer 361 362 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out, 363 const TypeSetByHwMode &In) const { 364 ValidateOnExit _1(Out, *this); 365 In.validate(); 366 if (In.empty() || Out == In || TP.hasError()) 367 return false; 368 if (Out.empty()) { 369 Out = In; 370 return true; 371 } 372 373 bool Changed = Out.constrain(In); 374 if (Changed && Out.empty()) 375 TP.error("Type contradiction"); 376 377 return Changed; 378 } 379 380 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) { 381 ValidateOnExit _1(Out, *this); 382 if (TP.hasError()) 383 return false; 384 assert(!Out.empty() && "cannot pick from an empty set"); 385 386 bool Changed = false; 387 for (auto &I : Out) { 388 TypeSetByHwMode::SetType &S = I.second; 389 if (S.size() <= 1) 390 continue; 391 MVT T = *S.begin(); // Pick the first element. 392 S.clear(); 393 S.insert(T); 394 Changed = true; 395 } 396 return Changed; 397 } 398 399 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) { 400 ValidateOnExit _1(Out, *this); 401 if (TP.hasError()) 402 return false; 403 if (!Out.empty()) 404 return Out.constrain(isIntegerOrPtr); 405 406 return Out.assign_if(getLegalTypes(), isIntegerOrPtr); 407 } 408 409 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) { 410 ValidateOnExit _1(Out, *this); 411 if (TP.hasError()) 412 return false; 413 if (!Out.empty()) 414 return Out.constrain(isFloatingPoint); 415 416 return Out.assign_if(getLegalTypes(), isFloatingPoint); 417 } 418 419 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) { 420 ValidateOnExit _1(Out, *this); 421 if (TP.hasError()) 422 return false; 423 if (!Out.empty()) 424 return Out.constrain(isScalar); 425 426 return Out.assign_if(getLegalTypes(), isScalar); 427 } 428 429 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) { 430 ValidateOnExit _1(Out, *this); 431 if (TP.hasError()) 432 return false; 433 if (!Out.empty()) 434 return Out.constrain(isVector); 435 436 return Out.assign_if(getLegalTypes(), isVector); 437 } 438 439 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) { 440 ValidateOnExit _1(Out, *this); 441 if (TP.hasError() || !Out.empty()) 442 return false; 443 444 Out = getLegalTypes(); 445 return true; 446 } 447 448 template <typename Iter, typename Pred, typename Less> 449 static Iter min_if(Iter B, Iter E, Pred P, Less L) { 450 if (B == E) 451 return E; 452 Iter Min = E; 453 for (Iter I = B; I != E; ++I) { 454 if (!P(*I)) 455 continue; 456 if (Min == E || L(*I, *Min)) 457 Min = I; 458 } 459 return Min; 460 } 461 462 template <typename Iter, typename Pred, typename Less> 463 static Iter max_if(Iter B, Iter E, Pred P, Less L) { 464 if (B == E) 465 return E; 466 Iter Max = E; 467 for (Iter I = B; I != E; ++I) { 468 if (!P(*I)) 469 continue; 470 if (Max == E || L(*Max, *I)) 471 Max = I; 472 } 473 return Max; 474 } 475 476 /// Make sure that for each type in Small, there exists a larger type in Big. 477 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big, 478 bool SmallIsVT) { 479 ValidateOnExit _1(Small, *this), _2(Big, *this); 480 if (TP.hasError()) 481 return false; 482 bool Changed = false; 483 484 assert((!SmallIsVT || !Small.empty()) && 485 "Small should not be empty for SDTCisVTSmallerThanOp"); 486 487 if (Small.empty()) 488 Changed |= EnforceAny(Small); 489 if (Big.empty()) 490 Changed |= EnforceAny(Big); 491 492 assert(Small.hasDefault() && Big.hasDefault()); 493 494 SmallVector<unsigned, 4> Modes; 495 union_modes(Small, Big, Modes); 496 497 // 1. Only allow integer or floating point types and make sure that 498 // both sides are both integer or both floating point. 499 // 2. Make sure that either both sides have vector types, or neither 500 // of them does. 501 for (unsigned M : Modes) { 502 TypeSetByHwMode::SetType &S = Small.get(M); 503 TypeSetByHwMode::SetType &B = Big.get(M); 504 505 assert((!SmallIsVT || !S.empty()) && "Expected non-empty type"); 506 507 if (any_of(S, isIntegerOrPtr) && any_of(B, isIntegerOrPtr)) { 508 auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); }; 509 Changed |= berase_if(S, NotInt); 510 Changed |= berase_if(B, NotInt); 511 } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) { 512 auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); }; 513 Changed |= berase_if(S, NotFP); 514 Changed |= berase_if(B, NotFP); 515 } else if (SmallIsVT && B.empty()) { 516 // B is empty and since S is a specific VT, it will never be empty. Don't 517 // report this as a change, just clear S and continue. This prevents an 518 // infinite loop. 519 S.clear(); 520 } else if (S.empty() || B.empty()) { 521 Changed = !S.empty() || !B.empty(); 522 S.clear(); 523 B.clear(); 524 } else { 525 TP.error("Incompatible types"); 526 return Changed; 527 } 528 529 if (none_of(S, isVector) || none_of(B, isVector)) { 530 Changed |= berase_if(S, isVector); 531 Changed |= berase_if(B, isVector); 532 } 533 } 534 535 auto LT = [](MVT A, MVT B) -> bool { 536 // Always treat non-scalable MVTs as smaller than scalable MVTs for the 537 // purposes of ordering. 538 auto ASize = std::tuple(A.isScalableVector(), A.getScalarSizeInBits(), 539 A.getSizeInBits().getKnownMinValue()); 540 auto BSize = std::tuple(B.isScalableVector(), B.getScalarSizeInBits(), 541 B.getSizeInBits().getKnownMinValue()); 542 return ASize < BSize; 543 }; 544 auto SameKindLE = [](MVT A, MVT B) -> bool { 545 // This function is used when removing elements: when a vector is compared 546 // to a non-vector or a scalable vector to any non-scalable MVT, it should 547 // return false (to avoid removal). 548 if (std::tuple(A.isVector(), A.isScalableVector()) != 549 std::tuple(B.isVector(), B.isScalableVector())) 550 return false; 551 552 return std::tuple(A.getScalarSizeInBits(), 553 A.getSizeInBits().getKnownMinValue()) <= 554 std::tuple(B.getScalarSizeInBits(), 555 B.getSizeInBits().getKnownMinValue()); 556 }; 557 558 for (unsigned M : Modes) { 559 TypeSetByHwMode::SetType &S = Small.get(M); 560 TypeSetByHwMode::SetType &B = Big.get(M); 561 // MinS = min scalar in Small, remove all scalars from Big that are 562 // smaller-or-equal than MinS. 563 auto MinS = min_if(S.begin(), S.end(), isScalar, LT); 564 if (MinS != S.end()) 565 Changed |= 566 berase_if(B, std::bind(SameKindLE, std::placeholders::_1, *MinS)); 567 568 // MaxS = max scalar in Big, remove all scalars from Small that are 569 // larger than MaxS. 570 auto MaxS = max_if(B.begin(), B.end(), isScalar, LT); 571 if (MaxS != B.end()) 572 Changed |= 573 berase_if(S, std::bind(SameKindLE, *MaxS, std::placeholders::_1)); 574 575 // MinV = min vector in Small, remove all vectors from Big that are 576 // smaller-or-equal than MinV. 577 auto MinV = min_if(S.begin(), S.end(), isVector, LT); 578 if (MinV != S.end()) 579 Changed |= 580 berase_if(B, std::bind(SameKindLE, std::placeholders::_1, *MinV)); 581 582 // MaxV = max vector in Big, remove all vectors from Small that are 583 // larger than MaxV. 584 auto MaxV = max_if(B.begin(), B.end(), isVector, LT); 585 if (MaxV != B.end()) 586 Changed |= 587 berase_if(S, std::bind(SameKindLE, *MaxV, std::placeholders::_1)); 588 } 589 590 return Changed; 591 } 592 593 /// 1. Ensure that for each type T in Vec, T is a vector type, and that 594 /// for each type U in Elem, U is a scalar type. 595 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector) 596 /// type T in Vec, such that U is the element type of T. 597 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 598 TypeSetByHwMode &Elem) { 599 ValidateOnExit _1(Vec, *this), _2(Elem, *this); 600 if (TP.hasError()) 601 return false; 602 bool Changed = false; 603 604 if (Vec.empty()) 605 Changed |= EnforceVector(Vec); 606 if (Elem.empty()) 607 Changed |= EnforceScalar(Elem); 608 609 SmallVector<unsigned, 4> Modes; 610 union_modes(Vec, Elem, Modes); 611 for (unsigned M : Modes) { 612 TypeSetByHwMode::SetType &V = Vec.get(M); 613 TypeSetByHwMode::SetType &E = Elem.get(M); 614 615 Changed |= berase_if(V, isScalar); // Scalar = !vector 616 Changed |= berase_if(E, isVector); // Vector = !scalar 617 assert(!V.empty() && !E.empty()); 618 619 MachineValueTypeSet VT, ST; 620 // Collect element types from the "vector" set. 621 for (MVT T : V) 622 VT.insert(T.getVectorElementType()); 623 // Collect scalar types from the "element" set. 624 for (MVT T : E) 625 ST.insert(T); 626 627 // Remove from V all (vector) types whose element type is not in S. 628 Changed |= berase_if(V, [&ST](MVT T) -> bool { 629 return !ST.count(T.getVectorElementType()); 630 }); 631 // Remove from E all (scalar) types, for which there is no corresponding 632 // type in V. 633 Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); }); 634 } 635 636 return Changed; 637 } 638 639 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 640 const ValueTypeByHwMode &VVT) { 641 TypeSetByHwMode Tmp(VVT); 642 ValidateOnExit _1(Vec, *this), _2(Tmp, *this); 643 return EnforceVectorEltTypeIs(Vec, Tmp); 644 } 645 646 /// Ensure that for each type T in Sub, T is a vector type, and there 647 /// exists a type U in Vec such that U is a vector type with the same 648 /// element type as T and at least as many elements as T. 649 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec, 650 TypeSetByHwMode &Sub) { 651 ValidateOnExit _1(Vec, *this), _2(Sub, *this); 652 if (TP.hasError()) 653 return false; 654 655 /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B. 656 auto IsSubVec = [](MVT B, MVT P) -> bool { 657 if (!B.isVector() || !P.isVector()) 658 return false; 659 // Logically a <4 x i32> is a valid subvector of <n x 4 x i32> 660 // but until there are obvious use-cases for this, keep the 661 // types separate. 662 if (B.isScalableVector() != P.isScalableVector()) 663 return false; 664 if (B.getVectorElementType() != P.getVectorElementType()) 665 return false; 666 return B.getVectorMinNumElements() < P.getVectorMinNumElements(); 667 }; 668 669 /// Return true if S has no element (vector type) that T is a sub-vector of, 670 /// i.e. has the same element type as T and more elements. 671 auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 672 for (auto I : S) 673 if (IsSubVec(T, I)) 674 return false; 675 return true; 676 }; 677 678 /// Return true if S has no element (vector type) that T is a super-vector 679 /// of, i.e. has the same element type as T and fewer elements. 680 auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 681 for (auto I : S) 682 if (IsSubVec(I, T)) 683 return false; 684 return true; 685 }; 686 687 bool Changed = false; 688 689 if (Vec.empty()) 690 Changed |= EnforceVector(Vec); 691 if (Sub.empty()) 692 Changed |= EnforceVector(Sub); 693 694 SmallVector<unsigned, 4> Modes; 695 union_modes(Vec, Sub, Modes); 696 for (unsigned M : Modes) { 697 TypeSetByHwMode::SetType &S = Sub.get(M); 698 TypeSetByHwMode::SetType &V = Vec.get(M); 699 700 Changed |= berase_if(S, isScalar); 701 702 // Erase all types from S that are not sub-vectors of a type in V. 703 Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1)); 704 705 // Erase all types from V that are not super-vectors of a type in S. 706 Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1)); 707 } 708 709 return Changed; 710 } 711 712 /// 1. Ensure that V has a scalar type iff W has a scalar type. 713 /// 2. Ensure that for each vector type T in V, there exists a vector 714 /// type U in W, such that T and U have the same number of elements. 715 /// 3. Ensure that for each vector type U in W, there exists a vector 716 /// type T in V, such that T and U have the same number of elements 717 /// (reverse of 2). 718 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) { 719 ValidateOnExit _1(V, *this), _2(W, *this); 720 if (TP.hasError()) 721 return false; 722 723 bool Changed = false; 724 if (V.empty()) 725 Changed |= EnforceAny(V); 726 if (W.empty()) 727 Changed |= EnforceAny(W); 728 729 // An actual vector type cannot have 0 elements, so we can treat scalars 730 // as zero-length vectors. This way both vectors and scalars can be 731 // processed identically. 732 auto NoLength = [](const SmallDenseSet<ElementCount> &Lengths, 733 MVT T) -> bool { 734 return !Lengths.count(T.isVector() ? T.getVectorElementCount() 735 : ElementCount()); 736 }; 737 738 SmallVector<unsigned, 4> Modes; 739 union_modes(V, W, Modes); 740 for (unsigned M : Modes) { 741 TypeSetByHwMode::SetType &VS = V.get(M); 742 TypeSetByHwMode::SetType &WS = W.get(M); 743 744 SmallDenseSet<ElementCount> VN, WN; 745 for (MVT T : VS) 746 VN.insert(T.isVector() ? T.getVectorElementCount() : ElementCount()); 747 for (MVT T : WS) 748 WN.insert(T.isVector() ? T.getVectorElementCount() : ElementCount()); 749 750 Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1)); 751 Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1)); 752 } 753 return Changed; 754 } 755 756 namespace { 757 struct TypeSizeComparator { 758 bool operator()(const TypeSize &LHS, const TypeSize &RHS) const { 759 return std::tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 760 std::tuple(RHS.isScalable(), RHS.getKnownMinValue()); 761 } 762 }; 763 } // end anonymous namespace 764 765 /// 1. Ensure that for each type T in A, there exists a type U in B, 766 /// such that T and U have equal size in bits. 767 /// 2. Ensure that for each type U in B, there exists a type T in A 768 /// such that T and U have equal size in bits (reverse of 1). 769 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) { 770 ValidateOnExit _1(A, *this), _2(B, *this); 771 if (TP.hasError()) 772 return false; 773 bool Changed = false; 774 if (A.empty()) 775 Changed |= EnforceAny(A); 776 if (B.empty()) 777 Changed |= EnforceAny(B); 778 779 typedef SmallSet<TypeSize, 2, TypeSizeComparator> TypeSizeSet; 780 781 auto NoSize = [](const TypeSizeSet &Sizes, MVT T) -> bool { 782 return !Sizes.count(T.getSizeInBits()); 783 }; 784 785 SmallVector<unsigned, 4> Modes; 786 union_modes(A, B, Modes); 787 for (unsigned M : Modes) { 788 TypeSetByHwMode::SetType &AS = A.get(M); 789 TypeSetByHwMode::SetType &BS = B.get(M); 790 TypeSizeSet AN, BN; 791 792 for (MVT T : AS) 793 AN.insert(T.getSizeInBits()); 794 for (MVT T : BS) 795 BN.insert(T.getSizeInBits()); 796 797 Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1)); 798 Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1)); 799 } 800 801 return Changed; 802 } 803 804 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) const { 805 ValidateOnExit _1(VTS, *this); 806 const TypeSetByHwMode &Legal = getLegalTypes(); 807 assert(Legal.isSimple() && "Default-mode only expected"); 808 const TypeSetByHwMode::SetType &LegalTypes = Legal.getSimple(); 809 810 for (auto &I : VTS) 811 expandOverloads(I.second, LegalTypes); 812 } 813 814 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out, 815 const TypeSetByHwMode::SetType &Legal) const { 816 if (Out.count(MVT::iPTRAny)) { 817 Out.erase(MVT::iPTRAny); 818 Out.insert(MVT::iPTR); 819 } else if (Out.count(MVT::iAny)) { 820 Out.erase(MVT::iAny); 821 for (MVT T : MVT::integer_valuetypes()) 822 if (Legal.count(T)) 823 Out.insert(T); 824 for (MVT T : MVT::integer_fixedlen_vector_valuetypes()) 825 if (Legal.count(T)) 826 Out.insert(T); 827 for (MVT T : MVT::integer_scalable_vector_valuetypes()) 828 if (Legal.count(T)) 829 Out.insert(T); 830 } else if (Out.count(MVT::fAny)) { 831 Out.erase(MVT::fAny); 832 for (MVT T : MVT::fp_valuetypes()) 833 if (Legal.count(T)) 834 Out.insert(T); 835 for (MVT T : MVT::fp_fixedlen_vector_valuetypes()) 836 if (Legal.count(T)) 837 Out.insert(T); 838 for (MVT T : MVT::fp_scalable_vector_valuetypes()) 839 if (Legal.count(T)) 840 Out.insert(T); 841 } else if (Out.count(MVT::vAny)) { 842 Out.erase(MVT::vAny); 843 for (MVT T : MVT::vector_valuetypes()) 844 if (Legal.count(T)) 845 Out.insert(T); 846 } else if (Out.count(MVT::Any)) { 847 Out.erase(MVT::Any); 848 for (MVT T : MVT::all_valuetypes()) 849 if (Legal.count(T)) 850 Out.insert(T); 851 } 852 } 853 854 const TypeSetByHwMode &TypeInfer::getLegalTypes() const { 855 if (!LegalTypesCached) { 856 TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode); 857 // Stuff all types from all modes into the default mode. 858 const TypeSetByHwMode <S = TP.getDAGPatterns().getLegalTypes(); 859 for (const auto &I : LTS) 860 LegalTypes.insert(I.second); 861 LegalTypesCached = true; 862 } 863 assert(LegalCache.isSimple() && "Default-mode only expected"); 864 return LegalCache; 865 } 866 867 TypeInfer::ValidateOnExit::~ValidateOnExit() { 868 if (Infer.Validate && !VTS.validate()) { 869 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 870 errs() << "Type set is empty for each HW mode:\n" 871 "possible type contradiction in the pattern below " 872 "(use -print-records with llvm-tblgen to see all " 873 "expanded records).\n"; 874 Infer.TP.dump(); 875 errs() << "Generated from record:\n"; 876 Infer.TP.getRecord()->dump(); 877 #endif 878 PrintFatalError(Infer.TP.getRecord()->getLoc(), 879 "Type set is empty for each HW mode in '" + 880 Infer.TP.getRecord()->getName() + "'"); 881 } 882 } 883 884 //===----------------------------------------------------------------------===// 885 // ScopedName Implementation 886 //===----------------------------------------------------------------------===// 887 888 bool ScopedName::operator==(const ScopedName &o) const { 889 return Scope == o.Scope && Identifier == o.Identifier; 890 } 891 892 bool ScopedName::operator!=(const ScopedName &o) const { return !(*this == o); } 893 894 //===----------------------------------------------------------------------===// 895 // TreePredicateFn Implementation 896 //===----------------------------------------------------------------------===// 897 898 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 899 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) { 900 assert( 901 (!hasPredCode() || !hasImmCode()) && 902 ".td file corrupt: can't have a node predicate *and* an imm predicate"); 903 } 904 905 bool TreePredicateFn::hasPredCode() const { 906 return isLoad() || isStore() || isAtomic() || hasNoUse() || hasOneUse() || 907 !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty(); 908 } 909 910 std::string TreePredicateFn::getPredCode() const { 911 std::string Code; 912 913 if (!isLoad() && !isStore() && !isAtomic()) { 914 Record *MemoryVT = getMemoryVT(); 915 916 if (MemoryVT) 917 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 918 "MemoryVT requires IsLoad or IsStore"); 919 } 920 921 if (!isLoad() && !isStore()) { 922 if (isUnindexed()) 923 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 924 "IsUnindexed requires IsLoad or IsStore"); 925 926 Record *ScalarMemoryVT = getScalarMemoryVT(); 927 928 if (ScalarMemoryVT) 929 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 930 "ScalarMemoryVT requires IsLoad or IsStore"); 931 } 932 933 if (isLoad() + isStore() + isAtomic() > 1) 934 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 935 "IsLoad, IsStore, and IsAtomic are mutually exclusive"); 936 937 if (isLoad()) { 938 if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() && 939 !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr && 940 getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr && 941 getMinAlignment() < 1) 942 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 943 "IsLoad cannot be used by itself"); 944 } else { 945 if (isNonExtLoad()) 946 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 947 "IsNonExtLoad requires IsLoad"); 948 if (isAnyExtLoad()) 949 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 950 "IsAnyExtLoad requires IsLoad"); 951 952 if (!isAtomic()) { 953 if (isSignExtLoad()) 954 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 955 "IsSignExtLoad requires IsLoad or IsAtomic"); 956 if (isZeroExtLoad()) 957 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 958 "IsZeroExtLoad requires IsLoad or IsAtomic"); 959 } 960 } 961 962 if (isStore()) { 963 if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() && 964 getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr && 965 getAddressSpaces() == nullptr && getMinAlignment() < 1) 966 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 967 "IsStore cannot be used by itself"); 968 } else { 969 if (isNonTruncStore()) 970 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 971 "IsNonTruncStore requires IsStore"); 972 if (isTruncStore()) 973 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 974 "IsTruncStore requires IsStore"); 975 } 976 977 if (isAtomic()) { 978 if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() && 979 getAddressSpaces() == nullptr && 980 // FIXME: Should atomic loads be IsLoad, IsAtomic, or both? 981 !isZeroExtLoad() && !isSignExtLoad() && !isAtomicOrderingAcquire() && 982 !isAtomicOrderingRelease() && !isAtomicOrderingAcquireRelease() && 983 !isAtomicOrderingSequentiallyConsistent() && 984 !isAtomicOrderingAcquireOrStronger() && 985 !isAtomicOrderingReleaseOrStronger() && 986 !isAtomicOrderingWeakerThanAcquire() && 987 !isAtomicOrderingWeakerThanRelease()) 988 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 989 "IsAtomic cannot be used by itself"); 990 } else { 991 if (isAtomicOrderingMonotonic()) 992 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 993 "IsAtomicOrderingMonotonic requires IsAtomic"); 994 if (isAtomicOrderingAcquire()) 995 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 996 "IsAtomicOrderingAcquire requires IsAtomic"); 997 if (isAtomicOrderingRelease()) 998 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 999 "IsAtomicOrderingRelease requires IsAtomic"); 1000 if (isAtomicOrderingAcquireRelease()) 1001 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1002 "IsAtomicOrderingAcquireRelease requires IsAtomic"); 1003 if (isAtomicOrderingSequentiallyConsistent()) 1004 PrintFatalError( 1005 getOrigPatFragRecord()->getRecord()->getLoc(), 1006 "IsAtomicOrderingSequentiallyConsistent requires IsAtomic"); 1007 if (isAtomicOrderingAcquireOrStronger()) 1008 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1009 "IsAtomicOrderingAcquireOrStronger requires IsAtomic"); 1010 if (isAtomicOrderingReleaseOrStronger()) 1011 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1012 "IsAtomicOrderingReleaseOrStronger requires IsAtomic"); 1013 if (isAtomicOrderingWeakerThanAcquire()) 1014 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1015 "IsAtomicOrderingWeakerThanAcquire requires IsAtomic"); 1016 } 1017 1018 if (isLoad() || isStore() || isAtomic()) { 1019 if (ListInit *AddressSpaces = getAddressSpaces()) { 1020 Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n" 1021 " if ("; 1022 1023 ListSeparator LS(" && "); 1024 for (Init *Val : AddressSpaces->getValues()) { 1025 Code += LS; 1026 1027 IntInit *IntVal = dyn_cast<IntInit>(Val); 1028 if (!IntVal) { 1029 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1030 "AddressSpaces element must be integer"); 1031 } 1032 1033 Code += "AddrSpace != " + utostr(IntVal->getValue()); 1034 } 1035 1036 Code += ")\nreturn false;\n"; 1037 } 1038 1039 int64_t MinAlign = getMinAlignment(); 1040 if (MinAlign > 0) { 1041 Code += "if (cast<MemSDNode>(N)->getAlign() < Align("; 1042 Code += utostr(MinAlign); 1043 Code += "))\nreturn false;\n"; 1044 } 1045 1046 Record *MemoryVT = getMemoryVT(); 1047 1048 if (MemoryVT) 1049 Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" + 1050 MemoryVT->getName() + ") return false;\n") 1051 .str(); 1052 } 1053 1054 if (isAtomic() && isAtomicOrderingMonotonic()) 1055 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " 1056 "AtomicOrdering::Monotonic) return false;\n"; 1057 if (isAtomic() && isAtomicOrderingAcquire()) 1058 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " 1059 "AtomicOrdering::Acquire) return false;\n"; 1060 if (isAtomic() && isAtomicOrderingRelease()) 1061 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " 1062 "AtomicOrdering::Release) return false;\n"; 1063 if (isAtomic() && isAtomicOrderingAcquireRelease()) 1064 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " 1065 "AtomicOrdering::AcquireRelease) return false;\n"; 1066 if (isAtomic() && isAtomicOrderingSequentiallyConsistent()) 1067 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " 1068 "AtomicOrdering::SequentiallyConsistent) return false;\n"; 1069 1070 if (isAtomic() && isAtomicOrderingAcquireOrStronger()) 1071 Code += 1072 "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) " 1073 "return false;\n"; 1074 if (isAtomic() && isAtomicOrderingWeakerThanAcquire()) 1075 Code += 1076 "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) " 1077 "return false;\n"; 1078 1079 if (isAtomic() && isAtomicOrderingReleaseOrStronger()) 1080 Code += 1081 "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) " 1082 "return false;\n"; 1083 if (isAtomic() && isAtomicOrderingWeakerThanRelease()) 1084 Code += 1085 "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) " 1086 "return false;\n"; 1087 1088 // TODO: Handle atomic sextload/zextload normally when ATOMIC_LOAD is removed. 1089 if (isAtomic() && (isZeroExtLoad() || isSignExtLoad())) 1090 Code += "return false;\n"; 1091 1092 if (isLoad() || isStore()) { 1093 StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode"; 1094 1095 if (isUnindexed()) 1096 Code += ("if (cast<" + SDNodeName + 1097 ">(N)->getAddressingMode() != ISD::UNINDEXED) " 1098 "return false;\n") 1099 .str(); 1100 1101 if (isLoad()) { 1102 if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() + 1103 isZeroExtLoad()) > 1) 1104 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1105 "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and " 1106 "IsZeroExtLoad are mutually exclusive"); 1107 if (isNonExtLoad()) 1108 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != " 1109 "ISD::NON_EXTLOAD) return false;\n"; 1110 if (isAnyExtLoad()) 1111 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) " 1112 "return false;\n"; 1113 if (isSignExtLoad()) 1114 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) " 1115 "return false;\n"; 1116 if (isZeroExtLoad()) 1117 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) " 1118 "return false;\n"; 1119 } else { 1120 if ((isNonTruncStore() + isTruncStore()) > 1) 1121 PrintFatalError( 1122 getOrigPatFragRecord()->getRecord()->getLoc(), 1123 "IsNonTruncStore, and IsTruncStore are mutually exclusive"); 1124 if (isNonTruncStore()) 1125 Code += 1126 " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 1127 if (isTruncStore()) 1128 Code += 1129 " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 1130 } 1131 1132 Record *ScalarMemoryVT = getScalarMemoryVT(); 1133 1134 if (ScalarMemoryVT) 1135 Code += ("if (cast<" + SDNodeName + 1136 ">(N)->getMemoryVT().getScalarType() != MVT::" + 1137 ScalarMemoryVT->getName() + ") return false;\n") 1138 .str(); 1139 } 1140 1141 if (hasNoUse()) 1142 Code += "if (!SDValue(N, 0).use_empty()) return false;\n"; 1143 if (hasOneUse()) 1144 Code += "if (!SDValue(N, 0).hasOneUse()) return false;\n"; 1145 1146 std::string PredicateCode = 1147 std::string(PatFragRec->getRecord()->getValueAsString("PredicateCode")); 1148 1149 Code += PredicateCode; 1150 1151 if (PredicateCode.empty() && !Code.empty()) 1152 Code += "return true;\n"; 1153 1154 return Code; 1155 } 1156 1157 bool TreePredicateFn::hasImmCode() const { 1158 return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty(); 1159 } 1160 1161 std::string TreePredicateFn::getImmCode() const { 1162 return std::string( 1163 PatFragRec->getRecord()->getValueAsString("ImmediateCode")); 1164 } 1165 1166 bool TreePredicateFn::immCodeUsesAPInt() const { 1167 return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt"); 1168 } 1169 1170 bool TreePredicateFn::immCodeUsesAPFloat() const { 1171 bool Unset; 1172 // The return value will be false when IsAPFloat is unset. 1173 return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat", 1174 Unset); 1175 } 1176 1177 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field, 1178 bool Value) const { 1179 bool Unset; 1180 bool Result = 1181 getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset); 1182 if (Unset) 1183 return false; 1184 return Result == Value; 1185 } 1186 bool TreePredicateFn::usesOperands() const { 1187 return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true); 1188 } 1189 bool TreePredicateFn::hasNoUse() const { 1190 return isPredefinedPredicateEqualTo("HasNoUse", true); 1191 } 1192 bool TreePredicateFn::hasOneUse() const { 1193 return isPredefinedPredicateEqualTo("HasOneUse", true); 1194 } 1195 bool TreePredicateFn::isLoad() const { 1196 return isPredefinedPredicateEqualTo("IsLoad", true); 1197 } 1198 bool TreePredicateFn::isStore() const { 1199 return isPredefinedPredicateEqualTo("IsStore", true); 1200 } 1201 bool TreePredicateFn::isAtomic() const { 1202 return isPredefinedPredicateEqualTo("IsAtomic", true); 1203 } 1204 bool TreePredicateFn::isUnindexed() const { 1205 return isPredefinedPredicateEqualTo("IsUnindexed", true); 1206 } 1207 bool TreePredicateFn::isNonExtLoad() const { 1208 return isPredefinedPredicateEqualTo("IsNonExtLoad", true); 1209 } 1210 bool TreePredicateFn::isAnyExtLoad() const { 1211 return isPredefinedPredicateEqualTo("IsAnyExtLoad", true); 1212 } 1213 bool TreePredicateFn::isSignExtLoad() const { 1214 return isPredefinedPredicateEqualTo("IsSignExtLoad", true); 1215 } 1216 bool TreePredicateFn::isZeroExtLoad() const { 1217 return isPredefinedPredicateEqualTo("IsZeroExtLoad", true); 1218 } 1219 bool TreePredicateFn::isNonTruncStore() const { 1220 return isPredefinedPredicateEqualTo("IsTruncStore", false); 1221 } 1222 bool TreePredicateFn::isTruncStore() const { 1223 return isPredefinedPredicateEqualTo("IsTruncStore", true); 1224 } 1225 bool TreePredicateFn::isAtomicOrderingMonotonic() const { 1226 return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true); 1227 } 1228 bool TreePredicateFn::isAtomicOrderingAcquire() const { 1229 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true); 1230 } 1231 bool TreePredicateFn::isAtomicOrderingRelease() const { 1232 return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true); 1233 } 1234 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const { 1235 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true); 1236 } 1237 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const { 1238 return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent", 1239 true); 1240 } 1241 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const { 1242 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", 1243 true); 1244 } 1245 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const { 1246 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", 1247 false); 1248 } 1249 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const { 1250 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", 1251 true); 1252 } 1253 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const { 1254 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", 1255 false); 1256 } 1257 Record *TreePredicateFn::getMemoryVT() const { 1258 Record *R = getOrigPatFragRecord()->getRecord(); 1259 if (R->isValueUnset("MemoryVT")) 1260 return nullptr; 1261 return R->getValueAsDef("MemoryVT"); 1262 } 1263 1264 ListInit *TreePredicateFn::getAddressSpaces() const { 1265 Record *R = getOrigPatFragRecord()->getRecord(); 1266 if (R->isValueUnset("AddressSpaces")) 1267 return nullptr; 1268 return R->getValueAsListInit("AddressSpaces"); 1269 } 1270 1271 int64_t TreePredicateFn::getMinAlignment() const { 1272 Record *R = getOrigPatFragRecord()->getRecord(); 1273 if (R->isValueUnset("MinAlignment")) 1274 return 0; 1275 return R->getValueAsInt("MinAlignment"); 1276 } 1277 1278 Record *TreePredicateFn::getScalarMemoryVT() const { 1279 Record *R = getOrigPatFragRecord()->getRecord(); 1280 if (R->isValueUnset("ScalarMemoryVT")) 1281 return nullptr; 1282 return R->getValueAsDef("ScalarMemoryVT"); 1283 } 1284 bool TreePredicateFn::hasGISelPredicateCode() const { 1285 return !PatFragRec->getRecord() 1286 ->getValueAsString("GISelPredicateCode") 1287 .empty(); 1288 } 1289 std::string TreePredicateFn::getGISelPredicateCode() const { 1290 return std::string( 1291 PatFragRec->getRecord()->getValueAsString("GISelPredicateCode")); 1292 } 1293 1294 StringRef TreePredicateFn::getImmType() const { 1295 if (immCodeUsesAPInt()) 1296 return "const APInt &"; 1297 if (immCodeUsesAPFloat()) 1298 return "const APFloat &"; 1299 return "int64_t"; 1300 } 1301 1302 StringRef TreePredicateFn::getImmTypeIdentifier() const { 1303 if (immCodeUsesAPInt()) 1304 return "APInt"; 1305 if (immCodeUsesAPFloat()) 1306 return "APFloat"; 1307 return "I64"; 1308 } 1309 1310 /// isAlwaysTrue - Return true if this is a noop predicate. 1311 bool TreePredicateFn::isAlwaysTrue() const { 1312 return !hasPredCode() && !hasImmCode(); 1313 } 1314 1315 /// Return the name to use in the generated code to reference this, this is 1316 /// "Predicate_foo" if from a pattern fragment "foo". 1317 std::string TreePredicateFn::getFnName() const { 1318 return "Predicate_" + PatFragRec->getRecord()->getName().str(); 1319 } 1320 1321 /// getCodeToRunOnSDNode - Return the code for the function body that 1322 /// evaluates this predicate. The argument is expected to be in "Node", 1323 /// not N. This handles casting and conversion to a concrete node type as 1324 /// appropriate. 1325 std::string TreePredicateFn::getCodeToRunOnSDNode() const { 1326 // Handle immediate predicates first. 1327 std::string ImmCode = getImmCode(); 1328 if (!ImmCode.empty()) { 1329 if (isLoad()) 1330 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1331 "IsLoad cannot be used with ImmLeaf or its subclasses"); 1332 if (isStore()) 1333 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1334 "IsStore cannot be used with ImmLeaf or its subclasses"); 1335 if (isUnindexed()) 1336 PrintFatalError( 1337 getOrigPatFragRecord()->getRecord()->getLoc(), 1338 "IsUnindexed cannot be used with ImmLeaf or its subclasses"); 1339 if (isNonExtLoad()) 1340 PrintFatalError( 1341 getOrigPatFragRecord()->getRecord()->getLoc(), 1342 "IsNonExtLoad cannot be used with ImmLeaf or its subclasses"); 1343 if (isAnyExtLoad()) 1344 PrintFatalError( 1345 getOrigPatFragRecord()->getRecord()->getLoc(), 1346 "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses"); 1347 if (isSignExtLoad()) 1348 PrintFatalError( 1349 getOrigPatFragRecord()->getRecord()->getLoc(), 1350 "IsSignExtLoad cannot be used with ImmLeaf or its subclasses"); 1351 if (isZeroExtLoad()) 1352 PrintFatalError( 1353 getOrigPatFragRecord()->getRecord()->getLoc(), 1354 "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses"); 1355 if (isNonTruncStore()) 1356 PrintFatalError( 1357 getOrigPatFragRecord()->getRecord()->getLoc(), 1358 "IsNonTruncStore cannot be used with ImmLeaf or its subclasses"); 1359 if (isTruncStore()) 1360 PrintFatalError( 1361 getOrigPatFragRecord()->getRecord()->getLoc(), 1362 "IsTruncStore cannot be used with ImmLeaf or its subclasses"); 1363 if (getMemoryVT()) 1364 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1365 "MemoryVT cannot be used with ImmLeaf or its subclasses"); 1366 if (getScalarMemoryVT()) 1367 PrintFatalError( 1368 getOrigPatFragRecord()->getRecord()->getLoc(), 1369 "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses"); 1370 1371 std::string Result = (" " + getImmType() + " Imm = ").str(); 1372 if (immCodeUsesAPFloat()) 1373 Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n"; 1374 else if (immCodeUsesAPInt()) 1375 Result += "Node->getAsAPIntVal();\n"; 1376 else 1377 Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n"; 1378 return Result + ImmCode; 1379 } 1380 1381 // Handle arbitrary node predicates. 1382 assert(hasPredCode() && "Don't have any predicate code!"); 1383 1384 // If this is using PatFrags, there are multiple trees to search. They should 1385 // all have the same class. FIXME: Is there a way to find a common 1386 // superclass? 1387 StringRef ClassName; 1388 for (const auto &Tree : PatFragRec->getTrees()) { 1389 StringRef TreeClassName; 1390 if (Tree->isLeaf()) 1391 TreeClassName = "SDNode"; 1392 else { 1393 Record *Op = Tree->getOperator(); 1394 const SDNodeInfo &Info = PatFragRec->getDAGPatterns().getSDNodeInfo(Op); 1395 TreeClassName = Info.getSDClassName(); 1396 } 1397 1398 if (ClassName.empty()) 1399 ClassName = TreeClassName; 1400 else if (ClassName != TreeClassName) { 1401 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1402 "PatFrags trees do not have consistent class"); 1403 } 1404 } 1405 1406 std::string Result; 1407 if (ClassName == "SDNode") 1408 Result = " SDNode *N = Node;\n"; 1409 else 1410 Result = " auto *N = cast<" + ClassName.str() + ">(Node);\n"; 1411 1412 return (Twine(Result) + " (void)N;\n" + getPredCode()).str(); 1413 } 1414 1415 //===----------------------------------------------------------------------===// 1416 // PatternToMatch implementation 1417 // 1418 1419 static bool isImmAllOnesAllZerosMatch(const TreePatternNode &P) { 1420 if (!P.isLeaf()) 1421 return false; 1422 DefInit *DI = dyn_cast<DefInit>(P.getLeafValue()); 1423 if (!DI) 1424 return false; 1425 1426 Record *R = DI->getDef(); 1427 return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV"; 1428 } 1429 1430 /// getPatternSize - Return the 'size' of this pattern. We want to match large 1431 /// patterns before small ones. This is used to determine the size of a 1432 /// pattern. 1433 static unsigned getPatternSize(const TreePatternNode &P, 1434 const CodeGenDAGPatterns &CGP) { 1435 unsigned Size = 3; // The node itself. 1436 // If the root node is a ConstantSDNode, increases its size. 1437 // e.g. (set R32:$dst, 0). 1438 if (P.isLeaf() && isa<IntInit>(P.getLeafValue())) 1439 Size += 2; 1440 1441 if (const ComplexPattern *AM = P.getComplexPatternInfo(CGP)) { 1442 Size += AM->getComplexity(); 1443 // We don't want to count any children twice, so return early. 1444 return Size; 1445 } 1446 1447 // If this node has some predicate function that must match, it adds to the 1448 // complexity of this node. 1449 if (!P.getPredicateCalls().empty()) 1450 ++Size; 1451 1452 // Count children in the count if they are also nodes. 1453 for (unsigned i = 0, e = P.getNumChildren(); i != e; ++i) { 1454 const TreePatternNode &Child = P.getChild(i); 1455 if (!Child.isLeaf() && Child.getNumTypes()) { 1456 const TypeSetByHwMode &T0 = Child.getExtType(0); 1457 // At this point, all variable type sets should be simple, i.e. only 1458 // have a default mode. 1459 if (T0.getMachineValueType() != MVT::Other) { 1460 Size += getPatternSize(Child, CGP); 1461 continue; 1462 } 1463 } 1464 if (Child.isLeaf()) { 1465 if (isa<IntInit>(Child.getLeafValue())) 1466 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). 1467 else if (Child.getComplexPatternInfo(CGP)) 1468 Size += getPatternSize(Child, CGP); 1469 else if (isImmAllOnesAllZerosMatch(Child)) 1470 Size += 4; // Matches a build_vector(+3) and a predicate (+1). 1471 else if (!Child.getPredicateCalls().empty()) 1472 ++Size; 1473 } 1474 } 1475 1476 return Size; 1477 } 1478 1479 /// Compute the complexity metric for the input pattern. This roughly 1480 /// corresponds to the number of nodes that are covered. 1481 int PatternToMatch::getPatternComplexity(const CodeGenDAGPatterns &CGP) const { 1482 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); 1483 } 1484 1485 void PatternToMatch::getPredicateRecords( 1486 SmallVectorImpl<Record *> &PredicateRecs) const { 1487 for (Init *I : Predicates->getValues()) { 1488 if (DefInit *Pred = dyn_cast<DefInit>(I)) { 1489 Record *Def = Pred->getDef(); 1490 if (!Def->isSubClassOf("Predicate")) { 1491 #ifndef NDEBUG 1492 Def->dump(); 1493 #endif 1494 llvm_unreachable("Unknown predicate type!"); 1495 } 1496 PredicateRecs.push_back(Def); 1497 } 1498 } 1499 // Sort so that different orders get canonicalized to the same string. 1500 llvm::sort(PredicateRecs, LessRecord()); 1501 // Remove duplicate predicates. 1502 PredicateRecs.erase(llvm::unique(PredicateRecs), PredicateRecs.end()); 1503 } 1504 1505 /// getPredicateCheck - Return a single string containing all of this 1506 /// pattern's predicates concatenated with "&&" operators. 1507 /// 1508 std::string PatternToMatch::getPredicateCheck() const { 1509 SmallVector<Record *, 4> PredicateRecs; 1510 getPredicateRecords(PredicateRecs); 1511 1512 SmallString<128> PredicateCheck; 1513 raw_svector_ostream OS(PredicateCheck); 1514 ListSeparator LS(" && "); 1515 for (Record *Pred : PredicateRecs) { 1516 StringRef CondString = Pred->getValueAsString("CondString"); 1517 if (CondString.empty()) 1518 continue; 1519 OS << LS << '(' << CondString << ')'; 1520 } 1521 1522 if (!HwModeFeatures.empty()) 1523 OS << LS << HwModeFeatures; 1524 1525 return std::string(PredicateCheck); 1526 } 1527 1528 //===----------------------------------------------------------------------===// 1529 // SDTypeConstraint implementation 1530 // 1531 1532 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) { 1533 OperandNo = R->getValueAsInt("OperandNum"); 1534 1535 if (R->isSubClassOf("SDTCisVT")) { 1536 ConstraintType = SDTCisVT; 1537 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1538 for (const auto &P : VVT) 1539 if (P.second == MVT::isVoid) 1540 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); 1541 } else if (R->isSubClassOf("SDTCisPtrTy")) { 1542 ConstraintType = SDTCisPtrTy; 1543 } else if (R->isSubClassOf("SDTCisInt")) { 1544 ConstraintType = SDTCisInt; 1545 } else if (R->isSubClassOf("SDTCisFP")) { 1546 ConstraintType = SDTCisFP; 1547 } else if (R->isSubClassOf("SDTCisVec")) { 1548 ConstraintType = SDTCisVec; 1549 } else if (R->isSubClassOf("SDTCisSameAs")) { 1550 ConstraintType = SDTCisSameAs; 1551 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); 1552 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { 1553 ConstraintType = SDTCisVTSmallerThanOp; 1554 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 1555 R->getValueAsInt("OtherOperandNum"); 1556 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { 1557 ConstraintType = SDTCisOpSmallerThanOp; 1558 x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 1559 R->getValueAsInt("BigOperandNum"); 1560 } else if (R->isSubClassOf("SDTCisEltOfVec")) { 1561 ConstraintType = SDTCisEltOfVec; 1562 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); 1563 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { 1564 ConstraintType = SDTCisSubVecOfVec; 1565 x.SDTCisSubVecOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); 1566 } else if (R->isSubClassOf("SDTCVecEltisVT")) { 1567 ConstraintType = SDTCVecEltisVT; 1568 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1569 for (const auto &P : VVT) { 1570 MVT T = P.second; 1571 if (T.isVector()) 1572 PrintFatalError(R->getLoc(), 1573 "Cannot use vector type as SDTCVecEltisVT"); 1574 if (!T.isInteger() && !T.isFloatingPoint()) 1575 PrintFatalError(R->getLoc(), "Must use integer or floating point type " 1576 "as SDTCVecEltisVT"); 1577 } 1578 } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) { 1579 ConstraintType = SDTCisSameNumEltsAs; 1580 x.SDTCisSameNumEltsAs_Info.OtherOperandNum = 1581 R->getValueAsInt("OtherOperandNum"); 1582 } else if (R->isSubClassOf("SDTCisSameSizeAs")) { 1583 ConstraintType = SDTCisSameSizeAs; 1584 x.SDTCisSameSizeAs_Info.OtherOperandNum = 1585 R->getValueAsInt("OtherOperandNum"); 1586 } else { 1587 PrintFatalError(R->getLoc(), 1588 "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n"); 1589 } 1590 } 1591 1592 /// getOperandNum - Return the node corresponding to operand #OpNo in tree 1593 /// N, and the result number in ResNo. 1594 static TreePatternNode &getOperandNum(unsigned OpNo, TreePatternNode &N, 1595 const SDNodeInfo &NodeInfo, 1596 unsigned &ResNo) { 1597 unsigned NumResults = NodeInfo.getNumResults(); 1598 if (OpNo < NumResults) { 1599 ResNo = OpNo; 1600 return N; 1601 } 1602 1603 OpNo -= NumResults; 1604 1605 if (OpNo >= N.getNumChildren()) { 1606 PrintFatalError([&N, OpNo, NumResults](raw_ostream &OS) { 1607 OS << "Invalid operand number in type constraint " << (OpNo + NumResults); 1608 N.print(OS); 1609 }); 1610 } 1611 return N.getChild(OpNo); 1612 } 1613 1614 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 1615 /// constraint to the nodes operands. This returns true if it makes a 1616 /// change, false otherwise. If a type contradiction is found, flag an error. 1617 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode &N, 1618 const SDNodeInfo &NodeInfo, 1619 TreePattern &TP) const { 1620 if (TP.hasError()) 1621 return false; 1622 1623 unsigned ResNo = 0; // The result number being referenced. 1624 TreePatternNode &NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); 1625 TypeInfer &TI = TP.getInfer(); 1626 1627 switch (ConstraintType) { 1628 case SDTCisVT: 1629 // Operand must be a particular type. 1630 return NodeToApply.UpdateNodeType(ResNo, VVT, TP); 1631 case SDTCisPtrTy: 1632 // Operand must be same as target pointer type. 1633 return NodeToApply.UpdateNodeType(ResNo, MVT::iPTR, TP); 1634 case SDTCisInt: 1635 // Require it to be one of the legal integer VTs. 1636 return TI.EnforceInteger(NodeToApply.getExtType(ResNo)); 1637 case SDTCisFP: 1638 // Require it to be one of the legal fp VTs. 1639 return TI.EnforceFloatingPoint(NodeToApply.getExtType(ResNo)); 1640 case SDTCisVec: 1641 // Require it to be one of the legal vector VTs. 1642 return TI.EnforceVector(NodeToApply.getExtType(ResNo)); 1643 case SDTCisSameAs: { 1644 unsigned OResNo = 0; 1645 TreePatternNode &OtherNode = 1646 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 1647 return (int)NodeToApply.UpdateNodeType(ResNo, OtherNode.getExtType(OResNo), 1648 TP) | 1649 (int)OtherNode.UpdateNodeType(OResNo, NodeToApply.getExtType(ResNo), 1650 TP); 1651 } 1652 case SDTCisVTSmallerThanOp: { 1653 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must 1654 // have an integer type that is smaller than the VT. 1655 if (!NodeToApply.isLeaf() || !isa<DefInit>(NodeToApply.getLeafValue()) || 1656 !cast<DefInit>(NodeToApply.getLeafValue()) 1657 ->getDef() 1658 ->isSubClassOf("ValueType")) { 1659 TP.error(N.getOperator()->getName() + " expects a VT operand!"); 1660 return false; 1661 } 1662 DefInit *DI = cast<DefInit>(NodeToApply.getLeafValue()); 1663 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1664 auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes()); 1665 TypeSetByHwMode TypeListTmp(VVT); 1666 1667 unsigned OResNo = 0; 1668 TreePatternNode &OtherNode = getOperandNum( 1669 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, OResNo); 1670 1671 return TI.EnforceSmallerThan(TypeListTmp, OtherNode.getExtType(OResNo), 1672 /*SmallIsVT*/ true); 1673 } 1674 case SDTCisOpSmallerThanOp: { 1675 unsigned BResNo = 0; 1676 TreePatternNode &BigOperand = getOperandNum( 1677 x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, BResNo); 1678 return TI.EnforceSmallerThan(NodeToApply.getExtType(ResNo), 1679 BigOperand.getExtType(BResNo)); 1680 } 1681 case SDTCisEltOfVec: { 1682 unsigned VResNo = 0; 1683 TreePatternNode &VecOperand = getOperandNum( 1684 x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, VResNo); 1685 // Filter vector types out of VecOperand that don't have the right element 1686 // type. 1687 return TI.EnforceVectorEltTypeIs(VecOperand.getExtType(VResNo), 1688 NodeToApply.getExtType(ResNo)); 1689 } 1690 case SDTCisSubVecOfVec: { 1691 unsigned VResNo = 0; 1692 TreePatternNode &BigVecOperand = getOperandNum( 1693 x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, VResNo); 1694 1695 // Filter vector types out of BigVecOperand that don't have the 1696 // right subvector type. 1697 return TI.EnforceVectorSubVectorTypeIs(BigVecOperand.getExtType(VResNo), 1698 NodeToApply.getExtType(ResNo)); 1699 } 1700 case SDTCVecEltisVT: { 1701 return TI.EnforceVectorEltTypeIs(NodeToApply.getExtType(ResNo), VVT); 1702 } 1703 case SDTCisSameNumEltsAs: { 1704 unsigned OResNo = 0; 1705 TreePatternNode &OtherNode = getOperandNum( 1706 x.SDTCisSameNumEltsAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 1707 return TI.EnforceSameNumElts(OtherNode.getExtType(OResNo), 1708 NodeToApply.getExtType(ResNo)); 1709 } 1710 case SDTCisSameSizeAs: { 1711 unsigned OResNo = 0; 1712 TreePatternNode &OtherNode = getOperandNum( 1713 x.SDTCisSameSizeAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 1714 return TI.EnforceSameSize(OtherNode.getExtType(OResNo), 1715 NodeToApply.getExtType(ResNo)); 1716 } 1717 } 1718 llvm_unreachable("Invalid ConstraintType!"); 1719 } 1720 1721 // Update the node type to match an instruction operand or result as specified 1722 // in the ins or outs lists on the instruction definition. Return true if the 1723 // type was actually changed. 1724 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo, 1725 const Record *Operand, 1726 TreePattern &TP) { 1727 // The 'unknown' operand indicates that types should be inferred from the 1728 // context. 1729 if (Operand->isSubClassOf("unknown_class")) 1730 return false; 1731 1732 // The Operand class specifies a type directly. 1733 if (Operand->isSubClassOf("Operand")) { 1734 Record *R = Operand->getValueAsDef("Type"); 1735 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1736 return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP); 1737 } 1738 1739 // PointerLikeRegClass has a type that is determined at runtime. 1740 if (Operand->isSubClassOf("PointerLikeRegClass")) 1741 return UpdateNodeType(ResNo, MVT::iPTR, TP); 1742 1743 // Both RegisterClass and RegisterOperand operands derive their types from a 1744 // register class def. 1745 const Record *RC = nullptr; 1746 if (Operand->isSubClassOf("RegisterClass")) 1747 RC = Operand; 1748 else if (Operand->isSubClassOf("RegisterOperand")) 1749 RC = Operand->getValueAsDef("RegClass"); 1750 1751 assert(RC && "Unknown operand type"); 1752 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo(); 1753 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP); 1754 } 1755 1756 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const { 1757 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1758 if (!TP.getInfer().isConcrete(Types[i], true)) 1759 return true; 1760 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1761 if (getChild(i).ContainsUnresolvedType(TP)) 1762 return true; 1763 return false; 1764 } 1765 1766 bool TreePatternNode::hasProperTypeByHwMode() const { 1767 for (const TypeSetByHwMode &S : Types) 1768 if (!S.isSimple()) 1769 return true; 1770 for (const TreePatternNodePtr &C : Children) 1771 if (C->hasProperTypeByHwMode()) 1772 return true; 1773 return false; 1774 } 1775 1776 bool TreePatternNode::hasPossibleType() const { 1777 for (const TypeSetByHwMode &S : Types) 1778 if (!S.isPossible()) 1779 return false; 1780 for (const TreePatternNodePtr &C : Children) 1781 if (!C->hasPossibleType()) 1782 return false; 1783 return true; 1784 } 1785 1786 bool TreePatternNode::setDefaultMode(unsigned Mode) { 1787 for (TypeSetByHwMode &S : Types) { 1788 S.makeSimple(Mode); 1789 // Check if the selected mode had a type conflict. 1790 if (S.get(DefaultMode).empty()) 1791 return false; 1792 } 1793 for (const TreePatternNodePtr &C : Children) 1794 if (!C->setDefaultMode(Mode)) 1795 return false; 1796 return true; 1797 } 1798 1799 //===----------------------------------------------------------------------===// 1800 // SDNodeInfo implementation 1801 // 1802 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) { 1803 EnumName = R->getValueAsString("Opcode"); 1804 SDClassName = R->getValueAsString("SDClass"); 1805 Record *TypeProfile = R->getValueAsDef("TypeProfile"); 1806 NumResults = TypeProfile->getValueAsInt("NumResults"); 1807 NumOperands = TypeProfile->getValueAsInt("NumOperands"); 1808 1809 // Parse the properties. 1810 Properties = parseSDPatternOperatorProperties(R); 1811 1812 // Parse the type constraints. 1813 std::vector<Record *> ConstraintList = 1814 TypeProfile->getValueAsListOfDefs("Constraints"); 1815 for (Record *R : ConstraintList) 1816 TypeConstraints.emplace_back(R, CGH); 1817 } 1818 1819 /// getKnownType - If the type constraints on this node imply a fixed type 1820 /// (e.g. all stores return void, etc), then return it as an 1821 /// MVT::SimpleValueType. Otherwise, return EEVT::Other. 1822 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { 1823 unsigned NumResults = getNumResults(); 1824 assert(NumResults <= 1 && 1825 "We only work with nodes with zero or one result so far!"); 1826 assert(ResNo == 0 && "Only handles single result nodes so far"); 1827 1828 for (const SDTypeConstraint &Constraint : TypeConstraints) { 1829 // Make sure that this applies to the correct node result. 1830 if (Constraint.OperandNo >= NumResults) // FIXME: need value # 1831 continue; 1832 1833 switch (Constraint.ConstraintType) { 1834 default: 1835 break; 1836 case SDTypeConstraint::SDTCisVT: 1837 if (Constraint.VVT.isSimple()) 1838 return Constraint.VVT.getSimple().SimpleTy; 1839 break; 1840 case SDTypeConstraint::SDTCisPtrTy: 1841 return MVT::iPTR; 1842 } 1843 } 1844 return MVT::Other; 1845 } 1846 1847 //===----------------------------------------------------------------------===// 1848 // TreePatternNode implementation 1849 // 1850 1851 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { 1852 if (Operator->getName() == "set" || Operator->getName() == "implicit") 1853 return 0; // All return nothing. 1854 1855 if (Operator->isSubClassOf("Intrinsic")) 1856 return CDP.getIntrinsic(Operator).IS.RetTys.size(); 1857 1858 if (Operator->isSubClassOf("SDNode")) 1859 return CDP.getSDNodeInfo(Operator).getNumResults(); 1860 1861 if (Operator->isSubClassOf("PatFrags")) { 1862 // If we've already parsed this pattern fragment, get it. Otherwise, handle 1863 // the forward reference case where one pattern fragment references another 1864 // before it is processed. 1865 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) { 1866 // The number of results of a fragment with alternative records is the 1867 // maximum number of results across all alternatives. 1868 unsigned NumResults = 0; 1869 for (const auto &T : PFRec->getTrees()) 1870 NumResults = std::max(NumResults, T->getNumTypes()); 1871 return NumResults; 1872 } 1873 1874 ListInit *LI = Operator->getValueAsListInit("Fragments"); 1875 assert(LI && "Invalid Fragment"); 1876 unsigned NumResults = 0; 1877 for (Init *I : LI->getValues()) { 1878 Record *Op = nullptr; 1879 if (DagInit *Dag = dyn_cast<DagInit>(I)) 1880 if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator())) 1881 Op = DI->getDef(); 1882 assert(Op && "Invalid Fragment"); 1883 NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP)); 1884 } 1885 return NumResults; 1886 } 1887 1888 if (Operator->isSubClassOf("Instruction")) { 1889 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); 1890 1891 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs; 1892 1893 // Subtract any defaulted outputs. 1894 for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) { 1895 const Record *OperandNode = InstInfo.Operands[i].Rec; 1896 1897 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 1898 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1899 --NumDefsToAdd; 1900 } 1901 1902 // Add on one implicit def if it has a resolvable type. 1903 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) != 1904 MVT::Other) 1905 ++NumDefsToAdd; 1906 return NumDefsToAdd; 1907 } 1908 1909 if (Operator->isSubClassOf("SDNodeXForm")) 1910 return 1; // FIXME: Generalize SDNodeXForm 1911 1912 if (Operator->isSubClassOf("ValueType")) 1913 return 1; // A type-cast of one result. 1914 1915 if (Operator->isSubClassOf("ComplexPattern")) 1916 return 1; 1917 1918 errs() << *Operator; 1919 PrintFatalError("Unhandled node in GetNumNodeResults"); 1920 } 1921 1922 void TreePatternNode::print(raw_ostream &OS) const { 1923 if (isLeaf()) 1924 OS << *getLeafValue(); 1925 else 1926 OS << '(' << getOperator()->getName(); 1927 1928 for (unsigned i = 0, e = Types.size(); i != e; ++i) { 1929 OS << ':'; 1930 getExtType(i).writeToStream(OS); 1931 } 1932 1933 if (!isLeaf()) { 1934 if (getNumChildren() != 0) { 1935 OS << " "; 1936 ListSeparator LS; 1937 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1938 OS << LS; 1939 getChild(i).print(OS); 1940 } 1941 } 1942 OS << ")"; 1943 } 1944 1945 for (const TreePredicateCall &Pred : PredicateCalls) { 1946 OS << "<<P:"; 1947 if (Pred.Scope) 1948 OS << Pred.Scope << ":"; 1949 OS << Pred.Fn.getFnName() << ">>"; 1950 } 1951 if (TransformFn) 1952 OS << "<<X:" << TransformFn->getName() << ">>"; 1953 if (!getName().empty()) 1954 OS << ":$" << getName(); 1955 1956 for (const ScopedName &Name : NamesAsPredicateArg) 1957 OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier(); 1958 } 1959 void TreePatternNode::dump() const { print(errs()); } 1960 1961 /// isIsomorphicTo - Return true if this node is recursively 1962 /// isomorphic to the specified node. For this comparison, the node's 1963 /// entire state is considered. The assigned name is ignored, since 1964 /// nodes with differing names are considered isomorphic. However, if 1965 /// the assigned name is present in the dependent variable set, then 1966 /// the assigned name is considered significant and the node is 1967 /// isomorphic if the names match. 1968 bool TreePatternNode::isIsomorphicTo(const TreePatternNode &N, 1969 const MultipleUseVarSet &DepVars) const { 1970 if (&N == this) 1971 return true; 1972 if (N.isLeaf() != isLeaf()) 1973 return false; 1974 1975 // Check operator of non-leaves early since it can be cheaper than checking 1976 // types. 1977 if (!isLeaf()) 1978 if (N.getOperator() != getOperator() || 1979 N.getNumChildren() != getNumChildren()) 1980 return false; 1981 1982 if (getExtTypes() != N.getExtTypes() || 1983 getPredicateCalls() != N.getPredicateCalls() || 1984 getTransformFn() != N.getTransformFn()) 1985 return false; 1986 1987 if (isLeaf()) { 1988 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 1989 if (DefInit *NDI = dyn_cast<DefInit>(N.getLeafValue())) { 1990 return ((DI->getDef() == NDI->getDef()) && 1991 (!DepVars.contains(getName()) || getName() == N.getName())); 1992 } 1993 } 1994 return getLeafValue() == N.getLeafValue(); 1995 } 1996 1997 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1998 if (!getChild(i).isIsomorphicTo(N.getChild(i), DepVars)) 1999 return false; 2000 return true; 2001 } 2002 2003 /// clone - Make a copy of this tree and all of its children. 2004 /// 2005 TreePatternNodePtr TreePatternNode::clone() const { 2006 TreePatternNodePtr New; 2007 if (isLeaf()) { 2008 New = makeIntrusiveRefCnt<TreePatternNode>(getLeafValue(), getNumTypes()); 2009 } else { 2010 std::vector<TreePatternNodePtr> CChildren; 2011 CChildren.reserve(Children.size()); 2012 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2013 CChildren.push_back(getChild(i).clone()); 2014 New = makeIntrusiveRefCnt<TreePatternNode>( 2015 getOperator(), std::move(CChildren), getNumTypes()); 2016 } 2017 New->setName(getName()); 2018 New->setNamesAsPredicateArg(getNamesAsPredicateArg()); 2019 New->Types = Types; 2020 New->setPredicateCalls(getPredicateCalls()); 2021 New->setGISelFlagsRecord(getGISelFlagsRecord()); 2022 New->setTransformFn(getTransformFn()); 2023 return New; 2024 } 2025 2026 /// RemoveAllTypes - Recursively strip all the types of this tree. 2027 void TreePatternNode::RemoveAllTypes() { 2028 // Reset to unknown type. 2029 std::fill(Types.begin(), Types.end(), TypeSetByHwMode()); 2030 if (isLeaf()) 2031 return; 2032 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2033 getChild(i).RemoveAllTypes(); 2034 } 2035 2036 /// SubstituteFormalArguments - Replace the formal arguments in this tree 2037 /// with actual values specified by ArgMap. 2038 void TreePatternNode::SubstituteFormalArguments( 2039 std::map<std::string, TreePatternNodePtr> &ArgMap) { 2040 if (isLeaf()) 2041 return; 2042 2043 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 2044 TreePatternNode &Child = getChild(i); 2045 if (Child.isLeaf()) { 2046 Init *Val = Child.getLeafValue(); 2047 // Note that, when substituting into an output pattern, Val might be an 2048 // UnsetInit. 2049 if (isa<UnsetInit>(Val) || 2050 (isa<DefInit>(Val) && 2051 cast<DefInit>(Val)->getDef()->getName() == "node")) { 2052 // We found a use of a formal argument, replace it with its value. 2053 TreePatternNodePtr NewChild = ArgMap[Child.getName()]; 2054 assert(NewChild && "Couldn't find formal argument!"); 2055 assert((Child.getPredicateCalls().empty() || 2056 NewChild->getPredicateCalls() == Child.getPredicateCalls()) && 2057 "Non-empty child predicate clobbered!"); 2058 setChild(i, std::move(NewChild)); 2059 } 2060 } else { 2061 getChild(i).SubstituteFormalArguments(ArgMap); 2062 } 2063 } 2064 } 2065 2066 /// InlinePatternFragments - If this pattern refers to any pattern 2067 /// fragments, return the set of inlined versions (this can be more than 2068 /// one if a PatFrags record has multiple alternatives). 2069 void TreePatternNode::InlinePatternFragments( 2070 TreePattern &TP, std::vector<TreePatternNodePtr> &OutAlternatives) { 2071 2072 if (TP.hasError()) 2073 return; 2074 2075 if (isLeaf()) { 2076 OutAlternatives.push_back(this); // nothing to do. 2077 return; 2078 } 2079 2080 Record *Op = getOperator(); 2081 2082 if (!Op->isSubClassOf("PatFrags")) { 2083 if (getNumChildren() == 0) { 2084 OutAlternatives.push_back(this); 2085 return; 2086 } 2087 2088 // Recursively inline children nodes. 2089 std::vector<std::vector<TreePatternNodePtr>> ChildAlternatives( 2090 getNumChildren()); 2091 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 2092 TreePatternNodePtr Child = getChildShared(i); 2093 Child->InlinePatternFragments(TP, ChildAlternatives[i]); 2094 // If there are no alternatives for any child, there are no 2095 // alternatives for this expression as whole. 2096 if (ChildAlternatives[i].empty()) 2097 return; 2098 2099 assert((Child->getPredicateCalls().empty() || 2100 llvm::all_of(ChildAlternatives[i], 2101 [&](const TreePatternNodePtr &NewChild) { 2102 return NewChild->getPredicateCalls() == 2103 Child->getPredicateCalls(); 2104 })) && 2105 "Non-empty child predicate clobbered!"); 2106 } 2107 2108 // The end result is an all-pairs construction of the resultant pattern. 2109 std::vector<unsigned> Idxs(ChildAlternatives.size()); 2110 bool NotDone; 2111 do { 2112 // Create the variant and add it to the output list. 2113 std::vector<TreePatternNodePtr> NewChildren; 2114 NewChildren.reserve(ChildAlternatives.size()); 2115 for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i) 2116 NewChildren.push_back(ChildAlternatives[i][Idxs[i]]); 2117 TreePatternNodePtr R = makeIntrusiveRefCnt<TreePatternNode>( 2118 getOperator(), std::move(NewChildren), getNumTypes()); 2119 2120 // Copy over properties. 2121 R->setName(getName()); 2122 R->setNamesAsPredicateArg(getNamesAsPredicateArg()); 2123 R->setPredicateCalls(getPredicateCalls()); 2124 R->setGISelFlagsRecord(getGISelFlagsRecord()); 2125 R->setTransformFn(getTransformFn()); 2126 for (unsigned i = 0, e = getNumTypes(); i != e; ++i) 2127 R->setType(i, getExtType(i)); 2128 for (unsigned i = 0, e = getNumResults(); i != e; ++i) 2129 R->setResultIndex(i, getResultIndex(i)); 2130 2131 // Register alternative. 2132 OutAlternatives.push_back(R); 2133 2134 // Increment indices to the next permutation by incrementing the 2135 // indices from last index backward, e.g., generate the sequence 2136 // [0, 0], [0, 1], [1, 0], [1, 1]. 2137 int IdxsIdx; 2138 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 2139 if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size()) 2140 Idxs[IdxsIdx] = 0; 2141 else 2142 break; 2143 } 2144 NotDone = (IdxsIdx >= 0); 2145 } while (NotDone); 2146 2147 return; 2148 } 2149 2150 // Otherwise, we found a reference to a fragment. First, look up its 2151 // TreePattern record. 2152 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); 2153 2154 // Verify that we are passing the right number of operands. 2155 if (Frag->getNumArgs() != getNumChildren()) { 2156 TP.error("'" + Op->getName() + "' fragment requires " + 2157 Twine(Frag->getNumArgs()) + " operands!"); 2158 return; 2159 } 2160 2161 TreePredicateFn PredFn(Frag); 2162 unsigned Scope = 0; 2163 if (TreePredicateFn(Frag).usesOperands()) 2164 Scope = TP.getDAGPatterns().allocateScope(); 2165 2166 // Compute the map of formal to actual arguments. 2167 std::map<std::string, TreePatternNodePtr> ArgMap; 2168 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) { 2169 TreePatternNodePtr Child = getChildShared(i); 2170 if (Scope != 0) { 2171 Child = Child->clone(); 2172 Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i))); 2173 } 2174 ArgMap[Frag->getArgName(i)] = Child; 2175 } 2176 2177 // Loop over all fragment alternatives. 2178 for (const auto &Alternative : Frag->getTrees()) { 2179 TreePatternNodePtr FragTree = Alternative->clone(); 2180 2181 if (!PredFn.isAlwaysTrue()) 2182 FragTree->addPredicateCall(PredFn, Scope); 2183 2184 // Resolve formal arguments to their actual value. 2185 if (Frag->getNumArgs()) 2186 FragTree->SubstituteFormalArguments(ArgMap); 2187 2188 // Transfer types. Note that the resolved alternative may have fewer 2189 // (but not more) results than the PatFrags node. 2190 FragTree->setName(getName()); 2191 for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i) 2192 FragTree->UpdateNodeType(i, getExtType(i), TP); 2193 2194 if (Op->isSubClassOf("GISelFlags")) 2195 FragTree->setGISelFlagsRecord(Op); 2196 2197 // Transfer in the old predicates. 2198 for (const TreePredicateCall &Pred : getPredicateCalls()) 2199 FragTree->addPredicateCall(Pred); 2200 2201 // The fragment we inlined could have recursive inlining that is needed. See 2202 // if there are any pattern fragments in it and inline them as needed. 2203 FragTree->InlinePatternFragments(TP, OutAlternatives); 2204 } 2205 } 2206 2207 /// getImplicitType - Check to see if the specified record has an implicit 2208 /// type which should be applied to it. This will infer the type of register 2209 /// references from the register file information, for example. 2210 /// 2211 /// When Unnamed is set, return the type of a DAG operand with no name, such as 2212 /// the F8RC register class argument in: 2213 /// 2214 /// (COPY_TO_REGCLASS GPR:$src, F8RC) 2215 /// 2216 /// When Unnamed is false, return the type of a named DAG operand such as the 2217 /// GPR:$src operand above. 2218 /// 2219 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo, 2220 bool NotRegisters, bool Unnamed, 2221 TreePattern &TP) { 2222 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 2223 2224 // Check to see if this is a register operand. 2225 if (R->isSubClassOf("RegisterOperand")) { 2226 assert(ResNo == 0 && "Regoperand ref only has one result!"); 2227 if (NotRegisters) 2228 return TypeSetByHwMode(); // Unknown. 2229 Record *RegClass = R->getValueAsDef("RegClass"); 2230 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2231 return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes()); 2232 } 2233 2234 // Check to see if this is a register or a register class. 2235 if (R->isSubClassOf("RegisterClass")) { 2236 assert(ResNo == 0 && "Regclass ref only has one result!"); 2237 // An unnamed register class represents itself as an i32 immediate, for 2238 // example on a COPY_TO_REGCLASS instruction. 2239 if (Unnamed) 2240 return TypeSetByHwMode(MVT::i32); 2241 2242 // In a named operand, the register class provides the possible set of 2243 // types. 2244 if (NotRegisters) 2245 return TypeSetByHwMode(); // Unknown. 2246 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2247 return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes()); 2248 } 2249 2250 if (R->isSubClassOf("PatFrags")) { 2251 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); 2252 // Pattern fragment types will be resolved when they are inlined. 2253 return TypeSetByHwMode(); // Unknown. 2254 } 2255 2256 if (R->isSubClassOf("Register")) { 2257 assert(ResNo == 0 && "Registers only produce one result!"); 2258 if (NotRegisters) 2259 return TypeSetByHwMode(); // Unknown. 2260 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2261 return TypeSetByHwMode(T.getRegisterVTs(R)); 2262 } 2263 2264 if (R->isSubClassOf("SubRegIndex")) { 2265 assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); 2266 return TypeSetByHwMode(MVT::i32); 2267 } 2268 2269 if (R->isSubClassOf("ValueType")) { 2270 assert(ResNo == 0 && "This node only has one result!"); 2271 // An unnamed VTSDNode represents itself as an MVT::Other immediate. 2272 // 2273 // (sext_inreg GPR:$src, i16) 2274 // ~~~ 2275 if (Unnamed) 2276 return TypeSetByHwMode(MVT::Other); 2277 // With a name, the ValueType simply provides the type of the named 2278 // variable. 2279 // 2280 // (sext_inreg i32:$src, i16) 2281 // ~~~~~~~~ 2282 if (NotRegisters) 2283 return TypeSetByHwMode(); // Unknown. 2284 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2285 return TypeSetByHwMode(getValueTypeByHwMode(R, CGH)); 2286 } 2287 2288 if (R->isSubClassOf("CondCode")) { 2289 assert(ResNo == 0 && "This node only has one result!"); 2290 // Using a CondCodeSDNode. 2291 return TypeSetByHwMode(MVT::Other); 2292 } 2293 2294 if (R->isSubClassOf("ComplexPattern")) { 2295 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); 2296 if (NotRegisters) 2297 return TypeSetByHwMode(); // Unknown. 2298 Record *T = CDP.getComplexPattern(R).getValueType(); 2299 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2300 return TypeSetByHwMode(getValueTypeByHwMode(T, CGH)); 2301 } 2302 if (R->isSubClassOf("PointerLikeRegClass")) { 2303 assert(ResNo == 0 && "Regclass can only have one result!"); 2304 TypeSetByHwMode VTS(MVT::iPTR); 2305 TP.getInfer().expandOverloads(VTS); 2306 return VTS; 2307 } 2308 2309 if (R->getName() == "node" || R->getName() == "srcvalue" || 2310 R->getName() == "zero_reg" || R->getName() == "immAllOnesV" || 2311 R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") { 2312 // Placeholder. 2313 return TypeSetByHwMode(); // Unknown. 2314 } 2315 2316 if (R->isSubClassOf("Operand")) { 2317 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2318 Record *T = R->getValueAsDef("Type"); 2319 return TypeSetByHwMode(getValueTypeByHwMode(T, CGH)); 2320 } 2321 2322 TP.error("Unknown node flavor used in pattern: " + R->getName()); 2323 return TypeSetByHwMode(MVT::Other); 2324 } 2325 2326 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 2327 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 2328 const CodeGenIntrinsic * 2329 TreePatternNode::getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { 2330 if (getOperator() != CDP.get_intrinsic_void_sdnode() && 2331 getOperator() != CDP.get_intrinsic_w_chain_sdnode() && 2332 getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) 2333 return nullptr; 2334 2335 unsigned IID = cast<IntInit>(getChild(0).getLeafValue())->getValue(); 2336 return &CDP.getIntrinsicInfo(IID); 2337 } 2338 2339 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 2340 /// return the ComplexPattern information, otherwise return null. 2341 const ComplexPattern * 2342 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { 2343 Record *Rec; 2344 if (isLeaf()) { 2345 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2346 if (!DI) 2347 return nullptr; 2348 Rec = DI->getDef(); 2349 } else 2350 Rec = getOperator(); 2351 2352 if (!Rec->isSubClassOf("ComplexPattern")) 2353 return nullptr; 2354 return &CGP.getComplexPattern(Rec); 2355 } 2356 2357 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const { 2358 // A ComplexPattern specifically declares how many results it fills in. 2359 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2360 return CP->getNumOperands(); 2361 2362 // If MIOperandInfo is specified, that gives the count. 2363 if (isLeaf()) { 2364 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2365 if (DI && DI->getDef()->isSubClassOf("Operand")) { 2366 DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo"); 2367 if (MIOps->getNumArgs()) 2368 return MIOps->getNumArgs(); 2369 } 2370 } 2371 2372 // Otherwise there is just one result. 2373 return 1; 2374 } 2375 2376 /// NodeHasProperty - Return true if this node has the specified property. 2377 bool TreePatternNode::NodeHasProperty(SDNP Property, 2378 const CodeGenDAGPatterns &CGP) const { 2379 if (isLeaf()) { 2380 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2381 return CP->hasProperty(Property); 2382 2383 return false; 2384 } 2385 2386 if (Property != SDNPHasChain) { 2387 // The chain proprety is already present on the different intrinsic node 2388 // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed 2389 // on the intrinsic. Anything else is specific to the individual intrinsic. 2390 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP)) 2391 return Int->hasProperty(Property); 2392 } 2393 2394 if (!getOperator()->isSubClassOf("SDPatternOperator")) 2395 return false; 2396 2397 return CGP.getSDNodeInfo(getOperator()).hasProperty(Property); 2398 } 2399 2400 /// TreeHasProperty - Return true if any node in this tree has the specified 2401 /// property. 2402 bool TreePatternNode::TreeHasProperty(SDNP Property, 2403 const CodeGenDAGPatterns &CGP) const { 2404 if (NodeHasProperty(Property, CGP)) 2405 return true; 2406 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2407 if (getChild(i).TreeHasProperty(Property, CGP)) 2408 return true; 2409 return false; 2410 } 2411 2412 /// isCommutativeIntrinsic - Return true if the node corresponds to a 2413 /// commutative intrinsic. 2414 bool TreePatternNode::isCommutativeIntrinsic( 2415 const CodeGenDAGPatterns &CDP) const { 2416 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) 2417 return Int->isCommutative; 2418 return false; 2419 } 2420 2421 static bool isOperandClass(const TreePatternNode &N, StringRef Class) { 2422 if (!N.isLeaf()) 2423 return N.getOperator()->isSubClassOf(Class); 2424 2425 DefInit *DI = dyn_cast<DefInit>(N.getLeafValue()); 2426 if (DI && DI->getDef()->isSubClassOf(Class)) 2427 return true; 2428 2429 return false; 2430 } 2431 2432 static void emitTooManyOperandsError(TreePattern &TP, StringRef InstName, 2433 unsigned Expected, unsigned Actual) { 2434 TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) + 2435 " operands but expected only " + Twine(Expected) + "!"); 2436 } 2437 2438 static void emitTooFewOperandsError(TreePattern &TP, StringRef InstName, 2439 unsigned Actual) { 2440 TP.error("Instruction '" + InstName + "' expects more than the provided " + 2441 Twine(Actual) + " operands!"); 2442 } 2443 2444 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 2445 /// this node and its children in the tree. This returns true if it makes a 2446 /// change, false otherwise. If a type contradiction is found, flag an error. 2447 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { 2448 if (TP.hasError()) 2449 return false; 2450 2451 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 2452 if (isLeaf()) { 2453 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 2454 // If it's a regclass or something else known, include the type. 2455 bool MadeChange = false; 2456 for (unsigned i = 0, e = Types.size(); i != e; ++i) 2457 MadeChange |= UpdateNodeType( 2458 i, getImplicitType(DI->getDef(), i, NotRegisters, !hasName(), TP), 2459 TP); 2460 return MadeChange; 2461 } 2462 2463 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) { 2464 assert(Types.size() == 1 && "Invalid IntInit"); 2465 2466 // Int inits are always integers. :) 2467 bool MadeChange = TP.getInfer().EnforceInteger(Types[0]); 2468 2469 if (!TP.getInfer().isConcrete(Types[0], false)) 2470 return MadeChange; 2471 2472 ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false); 2473 for (auto &P : VVT) { 2474 MVT::SimpleValueType VT = P.second.SimpleTy; 2475 if (VT == MVT::iPTR || VT == MVT::iPTRAny) 2476 continue; 2477 unsigned Size = MVT(VT).getFixedSizeInBits(); 2478 // Make sure that the value is representable for this type. 2479 if (Size >= 32) 2480 continue; 2481 // Check that the value doesn't use more bits than we have. It must 2482 // either be a sign- or zero-extended equivalent of the original. 2483 int64_t SignBitAndAbove = II->getValue() >> (Size - 1); 2484 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || 2485 SignBitAndAbove == 1) 2486 continue; 2487 2488 TP.error("Integer value '" + Twine(II->getValue()) + 2489 "' is out of range for type '" + getEnumName(VT) + "'!"); 2490 break; 2491 } 2492 return MadeChange; 2493 } 2494 2495 return false; 2496 } 2497 2498 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { 2499 bool MadeChange = false; 2500 2501 // Apply the result type to the node. 2502 unsigned NumRetVTs = Int->IS.RetTys.size(); 2503 unsigned NumParamVTs = Int->IS.ParamTys.size(); 2504 2505 for (unsigned i = 0, e = NumRetVTs; i != e; ++i) 2506 MadeChange |= UpdateNodeType( 2507 i, getValueType(Int->IS.RetTys[i]->getValueAsDef("VT")), TP); 2508 2509 if (getNumChildren() != NumParamVTs + 1) { 2510 TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) + 2511 " operands, not " + Twine(getNumChildren() - 1) + " operands!"); 2512 return false; 2513 } 2514 2515 // Apply type info to the intrinsic ID. 2516 MadeChange |= getChild(0).UpdateNodeType(0, MVT::iPTR, TP); 2517 2518 for (unsigned i = 0, e = getNumChildren() - 1; i != e; ++i) { 2519 MadeChange |= getChild(i + 1).ApplyTypeConstraints(TP, NotRegisters); 2520 2521 MVT::SimpleValueType OpVT = 2522 getValueType(Int->IS.ParamTys[i]->getValueAsDef("VT")); 2523 assert(getChild(i + 1).getNumTypes() == 1 && "Unhandled case"); 2524 MadeChange |= getChild(i + 1).UpdateNodeType(0, OpVT, TP); 2525 } 2526 return MadeChange; 2527 } 2528 2529 if (getOperator()->isSubClassOf("SDNode")) { 2530 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); 2531 2532 // Check that the number of operands is sane. Negative operands -> varargs. 2533 if (NI.getNumOperands() >= 0 && 2534 getNumChildren() != (unsigned)NI.getNumOperands()) { 2535 TP.error(getOperator()->getName() + " node requires exactly " + 2536 Twine(NI.getNumOperands()) + " operands!"); 2537 return false; 2538 } 2539 2540 bool MadeChange = false; 2541 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2542 MadeChange |= getChild(i).ApplyTypeConstraints(TP, NotRegisters); 2543 MadeChange |= NI.ApplyTypeConstraints(*this, TP); 2544 return MadeChange; 2545 } 2546 2547 if (getOperator()->isSubClassOf("Instruction")) { 2548 const DAGInstruction &Inst = CDP.getInstruction(getOperator()); 2549 CodeGenInstruction &InstInfo = 2550 CDP.getTargetInfo().getInstruction(getOperator()); 2551 2552 bool MadeChange = false; 2553 2554 // Apply the result types to the node, these come from the things in the 2555 // (outs) list of the instruction. 2556 unsigned NumResultsToAdd = 2557 std::min(InstInfo.Operands.NumDefs, Inst.getNumResults()); 2558 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) 2559 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP); 2560 2561 // If the instruction has implicit defs, we apply the first one as a result. 2562 // FIXME: This sucks, it should apply all implicit defs. 2563 if (!InstInfo.ImplicitDefs.empty()) { 2564 unsigned ResNo = NumResultsToAdd; 2565 2566 // FIXME: Generalize to multiple possible types and multiple possible 2567 // ImplicitDefs. 2568 MVT::SimpleValueType VT = 2569 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); 2570 2571 if (VT != MVT::Other) 2572 MadeChange |= UpdateNodeType(ResNo, VT, TP); 2573 } 2574 2575 // If this is an INSERT_SUBREG, constrain the source and destination VTs to 2576 // be the same. 2577 if (getOperator()->getName() == "INSERT_SUBREG") { 2578 assert(getChild(0).getNumTypes() == 1 && "FIXME: Unhandled"); 2579 MadeChange |= UpdateNodeType(0, getChild(0).getExtType(0), TP); 2580 MadeChange |= getChild(0).UpdateNodeType(0, getExtType(0), TP); 2581 } else if (getOperator()->getName() == "REG_SEQUENCE") { 2582 // We need to do extra, custom typechecking for REG_SEQUENCE since it is 2583 // variadic. 2584 2585 unsigned NChild = getNumChildren(); 2586 if (NChild < 3) { 2587 TP.error("REG_SEQUENCE requires at least 3 operands!"); 2588 return false; 2589 } 2590 2591 if (NChild % 2 == 0) { 2592 TP.error("REG_SEQUENCE requires an odd number of operands!"); 2593 return false; 2594 } 2595 2596 if (!isOperandClass(getChild(0), "RegisterClass")) { 2597 TP.error("REG_SEQUENCE requires a RegisterClass for first operand!"); 2598 return false; 2599 } 2600 2601 for (unsigned I = 1; I < NChild; I += 2) { 2602 TreePatternNode &SubIdxChild = getChild(I + 1); 2603 if (!isOperandClass(SubIdxChild, "SubRegIndex")) { 2604 TP.error("REG_SEQUENCE requires a SubRegIndex for operand " + 2605 Twine(I + 1) + "!"); 2606 return false; 2607 } 2608 } 2609 } 2610 2611 unsigned NumResults = Inst.getNumResults(); 2612 unsigned NumFixedOperands = InstInfo.Operands.size(); 2613 2614 // If one or more operands with a default value appear at the end of the 2615 // formal operand list for an instruction, we allow them to be overridden 2616 // by optional operands provided in the pattern. 2617 // 2618 // But if an operand B without a default appears at any point after an 2619 // operand A with a default, then we don't allow A to be overridden, 2620 // because there would be no way to specify whether the next operand in 2621 // the pattern was intended to override A or skip it. 2622 unsigned NonOverridableOperands = NumFixedOperands; 2623 while (NonOverridableOperands > NumResults && 2624 CDP.operandHasDefault( 2625 InstInfo.Operands[NonOverridableOperands - 1].Rec)) 2626 --NonOverridableOperands; 2627 2628 unsigned ChildNo = 0; 2629 assert(NumResults <= NumFixedOperands); 2630 for (unsigned i = NumResults, e = NumFixedOperands; i != e; ++i) { 2631 const Record *OperandNode = InstInfo.Operands[i].Rec; 2632 2633 // If the operand has a default value, do we use it? We must use the 2634 // default if we've run out of children of the pattern DAG to consume, 2635 // or if the operand is followed by a non-defaulted one. 2636 if (CDP.operandHasDefault(OperandNode) && 2637 (i < NonOverridableOperands || ChildNo >= getNumChildren())) 2638 continue; 2639 2640 // If we have run out of child nodes and there _isn't_ a default 2641 // value we can use for the next operand, give an error. 2642 if (ChildNo >= getNumChildren()) { 2643 emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren()); 2644 return false; 2645 } 2646 2647 TreePatternNode *Child = &getChild(ChildNo++); 2648 unsigned ChildResNo = 0; // Instructions always use res #0 of their op. 2649 2650 // If the operand has sub-operands, they may be provided by distinct 2651 // child patterns, so attempt to match each sub-operand separately. 2652 if (OperandNode->isSubClassOf("Operand")) { 2653 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); 2654 if (unsigned NumArgs = MIOpInfo->getNumArgs()) { 2655 // But don't do that if the whole operand is being provided by 2656 // a single ComplexPattern-related Operand. 2657 2658 if (Child->getNumMIResults(CDP) < NumArgs) { 2659 // Match first sub-operand against the child we already have. 2660 Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef(); 2661 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2662 2663 // And the remaining sub-operands against subsequent children. 2664 for (unsigned Arg = 1; Arg < NumArgs; ++Arg) { 2665 if (ChildNo >= getNumChildren()) { 2666 emitTooFewOperandsError(TP, getOperator()->getName(), 2667 getNumChildren()); 2668 return false; 2669 } 2670 Child = &getChild(ChildNo++); 2671 2672 SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef(); 2673 MadeChange |= 2674 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2675 } 2676 continue; 2677 } 2678 } 2679 } 2680 2681 // If we didn't match by pieces above, attempt to match the whole 2682 // operand now. 2683 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP); 2684 } 2685 2686 if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) { 2687 emitTooManyOperandsError(TP, getOperator()->getName(), ChildNo, 2688 getNumChildren()); 2689 return false; 2690 } 2691 2692 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2693 MadeChange |= getChild(i).ApplyTypeConstraints(TP, NotRegisters); 2694 return MadeChange; 2695 } 2696 2697 if (getOperator()->isSubClassOf("ComplexPattern")) { 2698 bool MadeChange = false; 2699 2700 if (!NotRegisters) { 2701 assert(Types.size() == 1 && "ComplexPatterns only produce one result!"); 2702 Record *T = CDP.getComplexPattern(getOperator()).getValueType(); 2703 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2704 const ValueTypeByHwMode VVT = getValueTypeByHwMode(T, CGH); 2705 // TODO: AArch64 and AMDGPU use ComplexPattern<untyped, ...> and then 2706 // exclusively use those as non-leaf nodes with explicit type casts, so 2707 // for backwards compatibility we do no inference in that case. This is 2708 // not supported when the ComplexPattern is used as a leaf value, 2709 // however; this inconsistency should be resolved, either by adding this 2710 // case there or by altering the backends to not do this (e.g. using Any 2711 // instead may work). 2712 if (!VVT.isSimple() || VVT.getSimple() != MVT::Untyped) 2713 MadeChange |= UpdateNodeType(0, VVT, TP); 2714 } 2715 2716 for (unsigned i = 0; i < getNumChildren(); ++i) 2717 MadeChange |= getChild(i).ApplyTypeConstraints(TP, NotRegisters); 2718 2719 return MadeChange; 2720 } 2721 2722 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); 2723 2724 // Node transforms always take one operand. 2725 if (getNumChildren() != 1) { 2726 TP.error("Node transform '" + getOperator()->getName() + 2727 "' requires one operand!"); 2728 return false; 2729 } 2730 2731 bool MadeChange = getChild(0).ApplyTypeConstraints(TP, NotRegisters); 2732 return MadeChange; 2733 } 2734 2735 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the 2736 /// RHS of a commutative operation, not the on LHS. 2737 static bool OnlyOnRHSOfCommutative(TreePatternNode &N) { 2738 if (!N.isLeaf() && N.getOperator()->getName() == "imm") 2739 return true; 2740 if (N.isLeaf() && isa<IntInit>(N.getLeafValue())) 2741 return true; 2742 if (isImmAllOnesAllZerosMatch(N)) 2743 return true; 2744 return false; 2745 } 2746 2747 /// canPatternMatch - If it is impossible for this pattern to match on this 2748 /// target, fill in Reason and return false. Otherwise, return true. This is 2749 /// used as a sanity check for .td files (to prevent people from writing stuff 2750 /// that can never possibly work), and to prevent the pattern permuter from 2751 /// generating stuff that is useless. 2752 bool TreePatternNode::canPatternMatch(std::string &Reason, 2753 const CodeGenDAGPatterns &CDP) { 2754 if (isLeaf()) 2755 return true; 2756 2757 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2758 if (!getChild(i).canPatternMatch(Reason, CDP)) 2759 return false; 2760 2761 // If this is an intrinsic, handle cases that would make it not match. For 2762 // example, if an operand is required to be an immediate. 2763 if (getOperator()->isSubClassOf("Intrinsic")) { 2764 // TODO: 2765 return true; 2766 } 2767 2768 if (getOperator()->isSubClassOf("ComplexPattern")) 2769 return true; 2770 2771 // If this node is a commutative operator, check that the LHS isn't an 2772 // immediate. 2773 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); 2774 bool isCommIntrinsic = isCommutativeIntrinsic(CDP); 2775 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 2776 // Scan all of the operands of the node and make sure that only the last one 2777 // is a constant node, unless the RHS also is. 2778 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren() - 1))) { 2779 unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 2780 for (unsigned i = Skip, e = getNumChildren() - 1; i != e; ++i) 2781 if (OnlyOnRHSOfCommutative(getChild(i))) { 2782 Reason = 2783 "Immediate value must be on the RHS of commutative operators!"; 2784 return false; 2785 } 2786 } 2787 } 2788 2789 return true; 2790 } 2791 2792 //===----------------------------------------------------------------------===// 2793 // TreePattern implementation 2794 // 2795 2796 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 2797 CodeGenDAGPatterns &cdp) 2798 : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false), 2799 Infer(*this) { 2800 for (Init *I : RawPat->getValues()) 2801 Trees.push_back(ParseTreePattern(I, "")); 2802 } 2803 2804 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 2805 CodeGenDAGPatterns &cdp) 2806 : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false), 2807 Infer(*this) { 2808 Trees.push_back(ParseTreePattern(Pat, "")); 2809 } 2810 2811 TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput, 2812 CodeGenDAGPatterns &cdp) 2813 : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false), 2814 Infer(*this) { 2815 Trees.push_back(Pat); 2816 } 2817 2818 void TreePattern::error(const Twine &Msg) { 2819 if (HasError) 2820 return; 2821 dump(); 2822 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); 2823 HasError = true; 2824 } 2825 2826 void TreePattern::ComputeNamedNodes() { 2827 for (TreePatternNodePtr &Tree : Trees) 2828 ComputeNamedNodes(*Tree); 2829 } 2830 2831 void TreePattern::ComputeNamedNodes(TreePatternNode &N) { 2832 if (!N.getName().empty()) 2833 NamedNodes[N.getName()].push_back(&N); 2834 2835 for (unsigned i = 0, e = N.getNumChildren(); i != e; ++i) 2836 ComputeNamedNodes(N.getChild(i)); 2837 } 2838 2839 TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit, 2840 StringRef OpName) { 2841 RecordKeeper &RK = TheInit->getRecordKeeper(); 2842 if (DefInit *DI = dyn_cast<DefInit>(TheInit)) { 2843 Record *R = DI->getDef(); 2844 2845 // Direct reference to a leaf DagNode or PatFrag? Turn it into a 2846 // TreePatternNode of its own. For example: 2847 /// (foo GPR, imm) -> (foo GPR, (imm)) 2848 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags")) 2849 return ParseTreePattern( 2850 DagInit::get(DI, nullptr, 2851 std::vector<std::pair<Init *, StringInit *>>()), 2852 OpName); 2853 2854 // Input argument? 2855 TreePatternNodePtr Res = makeIntrusiveRefCnt<TreePatternNode>(DI, 1); 2856 if (R->getName() == "node" && !OpName.empty()) { 2857 if (OpName.empty()) 2858 error("'node' argument requires a name to match with operand list"); 2859 Args.push_back(std::string(OpName)); 2860 } 2861 2862 Res->setName(OpName); 2863 return Res; 2864 } 2865 2866 // ?:$name or just $name. 2867 if (isa<UnsetInit>(TheInit)) { 2868 if (OpName.empty()) 2869 error("'?' argument requires a name to match with operand list"); 2870 TreePatternNodePtr Res = makeIntrusiveRefCnt<TreePatternNode>(TheInit, 1); 2871 Args.push_back(std::string(OpName)); 2872 Res->setName(OpName); 2873 return Res; 2874 } 2875 2876 if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) { 2877 if (!OpName.empty()) 2878 error("Constant int or bit argument should not have a name!"); 2879 if (isa<BitInit>(TheInit)) 2880 TheInit = TheInit->convertInitializerTo(IntRecTy::get(RK)); 2881 return makeIntrusiveRefCnt<TreePatternNode>(TheInit, 1); 2882 } 2883 2884 if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) { 2885 // Turn this into an IntInit. 2886 Init *II = BI->convertInitializerTo(IntRecTy::get(RK)); 2887 if (!II || !isa<IntInit>(II)) 2888 error("Bits value must be constants!"); 2889 return II ? ParseTreePattern(II, OpName) : nullptr; 2890 } 2891 2892 DagInit *Dag = dyn_cast<DagInit>(TheInit); 2893 if (!Dag) { 2894 TheInit->print(errs()); 2895 error("Pattern has unexpected init kind!"); 2896 return nullptr; 2897 } 2898 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator()); 2899 if (!OpDef) { 2900 error("Pattern has unexpected operator type!"); 2901 return nullptr; 2902 } 2903 Record *Operator = OpDef->getDef(); 2904 2905 if (Operator->isSubClassOf("ValueType")) { 2906 // If the operator is a ValueType, then this must be "type cast" of a leaf 2907 // node. 2908 if (Dag->getNumArgs() != 1) 2909 error("Type cast only takes one operand!"); 2910 2911 TreePatternNodePtr New = 2912 ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0)); 2913 2914 // Apply the type cast. 2915 if (New->getNumTypes() != 1) 2916 error("Type cast can only have one type!"); 2917 const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes(); 2918 New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this); 2919 2920 if (!OpName.empty()) 2921 error("ValueType cast should not have a name!"); 2922 return New; 2923 } 2924 2925 // Verify that this is something that makes sense for an operator. 2926 if (!Operator->isSubClassOf("PatFrags") && 2927 !Operator->isSubClassOf("SDNode") && 2928 !Operator->isSubClassOf("Instruction") && 2929 !Operator->isSubClassOf("SDNodeXForm") && 2930 !Operator->isSubClassOf("Intrinsic") && 2931 !Operator->isSubClassOf("ComplexPattern") && 2932 Operator->getName() != "set" && Operator->getName() != "implicit") 2933 error("Unrecognized node '" + Operator->getName() + "'!"); 2934 2935 // Check to see if this is something that is illegal in an input pattern. 2936 if (isInputPattern) { 2937 if (Operator->isSubClassOf("Instruction") || 2938 Operator->isSubClassOf("SDNodeXForm")) 2939 error("Cannot use '" + Operator->getName() + "' in an input pattern!"); 2940 } else { 2941 if (Operator->isSubClassOf("Intrinsic")) 2942 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2943 2944 if (Operator->isSubClassOf("SDNode") && Operator->getName() != "imm" && 2945 Operator->getName() != "timm" && Operator->getName() != "fpimm" && 2946 Operator->getName() != "tglobaltlsaddr" && 2947 Operator->getName() != "tconstpool" && 2948 Operator->getName() != "tjumptable" && 2949 Operator->getName() != "tframeindex" && 2950 Operator->getName() != "texternalsym" && 2951 Operator->getName() != "tblockaddress" && 2952 Operator->getName() != "tglobaladdr" && Operator->getName() != "bb" && 2953 Operator->getName() != "vt" && Operator->getName() != "mcsym") 2954 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2955 } 2956 2957 std::vector<TreePatternNodePtr> Children; 2958 2959 // Parse all the operands. 2960 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) 2961 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i))); 2962 2963 // Get the actual number of results before Operator is converted to an 2964 // intrinsic node (which is hard-coded to have either zero or one result). 2965 unsigned NumResults = GetNumNodeResults(Operator, CDP); 2966 2967 // If the operator is an intrinsic, then this is just syntactic sugar for 2968 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and 2969 // convert the intrinsic name to a number. 2970 if (Operator->isSubClassOf("Intrinsic")) { 2971 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); 2972 unsigned IID = getDAGPatterns().getIntrinsicID(Operator) + 1; 2973 2974 // If this intrinsic returns void, it must have side-effects and thus a 2975 // chain. 2976 if (Int.IS.RetTys.empty()) 2977 Operator = getDAGPatterns().get_intrinsic_void_sdnode(); 2978 else if (!Int.ME.doesNotAccessMemory() || Int.hasSideEffects) 2979 // Has side-effects, requires chain. 2980 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); 2981 else // Otherwise, no chain. 2982 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); 2983 2984 Children.insert(Children.begin(), makeIntrusiveRefCnt<TreePatternNode>( 2985 IntInit::get(RK, IID), 1)); 2986 } 2987 2988 if (Operator->isSubClassOf("ComplexPattern")) { 2989 for (unsigned i = 0; i < Children.size(); ++i) { 2990 TreePatternNodePtr Child = Children[i]; 2991 2992 if (Child->getName().empty()) 2993 error("All arguments to a ComplexPattern must be named"); 2994 2995 // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)" 2996 // and "(MY_PAT $b, $a)" should not be allowed in the same pattern; 2997 // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)". 2998 auto OperandId = std::pair(Operator, i); 2999 auto PrevOp = ComplexPatternOperands.find(Child->getName()); 3000 if (PrevOp != ComplexPatternOperands.end()) { 3001 if (PrevOp->getValue() != OperandId) 3002 error("All ComplexPattern operands must appear consistently: " 3003 "in the same order in just one ComplexPattern instance."); 3004 } else 3005 ComplexPatternOperands[Child->getName()] = OperandId; 3006 } 3007 } 3008 3009 TreePatternNodePtr Result = makeIntrusiveRefCnt<TreePatternNode>( 3010 Operator, std::move(Children), NumResults); 3011 Result->setName(OpName); 3012 3013 if (Dag->getName()) { 3014 assert(Result->getName().empty()); 3015 Result->setName(Dag->getNameStr()); 3016 } 3017 return Result; 3018 } 3019 3020 /// SimplifyTree - See if we can simplify this tree to eliminate something that 3021 /// will never match in favor of something obvious that will. This is here 3022 /// strictly as a convenience to target authors because it allows them to write 3023 /// more type generic things and have useless type casts fold away. 3024 /// 3025 /// This returns true if any change is made. 3026 static bool SimplifyTree(TreePatternNodePtr &N) { 3027 if (N->isLeaf()) 3028 return false; 3029 3030 // If we have a bitconvert with a resolved type and if the source and 3031 // destination types are the same, then the bitconvert is useless, remove it. 3032 // 3033 // We make an exception if the types are completely empty. This can come up 3034 // when the pattern being simplified is in the Fragments list of a PatFrags, 3035 // so that the operand is just an untyped "node". In that situation we leave 3036 // bitconverts unsimplified, and simplify them later once the fragment is 3037 // expanded into its true context. 3038 if (N->getOperator()->getName() == "bitconvert" && 3039 N->getExtType(0).isValueTypeByHwMode(false) && 3040 !N->getExtType(0).empty() && 3041 N->getExtType(0) == N->getChild(0).getExtType(0) && 3042 N->getName().empty()) { 3043 N = N->getChildShared(0); 3044 SimplifyTree(N); 3045 return true; 3046 } 3047 3048 // Walk all children. 3049 bool MadeChange = false; 3050 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3051 MadeChange |= SimplifyTree(N->getChildSharedPtr(i)); 3052 3053 return MadeChange; 3054 } 3055 3056 /// InferAllTypes - Infer/propagate as many types throughout the expression 3057 /// patterns as possible. Return true if all types are inferred, false 3058 /// otherwise. Flags an error if a type contradiction is found. 3059 bool TreePattern::InferAllTypes( 3060 const StringMap<SmallVector<TreePatternNode *, 1>> *InNamedTypes) { 3061 if (NamedNodes.empty()) 3062 ComputeNamedNodes(); 3063 3064 bool MadeChange = true; 3065 while (MadeChange) { 3066 MadeChange = false; 3067 for (TreePatternNodePtr &Tree : Trees) { 3068 MadeChange |= Tree->ApplyTypeConstraints(*this, false); 3069 MadeChange |= SimplifyTree(Tree); 3070 } 3071 3072 // If there are constraints on our named nodes, apply them. 3073 for (auto &Entry : NamedNodes) { 3074 SmallVectorImpl<TreePatternNode *> &Nodes = Entry.second; 3075 3076 // If we have input named node types, propagate their types to the named 3077 // values here. 3078 if (InNamedTypes) { 3079 if (!InNamedTypes->count(Entry.getKey())) { 3080 error("Node '" + std::string(Entry.getKey()) + 3081 "' in output pattern but not input pattern"); 3082 return true; 3083 } 3084 3085 const SmallVectorImpl<TreePatternNode *> &InNodes = 3086 InNamedTypes->find(Entry.getKey())->second; 3087 3088 // The input types should be fully resolved by now. 3089 for (TreePatternNode *Node : Nodes) { 3090 // If this node is a register class, and it is the root of the pattern 3091 // then we're mapping something onto an input register. We allow 3092 // changing the type of the input register in this case. This allows 3093 // us to match things like: 3094 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; 3095 if (Node == Trees[0].get() && Node->isLeaf()) { 3096 DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue()); 3097 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 3098 DI->getDef()->isSubClassOf("RegisterOperand"))) 3099 continue; 3100 } 3101 3102 assert(Node->getNumTypes() == 1 && InNodes[0]->getNumTypes() == 1 && 3103 "FIXME: cannot name multiple result nodes yet"); 3104 MadeChange |= 3105 Node->UpdateNodeType(0, InNodes[0]->getExtType(0), *this); 3106 } 3107 } 3108 3109 // If there are multiple nodes with the same name, they must all have the 3110 // same type. 3111 if (Entry.second.size() > 1) { 3112 for (unsigned i = 0, e = Nodes.size() - 1; i != e; ++i) { 3113 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i + 1]; 3114 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && 3115 "FIXME: cannot name multiple result nodes yet"); 3116 3117 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); 3118 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); 3119 } 3120 } 3121 } 3122 } 3123 3124 bool HasUnresolvedTypes = false; 3125 for (const TreePatternNodePtr &Tree : Trees) 3126 HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this); 3127 return !HasUnresolvedTypes; 3128 } 3129 3130 void TreePattern::print(raw_ostream &OS) const { 3131 OS << getRecord()->getName(); 3132 if (!Args.empty()) { 3133 OS << "("; 3134 ListSeparator LS; 3135 for (const std::string &Arg : Args) 3136 OS << LS << Arg; 3137 OS << ")"; 3138 } 3139 OS << ": "; 3140 3141 if (Trees.size() > 1) 3142 OS << "[\n"; 3143 for (const TreePatternNodePtr &Tree : Trees) { 3144 OS << "\t"; 3145 Tree->print(OS); 3146 OS << "\n"; 3147 } 3148 3149 if (Trees.size() > 1) 3150 OS << "]\n"; 3151 } 3152 3153 void TreePattern::dump() const { print(errs()); } 3154 3155 //===----------------------------------------------------------------------===// 3156 // CodeGenDAGPatterns implementation 3157 // 3158 3159 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R, 3160 PatternRewriterFn PatternRewriter) 3161 : Records(R), Target(R), Intrinsics(R), 3162 LegalVTS(Target.getLegalValueTypes()), PatternRewriter(PatternRewriter) { 3163 ParseNodeInfo(); 3164 ParseNodeTransforms(); 3165 ParseComplexPatterns(); 3166 ParsePatternFragments(); 3167 ParseDefaultOperands(); 3168 ParseInstructions(); 3169 ParsePatternFragments(/*OutFrags*/ true); 3170 ParsePatterns(); 3171 3172 // Generate variants. For example, commutative patterns can match 3173 // multiple ways. Add them to PatternsToMatch as well. 3174 GenerateVariants(); 3175 3176 // Break patterns with parameterized types into a series of patterns, 3177 // where each one has a fixed type and is predicated on the conditions 3178 // of the associated HW mode. 3179 ExpandHwModeBasedTypes(); 3180 3181 // Infer instruction flags. For example, we can detect loads, 3182 // stores, and side effects in many cases by examining an 3183 // instruction's pattern. 3184 InferInstructionFlags(); 3185 3186 // Verify that instruction flags match the patterns. 3187 VerifyInstructionFlags(); 3188 } 3189 3190 Record *CodeGenDAGPatterns::getSDNodeNamed(StringRef Name) const { 3191 Record *N = Records.getDef(Name); 3192 if (!N || !N->isSubClassOf("SDNode")) 3193 PrintFatalError("Error getting SDNode '" + Name + "'!"); 3194 3195 return N; 3196 } 3197 3198 // Parse all of the SDNode definitions for the target, populating SDNodes. 3199 void CodeGenDAGPatterns::ParseNodeInfo() { 3200 std::vector<Record *> Nodes = Records.getAllDerivedDefinitions("SDNode"); 3201 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 3202 3203 while (!Nodes.empty()) { 3204 Record *R = Nodes.back(); 3205 SDNodes.insert(std::pair(R, SDNodeInfo(R, CGH))); 3206 Nodes.pop_back(); 3207 } 3208 3209 // Get the builtin intrinsic nodes. 3210 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); 3211 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); 3212 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); 3213 } 3214 3215 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms 3216 /// map, and emit them to the file as functions. 3217 void CodeGenDAGPatterns::ParseNodeTransforms() { 3218 std::vector<Record *> Xforms = 3219 Records.getAllDerivedDefinitions("SDNodeXForm"); 3220 while (!Xforms.empty()) { 3221 Record *XFormNode = Xforms.back(); 3222 Record *SDNode = XFormNode->getValueAsDef("Opcode"); 3223 StringRef Code = XFormNode->getValueAsString("XFormFunction"); 3224 SDNodeXForms.insert( 3225 std::pair(XFormNode, NodeXForm(SDNode, std::string(Code)))); 3226 3227 Xforms.pop_back(); 3228 } 3229 } 3230 3231 void CodeGenDAGPatterns::ParseComplexPatterns() { 3232 std::vector<Record *> AMs = 3233 Records.getAllDerivedDefinitions("ComplexPattern"); 3234 while (!AMs.empty()) { 3235 ComplexPatterns.insert(std::pair(AMs.back(), AMs.back())); 3236 AMs.pop_back(); 3237 } 3238 } 3239 3240 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td 3241 /// file, building up the PatternFragments map. After we've collected them all, 3242 /// inline fragments together as necessary, so that there are no references left 3243 /// inside a pattern fragment to a pattern fragment. 3244 /// 3245 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) { 3246 std::vector<Record *> Fragments = 3247 Records.getAllDerivedDefinitions("PatFrags"); 3248 3249 // First step, parse all of the fragments. 3250 for (Record *Frag : Fragments) { 3251 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 3252 continue; 3253 3254 ListInit *LI = Frag->getValueAsListInit("Fragments"); 3255 TreePattern *P = (PatternFragments[Frag] = std::make_unique<TreePattern>( 3256 Frag, LI, !Frag->isSubClassOf("OutPatFrag"), *this)) 3257 .get(); 3258 3259 // Validate the argument list, converting it to set, to discard duplicates. 3260 std::vector<std::string> &Args = P->getArgList(); 3261 // Copy the args so we can take StringRefs to them. 3262 auto ArgsCopy = Args; 3263 SmallDenseSet<StringRef, 4> OperandsSet; 3264 OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end()); 3265 3266 if (OperandsSet.count("")) 3267 P->error("Cannot have unnamed 'node' values in pattern fragment!"); 3268 3269 // Parse the operands list. 3270 DagInit *OpsList = Frag->getValueAsDag("Operands"); 3271 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator()); 3272 // Special cases: ops == outs == ins. Different names are used to 3273 // improve readability. 3274 if (!OpsOp || (OpsOp->getDef()->getName() != "ops" && 3275 OpsOp->getDef()->getName() != "outs" && 3276 OpsOp->getDef()->getName() != "ins")) 3277 P->error("Operands list should start with '(ops ... '!"); 3278 3279 // Copy over the arguments. 3280 Args.clear(); 3281 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { 3282 if (!isa<DefInit>(OpsList->getArg(j)) || 3283 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node") 3284 P->error("Operands list should all be 'node' values."); 3285 if (!OpsList->getArgName(j)) 3286 P->error("Operands list should have names for each operand!"); 3287 StringRef ArgNameStr = OpsList->getArgNameStr(j); 3288 if (!OperandsSet.count(ArgNameStr)) 3289 P->error("'" + ArgNameStr + 3290 "' does not occur in pattern or was multiply specified!"); 3291 OperandsSet.erase(ArgNameStr); 3292 Args.push_back(std::string(ArgNameStr)); 3293 } 3294 3295 if (!OperandsSet.empty()) 3296 P->error("Operands list does not contain an entry for operand '" + 3297 *OperandsSet.begin() + "'!"); 3298 3299 // If there is a node transformation corresponding to this, keep track of 3300 // it. 3301 Record *Transform = Frag->getValueAsDef("OperandTransform"); 3302 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? 3303 for (const auto &T : P->getTrees()) 3304 T->setTransformFn(Transform); 3305 } 3306 3307 // Now that we've parsed all of the tree fragments, do a closure on them so 3308 // that there are not references to PatFrags left inside of them. 3309 for (Record *Frag : Fragments) { 3310 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 3311 continue; 3312 3313 TreePattern &ThePat = *PatternFragments[Frag]; 3314 ThePat.InlinePatternFragments(); 3315 3316 // Infer as many types as possible. Don't worry about it if we don't infer 3317 // all of them, some may depend on the inputs of the pattern. Also, don't 3318 // validate type sets; validation may cause spurious failures e.g. if a 3319 // fragment needs floating-point types but the current target does not have 3320 // any (this is only an error if that fragment is ever used!). 3321 { 3322 TypeInfer::SuppressValidation SV(ThePat.getInfer()); 3323 ThePat.InferAllTypes(); 3324 ThePat.resetError(); 3325 } 3326 3327 // If debugging, print out the pattern fragment result. 3328 LLVM_DEBUG(ThePat.dump()); 3329 } 3330 } 3331 3332 void CodeGenDAGPatterns::ParseDefaultOperands() { 3333 std::vector<Record *> DefaultOps; 3334 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps"); 3335 3336 // Find some SDNode. 3337 assert(!SDNodes.empty() && "No SDNodes parsed?"); 3338 Init *SomeSDNode = SDNodes.begin()->first->getDefInit(); 3339 3340 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) { 3341 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps"); 3342 3343 // Clone the DefaultInfo dag node, changing the operator from 'ops' to 3344 // SomeSDnode so that we can parse this. 3345 std::vector<std::pair<Init *, StringInit *>> Ops; 3346 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) 3347 Ops.push_back( 3348 std::pair(DefaultInfo->getArg(op), DefaultInfo->getArgName(op))); 3349 DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops); 3350 3351 // Create a TreePattern to parse this. 3352 TreePattern P(DefaultOps[i], DI, false, *this); 3353 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); 3354 3355 // Copy the operands over into a DAGDefaultOperand. 3356 DAGDefaultOperand DefaultOpInfo; 3357 3358 const TreePatternNodePtr &T = P.getTree(0); 3359 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { 3360 TreePatternNodePtr TPN = T->getChildShared(op); 3361 while (TPN->ApplyTypeConstraints(P, false)) 3362 /* Resolve all types */; 3363 3364 if (TPN->ContainsUnresolvedType(P)) { 3365 PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" + 3366 DefaultOps[i]->getName() + 3367 "' doesn't have a concrete type!"); 3368 } 3369 DefaultOpInfo.DefaultOps.push_back(std::move(TPN)); 3370 } 3371 3372 // Insert it into the DefaultOperands map so we can find it later. 3373 DefaultOperands[DefaultOps[i]] = DefaultOpInfo; 3374 } 3375 } 3376 3377 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an 3378 /// instruction input. Return true if this is a real use. 3379 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat, 3380 std::map<std::string, TreePatternNodePtr> &InstInputs) { 3381 // No name -> not interesting. 3382 if (Pat->getName().empty()) { 3383 if (Pat->isLeaf()) { 3384 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3385 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 3386 DI->getDef()->isSubClassOf("RegisterOperand"))) 3387 I.error("Input " + DI->getDef()->getName() + " must be named!"); 3388 } 3389 return false; 3390 } 3391 3392 Record *Rec; 3393 if (Pat->isLeaf()) { 3394 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3395 if (!DI) 3396 I.error("Input $" + Pat->getName() + " must be an identifier!"); 3397 Rec = DI->getDef(); 3398 } else { 3399 Rec = Pat->getOperator(); 3400 } 3401 3402 // SRCVALUE nodes are ignored. 3403 if (Rec->getName() == "srcvalue") 3404 return false; 3405 3406 TreePatternNodePtr &Slot = InstInputs[Pat->getName()]; 3407 if (!Slot) { 3408 Slot = Pat; 3409 return true; 3410 } 3411 Record *SlotRec; 3412 if (Slot->isLeaf()) { 3413 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef(); 3414 } else { 3415 assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); 3416 SlotRec = Slot->getOperator(); 3417 } 3418 3419 // Ensure that the inputs agree if we've already seen this input. 3420 if (Rec != SlotRec) 3421 I.error("All $" + Pat->getName() + " inputs must agree with each other"); 3422 // Ensure that the types can agree as well. 3423 Slot->UpdateNodeType(0, Pat->getExtType(0), I); 3424 Pat->UpdateNodeType(0, Slot->getExtType(0), I); 3425 if (Slot->getExtTypes() != Pat->getExtTypes()) 3426 I.error("All $" + Pat->getName() + " inputs must agree with each other"); 3427 return true; 3428 } 3429 3430 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is 3431 /// part of "I", the instruction), computing the set of inputs and outputs of 3432 /// the pattern. Report errors if we see anything naughty. 3433 void CodeGenDAGPatterns::FindPatternInputsAndOutputs( 3434 TreePattern &I, TreePatternNodePtr Pat, 3435 std::map<std::string, TreePatternNodePtr> &InstInputs, 3436 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 3437 &InstResults, 3438 std::vector<Record *> &InstImpResults) { 3439 3440 // The instruction pattern still has unresolved fragments. For *named* 3441 // nodes we must resolve those here. This may not result in multiple 3442 // alternatives. 3443 if (!Pat->getName().empty()) { 3444 TreePattern SrcPattern(I.getRecord(), Pat, true, *this); 3445 SrcPattern.InlinePatternFragments(); 3446 SrcPattern.InferAllTypes(); 3447 Pat = SrcPattern.getOnlyTree(); 3448 } 3449 3450 if (Pat->isLeaf()) { 3451 bool isUse = HandleUse(I, Pat, InstInputs); 3452 if (!isUse && Pat->getTransformFn()) 3453 I.error("Cannot specify a transform function for a non-input value!"); 3454 return; 3455 } 3456 3457 if (Pat->getOperator()->getName() == "implicit") { 3458 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3459 TreePatternNode &Dest = Pat->getChild(i); 3460 if (!Dest.isLeaf()) 3461 I.error("implicitly defined value should be a register!"); 3462 3463 DefInit *Val = dyn_cast<DefInit>(Dest.getLeafValue()); 3464 if (!Val || !Val->getDef()->isSubClassOf("Register")) 3465 I.error("implicitly defined value should be a register!"); 3466 if (Val) 3467 InstImpResults.push_back(Val->getDef()); 3468 } 3469 return; 3470 } 3471 3472 if (Pat->getOperator()->getName() != "set") { 3473 // If this is not a set, verify that the children nodes are not void typed, 3474 // and recurse. 3475 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3476 if (Pat->getChild(i).getNumTypes() == 0) 3477 I.error("Cannot have void nodes inside of patterns!"); 3478 FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs, 3479 InstResults, InstImpResults); 3480 } 3481 3482 // If this is a non-leaf node with no children, treat it basically as if 3483 // it were a leaf. This handles nodes like (imm). 3484 bool isUse = HandleUse(I, Pat, InstInputs); 3485 3486 if (!isUse && Pat->getTransformFn()) 3487 I.error("Cannot specify a transform function for a non-input value!"); 3488 return; 3489 } 3490 3491 // Otherwise, this is a set, validate and collect instruction results. 3492 if (Pat->getNumChildren() == 0) 3493 I.error("set requires operands!"); 3494 3495 if (Pat->getTransformFn()) 3496 I.error("Cannot specify a transform function on a set node!"); 3497 3498 // Check the set destinations. 3499 unsigned NumDests = Pat->getNumChildren() - 1; 3500 for (unsigned i = 0; i != NumDests; ++i) { 3501 TreePatternNodePtr Dest = Pat->getChildShared(i); 3502 // For set destinations we also must resolve fragments here. 3503 TreePattern DestPattern(I.getRecord(), Dest, false, *this); 3504 DestPattern.InlinePatternFragments(); 3505 DestPattern.InferAllTypes(); 3506 Dest = DestPattern.getOnlyTree(); 3507 3508 if (!Dest->isLeaf()) 3509 I.error("set destination should be a register!"); 3510 3511 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 3512 if (!Val) { 3513 I.error("set destination should be a register!"); 3514 continue; 3515 } 3516 3517 if (Val->getDef()->isSubClassOf("RegisterClass") || 3518 Val->getDef()->isSubClassOf("ValueType") || 3519 Val->getDef()->isSubClassOf("RegisterOperand") || 3520 Val->getDef()->isSubClassOf("PointerLikeRegClass")) { 3521 if (Dest->getName().empty()) 3522 I.error("set destination must have a name!"); 3523 if (InstResults.count(Dest->getName())) 3524 I.error("cannot set '" + Dest->getName() + "' multiple times"); 3525 InstResults[Dest->getName()] = Dest; 3526 } else if (Val->getDef()->isSubClassOf("Register")) { 3527 InstImpResults.push_back(Val->getDef()); 3528 } else { 3529 I.error("set destination should be a register!"); 3530 } 3531 } 3532 3533 // Verify and collect info from the computation. 3534 FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs, 3535 InstResults, InstImpResults); 3536 } 3537 3538 //===----------------------------------------------------------------------===// 3539 // Instruction Analysis 3540 //===----------------------------------------------------------------------===// 3541 3542 class InstAnalyzer { 3543 const CodeGenDAGPatterns &CDP; 3544 3545 public: 3546 bool hasSideEffects; 3547 bool mayStore; 3548 bool mayLoad; 3549 bool isBitcast; 3550 bool isVariadic; 3551 bool hasChain; 3552 3553 InstAnalyzer(const CodeGenDAGPatterns &cdp) 3554 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false), 3555 isBitcast(false), isVariadic(false), hasChain(false) {} 3556 3557 void Analyze(const PatternToMatch &Pat) { 3558 const TreePatternNode &N = Pat.getSrcPattern(); 3559 AnalyzeNode(N); 3560 // These properties are detected only on the root node. 3561 isBitcast = IsNodeBitcast(N); 3562 } 3563 3564 private: 3565 bool IsNodeBitcast(const TreePatternNode &N) const { 3566 if (hasSideEffects || mayLoad || mayStore || isVariadic) 3567 return false; 3568 3569 if (N.isLeaf()) 3570 return false; 3571 if (N.getNumChildren() != 1 || !N.getChild(0).isLeaf()) 3572 return false; 3573 3574 if (N.getOperator()->isSubClassOf("ComplexPattern")) 3575 return false; 3576 3577 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N.getOperator()); 3578 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1) 3579 return false; 3580 return OpInfo.getEnumName() == "ISD::BITCAST"; 3581 } 3582 3583 public: 3584 void AnalyzeNode(const TreePatternNode &N) { 3585 if (N.isLeaf()) { 3586 if (DefInit *DI = dyn_cast<DefInit>(N.getLeafValue())) { 3587 Record *LeafRec = DI->getDef(); 3588 // Handle ComplexPattern leaves. 3589 if (LeafRec->isSubClassOf("ComplexPattern")) { 3590 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); 3591 if (CP.hasProperty(SDNPMayStore)) 3592 mayStore = true; 3593 if (CP.hasProperty(SDNPMayLoad)) 3594 mayLoad = true; 3595 if (CP.hasProperty(SDNPSideEffect)) 3596 hasSideEffects = true; 3597 } 3598 } 3599 return; 3600 } 3601 3602 // Analyze children. 3603 for (unsigned i = 0, e = N.getNumChildren(); i != e; ++i) 3604 AnalyzeNode(N.getChild(i)); 3605 3606 // Notice properties of the node. 3607 if (N.NodeHasProperty(SDNPMayStore, CDP)) 3608 mayStore = true; 3609 if (N.NodeHasProperty(SDNPMayLoad, CDP)) 3610 mayLoad = true; 3611 if (N.NodeHasProperty(SDNPSideEffect, CDP)) 3612 hasSideEffects = true; 3613 if (N.NodeHasProperty(SDNPVariadic, CDP)) 3614 isVariadic = true; 3615 if (N.NodeHasProperty(SDNPHasChain, CDP)) 3616 hasChain = true; 3617 3618 if (const CodeGenIntrinsic *IntInfo = N.getIntrinsicInfo(CDP)) { 3619 ModRefInfo MR = IntInfo->ME.getModRef(); 3620 // If this is an intrinsic, analyze it. 3621 if (isRefSet(MR)) 3622 mayLoad = true; // These may load memory. 3623 3624 if (isModSet(MR)) 3625 mayStore = true; // Intrinsics that can write to memory are 'mayStore'. 3626 3627 // Consider intrinsics that don't specify any restrictions on memory 3628 // effects as having a side-effect. 3629 if (IntInfo->ME == MemoryEffects::unknown() || IntInfo->hasSideEffects) 3630 hasSideEffects = true; 3631 } 3632 } 3633 }; 3634 3635 static bool InferFromPattern(CodeGenInstruction &InstInfo, 3636 const InstAnalyzer &PatInfo, Record *PatDef) { 3637 bool Error = false; 3638 3639 // Remember where InstInfo got its flags. 3640 if (InstInfo.hasUndefFlags()) 3641 InstInfo.InferredFrom = PatDef; 3642 3643 // Check explicitly set flags for consistency. 3644 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects && 3645 !InstInfo.hasSideEffects_Unset) { 3646 // Allow explicitly setting hasSideEffects = 1 on instructions, even when 3647 // the pattern has no side effects. That could be useful for div/rem 3648 // instructions that may trap. 3649 if (!InstInfo.hasSideEffects) { 3650 Error = true; 3651 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " + 3652 Twine(InstInfo.hasSideEffects)); 3653 } 3654 } 3655 3656 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) { 3657 Error = true; 3658 PrintError(PatDef->getLoc(), 3659 "Pattern doesn't match mayStore = " + Twine(InstInfo.mayStore)); 3660 } 3661 3662 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) { 3663 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads. 3664 // Some targets translate immediates to loads. 3665 if (!InstInfo.mayLoad) { 3666 Error = true; 3667 PrintError(PatDef->getLoc(), 3668 "Pattern doesn't match mayLoad = " + Twine(InstInfo.mayLoad)); 3669 } 3670 } 3671 3672 // Transfer inferred flags. 3673 InstInfo.hasSideEffects |= PatInfo.hasSideEffects; 3674 InstInfo.mayStore |= PatInfo.mayStore; 3675 InstInfo.mayLoad |= PatInfo.mayLoad; 3676 3677 // These flags are silently added without any verification. 3678 // FIXME: To match historical behavior of TableGen, for now add those flags 3679 // only when we're inferring from the primary instruction pattern. 3680 if (PatDef->isSubClassOf("Instruction")) { 3681 InstInfo.isBitcast |= PatInfo.isBitcast; 3682 InstInfo.hasChain |= PatInfo.hasChain; 3683 InstInfo.hasChain_Inferred = true; 3684 } 3685 3686 // Don't infer isVariadic. This flag means something different on SDNodes and 3687 // instructions. For example, a CALL SDNode is variadic because it has the 3688 // call arguments as operands, but a CALL instruction is not variadic - it 3689 // has argument registers as implicit, not explicit uses. 3690 3691 return Error; 3692 } 3693 3694 /// hasNullFragReference - Return true if the DAG has any reference to the 3695 /// null_frag operator. 3696 static bool hasNullFragReference(DagInit *DI) { 3697 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator()); 3698 if (!OpDef) 3699 return false; 3700 Record *Operator = OpDef->getDef(); 3701 3702 // If this is the null fragment, return true. 3703 if (Operator->getName() == "null_frag") 3704 return true; 3705 // If any of the arguments reference the null fragment, return true. 3706 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) { 3707 if (auto Arg = dyn_cast<DefInit>(DI->getArg(i))) 3708 if (Arg->getDef()->getName() == "null_frag") 3709 return true; 3710 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i)); 3711 if (Arg && hasNullFragReference(Arg)) 3712 return true; 3713 } 3714 3715 return false; 3716 } 3717 3718 /// hasNullFragReference - Return true if any DAG in the list references 3719 /// the null_frag operator. 3720 static bool hasNullFragReference(ListInit *LI) { 3721 for (Init *I : LI->getValues()) { 3722 DagInit *DI = dyn_cast<DagInit>(I); 3723 assert(DI && "non-dag in an instruction Pattern list?!"); 3724 if (hasNullFragReference(DI)) 3725 return true; 3726 } 3727 return false; 3728 } 3729 3730 /// Get all the instructions in a tree. 3731 static void getInstructionsInTree(TreePatternNode &Tree, 3732 SmallVectorImpl<Record *> &Instrs) { 3733 if (Tree.isLeaf()) 3734 return; 3735 if (Tree.getOperator()->isSubClassOf("Instruction")) 3736 Instrs.push_back(Tree.getOperator()); 3737 for (unsigned i = 0, e = Tree.getNumChildren(); i != e; ++i) 3738 getInstructionsInTree(Tree.getChild(i), Instrs); 3739 } 3740 3741 /// Check the class of a pattern leaf node against the instruction operand it 3742 /// represents. 3743 static bool checkOperandClass(CGIOperandList::OperandInfo &OI, Record *Leaf) { 3744 if (OI.Rec == Leaf) 3745 return true; 3746 3747 // Allow direct value types to be used in instruction set patterns. 3748 // The type will be checked later. 3749 if (Leaf->isSubClassOf("ValueType")) 3750 return true; 3751 3752 // Patterns can also be ComplexPattern instances. 3753 if (Leaf->isSubClassOf("ComplexPattern")) 3754 return true; 3755 3756 return false; 3757 } 3758 3759 void CodeGenDAGPatterns::parseInstructionPattern(CodeGenInstruction &CGI, 3760 ListInit *Pat, 3761 DAGInstMap &DAGInsts) { 3762 3763 assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!"); 3764 3765 // Parse the instruction. 3766 TreePattern I(CGI.TheDef, Pat, true, *this); 3767 3768 // InstInputs - Keep track of all of the inputs of the instruction, along 3769 // with the record they are declared as. 3770 std::map<std::string, TreePatternNodePtr> InstInputs; 3771 3772 // InstResults - Keep track of all the virtual registers that are 'set' 3773 // in the instruction, including what reg class they are. 3774 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 3775 InstResults; 3776 3777 std::vector<Record *> InstImpResults; 3778 3779 // Verify that the top-level forms in the instruction are of void type, and 3780 // fill in the InstResults map. 3781 SmallString<32> TypesString; 3782 for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) { 3783 TypesString.clear(); 3784 TreePatternNodePtr Pat = I.getTree(j); 3785 if (Pat->getNumTypes() != 0) { 3786 raw_svector_ostream OS(TypesString); 3787 ListSeparator LS; 3788 for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) { 3789 OS << LS; 3790 Pat->getExtType(k).writeToStream(OS); 3791 } 3792 I.error("Top-level forms in instruction pattern should have" 3793 " void types, has types " + 3794 OS.str()); 3795 } 3796 3797 // Find inputs and outputs, and verify the structure of the uses/defs. 3798 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, 3799 InstImpResults); 3800 } 3801 3802 // Now that we have inputs and outputs of the pattern, inspect the operands 3803 // list for the instruction. This determines the order that operands are 3804 // added to the machine instruction the node corresponds to. 3805 unsigned NumResults = InstResults.size(); 3806 3807 // Parse the operands list from the (ops) list, validating it. 3808 assert(I.getArgList().empty() && "Args list should still be empty here!"); 3809 3810 // Check that all of the results occur first in the list. 3811 std::vector<const Record *> Results; 3812 std::vector<unsigned> ResultIndices; 3813 SmallVector<TreePatternNodePtr, 2> ResNodes; 3814 for (unsigned i = 0; i != NumResults; ++i) { 3815 if (i == CGI.Operands.size()) { 3816 const std::string &OpName = 3817 llvm::find_if( 3818 InstResults, 3819 [](const std::pair<std::string, TreePatternNodePtr> &P) { 3820 return P.second; 3821 }) 3822 ->first; 3823 3824 I.error("'" + OpName + "' set but does not appear in operand list!"); 3825 } 3826 3827 const std::string &OpName = CGI.Operands[i].Name; 3828 3829 // Check that it exists in InstResults. 3830 auto InstResultIter = InstResults.find(OpName); 3831 if (InstResultIter == InstResults.end() || !InstResultIter->second) 3832 I.error("Operand $" + OpName + " does not exist in operand list!"); 3833 3834 TreePatternNodePtr RNode = InstResultIter->second; 3835 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef(); 3836 ResNodes.push_back(std::move(RNode)); 3837 if (!R) 3838 I.error("Operand $" + OpName + 3839 " should be a set destination: all " 3840 "outputs must occur before inputs in operand list!"); 3841 3842 if (!checkOperandClass(CGI.Operands[i], R)) 3843 I.error("Operand $" + OpName + " class mismatch!"); 3844 3845 // Remember the return type. 3846 Results.push_back(CGI.Operands[i].Rec); 3847 3848 // Remember the result index. 3849 ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter)); 3850 3851 // Okay, this one checks out. 3852 InstResultIter->second = nullptr; 3853 } 3854 3855 // Loop over the inputs next. 3856 std::vector<TreePatternNodePtr> ResultNodeOperands; 3857 std::vector<const Record *> Operands; 3858 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { 3859 CGIOperandList::OperandInfo &Op = CGI.Operands[i]; 3860 const std::string &OpName = Op.Name; 3861 if (OpName.empty()) { 3862 I.error("Operand #" + Twine(i) + " in operands list has no name!"); 3863 continue; 3864 } 3865 3866 if (!InstInputs.count(OpName)) { 3867 // If this is an operand with a DefaultOps set filled in, we can ignore 3868 // this. When we codegen it, we will do so as always executed. 3869 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) { 3870 // Does it have a non-empty DefaultOps field? If so, ignore this 3871 // operand. 3872 if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) 3873 continue; 3874 } 3875 I.error("Operand $" + OpName + 3876 " does not appear in the instruction pattern"); 3877 continue; 3878 } 3879 TreePatternNodePtr InVal = InstInputs[OpName]; 3880 InstInputs.erase(OpName); // It occurred, remove from map. 3881 3882 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) { 3883 Record *InRec = cast<DefInit>(InVal->getLeafValue())->getDef(); 3884 if (!checkOperandClass(Op, InRec)) { 3885 I.error("Operand $" + OpName + 3886 "'s register class disagrees" 3887 " between the operand and pattern"); 3888 continue; 3889 } 3890 } 3891 Operands.push_back(Op.Rec); 3892 3893 // Construct the result for the dest-pattern operand list. 3894 TreePatternNodePtr OpNode = InVal->clone(); 3895 3896 // No predicate is useful on the result. 3897 OpNode->clearPredicateCalls(); 3898 3899 // Promote the xform function to be an explicit node if set. 3900 if (Record *Xform = OpNode->getTransformFn()) { 3901 OpNode->setTransformFn(nullptr); 3902 std::vector<TreePatternNodePtr> Children; 3903 Children.push_back(OpNode); 3904 OpNode = makeIntrusiveRefCnt<TreePatternNode>(Xform, std::move(Children), 3905 OpNode->getNumTypes()); 3906 } 3907 3908 ResultNodeOperands.push_back(std::move(OpNode)); 3909 } 3910 3911 if (!InstInputs.empty()) 3912 I.error("Input operand $" + InstInputs.begin()->first + 3913 " occurs in pattern but not in operands list!"); 3914 3915 TreePatternNodePtr ResultPattern = makeIntrusiveRefCnt<TreePatternNode>( 3916 I.getRecord(), std::move(ResultNodeOperands), 3917 GetNumNodeResults(I.getRecord(), *this)); 3918 // Copy fully inferred output node types to instruction result pattern. 3919 for (unsigned i = 0; i != NumResults; ++i) { 3920 assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled"); 3921 ResultPattern->setType(i, ResNodes[i]->getExtType(0)); 3922 ResultPattern->setResultIndex(i, ResultIndices[i]); 3923 } 3924 3925 // FIXME: Assume only the first tree is the pattern. The others are clobber 3926 // nodes. 3927 TreePatternNodePtr Pattern = I.getTree(0); 3928 TreePatternNodePtr SrcPattern; 3929 if (Pattern->getOperator()->getName() == "set") { 3930 SrcPattern = Pattern->getChild(Pattern->getNumChildren() - 1).clone(); 3931 } else { 3932 // Not a set (store or something?) 3933 SrcPattern = Pattern; 3934 } 3935 3936 // Create and insert the instruction. 3937 // FIXME: InstImpResults should not be part of DAGInstruction. 3938 Record *R = I.getRecord(); 3939 DAGInsts.try_emplace(R, std::move(Results), std::move(Operands), 3940 std::move(InstImpResults), SrcPattern, ResultPattern); 3941 3942 LLVM_DEBUG(I.dump()); 3943 } 3944 3945 /// ParseInstructions - Parse all of the instructions, inlining and resolving 3946 /// any fragments involved. This populates the Instructions list with fully 3947 /// resolved instructions. 3948 void CodeGenDAGPatterns::ParseInstructions() { 3949 std::vector<Record *> Instrs = 3950 Records.getAllDerivedDefinitions("Instruction"); 3951 3952 for (Record *Instr : Instrs) { 3953 ListInit *LI = nullptr; 3954 3955 if (isa<ListInit>(Instr->getValueInit("Pattern"))) 3956 LI = Instr->getValueAsListInit("Pattern"); 3957 3958 // If there is no pattern, only collect minimal information about the 3959 // instruction for its operand list. We have to assume that there is one 3960 // result, as we have no detailed info. A pattern which references the 3961 // null_frag operator is as-if no pattern were specified. Normally this 3962 // is from a multiclass expansion w/ a SDPatternOperator passed in as 3963 // null_frag. 3964 if (!LI || LI->empty() || hasNullFragReference(LI)) { 3965 std::vector<const Record *> Results; 3966 std::vector<const Record *> Operands; 3967 3968 CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3969 3970 if (InstInfo.Operands.size() != 0) { 3971 for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j) 3972 Results.push_back(InstInfo.Operands[j].Rec); 3973 3974 // The rest are inputs. 3975 for (unsigned j = InstInfo.Operands.NumDefs, 3976 e = InstInfo.Operands.size(); 3977 j < e; ++j) 3978 Operands.push_back(InstInfo.Operands[j].Rec); 3979 } 3980 3981 // Create and insert the instruction. 3982 Instructions.try_emplace(Instr, std::move(Results), std::move(Operands), 3983 std::vector<Record *>()); 3984 continue; // no pattern. 3985 } 3986 3987 CodeGenInstruction &CGI = Target.getInstruction(Instr); 3988 parseInstructionPattern(CGI, LI, Instructions); 3989 } 3990 3991 // If we can, convert the instructions to be patterns that are matched! 3992 for (auto &Entry : Instructions) { 3993 Record *Instr = Entry.first; 3994 DAGInstruction &TheInst = Entry.second; 3995 TreePatternNodePtr SrcPattern = TheInst.getSrcPattern(); 3996 TreePatternNodePtr ResultPattern = TheInst.getResultPattern(); 3997 3998 if (SrcPattern && ResultPattern) { 3999 TreePattern Pattern(Instr, SrcPattern, true, *this); 4000 TreePattern Result(Instr, ResultPattern, false, *this); 4001 ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults()); 4002 } 4003 } 4004 } 4005 4006 typedef std::pair<TreePatternNode *, unsigned> NameRecord; 4007 4008 static void FindNames(TreePatternNode &P, 4009 std::map<std::string, NameRecord> &Names, 4010 TreePattern *PatternTop) { 4011 if (!P.getName().empty()) { 4012 NameRecord &Rec = Names[P.getName()]; 4013 // If this is the first instance of the name, remember the node. 4014 if (Rec.second++ == 0) 4015 Rec.first = &P; 4016 else if (Rec.first->getExtTypes() != P.getExtTypes()) 4017 PatternTop->error("repetition of value: $" + P.getName() + 4018 " where different uses have different types!"); 4019 } 4020 4021 if (!P.isLeaf()) { 4022 for (unsigned i = 0, e = P.getNumChildren(); i != e; ++i) 4023 FindNames(P.getChild(i), Names, PatternTop); 4024 } 4025 } 4026 4027 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern, 4028 PatternToMatch &&PTM) { 4029 // Do some sanity checking on the pattern we're about to match. 4030 std::string Reason; 4031 if (!PTM.getSrcPattern().canPatternMatch(Reason, *this)) { 4032 PrintWarning(Pattern->getRecord()->getLoc(), 4033 Twine("Pattern can never match: ") + Reason); 4034 return; 4035 } 4036 4037 // If the source pattern's root is a complex pattern, that complex pattern 4038 // must specify the nodes it can potentially match. 4039 if (const ComplexPattern *CP = 4040 PTM.getSrcPattern().getComplexPatternInfo(*this)) 4041 if (CP->getRootNodes().empty()) 4042 Pattern->error("ComplexPattern at root must specify list of opcodes it" 4043 " could match"); 4044 4045 // Find all of the named values in the input and output, ensure they have the 4046 // same type. 4047 std::map<std::string, NameRecord> SrcNames, DstNames; 4048 FindNames(PTM.getSrcPattern(), SrcNames, Pattern); 4049 FindNames(PTM.getDstPattern(), DstNames, Pattern); 4050 4051 // Scan all of the named values in the destination pattern, rejecting them if 4052 // they don't exist in the input pattern. 4053 for (const auto &Entry : DstNames) { 4054 if (SrcNames[Entry.first].first == nullptr) 4055 Pattern->error("Pattern has input without matching name in output: $" + 4056 Entry.first); 4057 } 4058 4059 // Scan all of the named values in the source pattern, rejecting them if the 4060 // name isn't used in the dest, and isn't used to tie two values together. 4061 for (const auto &Entry : SrcNames) 4062 if (DstNames[Entry.first].first == nullptr && 4063 SrcNames[Entry.first].second == 1) 4064 Pattern->error("Pattern has dead named input: $" + Entry.first); 4065 4066 PatternsToMatch.push_back(std::move(PTM)); 4067 } 4068 4069 void CodeGenDAGPatterns::InferInstructionFlags() { 4070 ArrayRef<const CodeGenInstruction *> Instructions = 4071 Target.getInstructionsByEnumValue(); 4072 4073 unsigned Errors = 0; 4074 4075 // Try to infer flags from all patterns in PatternToMatch. These include 4076 // both the primary instruction patterns (which always come first) and 4077 // patterns defined outside the instruction. 4078 for (const PatternToMatch &PTM : ptms()) { 4079 // We can only infer from single-instruction patterns, otherwise we won't 4080 // know which instruction should get the flags. 4081 SmallVector<Record *, 8> PatInstrs; 4082 getInstructionsInTree(PTM.getDstPattern(), PatInstrs); 4083 if (PatInstrs.size() != 1) 4084 continue; 4085 4086 // Get the single instruction. 4087 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front()); 4088 4089 // Only infer properties from the first pattern. We'll verify the others. 4090 if (InstInfo.InferredFrom) 4091 continue; 4092 4093 InstAnalyzer PatInfo(*this); 4094 PatInfo.Analyze(PTM); 4095 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord()); 4096 } 4097 4098 if (Errors) 4099 PrintFatalError("pattern conflicts"); 4100 4101 // If requested by the target, guess any undefined properties. 4102 if (Target.guessInstructionProperties()) { 4103 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 4104 CodeGenInstruction *InstInfo = 4105 const_cast<CodeGenInstruction *>(Instructions[i]); 4106 if (InstInfo->InferredFrom) 4107 continue; 4108 // The mayLoad and mayStore flags default to false. 4109 // Conservatively assume hasSideEffects if it wasn't explicit. 4110 if (InstInfo->hasSideEffects_Unset) 4111 InstInfo->hasSideEffects = true; 4112 } 4113 return; 4114 } 4115 4116 // Complain about any flags that are still undefined. 4117 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 4118 CodeGenInstruction *InstInfo = 4119 const_cast<CodeGenInstruction *>(Instructions[i]); 4120 if (InstInfo->InferredFrom) 4121 continue; 4122 if (InstInfo->hasSideEffects_Unset) 4123 PrintError(InstInfo->TheDef->getLoc(), 4124 "Can't infer hasSideEffects from patterns"); 4125 if (InstInfo->mayStore_Unset) 4126 PrintError(InstInfo->TheDef->getLoc(), 4127 "Can't infer mayStore from patterns"); 4128 if (InstInfo->mayLoad_Unset) 4129 PrintError(InstInfo->TheDef->getLoc(), 4130 "Can't infer mayLoad from patterns"); 4131 } 4132 } 4133 4134 /// Verify instruction flags against pattern node properties. 4135 void CodeGenDAGPatterns::VerifyInstructionFlags() { 4136 unsigned Errors = 0; 4137 for (const PatternToMatch &PTM : ptms()) { 4138 SmallVector<Record *, 8> Instrs; 4139 getInstructionsInTree(PTM.getDstPattern(), Instrs); 4140 if (Instrs.empty()) 4141 continue; 4142 4143 // Count the number of instructions with each flag set. 4144 unsigned NumSideEffects = 0; 4145 unsigned NumStores = 0; 4146 unsigned NumLoads = 0; 4147 for (const Record *Instr : Instrs) { 4148 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 4149 NumSideEffects += InstInfo.hasSideEffects; 4150 NumStores += InstInfo.mayStore; 4151 NumLoads += InstInfo.mayLoad; 4152 } 4153 4154 // Analyze the source pattern. 4155 InstAnalyzer PatInfo(*this); 4156 PatInfo.Analyze(PTM); 4157 4158 // Collect error messages. 4159 SmallVector<std::string, 4> Msgs; 4160 4161 // Check for missing flags in the output. 4162 // Permit extra flags for now at least. 4163 if (PatInfo.hasSideEffects && !NumSideEffects) 4164 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set"); 4165 4166 // Don't verify store flags on instructions with side effects. At least for 4167 // intrinsics, side effects implies mayStore. 4168 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores) 4169 Msgs.push_back("pattern may store, but mayStore isn't set"); 4170 4171 // Similarly, mayStore implies mayLoad on intrinsics. 4172 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads) 4173 Msgs.push_back("pattern may load, but mayLoad isn't set"); 4174 4175 // Print error messages. 4176 if (Msgs.empty()) 4177 continue; 4178 ++Errors; 4179 4180 for (const std::string &Msg : Msgs) 4181 PrintError( 4182 PTM.getSrcRecord()->getLoc(), 4183 Twine(Msg) + " on the " + 4184 (Instrs.size() == 1 ? "instruction" : "output instructions")); 4185 // Provide the location of the relevant instruction definitions. 4186 for (const Record *Instr : Instrs) { 4187 if (Instr != PTM.getSrcRecord()) 4188 PrintError(Instr->getLoc(), "defined here"); 4189 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 4190 if (InstInfo.InferredFrom && InstInfo.InferredFrom != InstInfo.TheDef && 4191 InstInfo.InferredFrom != PTM.getSrcRecord()) 4192 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern"); 4193 } 4194 } 4195 if (Errors) 4196 PrintFatalError("Errors in DAG patterns"); 4197 } 4198 4199 /// Given a pattern result with an unresolved type, see if we can find one 4200 /// instruction with an unresolved result type. Force this result type to an 4201 /// arbitrary element if it's possible types to converge results. 4202 static bool ForceArbitraryInstResultType(TreePatternNode &N, TreePattern &TP) { 4203 if (N.isLeaf()) 4204 return false; 4205 4206 // Analyze children. 4207 for (unsigned i = 0, e = N.getNumChildren(); i != e; ++i) 4208 if (ForceArbitraryInstResultType(N.getChild(i), TP)) 4209 return true; 4210 4211 if (!N.getOperator()->isSubClassOf("Instruction")) 4212 return false; 4213 4214 // If this type is already concrete or completely unknown we can't do 4215 // anything. 4216 TypeInfer &TI = TP.getInfer(); 4217 for (unsigned i = 0, e = N.getNumTypes(); i != e; ++i) { 4218 if (N.getExtType(i).empty() || TI.isConcrete(N.getExtType(i), false)) 4219 continue; 4220 4221 // Otherwise, force its type to an arbitrary choice. 4222 if (TI.forceArbitrary(N.getExtType(i))) 4223 return true; 4224 } 4225 4226 return false; 4227 } 4228 4229 // Promote xform function to be an explicit node wherever set. 4230 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) { 4231 if (Record *Xform = N->getTransformFn()) { 4232 N->setTransformFn(nullptr); 4233 std::vector<TreePatternNodePtr> Children; 4234 Children.push_back(PromoteXForms(N)); 4235 return makeIntrusiveRefCnt<TreePatternNode>(Xform, std::move(Children), 4236 N->getNumTypes()); 4237 } 4238 4239 if (!N->isLeaf()) 4240 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 4241 TreePatternNodePtr Child = N->getChildShared(i); 4242 N->setChild(i, PromoteXForms(Child)); 4243 } 4244 return N; 4245 } 4246 4247 void CodeGenDAGPatterns::ParseOnePattern( 4248 Record *TheDef, TreePattern &Pattern, TreePattern &Result, 4249 const std::vector<Record *> &InstImpResults, bool ShouldIgnore) { 4250 4251 // Inline pattern fragments and expand multiple alternatives. 4252 Pattern.InlinePatternFragments(); 4253 Result.InlinePatternFragments(); 4254 4255 if (Result.getNumTrees() != 1) 4256 Result.error("Cannot use multi-alternative fragments in result pattern!"); 4257 4258 // Infer types. 4259 bool IterateInference; 4260 bool InferredAllPatternTypes, InferredAllResultTypes; 4261 do { 4262 // Infer as many types as possible. If we cannot infer all of them, we 4263 // can never do anything with this pattern: report it to the user. 4264 InferredAllPatternTypes = 4265 Pattern.InferAllTypes(&Pattern.getNamedNodesMap()); 4266 4267 // Infer as many types as possible. If we cannot infer all of them, we 4268 // can never do anything with this pattern: report it to the user. 4269 InferredAllResultTypes = Result.InferAllTypes(&Pattern.getNamedNodesMap()); 4270 4271 IterateInference = false; 4272 4273 // Apply the type of the result to the source pattern. This helps us 4274 // resolve cases where the input type is known to be a pointer type (which 4275 // is considered resolved), but the result knows it needs to be 32- or 4276 // 64-bits. Infer the other way for good measure. 4277 for (const auto &T : Pattern.getTrees()) 4278 for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(), 4279 T->getNumTypes()); 4280 i != e; ++i) { 4281 IterateInference |= 4282 T->UpdateNodeType(i, Result.getOnlyTree()->getExtType(i), Result); 4283 IterateInference |= 4284 Result.getOnlyTree()->UpdateNodeType(i, T->getExtType(i), Result); 4285 } 4286 4287 // If our iteration has converged and the input pattern's types are fully 4288 // resolved but the result pattern is not fully resolved, we may have a 4289 // situation where we have two instructions in the result pattern and 4290 // the instructions require a common register class, but don't care about 4291 // what actual MVT is used. This is actually a bug in our modelling: 4292 // output patterns should have register classes, not MVTs. 4293 // 4294 // In any case, to handle this, we just go through and disambiguate some 4295 // arbitrary types to the result pattern's nodes. 4296 if (!IterateInference && InferredAllPatternTypes && !InferredAllResultTypes) 4297 IterateInference = 4298 ForceArbitraryInstResultType(*Result.getTree(0), Result); 4299 } while (IterateInference); 4300 4301 // Verify that we inferred enough types that we can do something with the 4302 // pattern and result. If these fire the user has to add type casts. 4303 if (!InferredAllPatternTypes) 4304 Pattern.error("Could not infer all types in pattern!"); 4305 if (!InferredAllResultTypes) { 4306 Pattern.dump(); 4307 Result.error("Could not infer all types in pattern result!"); 4308 } 4309 4310 // Promote xform function to be an explicit node wherever set. 4311 TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree()); 4312 4313 TreePattern Temp(Result.getRecord(), DstShared, false, *this); 4314 Temp.InferAllTypes(); 4315 4316 ListInit *Preds = TheDef->getValueAsListInit("Predicates"); 4317 int Complexity = TheDef->getValueAsInt("AddedComplexity"); 4318 4319 if (PatternRewriter) 4320 PatternRewriter(&Pattern); 4321 4322 // A pattern may end up with an "impossible" type, i.e. a situation 4323 // where all types have been eliminated for some node in this pattern. 4324 // This could occur for intrinsics that only make sense for a specific 4325 // value type, and use a specific register class. If, for some mode, 4326 // that register class does not accept that type, the type inference 4327 // will lead to a contradiction, which is not an error however, but 4328 // a sign that this pattern will simply never match. 4329 if (Temp.getOnlyTree()->hasPossibleType()) { 4330 for (const auto &T : Pattern.getTrees()) { 4331 if (T->hasPossibleType()) 4332 AddPatternToMatch(&Pattern, 4333 PatternToMatch(TheDef, Preds, T, Temp.getOnlyTree(), 4334 InstImpResults, Complexity, 4335 TheDef->getID(), ShouldIgnore)); 4336 } 4337 } else { 4338 // Show a message about a dropped pattern with some info to make it 4339 // easier to identify it in the .td files. 4340 LLVM_DEBUG({ 4341 dbgs() << "Dropping: "; 4342 Pattern.dump(); 4343 Temp.getOnlyTree()->dump(); 4344 dbgs() << "\n"; 4345 }); 4346 } 4347 } 4348 4349 void CodeGenDAGPatterns::ParsePatterns() { 4350 std::vector<Record *> Patterns = Records.getAllDerivedDefinitions("Pattern"); 4351 4352 for (Record *CurPattern : Patterns) { 4353 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); 4354 4355 // If the pattern references the null_frag, there's nothing to do. 4356 if (hasNullFragReference(Tree)) 4357 continue; 4358 4359 TreePattern Pattern(CurPattern, Tree, true, *this); 4360 4361 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); 4362 if (LI->empty()) 4363 continue; // no pattern. 4364 4365 // Parse the instruction. 4366 TreePattern Result(CurPattern, LI, false, *this); 4367 4368 if (Result.getNumTrees() != 1) 4369 Result.error("Cannot handle instructions producing instructions " 4370 "with temporaries yet!"); 4371 4372 // Validate that the input pattern is correct. 4373 std::map<std::string, TreePatternNodePtr> InstInputs; 4374 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 4375 InstResults; 4376 std::vector<Record *> InstImpResults; 4377 for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j) 4378 FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs, 4379 InstResults, InstImpResults); 4380 4381 ParseOnePattern(CurPattern, Pattern, Result, InstImpResults, 4382 CurPattern->getValueAsBit("GISelShouldIgnore")); 4383 } 4384 } 4385 4386 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode &N) { 4387 for (const TypeSetByHwMode &VTS : N.getExtTypes()) 4388 for (const auto &I : VTS) 4389 Modes.insert(I.first); 4390 4391 for (unsigned i = 0, e = N.getNumChildren(); i != e; ++i) 4392 collectModes(Modes, N.getChild(i)); 4393 } 4394 4395 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() { 4396 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 4397 if (CGH.getNumModeIds() == 1) 4398 return; 4399 4400 std::vector<PatternToMatch> Copy; 4401 PatternsToMatch.swap(Copy); 4402 4403 auto AppendPattern = [this](PatternToMatch &P, unsigned Mode, 4404 StringRef Check) { 4405 TreePatternNodePtr NewSrc = P.getSrcPattern().clone(); 4406 TreePatternNodePtr NewDst = P.getDstPattern().clone(); 4407 if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) { 4408 return; 4409 } 4410 4411 PatternsToMatch.emplace_back( 4412 P.getSrcRecord(), P.getPredicates(), std::move(NewSrc), 4413 std::move(NewDst), P.getDstRegs(), P.getAddedComplexity(), 4414 Record::getNewUID(Records), P.getGISelShouldIgnore(), Check); 4415 }; 4416 4417 for (PatternToMatch &P : Copy) { 4418 const TreePatternNode *SrcP = nullptr, *DstP = nullptr; 4419 if (P.getSrcPattern().hasProperTypeByHwMode()) 4420 SrcP = &P.getSrcPattern(); 4421 if (P.getDstPattern().hasProperTypeByHwMode()) 4422 DstP = &P.getDstPattern(); 4423 if (!SrcP && !DstP) { 4424 PatternsToMatch.push_back(P); 4425 continue; 4426 } 4427 4428 std::set<unsigned> Modes; 4429 if (SrcP) 4430 collectModes(Modes, *SrcP); 4431 if (DstP) 4432 collectModes(Modes, *DstP); 4433 4434 // The predicate for the default mode needs to be constructed for each 4435 // pattern separately. 4436 // Since not all modes must be present in each pattern, if a mode m is 4437 // absent, then there is no point in constructing a check for m. If such 4438 // a check was created, it would be equivalent to checking the default 4439 // mode, except not all modes' predicates would be a part of the checking 4440 // code. The subsequently generated check for the default mode would then 4441 // have the exact same patterns, but a different predicate code. To avoid 4442 // duplicated patterns with different predicate checks, construct the 4443 // default check as a negation of all predicates that are actually present 4444 // in the source/destination patterns. 4445 SmallString<128> DefaultCheck; 4446 4447 for (unsigned M : Modes) { 4448 if (M == DefaultMode) 4449 continue; 4450 4451 // Fill the map entry for this mode. 4452 const HwMode &HM = CGH.getMode(M); 4453 AppendPattern(P, M, HM.Predicates); 4454 4455 // Add negations of the HM's predicates to the default predicate. 4456 if (!DefaultCheck.empty()) 4457 DefaultCheck += " && "; 4458 DefaultCheck += "!("; 4459 DefaultCheck += HM.Predicates; 4460 DefaultCheck += ")"; 4461 } 4462 4463 bool HasDefault = Modes.count(DefaultMode); 4464 if (HasDefault) 4465 AppendPattern(P, DefaultMode, DefaultCheck); 4466 } 4467 } 4468 4469 /// Dependent variable map for CodeGenDAGPattern variant generation 4470 typedef StringMap<int> DepVarMap; 4471 4472 static void FindDepVarsOf(TreePatternNode &N, DepVarMap &DepMap) { 4473 if (N.isLeaf()) { 4474 if (N.hasName() && isa<DefInit>(N.getLeafValue())) 4475 DepMap[N.getName()]++; 4476 } else { 4477 for (size_t i = 0, e = N.getNumChildren(); i != e; ++i) 4478 FindDepVarsOf(N.getChild(i), DepMap); 4479 } 4480 } 4481 4482 /// Find dependent variables within child patterns 4483 static void FindDepVars(TreePatternNode &N, MultipleUseVarSet &DepVars) { 4484 DepVarMap depcounts; 4485 FindDepVarsOf(N, depcounts); 4486 for (const auto &Pair : depcounts) { 4487 if (Pair.getValue() > 1) 4488 DepVars.insert(Pair.getKey()); 4489 } 4490 } 4491 4492 #ifndef NDEBUG 4493 /// Dump the dependent variable set: 4494 static void DumpDepVars(MultipleUseVarSet &DepVars) { 4495 if (DepVars.empty()) { 4496 LLVM_DEBUG(errs() << "<empty set>"); 4497 } else { 4498 LLVM_DEBUG(errs() << "[ "); 4499 for (const auto &DepVar : DepVars) { 4500 LLVM_DEBUG(errs() << DepVar.getKey() << " "); 4501 } 4502 LLVM_DEBUG(errs() << "]"); 4503 } 4504 } 4505 #endif 4506 4507 /// CombineChildVariants - Given a bunch of permutations of each child of the 4508 /// 'operator' node, put them together in all possible ways. 4509 static void CombineChildVariants( 4510 TreePatternNodePtr Orig, 4511 const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants, 4512 std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP, 4513 const MultipleUseVarSet &DepVars) { 4514 // Make sure that each operand has at least one variant to choose from. 4515 for (const auto &Variants : ChildVariants) 4516 if (Variants.empty()) 4517 return; 4518 4519 // The end result is an all-pairs construction of the resultant pattern. 4520 std::vector<unsigned> Idxs(ChildVariants.size()); 4521 bool NotDone; 4522 do { 4523 #ifndef NDEBUG 4524 LLVM_DEBUG(if (!Idxs.empty()) { 4525 errs() << Orig->getOperator()->getName() << ": Idxs = [ "; 4526 for (unsigned Idx : Idxs) { 4527 errs() << Idx << " "; 4528 } 4529 errs() << "]\n"; 4530 }); 4531 #endif 4532 // Create the variant and add it to the output list. 4533 std::vector<TreePatternNodePtr> NewChildren; 4534 NewChildren.reserve(ChildVariants.size()); 4535 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 4536 NewChildren.push_back(ChildVariants[i][Idxs[i]]); 4537 TreePatternNodePtr R = makeIntrusiveRefCnt<TreePatternNode>( 4538 Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes()); 4539 4540 // Copy over properties. 4541 R->setName(Orig->getName()); 4542 R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg()); 4543 R->setPredicateCalls(Orig->getPredicateCalls()); 4544 R->setGISelFlagsRecord(Orig->getGISelFlagsRecord()); 4545 R->setTransformFn(Orig->getTransformFn()); 4546 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) 4547 R->setType(i, Orig->getExtType(i)); 4548 4549 // If this pattern cannot match, do not include it as a variant. 4550 std::string ErrString; 4551 // Scan to see if this pattern has already been emitted. We can get 4552 // duplication due to things like commuting: 4553 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) 4554 // which are the same pattern. Ignore the dups. 4555 if (R->canPatternMatch(ErrString, CDP) && 4556 none_of(OutVariants, [&](TreePatternNodePtr Variant) { 4557 return R->isIsomorphicTo(*Variant, DepVars); 4558 })) 4559 OutVariants.push_back(R); 4560 4561 // Increment indices to the next permutation by incrementing the 4562 // indices from last index backward, e.g., generate the sequence 4563 // [0, 0], [0, 1], [1, 0], [1, 1]. 4564 int IdxsIdx; 4565 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 4566 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) 4567 Idxs[IdxsIdx] = 0; 4568 else 4569 break; 4570 } 4571 NotDone = (IdxsIdx >= 0); 4572 } while (NotDone); 4573 } 4574 4575 /// CombineChildVariants - A helper function for binary operators. 4576 /// 4577 static void CombineChildVariants(TreePatternNodePtr Orig, 4578 const std::vector<TreePatternNodePtr> &LHS, 4579 const std::vector<TreePatternNodePtr> &RHS, 4580 std::vector<TreePatternNodePtr> &OutVariants, 4581 CodeGenDAGPatterns &CDP, 4582 const MultipleUseVarSet &DepVars) { 4583 std::vector<std::vector<TreePatternNodePtr>> ChildVariants; 4584 ChildVariants.push_back(LHS); 4585 ChildVariants.push_back(RHS); 4586 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); 4587 } 4588 4589 static void 4590 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N, 4591 std::vector<TreePatternNodePtr> &Children) { 4592 assert(N->getNumChildren() == 2 && 4593 "Associative but doesn't have 2 children!"); 4594 Record *Operator = N->getOperator(); 4595 4596 // Only permit raw nodes. 4597 if (!N->getName().empty() || !N->getPredicateCalls().empty() || 4598 N->getTransformFn()) { 4599 Children.push_back(N); 4600 return; 4601 } 4602 4603 if (N->getChild(0).isLeaf() || N->getChild(0).getOperator() != Operator) 4604 Children.push_back(N->getChildShared(0)); 4605 else 4606 GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children); 4607 4608 if (N->getChild(1).isLeaf() || N->getChild(1).getOperator() != Operator) 4609 Children.push_back(N->getChildShared(1)); 4610 else 4611 GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children); 4612 } 4613 4614 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of 4615 /// the (potentially recursive) pattern by using algebraic laws. 4616 /// 4617 static void GenerateVariantsOf(TreePatternNodePtr N, 4618 std::vector<TreePatternNodePtr> &OutVariants, 4619 CodeGenDAGPatterns &CDP, 4620 const MultipleUseVarSet &DepVars) { 4621 // We cannot permute leaves or ComplexPattern uses. 4622 if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) { 4623 OutVariants.push_back(N); 4624 return; 4625 } 4626 4627 // Look up interesting info about the node. 4628 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); 4629 4630 // If this node is associative, re-associate. 4631 if (NodeInfo.hasProperty(SDNPAssociative)) { 4632 // Re-associate by pulling together all of the linked operators 4633 std::vector<TreePatternNodePtr> MaximalChildren; 4634 GatherChildrenOfAssociativeOpcode(N, MaximalChildren); 4635 4636 // Only handle child sizes of 3. Otherwise we'll end up trying too many 4637 // permutations. 4638 if (MaximalChildren.size() == 3) { 4639 // Find the variants of all of our maximal children. 4640 std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants; 4641 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); 4642 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); 4643 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); 4644 4645 // There are only two ways we can permute the tree: 4646 // (A op B) op C and A op (B op C) 4647 // Within these forms, we can also permute A/B/C. 4648 4649 // Generate legal pair permutations of A/B/C. 4650 std::vector<TreePatternNodePtr> ABVariants; 4651 std::vector<TreePatternNodePtr> BAVariants; 4652 std::vector<TreePatternNodePtr> ACVariants; 4653 std::vector<TreePatternNodePtr> CAVariants; 4654 std::vector<TreePatternNodePtr> BCVariants; 4655 std::vector<TreePatternNodePtr> CBVariants; 4656 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); 4657 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); 4658 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); 4659 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); 4660 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); 4661 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); 4662 4663 // Combine those into the result: (x op x) op x 4664 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); 4665 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); 4666 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); 4667 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); 4668 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); 4669 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); 4670 4671 // Combine those into the result: x op (x op x) 4672 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); 4673 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); 4674 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); 4675 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); 4676 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); 4677 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); 4678 return; 4679 } 4680 } 4681 4682 // Compute permutations of all children. 4683 std::vector<std::vector<TreePatternNodePtr>> ChildVariants( 4684 N->getNumChildren()); 4685 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4686 GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars); 4687 4688 // Build all permutations based on how the children were formed. 4689 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 4690 4691 // If this node is commutative, consider the commuted order. 4692 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); 4693 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 4694 unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 4695 assert(N->getNumChildren() >= (2 + Skip) && 4696 "Commutative but doesn't have 2 children!"); 4697 // Don't allow commuting children which are actually register references. 4698 bool NoRegisters = true; 4699 unsigned i = 0 + Skip; 4700 unsigned e = 2 + Skip; 4701 for (; i != e; ++i) { 4702 TreePatternNode &Child = N->getChild(i); 4703 if (Child.isLeaf()) 4704 if (DefInit *DI = dyn_cast<DefInit>(Child.getLeafValue())) { 4705 Record *RR = DI->getDef(); 4706 if (RR->isSubClassOf("Register")) 4707 NoRegisters = false; 4708 } 4709 } 4710 // Consider the commuted order. 4711 if (NoRegisters) { 4712 // Swap the first two operands after the intrinsic id, if present. 4713 unsigned i = isCommIntrinsic ? 1 : 0; 4714 std::swap(ChildVariants[i], ChildVariants[i + 1]); 4715 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 4716 } 4717 } 4718 } 4719 4720 // GenerateVariants - Generate variants. For example, commutative patterns can 4721 // match multiple ways. Add them to PatternsToMatch as well. 4722 void CodeGenDAGPatterns::GenerateVariants() { 4723 LLVM_DEBUG(errs() << "Generating instruction variants.\n"); 4724 4725 // Loop over all of the patterns we've collected, checking to see if we can 4726 // generate variants of the instruction, through the exploitation of 4727 // identities. This permits the target to provide aggressive matching without 4728 // the .td file having to contain tons of variants of instructions. 4729 // 4730 // Note that this loop adds new patterns to the PatternsToMatch list, but we 4731 // intentionally do not reconsider these. Any variants of added patterns have 4732 // already been added. 4733 // 4734 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { 4735 MultipleUseVarSet DepVars; 4736 std::vector<TreePatternNodePtr> Variants; 4737 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); 4738 LLVM_DEBUG(errs() << "Dependent/multiply used variables: "); 4739 LLVM_DEBUG(DumpDepVars(DepVars)); 4740 LLVM_DEBUG(errs() << "\n"); 4741 GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants, 4742 *this, DepVars); 4743 4744 assert(PatternsToMatch[i].getHwModeFeatures().empty() && 4745 "HwModes should not have been expanded yet!"); 4746 4747 assert(!Variants.empty() && "Must create at least original variant!"); 4748 if (Variants.size() == 1) // No additional variants for this pattern. 4749 continue; 4750 4751 LLVM_DEBUG(errs() << "FOUND VARIANTS OF: "; 4752 PatternsToMatch[i].getSrcPattern().dump(); errs() << "\n"); 4753 4754 for (unsigned v = 0, e = Variants.size(); v != e; ++v) { 4755 TreePatternNodePtr Variant = Variants[v]; 4756 4757 LLVM_DEBUG(errs() << " VAR#" << v << ": "; Variant->dump(); 4758 errs() << "\n"); 4759 4760 // Scan to see if an instruction or explicit pattern already matches this. 4761 bool AlreadyExists = false; 4762 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { 4763 // Skip if the top level predicates do not match. 4764 if ((i != p) && (PatternsToMatch[i].getPredicates() != 4765 PatternsToMatch[p].getPredicates())) 4766 continue; 4767 // Check to see if this variant already exists. 4768 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), 4769 DepVars)) { 4770 LLVM_DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); 4771 AlreadyExists = true; 4772 break; 4773 } 4774 } 4775 // If we already have it, ignore the variant. 4776 if (AlreadyExists) 4777 continue; 4778 4779 // Otherwise, add it to the list of patterns we have. 4780 PatternsToMatch.emplace_back( 4781 PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(), 4782 Variant, PatternsToMatch[i].getDstPatternShared(), 4783 PatternsToMatch[i].getDstRegs(), 4784 PatternsToMatch[i].getAddedComplexity(), Record::getNewUID(Records), 4785 PatternsToMatch[i].getGISelShouldIgnore(), 4786 PatternsToMatch[i].getHwModeFeatures()); 4787 } 4788 4789 LLVM_DEBUG(errs() << "\n"); 4790 } 4791 } 4792