xref: /llvm-project/llvm/utils/TableGen/Common/CodeGenDAGPatterns.cpp (revision 87e8b53009f11033e6e6af0ccb3a97fae615526a)
1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CodeGenDAGPatterns class, which is used to read and
10 // represent the patterns present in a .td file for instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenDAGPatterns.h"
15 #include "CodeGenInstruction.h"
16 #include "CodeGenRegisters.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringMap.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/TypeSize.h"
28 #include "llvm/TableGen/Error.h"
29 #include "llvm/TableGen/Record.h"
30 #include <algorithm>
31 #include <cstdio>
32 #include <iterator>
33 #include <set>
34 using namespace llvm;
35 
36 #define DEBUG_TYPE "dag-patterns"
37 
38 static inline bool isIntegerOrPtr(MVT VT) {
39   return VT.isInteger() || VT == MVT::iPTR;
40 }
41 static inline bool isFloatingPoint(MVT VT) { return VT.isFloatingPoint(); }
42 static inline bool isVector(MVT VT) { return VT.isVector(); }
43 static inline bool isScalar(MVT VT) { return !VT.isVector(); }
44 
45 template <typename Predicate>
46 static bool berase_if(MachineValueTypeSet &S, Predicate P) {
47   bool Erased = false;
48   // It is ok to iterate over MachineValueTypeSet and remove elements from it
49   // at the same time.
50   for (MVT T : S) {
51     if (!P(T))
52       continue;
53     Erased = true;
54     S.erase(T);
55   }
56   return Erased;
57 }
58 
59 void MachineValueTypeSet::writeToStream(raw_ostream &OS) const {
60   SmallVector<MVT, 4> Types(begin(), end());
61   array_pod_sort(Types.begin(), Types.end());
62 
63   OS << '[';
64   ListSeparator LS(" ");
65   for (const MVT &T : Types)
66     OS << LS << ValueTypeByHwMode::getMVTName(T);
67   OS << ']';
68 }
69 
70 // --- TypeSetByHwMode
71 
72 // This is a parameterized type-set class. For each mode there is a list
73 // of types that are currently possible for a given tree node. Type
74 // inference will apply to each mode separately.
75 
76 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
77   // Take the address space from the first type in the list.
78   if (!VTList.empty())
79     AddrSpace = VTList[0].PtrAddrSpace;
80 
81   for (const ValueTypeByHwMode &VVT : VTList)
82     insert(VVT);
83 }
84 
85 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
86   for (const auto &I : *this) {
87     if (I.second.size() > 1)
88       return false;
89     if (!AllowEmpty && I.second.empty())
90       return false;
91   }
92   return true;
93 }
94 
95 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
96   assert(isValueTypeByHwMode(true) &&
97          "The type set has multiple types for at least one HW mode");
98   ValueTypeByHwMode VVT;
99   VVT.PtrAddrSpace = AddrSpace;
100 
101   for (const auto &I : *this) {
102     MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
103     VVT.getOrCreateTypeForMode(I.first, T);
104   }
105   return VVT;
106 }
107 
108 bool TypeSetByHwMode::isPossible() const {
109   for (const auto &I : *this)
110     if (!I.second.empty())
111       return true;
112   return false;
113 }
114 
115 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
116   bool Changed = false;
117   bool ContainsDefault = false;
118   MVT DT = MVT::Other;
119 
120   for (const auto &P : VVT) {
121     unsigned M = P.first;
122     // Make sure there exists a set for each specific mode from VVT.
123     Changed |= getOrCreate(M).insert(P.second).second;
124     // Cache VVT's default mode.
125     if (DefaultMode == M) {
126       ContainsDefault = true;
127       DT = P.second;
128     }
129   }
130 
131   // If VVT has a default mode, add the corresponding type to all
132   // modes in "this" that do not exist in VVT.
133   if (ContainsDefault)
134     for (auto &I : *this)
135       if (!VVT.hasMode(I.first))
136         Changed |= I.second.insert(DT).second;
137 
138   return Changed;
139 }
140 
141 // Constrain the type set to be the intersection with VTS.
142 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
143   bool Changed = false;
144   if (hasDefault()) {
145     for (const auto &I : VTS) {
146       unsigned M = I.first;
147       if (M == DefaultMode || hasMode(M))
148         continue;
149       Map.insert({M, Map.at(DefaultMode)});
150       Changed = true;
151     }
152   }
153 
154   for (auto &I : *this) {
155     unsigned M = I.first;
156     SetType &S = I.second;
157     if (VTS.hasMode(M) || VTS.hasDefault()) {
158       Changed |= intersect(I.second, VTS.get(M));
159     } else if (!S.empty()) {
160       S.clear();
161       Changed = true;
162     }
163   }
164   return Changed;
165 }
166 
167 template <typename Predicate> bool TypeSetByHwMode::constrain(Predicate P) {
168   bool Changed = false;
169   for (auto &I : *this)
170     Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
171   return Changed;
172 }
173 
174 template <typename Predicate>
175 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
176   assert(empty());
177   for (const auto &I : VTS) {
178     SetType &S = getOrCreate(I.first);
179     for (auto J : I.second)
180       if (P(J))
181         S.insert(J);
182   }
183   return !empty();
184 }
185 
186 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
187   SmallVector<unsigned, 4> Modes;
188   Modes.reserve(Map.size());
189 
190   for (const auto &I : *this)
191     Modes.push_back(I.first);
192   if (Modes.empty()) {
193     OS << "{}";
194     return;
195   }
196   array_pod_sort(Modes.begin(), Modes.end());
197 
198   OS << '{';
199   for (unsigned M : Modes) {
200     OS << ' ' << getModeName(M) << ':';
201     get(M).writeToStream(OS);
202   }
203   OS << " }";
204 }
205 
206 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
207   // The isSimple call is much quicker than hasDefault - check this first.
208   bool IsSimple = isSimple();
209   bool VTSIsSimple = VTS.isSimple();
210   if (IsSimple && VTSIsSimple)
211     return getSimple() == VTS.getSimple();
212 
213   // Speedup: We have a default if the set is simple.
214   bool HaveDefault = IsSimple || hasDefault();
215   bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault();
216   if (HaveDefault != VTSHaveDefault)
217     return false;
218 
219   SmallSet<unsigned, 4> Modes;
220   for (auto &I : *this)
221     Modes.insert(I.first);
222   for (const auto &I : VTS)
223     Modes.insert(I.first);
224 
225   if (HaveDefault) {
226     // Both sets have default mode.
227     for (unsigned M : Modes) {
228       if (get(M) != VTS.get(M))
229         return false;
230     }
231   } else {
232     // Neither set has default mode.
233     for (unsigned M : Modes) {
234       // If there is no default mode, an empty set is equivalent to not having
235       // the corresponding mode.
236       bool NoModeThis = !hasMode(M) || get(M).empty();
237       bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
238       if (NoModeThis != NoModeVTS)
239         return false;
240       if (!NoModeThis)
241         if (get(M) != VTS.get(M))
242           return false;
243     }
244   }
245 
246   return true;
247 }
248 
249 namespace llvm {
250 raw_ostream &operator<<(raw_ostream &OS, const MachineValueTypeSet &T) {
251   T.writeToStream(OS);
252   return OS;
253 }
254 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
255   T.writeToStream(OS);
256   return OS;
257 }
258 } // namespace llvm
259 
260 LLVM_DUMP_METHOD
261 void TypeSetByHwMode::dump() const { dbgs() << *this << '\n'; }
262 
263 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
264   auto IntersectP = [&](std::optional<MVT> WildVT, function_ref<bool(MVT)> P) {
265     // Complement of In within this partition.
266     auto CompIn = [&](MVT T) -> bool { return !In.count(T) && P(T); };
267 
268     if (!WildVT)
269       return berase_if(Out, CompIn);
270 
271     bool OutW = Out.count(*WildVT), InW = In.count(*WildVT);
272     if (OutW == InW)
273       return berase_if(Out, CompIn);
274 
275     // Compute the intersection of scalars separately to account for only one
276     // set containing WildVT.
277     // The intersection of WildVT with a set of corresponding types that does
278     // not include WildVT will result in the most specific type:
279     // - WildVT is more specific than any set with two elements or more
280     // - WildVT is less specific than any single type.
281     // For example, for iPTR and scalar integer types
282     // { iPTR } * { i32 }     -> { i32 }
283     // { iPTR } * { i32 i64 } -> { iPTR }
284     // and
285     // { iPTR i32 } * { i32 }          -> { i32 }
286     // { iPTR i32 } * { i32 i64 }      -> { i32 i64 }
287     // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
288 
289     // Looking at just this partition, let In' = elements only in In,
290     // Out' = elements only in Out, and IO = elements common to both. Normally
291     // IO would be returned as the result of the intersection, but we need to
292     // account for WildVT being a "wildcard" of sorts. Since elements in IO are
293     // those that match both sets exactly, they will all belong to the output.
294     // If any of the "leftovers" (i.e. In' or Out') contain WildVT, it means
295     // that the other set doesn't have it, but it could have (1) a more
296     // specific type, or (2) a set of types that is less specific. The
297     // "leftovers" from the other set is what we want to examine more closely.
298 
299     auto Leftovers = [&](const SetType &A, const SetType &B) {
300       SetType Diff = A;
301       berase_if(Diff, [&](MVT T) { return B.count(T) || !P(T); });
302       return Diff;
303     };
304 
305     if (InW) {
306       SetType OutLeftovers = Leftovers(Out, In);
307       if (OutLeftovers.size() < 2) {
308         // WildVT not added to Out. Keep the possible single leftover.
309         return false;
310       }
311       // WildVT replaces the leftovers.
312       berase_if(Out, CompIn);
313       Out.insert(*WildVT);
314       return true;
315     }
316 
317     // OutW == true
318     SetType InLeftovers = Leftovers(In, Out);
319     unsigned SizeOut = Out.size();
320     berase_if(Out, CompIn); // This will remove at least the WildVT.
321     if (InLeftovers.size() < 2) {
322       // WildVT deleted from Out. Add back the possible single leftover.
323       Out.insert(InLeftovers);
324       return true;
325     }
326 
327     // Keep the WildVT in Out.
328     Out.insert(*WildVT);
329     // If WildVT was the only element initially removed from Out, then Out
330     // has not changed.
331     return SizeOut != Out.size();
332   };
333 
334   // Note: must be non-overlapping
335   using WildPartT = std::pair<MVT, std::function<bool(MVT)>>;
336   static const WildPartT WildParts[] = {
337       {MVT::iPTR, [](MVT T) { return T.isScalarInteger() || T == MVT::iPTR; }},
338   };
339 
340   bool Changed = false;
341   for (const auto &I : WildParts)
342     Changed |= IntersectP(I.first, I.second);
343 
344   Changed |= IntersectP(std::nullopt, [&](MVT T) {
345     return !any_of(WildParts, [=](const WildPartT &I) { return I.second(T); });
346   });
347 
348   return Changed;
349 }
350 
351 bool TypeSetByHwMode::validate() const {
352   if (empty())
353     return true;
354   bool AllEmpty = true;
355   for (const auto &I : *this)
356     AllEmpty &= I.second.empty();
357   return !AllEmpty;
358 }
359 
360 // --- TypeInfer
361 
362 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
363                                 const TypeSetByHwMode &In) const {
364   ValidateOnExit _1(Out, *this);
365   In.validate();
366   if (In.empty() || Out == In || TP.hasError())
367     return false;
368   if (Out.empty()) {
369     Out = In;
370     return true;
371   }
372 
373   bool Changed = Out.constrain(In);
374   if (Changed && Out.empty())
375     TP.error("Type contradiction");
376 
377   return Changed;
378 }
379 
380 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
381   ValidateOnExit _1(Out, *this);
382   if (TP.hasError())
383     return false;
384   assert(!Out.empty() && "cannot pick from an empty set");
385 
386   bool Changed = false;
387   for (auto &I : Out) {
388     TypeSetByHwMode::SetType &S = I.second;
389     if (S.size() <= 1)
390       continue;
391     MVT T = *S.begin(); // Pick the first element.
392     S.clear();
393     S.insert(T);
394     Changed = true;
395   }
396   return Changed;
397 }
398 
399 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
400   ValidateOnExit _1(Out, *this);
401   if (TP.hasError())
402     return false;
403   if (!Out.empty())
404     return Out.constrain(isIntegerOrPtr);
405 
406   return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
407 }
408 
409 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
410   ValidateOnExit _1(Out, *this);
411   if (TP.hasError())
412     return false;
413   if (!Out.empty())
414     return Out.constrain(isFloatingPoint);
415 
416   return Out.assign_if(getLegalTypes(), isFloatingPoint);
417 }
418 
419 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
420   ValidateOnExit _1(Out, *this);
421   if (TP.hasError())
422     return false;
423   if (!Out.empty())
424     return Out.constrain(isScalar);
425 
426   return Out.assign_if(getLegalTypes(), isScalar);
427 }
428 
429 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
430   ValidateOnExit _1(Out, *this);
431   if (TP.hasError())
432     return false;
433   if (!Out.empty())
434     return Out.constrain(isVector);
435 
436   return Out.assign_if(getLegalTypes(), isVector);
437 }
438 
439 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
440   ValidateOnExit _1(Out, *this);
441   if (TP.hasError() || !Out.empty())
442     return false;
443 
444   Out = getLegalTypes();
445   return true;
446 }
447 
448 template <typename Iter, typename Pred, typename Less>
449 static Iter min_if(Iter B, Iter E, Pred P, Less L) {
450   if (B == E)
451     return E;
452   Iter Min = E;
453   for (Iter I = B; I != E; ++I) {
454     if (!P(*I))
455       continue;
456     if (Min == E || L(*I, *Min))
457       Min = I;
458   }
459   return Min;
460 }
461 
462 template <typename Iter, typename Pred, typename Less>
463 static Iter max_if(Iter B, Iter E, Pred P, Less L) {
464   if (B == E)
465     return E;
466   Iter Max = E;
467   for (Iter I = B; I != E; ++I) {
468     if (!P(*I))
469       continue;
470     if (Max == E || L(*Max, *I))
471       Max = I;
472   }
473   return Max;
474 }
475 
476 /// Make sure that for each type in Small, there exists a larger type in Big.
477 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big,
478                                    bool SmallIsVT) {
479   ValidateOnExit _1(Small, *this), _2(Big, *this);
480   if (TP.hasError())
481     return false;
482   bool Changed = false;
483 
484   assert((!SmallIsVT || !Small.empty()) &&
485          "Small should not be empty for SDTCisVTSmallerThanOp");
486 
487   if (Small.empty())
488     Changed |= EnforceAny(Small);
489   if (Big.empty())
490     Changed |= EnforceAny(Big);
491 
492   assert(Small.hasDefault() && Big.hasDefault());
493 
494   SmallVector<unsigned, 4> Modes;
495   union_modes(Small, Big, Modes);
496 
497   // 1. Only allow integer or floating point types and make sure that
498   //    both sides are both integer or both floating point.
499   // 2. Make sure that either both sides have vector types, or neither
500   //    of them does.
501   for (unsigned M : Modes) {
502     TypeSetByHwMode::SetType &S = Small.get(M);
503     TypeSetByHwMode::SetType &B = Big.get(M);
504 
505     assert((!SmallIsVT || !S.empty()) && "Expected non-empty type");
506 
507     if (any_of(S, isIntegerOrPtr) && any_of(B, isIntegerOrPtr)) {
508       auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
509       Changed |= berase_if(S, NotInt);
510       Changed |= berase_if(B, NotInt);
511     } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
512       auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
513       Changed |= berase_if(S, NotFP);
514       Changed |= berase_if(B, NotFP);
515     } else if (SmallIsVT && B.empty()) {
516       // B is empty and since S is a specific VT, it will never be empty. Don't
517       // report this as a change, just clear S and continue. This prevents an
518       // infinite loop.
519       S.clear();
520     } else if (S.empty() || B.empty()) {
521       Changed = !S.empty() || !B.empty();
522       S.clear();
523       B.clear();
524     } else {
525       TP.error("Incompatible types");
526       return Changed;
527     }
528 
529     if (none_of(S, isVector) || none_of(B, isVector)) {
530       Changed |= berase_if(S, isVector);
531       Changed |= berase_if(B, isVector);
532     }
533   }
534 
535   auto LT = [](MVT A, MVT B) -> bool {
536     // Always treat non-scalable MVTs as smaller than scalable MVTs for the
537     // purposes of ordering.
538     auto ASize = std::tuple(A.isScalableVector(), A.getScalarSizeInBits(),
539                             A.getSizeInBits().getKnownMinValue());
540     auto BSize = std::tuple(B.isScalableVector(), B.getScalarSizeInBits(),
541                             B.getSizeInBits().getKnownMinValue());
542     return ASize < BSize;
543   };
544   auto SameKindLE = [](MVT A, MVT B) -> bool {
545     // This function is used when removing elements: when a vector is compared
546     // to a non-vector or a scalable vector to any non-scalable MVT, it should
547     // return false (to avoid removal).
548     if (std::tuple(A.isVector(), A.isScalableVector()) !=
549         std::tuple(B.isVector(), B.isScalableVector()))
550       return false;
551 
552     return std::tuple(A.getScalarSizeInBits(),
553                       A.getSizeInBits().getKnownMinValue()) <=
554            std::tuple(B.getScalarSizeInBits(),
555                       B.getSizeInBits().getKnownMinValue());
556   };
557 
558   for (unsigned M : Modes) {
559     TypeSetByHwMode::SetType &S = Small.get(M);
560     TypeSetByHwMode::SetType &B = Big.get(M);
561     // MinS = min scalar in Small, remove all scalars from Big that are
562     // smaller-or-equal than MinS.
563     auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
564     if (MinS != S.end())
565       Changed |=
566           berase_if(B, std::bind(SameKindLE, std::placeholders::_1, *MinS));
567 
568     // MaxS = max scalar in Big, remove all scalars from Small that are
569     // larger than MaxS.
570     auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
571     if (MaxS != B.end())
572       Changed |=
573           berase_if(S, std::bind(SameKindLE, *MaxS, std::placeholders::_1));
574 
575     // MinV = min vector in Small, remove all vectors from Big that are
576     // smaller-or-equal than MinV.
577     auto MinV = min_if(S.begin(), S.end(), isVector, LT);
578     if (MinV != S.end())
579       Changed |=
580           berase_if(B, std::bind(SameKindLE, std::placeholders::_1, *MinV));
581 
582     // MaxV = max vector in Big, remove all vectors from Small that are
583     // larger than MaxV.
584     auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
585     if (MaxV != B.end())
586       Changed |=
587           berase_if(S, std::bind(SameKindLE, *MaxV, std::placeholders::_1));
588   }
589 
590   return Changed;
591 }
592 
593 /// 1. Ensure that for each type T in Vec, T is a vector type, and that
594 ///    for each type U in Elem, U is a scalar type.
595 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
596 ///    type T in Vec, such that U is the element type of T.
597 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
598                                        TypeSetByHwMode &Elem) {
599   ValidateOnExit _1(Vec, *this), _2(Elem, *this);
600   if (TP.hasError())
601     return false;
602   bool Changed = false;
603 
604   if (Vec.empty())
605     Changed |= EnforceVector(Vec);
606   if (Elem.empty())
607     Changed |= EnforceScalar(Elem);
608 
609   SmallVector<unsigned, 4> Modes;
610   union_modes(Vec, Elem, Modes);
611   for (unsigned M : Modes) {
612     TypeSetByHwMode::SetType &V = Vec.get(M);
613     TypeSetByHwMode::SetType &E = Elem.get(M);
614 
615     Changed |= berase_if(V, isScalar); // Scalar = !vector
616     Changed |= berase_if(E, isVector); // Vector = !scalar
617     assert(!V.empty() && !E.empty());
618 
619     MachineValueTypeSet VT, ST;
620     // Collect element types from the "vector" set.
621     for (MVT T : V)
622       VT.insert(T.getVectorElementType());
623     // Collect scalar types from the "element" set.
624     for (MVT T : E)
625       ST.insert(T);
626 
627     // Remove from V all (vector) types whose element type is not in S.
628     Changed |= berase_if(V, [&ST](MVT T) -> bool {
629       return !ST.count(T.getVectorElementType());
630     });
631     // Remove from E all (scalar) types, for which there is no corresponding
632     // type in V.
633     Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
634   }
635 
636   return Changed;
637 }
638 
639 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
640                                        const ValueTypeByHwMode &VVT) {
641   TypeSetByHwMode Tmp(VVT);
642   ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
643   return EnforceVectorEltTypeIs(Vec, Tmp);
644 }
645 
646 /// Ensure that for each type T in Sub, T is a vector type, and there
647 /// exists a type U in Vec such that U is a vector type with the same
648 /// element type as T and at least as many elements as T.
649 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
650                                              TypeSetByHwMode &Sub) {
651   ValidateOnExit _1(Vec, *this), _2(Sub, *this);
652   if (TP.hasError())
653     return false;
654 
655   /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
656   auto IsSubVec = [](MVT B, MVT P) -> bool {
657     if (!B.isVector() || !P.isVector())
658       return false;
659     // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
660     // but until there are obvious use-cases for this, keep the
661     // types separate.
662     if (B.isScalableVector() != P.isScalableVector())
663       return false;
664     if (B.getVectorElementType() != P.getVectorElementType())
665       return false;
666     return B.getVectorMinNumElements() < P.getVectorMinNumElements();
667   };
668 
669   /// Return true if S has no element (vector type) that T is a sub-vector of,
670   /// i.e. has the same element type as T and more elements.
671   auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
672     for (auto I : S)
673       if (IsSubVec(T, I))
674         return false;
675     return true;
676   };
677 
678   /// Return true if S has no element (vector type) that T is a super-vector
679   /// of, i.e. has the same element type as T and fewer elements.
680   auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
681     for (auto I : S)
682       if (IsSubVec(I, T))
683         return false;
684     return true;
685   };
686 
687   bool Changed = false;
688 
689   if (Vec.empty())
690     Changed |= EnforceVector(Vec);
691   if (Sub.empty())
692     Changed |= EnforceVector(Sub);
693 
694   SmallVector<unsigned, 4> Modes;
695   union_modes(Vec, Sub, Modes);
696   for (unsigned M : Modes) {
697     TypeSetByHwMode::SetType &S = Sub.get(M);
698     TypeSetByHwMode::SetType &V = Vec.get(M);
699 
700     Changed |= berase_if(S, isScalar);
701 
702     // Erase all types from S that are not sub-vectors of a type in V.
703     Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
704 
705     // Erase all types from V that are not super-vectors of a type in S.
706     Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
707   }
708 
709   return Changed;
710 }
711 
712 /// 1. Ensure that V has a scalar type iff W has a scalar type.
713 /// 2. Ensure that for each vector type T in V, there exists a vector
714 ///    type U in W, such that T and U have the same number of elements.
715 /// 3. Ensure that for each vector type U in W, there exists a vector
716 ///    type T in V, such that T and U have the same number of elements
717 ///    (reverse of 2).
718 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
719   ValidateOnExit _1(V, *this), _2(W, *this);
720   if (TP.hasError())
721     return false;
722 
723   bool Changed = false;
724   if (V.empty())
725     Changed |= EnforceAny(V);
726   if (W.empty())
727     Changed |= EnforceAny(W);
728 
729   // An actual vector type cannot have 0 elements, so we can treat scalars
730   // as zero-length vectors. This way both vectors and scalars can be
731   // processed identically.
732   auto NoLength = [](const SmallDenseSet<ElementCount> &Lengths,
733                      MVT T) -> bool {
734     return !Lengths.count(T.isVector() ? T.getVectorElementCount()
735                                        : ElementCount());
736   };
737 
738   SmallVector<unsigned, 4> Modes;
739   union_modes(V, W, Modes);
740   for (unsigned M : Modes) {
741     TypeSetByHwMode::SetType &VS = V.get(M);
742     TypeSetByHwMode::SetType &WS = W.get(M);
743 
744     SmallDenseSet<ElementCount> VN, WN;
745     for (MVT T : VS)
746       VN.insert(T.isVector() ? T.getVectorElementCount() : ElementCount());
747     for (MVT T : WS)
748       WN.insert(T.isVector() ? T.getVectorElementCount() : ElementCount());
749 
750     Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
751     Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
752   }
753   return Changed;
754 }
755 
756 namespace {
757 struct TypeSizeComparator {
758   bool operator()(const TypeSize &LHS, const TypeSize &RHS) const {
759     return std::tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
760            std::tuple(RHS.isScalable(), RHS.getKnownMinValue());
761   }
762 };
763 } // end anonymous namespace
764 
765 /// 1. Ensure that for each type T in A, there exists a type U in B,
766 ///    such that T and U have equal size in bits.
767 /// 2. Ensure that for each type U in B, there exists a type T in A
768 ///    such that T and U have equal size in bits (reverse of 1).
769 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
770   ValidateOnExit _1(A, *this), _2(B, *this);
771   if (TP.hasError())
772     return false;
773   bool Changed = false;
774   if (A.empty())
775     Changed |= EnforceAny(A);
776   if (B.empty())
777     Changed |= EnforceAny(B);
778 
779   typedef SmallSet<TypeSize, 2, TypeSizeComparator> TypeSizeSet;
780 
781   auto NoSize = [](const TypeSizeSet &Sizes, MVT T) -> bool {
782     return !Sizes.count(T.getSizeInBits());
783   };
784 
785   SmallVector<unsigned, 4> Modes;
786   union_modes(A, B, Modes);
787   for (unsigned M : Modes) {
788     TypeSetByHwMode::SetType &AS = A.get(M);
789     TypeSetByHwMode::SetType &BS = B.get(M);
790     TypeSizeSet AN, BN;
791 
792     for (MVT T : AS)
793       AN.insert(T.getSizeInBits());
794     for (MVT T : BS)
795       BN.insert(T.getSizeInBits());
796 
797     Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
798     Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
799   }
800 
801   return Changed;
802 }
803 
804 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) const {
805   ValidateOnExit _1(VTS, *this);
806   const TypeSetByHwMode &Legal = getLegalTypes();
807   assert(Legal.isSimple() && "Default-mode only expected");
808   const TypeSetByHwMode::SetType &LegalTypes = Legal.getSimple();
809 
810   for (auto &I : VTS)
811     expandOverloads(I.second, LegalTypes);
812 }
813 
814 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
815                                 const TypeSetByHwMode::SetType &Legal) const {
816   if (Out.count(MVT::iPTRAny)) {
817     Out.erase(MVT::iPTRAny);
818     Out.insert(MVT::iPTR);
819   } else if (Out.count(MVT::iAny)) {
820     Out.erase(MVT::iAny);
821     for (MVT T : MVT::integer_valuetypes())
822       if (Legal.count(T))
823         Out.insert(T);
824     for (MVT T : MVT::integer_fixedlen_vector_valuetypes())
825       if (Legal.count(T))
826         Out.insert(T);
827     for (MVT T : MVT::integer_scalable_vector_valuetypes())
828       if (Legal.count(T))
829         Out.insert(T);
830   } else if (Out.count(MVT::fAny)) {
831     Out.erase(MVT::fAny);
832     for (MVT T : MVT::fp_valuetypes())
833       if (Legal.count(T))
834         Out.insert(T);
835     for (MVT T : MVT::fp_fixedlen_vector_valuetypes())
836       if (Legal.count(T))
837         Out.insert(T);
838     for (MVT T : MVT::fp_scalable_vector_valuetypes())
839       if (Legal.count(T))
840         Out.insert(T);
841   } else if (Out.count(MVT::vAny)) {
842     Out.erase(MVT::vAny);
843     for (MVT T : MVT::vector_valuetypes())
844       if (Legal.count(T))
845         Out.insert(T);
846   } else if (Out.count(MVT::Any)) {
847     Out.erase(MVT::Any);
848     for (MVT T : MVT::all_valuetypes())
849       if (Legal.count(T))
850         Out.insert(T);
851   }
852 }
853 
854 const TypeSetByHwMode &TypeInfer::getLegalTypes() const {
855   if (!LegalTypesCached) {
856     TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode);
857     // Stuff all types from all modes into the default mode.
858     const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
859     for (const auto &I : LTS)
860       LegalTypes.insert(I.second);
861     LegalTypesCached = true;
862   }
863   assert(LegalCache.isSimple() && "Default-mode only expected");
864   return LegalCache;
865 }
866 
867 TypeInfer::ValidateOnExit::~ValidateOnExit() {
868   if (Infer.Validate && !VTS.validate()) {
869 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
870     errs() << "Type set is empty for each HW mode:\n"
871               "possible type contradiction in the pattern below "
872               "(use -print-records with llvm-tblgen to see all "
873               "expanded records).\n";
874     Infer.TP.dump();
875     errs() << "Generated from record:\n";
876     Infer.TP.getRecord()->dump();
877 #endif
878     PrintFatalError(Infer.TP.getRecord()->getLoc(),
879                     "Type set is empty for each HW mode in '" +
880                         Infer.TP.getRecord()->getName() + "'");
881   }
882 }
883 
884 //===----------------------------------------------------------------------===//
885 // ScopedName Implementation
886 //===----------------------------------------------------------------------===//
887 
888 bool ScopedName::operator==(const ScopedName &o) const {
889   return Scope == o.Scope && Identifier == o.Identifier;
890 }
891 
892 bool ScopedName::operator!=(const ScopedName &o) const { return !(*this == o); }
893 
894 //===----------------------------------------------------------------------===//
895 // TreePredicateFn Implementation
896 //===----------------------------------------------------------------------===//
897 
898 /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
899 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
900   assert(
901       (!hasPredCode() || !hasImmCode()) &&
902       ".td file corrupt: can't have a node predicate *and* an imm predicate");
903 }
904 
905 bool TreePredicateFn::hasPredCode() const {
906   return isLoad() || isStore() || isAtomic() || hasNoUse() || hasOneUse() ||
907          !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
908 }
909 
910 std::string TreePredicateFn::getPredCode() const {
911   std::string Code;
912 
913   if (!isLoad() && !isStore() && !isAtomic()) {
914     Record *MemoryVT = getMemoryVT();
915 
916     if (MemoryVT)
917       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
918                       "MemoryVT requires IsLoad or IsStore");
919   }
920 
921   if (!isLoad() && !isStore()) {
922     if (isUnindexed())
923       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
924                       "IsUnindexed requires IsLoad or IsStore");
925 
926     Record *ScalarMemoryVT = getScalarMemoryVT();
927 
928     if (ScalarMemoryVT)
929       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
930                       "ScalarMemoryVT requires IsLoad or IsStore");
931   }
932 
933   if (isLoad() + isStore() + isAtomic() > 1)
934     PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
935                     "IsLoad, IsStore, and IsAtomic are mutually exclusive");
936 
937   if (isLoad()) {
938     if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
939         !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
940         getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr &&
941         getMinAlignment() < 1)
942       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
943                       "IsLoad cannot be used by itself");
944   } else {
945     if (isNonExtLoad())
946       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
947                       "IsNonExtLoad requires IsLoad");
948     if (isAnyExtLoad())
949       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
950                       "IsAnyExtLoad requires IsLoad");
951 
952     if (!isAtomic()) {
953       if (isSignExtLoad())
954         PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
955                         "IsSignExtLoad requires IsLoad or IsAtomic");
956       if (isZeroExtLoad())
957         PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
958                         "IsZeroExtLoad requires IsLoad or IsAtomic");
959     }
960   }
961 
962   if (isStore()) {
963     if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
964         getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr &&
965         getAddressSpaces() == nullptr && getMinAlignment() < 1)
966       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
967                       "IsStore cannot be used by itself");
968   } else {
969     if (isNonTruncStore())
970       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
971                       "IsNonTruncStore requires IsStore");
972     if (isTruncStore())
973       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
974                       "IsTruncStore requires IsStore");
975   }
976 
977   if (isAtomic()) {
978     if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
979         getAddressSpaces() == nullptr &&
980         // FIXME: Should atomic loads be IsLoad, IsAtomic, or both?
981         !isZeroExtLoad() && !isSignExtLoad() && !isAtomicOrderingAcquire() &&
982         !isAtomicOrderingRelease() && !isAtomicOrderingAcquireRelease() &&
983         !isAtomicOrderingSequentiallyConsistent() &&
984         !isAtomicOrderingAcquireOrStronger() &&
985         !isAtomicOrderingReleaseOrStronger() &&
986         !isAtomicOrderingWeakerThanAcquire() &&
987         !isAtomicOrderingWeakerThanRelease())
988       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
989                       "IsAtomic cannot be used by itself");
990   } else {
991     if (isAtomicOrderingMonotonic())
992       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
993                       "IsAtomicOrderingMonotonic requires IsAtomic");
994     if (isAtomicOrderingAcquire())
995       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
996                       "IsAtomicOrderingAcquire requires IsAtomic");
997     if (isAtomicOrderingRelease())
998       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
999                       "IsAtomicOrderingRelease requires IsAtomic");
1000     if (isAtomicOrderingAcquireRelease())
1001       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1002                       "IsAtomicOrderingAcquireRelease requires IsAtomic");
1003     if (isAtomicOrderingSequentiallyConsistent())
1004       PrintFatalError(
1005           getOrigPatFragRecord()->getRecord()->getLoc(),
1006           "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
1007     if (isAtomicOrderingAcquireOrStronger())
1008       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1009                       "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
1010     if (isAtomicOrderingReleaseOrStronger())
1011       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1012                       "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
1013     if (isAtomicOrderingWeakerThanAcquire())
1014       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1015                       "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
1016   }
1017 
1018   if (isLoad() || isStore() || isAtomic()) {
1019     if (ListInit *AddressSpaces = getAddressSpaces()) {
1020       Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n"
1021               " if (";
1022 
1023       ListSeparator LS(" && ");
1024       for (Init *Val : AddressSpaces->getValues()) {
1025         Code += LS;
1026 
1027         IntInit *IntVal = dyn_cast<IntInit>(Val);
1028         if (!IntVal) {
1029           PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1030                           "AddressSpaces element must be integer");
1031         }
1032 
1033         Code += "AddrSpace != " + utostr(IntVal->getValue());
1034       }
1035 
1036       Code += ")\nreturn false;\n";
1037     }
1038 
1039     int64_t MinAlign = getMinAlignment();
1040     if (MinAlign > 0) {
1041       Code += "if (cast<MemSDNode>(N)->getAlign() < Align(";
1042       Code += utostr(MinAlign);
1043       Code += "))\nreturn false;\n";
1044     }
1045 
1046     Record *MemoryVT = getMemoryVT();
1047 
1048     if (MemoryVT)
1049       Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" +
1050                MemoryVT->getName() + ") return false;\n")
1051                   .str();
1052   }
1053 
1054   if (isAtomic() && isAtomicOrderingMonotonic())
1055     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1056             "AtomicOrdering::Monotonic) return false;\n";
1057   if (isAtomic() && isAtomicOrderingAcquire())
1058     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1059             "AtomicOrdering::Acquire) return false;\n";
1060   if (isAtomic() && isAtomicOrderingRelease())
1061     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1062             "AtomicOrdering::Release) return false;\n";
1063   if (isAtomic() && isAtomicOrderingAcquireRelease())
1064     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1065             "AtomicOrdering::AcquireRelease) return false;\n";
1066   if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
1067     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1068             "AtomicOrdering::SequentiallyConsistent) return false;\n";
1069 
1070   if (isAtomic() && isAtomicOrderingAcquireOrStronger())
1071     Code +=
1072         "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1073         "return false;\n";
1074   if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
1075     Code +=
1076         "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1077         "return false;\n";
1078 
1079   if (isAtomic() && isAtomicOrderingReleaseOrStronger())
1080     Code +=
1081         "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1082         "return false;\n";
1083   if (isAtomic() && isAtomicOrderingWeakerThanRelease())
1084     Code +=
1085         "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1086         "return false;\n";
1087 
1088   // TODO: Handle atomic sextload/zextload normally when ATOMIC_LOAD is removed.
1089   if (isAtomic() && (isZeroExtLoad() || isSignExtLoad()))
1090     Code += "return false;\n";
1091 
1092   if (isLoad() || isStore()) {
1093     StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
1094 
1095     if (isUnindexed())
1096       Code += ("if (cast<" + SDNodeName +
1097                ">(N)->getAddressingMode() != ISD::UNINDEXED) "
1098                "return false;\n")
1099                   .str();
1100 
1101     if (isLoad()) {
1102       if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
1103            isZeroExtLoad()) > 1)
1104         PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1105                         "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
1106                         "IsZeroExtLoad are mutually exclusive");
1107       if (isNonExtLoad())
1108         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
1109                 "ISD::NON_EXTLOAD) return false;\n";
1110       if (isAnyExtLoad())
1111         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
1112                 "return false;\n";
1113       if (isSignExtLoad())
1114         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
1115                 "return false;\n";
1116       if (isZeroExtLoad())
1117         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
1118                 "return false;\n";
1119     } else {
1120       if ((isNonTruncStore() + isTruncStore()) > 1)
1121         PrintFatalError(
1122             getOrigPatFragRecord()->getRecord()->getLoc(),
1123             "IsNonTruncStore, and IsTruncStore are mutually exclusive");
1124       if (isNonTruncStore())
1125         Code +=
1126             " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1127       if (isTruncStore())
1128         Code +=
1129             " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1130     }
1131 
1132     Record *ScalarMemoryVT = getScalarMemoryVT();
1133 
1134     if (ScalarMemoryVT)
1135       Code += ("if (cast<" + SDNodeName +
1136                ">(N)->getMemoryVT().getScalarType() != MVT::" +
1137                ScalarMemoryVT->getName() + ") return false;\n")
1138                   .str();
1139   }
1140 
1141   if (hasNoUse())
1142     Code += "if (!SDValue(N, 0).use_empty()) return false;\n";
1143   if (hasOneUse())
1144     Code += "if (!SDValue(N, 0).hasOneUse()) return false;\n";
1145 
1146   std::string PredicateCode =
1147       std::string(PatFragRec->getRecord()->getValueAsString("PredicateCode"));
1148 
1149   Code += PredicateCode;
1150 
1151   if (PredicateCode.empty() && !Code.empty())
1152     Code += "return true;\n";
1153 
1154   return Code;
1155 }
1156 
1157 bool TreePredicateFn::hasImmCode() const {
1158   return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
1159 }
1160 
1161 std::string TreePredicateFn::getImmCode() const {
1162   return std::string(
1163       PatFragRec->getRecord()->getValueAsString("ImmediateCode"));
1164 }
1165 
1166 bool TreePredicateFn::immCodeUsesAPInt() const {
1167   return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
1168 }
1169 
1170 bool TreePredicateFn::immCodeUsesAPFloat() const {
1171   bool Unset;
1172   // The return value will be false when IsAPFloat is unset.
1173   return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
1174                                                                    Unset);
1175 }
1176 
1177 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
1178                                                    bool Value) const {
1179   bool Unset;
1180   bool Result =
1181       getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
1182   if (Unset)
1183     return false;
1184   return Result == Value;
1185 }
1186 bool TreePredicateFn::usesOperands() const {
1187   return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true);
1188 }
1189 bool TreePredicateFn::hasNoUse() const {
1190   return isPredefinedPredicateEqualTo("HasNoUse", true);
1191 }
1192 bool TreePredicateFn::hasOneUse() const {
1193   return isPredefinedPredicateEqualTo("HasOneUse", true);
1194 }
1195 bool TreePredicateFn::isLoad() const {
1196   return isPredefinedPredicateEqualTo("IsLoad", true);
1197 }
1198 bool TreePredicateFn::isStore() const {
1199   return isPredefinedPredicateEqualTo("IsStore", true);
1200 }
1201 bool TreePredicateFn::isAtomic() const {
1202   return isPredefinedPredicateEqualTo("IsAtomic", true);
1203 }
1204 bool TreePredicateFn::isUnindexed() const {
1205   return isPredefinedPredicateEqualTo("IsUnindexed", true);
1206 }
1207 bool TreePredicateFn::isNonExtLoad() const {
1208   return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
1209 }
1210 bool TreePredicateFn::isAnyExtLoad() const {
1211   return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
1212 }
1213 bool TreePredicateFn::isSignExtLoad() const {
1214   return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
1215 }
1216 bool TreePredicateFn::isZeroExtLoad() const {
1217   return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
1218 }
1219 bool TreePredicateFn::isNonTruncStore() const {
1220   return isPredefinedPredicateEqualTo("IsTruncStore", false);
1221 }
1222 bool TreePredicateFn::isTruncStore() const {
1223   return isPredefinedPredicateEqualTo("IsTruncStore", true);
1224 }
1225 bool TreePredicateFn::isAtomicOrderingMonotonic() const {
1226   return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
1227 }
1228 bool TreePredicateFn::isAtomicOrderingAcquire() const {
1229   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
1230 }
1231 bool TreePredicateFn::isAtomicOrderingRelease() const {
1232   return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
1233 }
1234 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
1235   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
1236 }
1237 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
1238   return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
1239                                       true);
1240 }
1241 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
1242   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger",
1243                                       true);
1244 }
1245 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
1246   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger",
1247                                       false);
1248 }
1249 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
1250   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger",
1251                                       true);
1252 }
1253 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
1254   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger",
1255                                       false);
1256 }
1257 Record *TreePredicateFn::getMemoryVT() const {
1258   const Record *R = getOrigPatFragRecord()->getRecord();
1259   if (R->isValueUnset("MemoryVT"))
1260     return nullptr;
1261   return R->getValueAsDef("MemoryVT");
1262 }
1263 
1264 ListInit *TreePredicateFn::getAddressSpaces() const {
1265   const Record *R = getOrigPatFragRecord()->getRecord();
1266   if (R->isValueUnset("AddressSpaces"))
1267     return nullptr;
1268   return R->getValueAsListInit("AddressSpaces");
1269 }
1270 
1271 int64_t TreePredicateFn::getMinAlignment() const {
1272   const Record *R = getOrigPatFragRecord()->getRecord();
1273   if (R->isValueUnset("MinAlignment"))
1274     return 0;
1275   return R->getValueAsInt("MinAlignment");
1276 }
1277 
1278 Record *TreePredicateFn::getScalarMemoryVT() const {
1279   const Record *R = getOrigPatFragRecord()->getRecord();
1280   if (R->isValueUnset("ScalarMemoryVT"))
1281     return nullptr;
1282   return R->getValueAsDef("ScalarMemoryVT");
1283 }
1284 bool TreePredicateFn::hasGISelPredicateCode() const {
1285   return !PatFragRec->getRecord()
1286               ->getValueAsString("GISelPredicateCode")
1287               .empty();
1288 }
1289 std::string TreePredicateFn::getGISelPredicateCode() const {
1290   return std::string(
1291       PatFragRec->getRecord()->getValueAsString("GISelPredicateCode"));
1292 }
1293 
1294 StringRef TreePredicateFn::getImmType() const {
1295   if (immCodeUsesAPInt())
1296     return "const APInt &";
1297   if (immCodeUsesAPFloat())
1298     return "const APFloat &";
1299   return "int64_t";
1300 }
1301 
1302 StringRef TreePredicateFn::getImmTypeIdentifier() const {
1303   if (immCodeUsesAPInt())
1304     return "APInt";
1305   if (immCodeUsesAPFloat())
1306     return "APFloat";
1307   return "I64";
1308 }
1309 
1310 /// isAlwaysTrue - Return true if this is a noop predicate.
1311 bool TreePredicateFn::isAlwaysTrue() const {
1312   return !hasPredCode() && !hasImmCode();
1313 }
1314 
1315 /// Return the name to use in the generated code to reference this, this is
1316 /// "Predicate_foo" if from a pattern fragment "foo".
1317 std::string TreePredicateFn::getFnName() const {
1318   return "Predicate_" + PatFragRec->getRecord()->getName().str();
1319 }
1320 
1321 /// getCodeToRunOnSDNode - Return the code for the function body that
1322 /// evaluates this predicate.  The argument is expected to be in "Node",
1323 /// not N.  This handles casting and conversion to a concrete node type as
1324 /// appropriate.
1325 std::string TreePredicateFn::getCodeToRunOnSDNode() const {
1326   // Handle immediate predicates first.
1327   std::string ImmCode = getImmCode();
1328   if (!ImmCode.empty()) {
1329     if (isLoad())
1330       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1331                       "IsLoad cannot be used with ImmLeaf or its subclasses");
1332     if (isStore())
1333       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1334                       "IsStore cannot be used with ImmLeaf or its subclasses");
1335     if (isUnindexed())
1336       PrintFatalError(
1337           getOrigPatFragRecord()->getRecord()->getLoc(),
1338           "IsUnindexed cannot be used with ImmLeaf or its subclasses");
1339     if (isNonExtLoad())
1340       PrintFatalError(
1341           getOrigPatFragRecord()->getRecord()->getLoc(),
1342           "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
1343     if (isAnyExtLoad())
1344       PrintFatalError(
1345           getOrigPatFragRecord()->getRecord()->getLoc(),
1346           "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
1347     if (isSignExtLoad())
1348       PrintFatalError(
1349           getOrigPatFragRecord()->getRecord()->getLoc(),
1350           "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
1351     if (isZeroExtLoad())
1352       PrintFatalError(
1353           getOrigPatFragRecord()->getRecord()->getLoc(),
1354           "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
1355     if (isNonTruncStore())
1356       PrintFatalError(
1357           getOrigPatFragRecord()->getRecord()->getLoc(),
1358           "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
1359     if (isTruncStore())
1360       PrintFatalError(
1361           getOrigPatFragRecord()->getRecord()->getLoc(),
1362           "IsTruncStore cannot be used with ImmLeaf or its subclasses");
1363     if (getMemoryVT())
1364       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1365                       "MemoryVT cannot be used with ImmLeaf or its subclasses");
1366     if (getScalarMemoryVT())
1367       PrintFatalError(
1368           getOrigPatFragRecord()->getRecord()->getLoc(),
1369           "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
1370 
1371     std::string Result = ("    " + getImmType() + " Imm = ").str();
1372     if (immCodeUsesAPFloat())
1373       Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
1374     else if (immCodeUsesAPInt())
1375       Result += "Node->getAsAPIntVal();\n";
1376     else
1377       Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
1378     return Result + ImmCode;
1379   }
1380 
1381   // Handle arbitrary node predicates.
1382   assert(hasPredCode() && "Don't have any predicate code!");
1383 
1384   // If this is using PatFrags, there are multiple trees to search. They should
1385   // all have the same class.  FIXME: Is there a way to find a common
1386   // superclass?
1387   StringRef ClassName;
1388   for (const auto &Tree : PatFragRec->getTrees()) {
1389     StringRef TreeClassName;
1390     if (Tree->isLeaf())
1391       TreeClassName = "SDNode";
1392     else {
1393       const Record *Op = Tree->getOperator();
1394       const SDNodeInfo &Info = PatFragRec->getDAGPatterns().getSDNodeInfo(Op);
1395       TreeClassName = Info.getSDClassName();
1396     }
1397 
1398     if (ClassName.empty())
1399       ClassName = TreeClassName;
1400     else if (ClassName != TreeClassName) {
1401       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1402                       "PatFrags trees do not have consistent class");
1403     }
1404   }
1405 
1406   std::string Result;
1407   if (ClassName == "SDNode")
1408     Result = "    SDNode *N = Node;\n";
1409   else
1410     Result = "    auto *N = cast<" + ClassName.str() + ">(Node);\n";
1411 
1412   return (Twine(Result) + "    (void)N;\n" + getPredCode()).str();
1413 }
1414 
1415 //===----------------------------------------------------------------------===//
1416 // PatternToMatch implementation
1417 //
1418 
1419 static bool isImmAllOnesAllZerosMatch(const TreePatternNode &P) {
1420   if (!P.isLeaf())
1421     return false;
1422   DefInit *DI = dyn_cast<DefInit>(P.getLeafValue());
1423   if (!DI)
1424     return false;
1425 
1426   Record *R = DI->getDef();
1427   return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV";
1428 }
1429 
1430 /// getPatternSize - Return the 'size' of this pattern.  We want to match large
1431 /// patterns before small ones.  This is used to determine the size of a
1432 /// pattern.
1433 static unsigned getPatternSize(const TreePatternNode &P,
1434                                const CodeGenDAGPatterns &CGP) {
1435   unsigned Size = 3; // The node itself.
1436   // If the root node is a ConstantSDNode, increases its size.
1437   // e.g. (set R32:$dst, 0).
1438   if (P.isLeaf() && isa<IntInit>(P.getLeafValue()))
1439     Size += 2;
1440 
1441   if (const ComplexPattern *AM = P.getComplexPatternInfo(CGP)) {
1442     Size += AM->getComplexity();
1443     // We don't want to count any children twice, so return early.
1444     return Size;
1445   }
1446 
1447   // If this node has some predicate function that must match, it adds to the
1448   // complexity of this node.
1449   if (!P.getPredicateCalls().empty())
1450     ++Size;
1451 
1452   // Count children in the count if they are also nodes.
1453   for (unsigned i = 0, e = P.getNumChildren(); i != e; ++i) {
1454     const TreePatternNode &Child = P.getChild(i);
1455     if (!Child.isLeaf() && Child.getNumTypes()) {
1456       const TypeSetByHwMode &T0 = Child.getExtType(0);
1457       // At this point, all variable type sets should be simple, i.e. only
1458       // have a default mode.
1459       if (T0.getMachineValueType() != MVT::Other) {
1460         Size += getPatternSize(Child, CGP);
1461         continue;
1462       }
1463     }
1464     if (Child.isLeaf()) {
1465       if (isa<IntInit>(Child.getLeafValue()))
1466         Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
1467       else if (Child.getComplexPatternInfo(CGP))
1468         Size += getPatternSize(Child, CGP);
1469       else if (isImmAllOnesAllZerosMatch(Child))
1470         Size += 4; // Matches a build_vector(+3) and a predicate (+1).
1471       else if (!Child.getPredicateCalls().empty())
1472         ++Size;
1473     }
1474   }
1475 
1476   return Size;
1477 }
1478 
1479 /// Compute the complexity metric for the input pattern.  This roughly
1480 /// corresponds to the number of nodes that are covered.
1481 int PatternToMatch::getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
1482   return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
1483 }
1484 
1485 void PatternToMatch::getPredicateRecords(
1486     SmallVectorImpl<Record *> &PredicateRecs) const {
1487   for (Init *I : Predicates->getValues()) {
1488     if (DefInit *Pred = dyn_cast<DefInit>(I)) {
1489       Record *Def = Pred->getDef();
1490       if (!Def->isSubClassOf("Predicate")) {
1491 #ifndef NDEBUG
1492         Def->dump();
1493 #endif
1494         llvm_unreachable("Unknown predicate type!");
1495       }
1496       PredicateRecs.push_back(Def);
1497     }
1498   }
1499   // Sort so that different orders get canonicalized to the same string.
1500   llvm::sort(PredicateRecs, LessRecord());
1501   // Remove duplicate predicates.
1502   PredicateRecs.erase(llvm::unique(PredicateRecs), PredicateRecs.end());
1503 }
1504 
1505 /// getPredicateCheck - Return a single string containing all of this
1506 /// pattern's predicates concatenated with "&&" operators.
1507 ///
1508 std::string PatternToMatch::getPredicateCheck() const {
1509   SmallVector<Record *, 4> PredicateRecs;
1510   getPredicateRecords(PredicateRecs);
1511 
1512   SmallString<128> PredicateCheck;
1513   raw_svector_ostream OS(PredicateCheck);
1514   ListSeparator LS(" && ");
1515   for (Record *Pred : PredicateRecs) {
1516     StringRef CondString = Pred->getValueAsString("CondString");
1517     if (CondString.empty())
1518       continue;
1519     OS << LS << '(' << CondString << ')';
1520   }
1521 
1522   if (!HwModeFeatures.empty())
1523     OS << LS << HwModeFeatures;
1524 
1525   return std::string(PredicateCheck);
1526 }
1527 
1528 //===----------------------------------------------------------------------===//
1529 // SDTypeConstraint implementation
1530 //
1531 
1532 SDTypeConstraint::SDTypeConstraint(const Record *R, const CodeGenHwModes &CGH) {
1533   OperandNo = R->getValueAsInt("OperandNum");
1534 
1535   if (R->isSubClassOf("SDTCisVT")) {
1536     ConstraintType = SDTCisVT;
1537     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1538     for (const auto &P : VVT)
1539       if (P.second == MVT::isVoid)
1540         PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
1541   } else if (R->isSubClassOf("SDTCisPtrTy")) {
1542     ConstraintType = SDTCisPtrTy;
1543   } else if (R->isSubClassOf("SDTCisInt")) {
1544     ConstraintType = SDTCisInt;
1545   } else if (R->isSubClassOf("SDTCisFP")) {
1546     ConstraintType = SDTCisFP;
1547   } else if (R->isSubClassOf("SDTCisVec")) {
1548     ConstraintType = SDTCisVec;
1549   } else if (R->isSubClassOf("SDTCisSameAs")) {
1550     ConstraintType = SDTCisSameAs;
1551     x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
1552   } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
1553     ConstraintType = SDTCisVTSmallerThanOp;
1554     x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
1555         R->getValueAsInt("OtherOperandNum");
1556   } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
1557     ConstraintType = SDTCisOpSmallerThanOp;
1558     x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
1559         R->getValueAsInt("BigOperandNum");
1560   } else if (R->isSubClassOf("SDTCisEltOfVec")) {
1561     ConstraintType = SDTCisEltOfVec;
1562     x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1563   } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
1564     ConstraintType = SDTCisSubVecOfVec;
1565     x.SDTCisSubVecOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1566   } else if (R->isSubClassOf("SDTCVecEltisVT")) {
1567     ConstraintType = SDTCVecEltisVT;
1568     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1569     for (const auto &P : VVT) {
1570       MVT T = P.second;
1571       if (T.isVector())
1572         PrintFatalError(R->getLoc(),
1573                         "Cannot use vector type as SDTCVecEltisVT");
1574       if (!T.isInteger() && !T.isFloatingPoint())
1575         PrintFatalError(R->getLoc(), "Must use integer or floating point type "
1576                                      "as SDTCVecEltisVT");
1577     }
1578   } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
1579     ConstraintType = SDTCisSameNumEltsAs;
1580     x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
1581         R->getValueAsInt("OtherOperandNum");
1582   } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
1583     ConstraintType = SDTCisSameSizeAs;
1584     x.SDTCisSameSizeAs_Info.OtherOperandNum =
1585         R->getValueAsInt("OtherOperandNum");
1586   } else {
1587     PrintFatalError(R->getLoc(),
1588                     "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
1589   }
1590 }
1591 
1592 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
1593 /// N, and the result number in ResNo.
1594 static TreePatternNode &getOperandNum(unsigned OpNo, TreePatternNode &N,
1595                                       const SDNodeInfo &NodeInfo,
1596                                       unsigned &ResNo) {
1597   unsigned NumResults = NodeInfo.getNumResults();
1598   if (OpNo < NumResults) {
1599     ResNo = OpNo;
1600     return N;
1601   }
1602 
1603   OpNo -= NumResults;
1604 
1605   if (OpNo >= N.getNumChildren()) {
1606     PrintFatalError([&N, OpNo, NumResults](raw_ostream &OS) {
1607       OS << "Invalid operand number in type constraint " << (OpNo + NumResults);
1608       N.print(OS);
1609     });
1610   }
1611   return N.getChild(OpNo);
1612 }
1613 
1614 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
1615 /// constraint to the nodes operands.  This returns true if it makes a
1616 /// change, false otherwise.  If a type contradiction is found, flag an error.
1617 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode &N,
1618                                            const SDNodeInfo &NodeInfo,
1619                                            TreePattern &TP) const {
1620   if (TP.hasError())
1621     return false;
1622 
1623   unsigned ResNo = 0; // The result number being referenced.
1624   TreePatternNode &NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
1625   TypeInfer &TI = TP.getInfer();
1626 
1627   switch (ConstraintType) {
1628   case SDTCisVT:
1629     // Operand must be a particular type.
1630     return NodeToApply.UpdateNodeType(ResNo, VVT, TP);
1631   case SDTCisPtrTy:
1632     // Operand must be same as target pointer type.
1633     return NodeToApply.UpdateNodeType(ResNo, MVT::iPTR, TP);
1634   case SDTCisInt:
1635     // Require it to be one of the legal integer VTs.
1636     return TI.EnforceInteger(NodeToApply.getExtType(ResNo));
1637   case SDTCisFP:
1638     // Require it to be one of the legal fp VTs.
1639     return TI.EnforceFloatingPoint(NodeToApply.getExtType(ResNo));
1640   case SDTCisVec:
1641     // Require it to be one of the legal vector VTs.
1642     return TI.EnforceVector(NodeToApply.getExtType(ResNo));
1643   case SDTCisSameAs: {
1644     unsigned OResNo = 0;
1645     TreePatternNode &OtherNode =
1646         getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1647     return (int)NodeToApply.UpdateNodeType(ResNo, OtherNode.getExtType(OResNo),
1648                                            TP) |
1649            (int)OtherNode.UpdateNodeType(OResNo, NodeToApply.getExtType(ResNo),
1650                                          TP);
1651   }
1652   case SDTCisVTSmallerThanOp: {
1653     // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
1654     // have an integer type that is smaller than the VT.
1655     if (!NodeToApply.isLeaf() || !isa<DefInit>(NodeToApply.getLeafValue()) ||
1656         !cast<DefInit>(NodeToApply.getLeafValue())
1657              ->getDef()
1658              ->isSubClassOf("ValueType")) {
1659       TP.error(N.getOperator()->getName() + " expects a VT operand!");
1660       return false;
1661     }
1662     DefInit *DI = cast<DefInit>(NodeToApply.getLeafValue());
1663     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1664     auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
1665     TypeSetByHwMode TypeListTmp(VVT);
1666 
1667     unsigned OResNo = 0;
1668     TreePatternNode &OtherNode = getOperandNum(
1669         x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, OResNo);
1670 
1671     return TI.EnforceSmallerThan(TypeListTmp, OtherNode.getExtType(OResNo),
1672                                  /*SmallIsVT*/ true);
1673   }
1674   case SDTCisOpSmallerThanOp: {
1675     unsigned BResNo = 0;
1676     TreePatternNode &BigOperand = getOperandNum(
1677         x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, BResNo);
1678     return TI.EnforceSmallerThan(NodeToApply.getExtType(ResNo),
1679                                  BigOperand.getExtType(BResNo));
1680   }
1681   case SDTCisEltOfVec: {
1682     unsigned VResNo = 0;
1683     TreePatternNode &VecOperand = getOperandNum(
1684         x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, VResNo);
1685     // Filter vector types out of VecOperand that don't have the right element
1686     // type.
1687     return TI.EnforceVectorEltTypeIs(VecOperand.getExtType(VResNo),
1688                                      NodeToApply.getExtType(ResNo));
1689   }
1690   case SDTCisSubVecOfVec: {
1691     unsigned VResNo = 0;
1692     TreePatternNode &BigVecOperand = getOperandNum(
1693         x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, VResNo);
1694 
1695     // Filter vector types out of BigVecOperand that don't have the
1696     // right subvector type.
1697     return TI.EnforceVectorSubVectorTypeIs(BigVecOperand.getExtType(VResNo),
1698                                            NodeToApply.getExtType(ResNo));
1699   }
1700   case SDTCVecEltisVT: {
1701     return TI.EnforceVectorEltTypeIs(NodeToApply.getExtType(ResNo), VVT);
1702   }
1703   case SDTCisSameNumEltsAs: {
1704     unsigned OResNo = 0;
1705     TreePatternNode &OtherNode = getOperandNum(
1706         x.SDTCisSameNumEltsAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1707     return TI.EnforceSameNumElts(OtherNode.getExtType(OResNo),
1708                                  NodeToApply.getExtType(ResNo));
1709   }
1710   case SDTCisSameSizeAs: {
1711     unsigned OResNo = 0;
1712     TreePatternNode &OtherNode = getOperandNum(
1713         x.SDTCisSameSizeAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1714     return TI.EnforceSameSize(OtherNode.getExtType(OResNo),
1715                               NodeToApply.getExtType(ResNo));
1716   }
1717   }
1718   llvm_unreachable("Invalid ConstraintType!");
1719 }
1720 
1721 // Update the node type to match an instruction operand or result as specified
1722 // in the ins or outs lists on the instruction definition. Return true if the
1723 // type was actually changed.
1724 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
1725                                              const Record *Operand,
1726                                              TreePattern &TP) {
1727   // The 'unknown' operand indicates that types should be inferred from the
1728   // context.
1729   if (Operand->isSubClassOf("unknown_class"))
1730     return false;
1731 
1732   // The Operand class specifies a type directly.
1733   if (Operand->isSubClassOf("Operand")) {
1734     Record *R = Operand->getValueAsDef("Type");
1735     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1736     return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
1737   }
1738 
1739   // PointerLikeRegClass has a type that is determined at runtime.
1740   if (Operand->isSubClassOf("PointerLikeRegClass"))
1741     return UpdateNodeType(ResNo, MVT::iPTR, TP);
1742 
1743   // Both RegisterClass and RegisterOperand operands derive their types from a
1744   // register class def.
1745   const Record *RC = nullptr;
1746   if (Operand->isSubClassOf("RegisterClass"))
1747     RC = Operand;
1748   else if (Operand->isSubClassOf("RegisterOperand"))
1749     RC = Operand->getValueAsDef("RegClass");
1750 
1751   assert(RC && "Unknown operand type");
1752   CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1753   return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1754 }
1755 
1756 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
1757   for (unsigned i = 0, e = Types.size(); i != e; ++i)
1758     if (!TP.getInfer().isConcrete(Types[i], true))
1759       return true;
1760   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1761     if (getChild(i).ContainsUnresolvedType(TP))
1762       return true;
1763   return false;
1764 }
1765 
1766 bool TreePatternNode::hasProperTypeByHwMode() const {
1767   for (const TypeSetByHwMode &S : Types)
1768     if (!S.isSimple())
1769       return true;
1770   for (const TreePatternNodePtr &C : Children)
1771     if (C->hasProperTypeByHwMode())
1772       return true;
1773   return false;
1774 }
1775 
1776 bool TreePatternNode::hasPossibleType() const {
1777   for (const TypeSetByHwMode &S : Types)
1778     if (!S.isPossible())
1779       return false;
1780   for (const TreePatternNodePtr &C : Children)
1781     if (!C->hasPossibleType())
1782       return false;
1783   return true;
1784 }
1785 
1786 bool TreePatternNode::setDefaultMode(unsigned Mode) {
1787   for (TypeSetByHwMode &S : Types) {
1788     S.makeSimple(Mode);
1789     // Check if the selected mode had a type conflict.
1790     if (S.get(DefaultMode).empty())
1791       return false;
1792   }
1793   for (const TreePatternNodePtr &C : Children)
1794     if (!C->setDefaultMode(Mode))
1795       return false;
1796   return true;
1797 }
1798 
1799 //===----------------------------------------------------------------------===//
1800 // SDNodeInfo implementation
1801 //
1802 SDNodeInfo::SDNodeInfo(const Record *R, const CodeGenHwModes &CGH) : Def(R) {
1803   EnumName = R->getValueAsString("Opcode");
1804   SDClassName = R->getValueAsString("SDClass");
1805   Record *TypeProfile = R->getValueAsDef("TypeProfile");
1806   NumResults = TypeProfile->getValueAsInt("NumResults");
1807   NumOperands = TypeProfile->getValueAsInt("NumOperands");
1808 
1809   // Parse the properties.
1810   Properties = parseSDPatternOperatorProperties(R);
1811 
1812   // Parse the type constraints.
1813   std::vector<Record *> ConstraintList =
1814       TypeProfile->getValueAsListOfDefs("Constraints");
1815   for (Record *R : ConstraintList)
1816     TypeConstraints.emplace_back(R, CGH);
1817 }
1818 
1819 /// getKnownType - If the type constraints on this node imply a fixed type
1820 /// (e.g. all stores return void, etc), then return it as an
1821 /// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
1822 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1823   unsigned NumResults = getNumResults();
1824   assert(NumResults <= 1 &&
1825          "We only work with nodes with zero or one result so far!");
1826   assert(ResNo == 0 && "Only handles single result nodes so far");
1827 
1828   for (const SDTypeConstraint &Constraint : TypeConstraints) {
1829     // Make sure that this applies to the correct node result.
1830     if (Constraint.OperandNo >= NumResults) // FIXME: need value #
1831       continue;
1832 
1833     switch (Constraint.ConstraintType) {
1834     default:
1835       break;
1836     case SDTypeConstraint::SDTCisVT:
1837       if (Constraint.VVT.isSimple())
1838         return Constraint.VVT.getSimple().SimpleTy;
1839       break;
1840     case SDTypeConstraint::SDTCisPtrTy:
1841       return MVT::iPTR;
1842     }
1843   }
1844   return MVT::Other;
1845 }
1846 
1847 //===----------------------------------------------------------------------===//
1848 // TreePatternNode implementation
1849 //
1850 
1851 static unsigned GetNumNodeResults(const Record *Operator,
1852                                   CodeGenDAGPatterns &CDP) {
1853   if (Operator->getName() == "set" || Operator->getName() == "implicit")
1854     return 0; // All return nothing.
1855 
1856   if (Operator->isSubClassOf("Intrinsic"))
1857     return CDP.getIntrinsic(Operator).IS.RetTys.size();
1858 
1859   if (Operator->isSubClassOf("SDNode"))
1860     return CDP.getSDNodeInfo(Operator).getNumResults();
1861 
1862   if (Operator->isSubClassOf("PatFrags")) {
1863     // If we've already parsed this pattern fragment, get it.  Otherwise, handle
1864     // the forward reference case where one pattern fragment references another
1865     // before it is processed.
1866     if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) {
1867       // The number of results of a fragment with alternative records is the
1868       // maximum number of results across all alternatives.
1869       unsigned NumResults = 0;
1870       for (const auto &T : PFRec->getTrees())
1871         NumResults = std::max(NumResults, T->getNumTypes());
1872       return NumResults;
1873     }
1874 
1875     ListInit *LI = Operator->getValueAsListInit("Fragments");
1876     assert(LI && "Invalid Fragment");
1877     unsigned NumResults = 0;
1878     for (Init *I : LI->getValues()) {
1879       Record *Op = nullptr;
1880       if (DagInit *Dag = dyn_cast<DagInit>(I))
1881         if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator()))
1882           Op = DI->getDef();
1883       assert(Op && "Invalid Fragment");
1884       NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP));
1885     }
1886     return NumResults;
1887   }
1888 
1889   if (Operator->isSubClassOf("Instruction")) {
1890     CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1891 
1892     unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1893 
1894     // Subtract any defaulted outputs.
1895     for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1896       const Record *OperandNode = InstInfo.Operands[i].Rec;
1897 
1898       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1899           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1900         --NumDefsToAdd;
1901     }
1902 
1903     // Add on one implicit def if it has a resolvable type.
1904     if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=
1905         MVT::Other)
1906       ++NumDefsToAdd;
1907     return NumDefsToAdd;
1908   }
1909 
1910   if (Operator->isSubClassOf("SDNodeXForm"))
1911     return 1; // FIXME: Generalize SDNodeXForm
1912 
1913   if (Operator->isSubClassOf("ValueType"))
1914     return 1; // A type-cast of one result.
1915 
1916   if (Operator->isSubClassOf("ComplexPattern"))
1917     return 1;
1918 
1919   errs() << *Operator;
1920   PrintFatalError("Unhandled node in GetNumNodeResults");
1921 }
1922 
1923 void TreePatternNode::print(raw_ostream &OS) const {
1924   if (isLeaf())
1925     OS << *getLeafValue();
1926   else
1927     OS << '(' << getOperator()->getName();
1928 
1929   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1930     OS << ':';
1931     getExtType(i).writeToStream(OS);
1932   }
1933 
1934   if (!isLeaf()) {
1935     if (getNumChildren() != 0) {
1936       OS << " ";
1937       ListSeparator LS;
1938       for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1939         OS << LS;
1940         getChild(i).print(OS);
1941       }
1942     }
1943     OS << ")";
1944   }
1945 
1946   for (const TreePredicateCall &Pred : PredicateCalls) {
1947     OS << "<<P:";
1948     if (Pred.Scope)
1949       OS << Pred.Scope << ":";
1950     OS << Pred.Fn.getFnName() << ">>";
1951   }
1952   if (TransformFn)
1953     OS << "<<X:" << TransformFn->getName() << ">>";
1954   if (!getName().empty())
1955     OS << ":$" << getName();
1956 
1957   for (const ScopedName &Name : NamesAsPredicateArg)
1958     OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier();
1959 }
1960 void TreePatternNode::dump() const { print(errs()); }
1961 
1962 /// isIsomorphicTo - Return true if this node is recursively
1963 /// isomorphic to the specified node.  For this comparison, the node's
1964 /// entire state is considered. The assigned name is ignored, since
1965 /// nodes with differing names are considered isomorphic. However, if
1966 /// the assigned name is present in the dependent variable set, then
1967 /// the assigned name is considered significant and the node is
1968 /// isomorphic if the names match.
1969 bool TreePatternNode::isIsomorphicTo(const TreePatternNode &N,
1970                                      const MultipleUseVarSet &DepVars) const {
1971   if (&N == this)
1972     return true;
1973   if (N.isLeaf() != isLeaf())
1974     return false;
1975 
1976   // Check operator of non-leaves early since it can be cheaper than checking
1977   // types.
1978   if (!isLeaf())
1979     if (N.getOperator() != getOperator() ||
1980         N.getNumChildren() != getNumChildren())
1981       return false;
1982 
1983   if (getExtTypes() != N.getExtTypes() ||
1984       getPredicateCalls() != N.getPredicateCalls() ||
1985       getTransformFn() != N.getTransformFn())
1986     return false;
1987 
1988   if (isLeaf()) {
1989     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1990       if (DefInit *NDI = dyn_cast<DefInit>(N.getLeafValue())) {
1991         return ((DI->getDef() == NDI->getDef()) &&
1992                 (!DepVars.contains(getName()) || getName() == N.getName()));
1993       }
1994     }
1995     return getLeafValue() == N.getLeafValue();
1996   }
1997 
1998   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1999     if (!getChild(i).isIsomorphicTo(N.getChild(i), DepVars))
2000       return false;
2001   return true;
2002 }
2003 
2004 /// clone - Make a copy of this tree and all of its children.
2005 ///
2006 TreePatternNodePtr TreePatternNode::clone() const {
2007   TreePatternNodePtr New;
2008   if (isLeaf()) {
2009     New = makeIntrusiveRefCnt<TreePatternNode>(getLeafValue(), getNumTypes());
2010   } else {
2011     std::vector<TreePatternNodePtr> CChildren;
2012     CChildren.reserve(Children.size());
2013     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2014       CChildren.push_back(getChild(i).clone());
2015     New = makeIntrusiveRefCnt<TreePatternNode>(
2016         getOperator(), std::move(CChildren), getNumTypes());
2017   }
2018   New->setName(getName());
2019   New->setNamesAsPredicateArg(getNamesAsPredicateArg());
2020   New->Types = Types;
2021   New->setPredicateCalls(getPredicateCalls());
2022   New->setGISelFlagsRecord(getGISelFlagsRecord());
2023   New->setTransformFn(getTransformFn());
2024   return New;
2025 }
2026 
2027 /// RemoveAllTypes - Recursively strip all the types of this tree.
2028 void TreePatternNode::RemoveAllTypes() {
2029   // Reset to unknown type.
2030   std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
2031   if (isLeaf())
2032     return;
2033   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2034     getChild(i).RemoveAllTypes();
2035 }
2036 
2037 /// SubstituteFormalArguments - Replace the formal arguments in this tree
2038 /// with actual values specified by ArgMap.
2039 void TreePatternNode::SubstituteFormalArguments(
2040     std::map<std::string, TreePatternNodePtr> &ArgMap) {
2041   if (isLeaf())
2042     return;
2043 
2044   for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
2045     TreePatternNode &Child = getChild(i);
2046     if (Child.isLeaf()) {
2047       Init *Val = Child.getLeafValue();
2048       // Note that, when substituting into an output pattern, Val might be an
2049       // UnsetInit.
2050       if (isa<UnsetInit>(Val) ||
2051           (isa<DefInit>(Val) &&
2052            cast<DefInit>(Val)->getDef()->getName() == "node")) {
2053         // We found a use of a formal argument, replace it with its value.
2054         TreePatternNodePtr NewChild = ArgMap[Child.getName()];
2055         assert(NewChild && "Couldn't find formal argument!");
2056         assert((Child.getPredicateCalls().empty() ||
2057                 NewChild->getPredicateCalls() == Child.getPredicateCalls()) &&
2058                "Non-empty child predicate clobbered!");
2059         setChild(i, std::move(NewChild));
2060       }
2061     } else {
2062       getChild(i).SubstituteFormalArguments(ArgMap);
2063     }
2064   }
2065 }
2066 
2067 /// InlinePatternFragments - If this pattern refers to any pattern
2068 /// fragments, return the set of inlined versions (this can be more than
2069 /// one if a PatFrags record has multiple alternatives).
2070 void TreePatternNode::InlinePatternFragments(
2071     TreePattern &TP, std::vector<TreePatternNodePtr> &OutAlternatives) {
2072 
2073   if (TP.hasError())
2074     return;
2075 
2076   if (isLeaf()) {
2077     OutAlternatives.push_back(this); // nothing to do.
2078     return;
2079   }
2080 
2081   const Record *Op = getOperator();
2082 
2083   if (!Op->isSubClassOf("PatFrags")) {
2084     if (getNumChildren() == 0) {
2085       OutAlternatives.push_back(this);
2086       return;
2087     }
2088 
2089     // Recursively inline children nodes.
2090     std::vector<std::vector<TreePatternNodePtr>> ChildAlternatives(
2091         getNumChildren());
2092     for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
2093       TreePatternNodePtr Child = getChildShared(i);
2094       Child->InlinePatternFragments(TP, ChildAlternatives[i]);
2095       // If there are no alternatives for any child, there are no
2096       // alternatives for this expression as whole.
2097       if (ChildAlternatives[i].empty())
2098         return;
2099 
2100       assert((Child->getPredicateCalls().empty() ||
2101               llvm::all_of(ChildAlternatives[i],
2102                            [&](const TreePatternNodePtr &NewChild) {
2103                              return NewChild->getPredicateCalls() ==
2104                                     Child->getPredicateCalls();
2105                            })) &&
2106              "Non-empty child predicate clobbered!");
2107     }
2108 
2109     // The end result is an all-pairs construction of the resultant pattern.
2110     std::vector<unsigned> Idxs(ChildAlternatives.size());
2111     bool NotDone;
2112     do {
2113       // Create the variant and add it to the output list.
2114       std::vector<TreePatternNodePtr> NewChildren;
2115       NewChildren.reserve(ChildAlternatives.size());
2116       for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i)
2117         NewChildren.push_back(ChildAlternatives[i][Idxs[i]]);
2118       TreePatternNodePtr R = makeIntrusiveRefCnt<TreePatternNode>(
2119           getOperator(), std::move(NewChildren), getNumTypes());
2120 
2121       // Copy over properties.
2122       R->setName(getName());
2123       R->setNamesAsPredicateArg(getNamesAsPredicateArg());
2124       R->setPredicateCalls(getPredicateCalls());
2125       R->setGISelFlagsRecord(getGISelFlagsRecord());
2126       R->setTransformFn(getTransformFn());
2127       for (unsigned i = 0, e = getNumTypes(); i != e; ++i)
2128         R->setType(i, getExtType(i));
2129       for (unsigned i = 0, e = getNumResults(); i != e; ++i)
2130         R->setResultIndex(i, getResultIndex(i));
2131 
2132       // Register alternative.
2133       OutAlternatives.push_back(R);
2134 
2135       // Increment indices to the next permutation by incrementing the
2136       // indices from last index backward, e.g., generate the sequence
2137       // [0, 0], [0, 1], [1, 0], [1, 1].
2138       int IdxsIdx;
2139       for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
2140         if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size())
2141           Idxs[IdxsIdx] = 0;
2142         else
2143           break;
2144       }
2145       NotDone = (IdxsIdx >= 0);
2146     } while (NotDone);
2147 
2148     return;
2149   }
2150 
2151   // Otherwise, we found a reference to a fragment.  First, look up its
2152   // TreePattern record.
2153   TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
2154 
2155   // Verify that we are passing the right number of operands.
2156   if (Frag->getNumArgs() != getNumChildren()) {
2157     TP.error("'" + Op->getName() + "' fragment requires " +
2158              Twine(Frag->getNumArgs()) + " operands!");
2159     return;
2160   }
2161 
2162   TreePredicateFn PredFn(Frag);
2163   unsigned Scope = 0;
2164   if (TreePredicateFn(Frag).usesOperands())
2165     Scope = TP.getDAGPatterns().allocateScope();
2166 
2167   // Compute the map of formal to actual arguments.
2168   std::map<std::string, TreePatternNodePtr> ArgMap;
2169   for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) {
2170     TreePatternNodePtr Child = getChildShared(i);
2171     if (Scope != 0) {
2172       Child = Child->clone();
2173       Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i)));
2174     }
2175     ArgMap[Frag->getArgName(i)] = Child;
2176   }
2177 
2178   // Loop over all fragment alternatives.
2179   for (const auto &Alternative : Frag->getTrees()) {
2180     TreePatternNodePtr FragTree = Alternative->clone();
2181 
2182     if (!PredFn.isAlwaysTrue())
2183       FragTree->addPredicateCall(PredFn, Scope);
2184 
2185     // Resolve formal arguments to their actual value.
2186     if (Frag->getNumArgs())
2187       FragTree->SubstituteFormalArguments(ArgMap);
2188 
2189     // Transfer types.  Note that the resolved alternative may have fewer
2190     // (but not more) results than the PatFrags node.
2191     FragTree->setName(getName());
2192     for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i)
2193       FragTree->UpdateNodeType(i, getExtType(i), TP);
2194 
2195     if (Op->isSubClassOf("GISelFlags"))
2196       FragTree->setGISelFlagsRecord(Op);
2197 
2198     // Transfer in the old predicates.
2199     for (const TreePredicateCall &Pred : getPredicateCalls())
2200       FragTree->addPredicateCall(Pred);
2201 
2202     // The fragment we inlined could have recursive inlining that is needed. See
2203     // if there are any pattern fragments in it and inline them as needed.
2204     FragTree->InlinePatternFragments(TP, OutAlternatives);
2205   }
2206 }
2207 
2208 /// getImplicitType - Check to see if the specified record has an implicit
2209 /// type which should be applied to it.  This will infer the type of register
2210 /// references from the register file information, for example.
2211 ///
2212 /// When Unnamed is set, return the type of a DAG operand with no name, such as
2213 /// the F8RC register class argument in:
2214 ///
2215 ///   (COPY_TO_REGCLASS GPR:$src, F8RC)
2216 ///
2217 /// When Unnamed is false, return the type of a named DAG operand such as the
2218 /// GPR:$src operand above.
2219 ///
2220 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
2221                                        bool NotRegisters, bool Unnamed,
2222                                        TreePattern &TP) {
2223   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2224 
2225   // Check to see if this is a register operand.
2226   if (R->isSubClassOf("RegisterOperand")) {
2227     assert(ResNo == 0 && "Regoperand ref only has one result!");
2228     if (NotRegisters)
2229       return TypeSetByHwMode(); // Unknown.
2230     Record *RegClass = R->getValueAsDef("RegClass");
2231     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2232     return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
2233   }
2234 
2235   // Check to see if this is a register or a register class.
2236   if (R->isSubClassOf("RegisterClass")) {
2237     assert(ResNo == 0 && "Regclass ref only has one result!");
2238     // An unnamed register class represents itself as an i32 immediate, for
2239     // example on a COPY_TO_REGCLASS instruction.
2240     if (Unnamed)
2241       return TypeSetByHwMode(MVT::i32);
2242 
2243     // In a named operand, the register class provides the possible set of
2244     // types.
2245     if (NotRegisters)
2246       return TypeSetByHwMode(); // Unknown.
2247     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2248     return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
2249   }
2250 
2251   if (R->isSubClassOf("PatFrags")) {
2252     assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
2253     // Pattern fragment types will be resolved when they are inlined.
2254     return TypeSetByHwMode(); // Unknown.
2255   }
2256 
2257   if (R->isSubClassOf("Register")) {
2258     assert(ResNo == 0 && "Registers only produce one result!");
2259     if (NotRegisters)
2260       return TypeSetByHwMode(); // Unknown.
2261     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2262     return TypeSetByHwMode(T.getRegisterVTs(R));
2263   }
2264 
2265   if (R->isSubClassOf("SubRegIndex")) {
2266     assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
2267     return TypeSetByHwMode(MVT::i32);
2268   }
2269 
2270   if (R->isSubClassOf("ValueType")) {
2271     assert(ResNo == 0 && "This node only has one result!");
2272     // An unnamed VTSDNode represents itself as an MVT::Other immediate.
2273     //
2274     //   (sext_inreg GPR:$src, i16)
2275     //                         ~~~
2276     if (Unnamed)
2277       return TypeSetByHwMode(MVT::Other);
2278     // With a name, the ValueType simply provides the type of the named
2279     // variable.
2280     //
2281     //   (sext_inreg i32:$src, i16)
2282     //               ~~~~~~~~
2283     if (NotRegisters)
2284       return TypeSetByHwMode(); // Unknown.
2285     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2286     return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
2287   }
2288 
2289   if (R->isSubClassOf("CondCode")) {
2290     assert(ResNo == 0 && "This node only has one result!");
2291     // Using a CondCodeSDNode.
2292     return TypeSetByHwMode(MVT::Other);
2293   }
2294 
2295   if (R->isSubClassOf("ComplexPattern")) {
2296     assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
2297     if (NotRegisters)
2298       return TypeSetByHwMode(); // Unknown.
2299     const Record *T = CDP.getComplexPattern(R).getValueType();
2300     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2301     return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2302   }
2303   if (R->isSubClassOf("PointerLikeRegClass")) {
2304     assert(ResNo == 0 && "Regclass can only have one result!");
2305     TypeSetByHwMode VTS(MVT::iPTR);
2306     TP.getInfer().expandOverloads(VTS);
2307     return VTS;
2308   }
2309 
2310   if (R->getName() == "node" || R->getName() == "srcvalue" ||
2311       R->getName() == "zero_reg" || R->getName() == "immAllOnesV" ||
2312       R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") {
2313     // Placeholder.
2314     return TypeSetByHwMode(); // Unknown.
2315   }
2316 
2317   if (R->isSubClassOf("Operand")) {
2318     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2319     Record *T = R->getValueAsDef("Type");
2320     return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2321   }
2322 
2323   TP.error("Unknown node flavor used in pattern: " + R->getName());
2324   return TypeSetByHwMode(MVT::Other);
2325 }
2326 
2327 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
2328 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
2329 const CodeGenIntrinsic *
2330 TreePatternNode::getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
2331   if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
2332       getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
2333       getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
2334     return nullptr;
2335 
2336   unsigned IID = cast<IntInit>(getChild(0).getLeafValue())->getValue();
2337   return &CDP.getIntrinsicInfo(IID);
2338 }
2339 
2340 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
2341 /// return the ComplexPattern information, otherwise return null.
2342 const ComplexPattern *
2343 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
2344   const Record *Rec;
2345   if (isLeaf()) {
2346     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2347     if (!DI)
2348       return nullptr;
2349     Rec = DI->getDef();
2350   } else
2351     Rec = getOperator();
2352 
2353   if (!Rec->isSubClassOf("ComplexPattern"))
2354     return nullptr;
2355   return &CGP.getComplexPattern(Rec);
2356 }
2357 
2358 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
2359   // A ComplexPattern specifically declares how many results it fills in.
2360   if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2361     return CP->getNumOperands();
2362 
2363   // If MIOperandInfo is specified, that gives the count.
2364   if (isLeaf()) {
2365     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2366     if (DI && DI->getDef()->isSubClassOf("Operand")) {
2367       DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
2368       if (MIOps->getNumArgs())
2369         return MIOps->getNumArgs();
2370     }
2371   }
2372 
2373   // Otherwise there is just one result.
2374   return 1;
2375 }
2376 
2377 /// NodeHasProperty - Return true if this node has the specified property.
2378 bool TreePatternNode::NodeHasProperty(SDNP Property,
2379                                       const CodeGenDAGPatterns &CGP) const {
2380   if (isLeaf()) {
2381     if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2382       return CP->hasProperty(Property);
2383 
2384     return false;
2385   }
2386 
2387   if (Property != SDNPHasChain) {
2388     // The chain proprety is already present on the different intrinsic node
2389     // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
2390     // on the intrinsic. Anything else is specific to the individual intrinsic.
2391     if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
2392       return Int->hasProperty(Property);
2393   }
2394 
2395   if (!getOperator()->isSubClassOf("SDPatternOperator"))
2396     return false;
2397 
2398   return CGP.getSDNodeInfo(getOperator()).hasProperty(Property);
2399 }
2400 
2401 /// TreeHasProperty - Return true if any node in this tree has the specified
2402 /// property.
2403 bool TreePatternNode::TreeHasProperty(SDNP Property,
2404                                       const CodeGenDAGPatterns &CGP) const {
2405   if (NodeHasProperty(Property, CGP))
2406     return true;
2407   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2408     if (getChild(i).TreeHasProperty(Property, CGP))
2409       return true;
2410   return false;
2411 }
2412 
2413 /// isCommutativeIntrinsic - Return true if the node corresponds to a
2414 /// commutative intrinsic.
2415 bool TreePatternNode::isCommutativeIntrinsic(
2416     const CodeGenDAGPatterns &CDP) const {
2417   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
2418     return Int->isCommutative;
2419   return false;
2420 }
2421 
2422 static bool isOperandClass(const TreePatternNode &N, StringRef Class) {
2423   if (!N.isLeaf())
2424     return N.getOperator()->isSubClassOf(Class);
2425 
2426   DefInit *DI = dyn_cast<DefInit>(N.getLeafValue());
2427   if (DI && DI->getDef()->isSubClassOf(Class))
2428     return true;
2429 
2430   return false;
2431 }
2432 
2433 static void emitTooManyOperandsError(TreePattern &TP, StringRef InstName,
2434                                      unsigned Expected, unsigned Actual) {
2435   TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
2436            " operands but expected only " + Twine(Expected) + "!");
2437 }
2438 
2439 static void emitTooFewOperandsError(TreePattern &TP, StringRef InstName,
2440                                     unsigned Actual) {
2441   TP.error("Instruction '" + InstName + "' expects more than the provided " +
2442            Twine(Actual) + " operands!");
2443 }
2444 
2445 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
2446 /// this node and its children in the tree.  This returns true if it makes a
2447 /// change, false otherwise.  If a type contradiction is found, flag an error.
2448 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
2449   if (TP.hasError())
2450     return false;
2451 
2452   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2453   if (isLeaf()) {
2454     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
2455       // If it's a regclass or something else known, include the type.
2456       bool MadeChange = false;
2457       for (unsigned i = 0, e = Types.size(); i != e; ++i)
2458         MadeChange |= UpdateNodeType(
2459             i, getImplicitType(DI->getDef(), i, NotRegisters, !hasName(), TP),
2460             TP);
2461       return MadeChange;
2462     }
2463 
2464     if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
2465       assert(Types.size() == 1 && "Invalid IntInit");
2466 
2467       // Int inits are always integers. :)
2468       bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
2469 
2470       if (!TP.getInfer().isConcrete(Types[0], false))
2471         return MadeChange;
2472 
2473       ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
2474       for (auto &P : VVT) {
2475         MVT::SimpleValueType VT = P.second.SimpleTy;
2476         if (VT == MVT::iPTR || VT == MVT::iPTRAny)
2477           continue;
2478         unsigned Size = MVT(VT).getFixedSizeInBits();
2479         // Make sure that the value is representable for this type.
2480         if (Size >= 32)
2481           continue;
2482         // Check that the value doesn't use more bits than we have. It must
2483         // either be a sign- or zero-extended equivalent of the original.
2484         int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
2485         if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
2486             SignBitAndAbove == 1)
2487           continue;
2488 
2489         TP.error("Integer value '" + Twine(II->getValue()) +
2490                  "' is out of range for type '" + getEnumName(VT) + "'!");
2491         break;
2492       }
2493       return MadeChange;
2494     }
2495 
2496     return false;
2497   }
2498 
2499   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
2500     bool MadeChange = false;
2501 
2502     // Apply the result type to the node.
2503     unsigned NumRetVTs = Int->IS.RetTys.size();
2504     unsigned NumParamVTs = Int->IS.ParamTys.size();
2505 
2506     for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
2507       MadeChange |= UpdateNodeType(
2508           i, getValueType(Int->IS.RetTys[i]->getValueAsDef("VT")), TP);
2509 
2510     if (getNumChildren() != NumParamVTs + 1) {
2511       TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
2512                " operands, not " + Twine(getNumChildren() - 1) + " operands!");
2513       return false;
2514     }
2515 
2516     // Apply type info to the intrinsic ID.
2517     MadeChange |= getChild(0).UpdateNodeType(0, MVT::iPTR, TP);
2518 
2519     for (unsigned i = 0, e = getNumChildren() - 1; i != e; ++i) {
2520       MadeChange |= getChild(i + 1).ApplyTypeConstraints(TP, NotRegisters);
2521 
2522       MVT::SimpleValueType OpVT =
2523           getValueType(Int->IS.ParamTys[i]->getValueAsDef("VT"));
2524       assert(getChild(i + 1).getNumTypes() == 1 && "Unhandled case");
2525       MadeChange |= getChild(i + 1).UpdateNodeType(0, OpVT, TP);
2526     }
2527     return MadeChange;
2528   }
2529 
2530   if (getOperator()->isSubClassOf("SDNode")) {
2531     const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
2532 
2533     // Check that the number of operands is sane.  Negative operands -> varargs.
2534     if (NI.getNumOperands() >= 0 &&
2535         getNumChildren() != (unsigned)NI.getNumOperands()) {
2536       TP.error(getOperator()->getName() + " node requires exactly " +
2537                Twine(NI.getNumOperands()) + " operands!");
2538       return false;
2539     }
2540 
2541     bool MadeChange = false;
2542     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2543       MadeChange |= getChild(i).ApplyTypeConstraints(TP, NotRegisters);
2544     MadeChange |= NI.ApplyTypeConstraints(*this, TP);
2545     return MadeChange;
2546   }
2547 
2548   if (getOperator()->isSubClassOf("Instruction")) {
2549     const DAGInstruction &Inst = CDP.getInstruction(getOperator());
2550     CodeGenInstruction &InstInfo =
2551         CDP.getTargetInfo().getInstruction(getOperator());
2552 
2553     bool MadeChange = false;
2554 
2555     // Apply the result types to the node, these come from the things in the
2556     // (outs) list of the instruction.
2557     unsigned NumResultsToAdd =
2558         std::min(InstInfo.Operands.NumDefs, Inst.getNumResults());
2559     for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
2560       MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
2561 
2562     // If the instruction has implicit defs, we apply the first one as a result.
2563     // FIXME: This sucks, it should apply all implicit defs.
2564     if (!InstInfo.ImplicitDefs.empty()) {
2565       unsigned ResNo = NumResultsToAdd;
2566 
2567       // FIXME: Generalize to multiple possible types and multiple possible
2568       // ImplicitDefs.
2569       MVT::SimpleValueType VT =
2570           InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
2571 
2572       if (VT != MVT::Other)
2573         MadeChange |= UpdateNodeType(ResNo, VT, TP);
2574     }
2575 
2576     // If this is an INSERT_SUBREG, constrain the source and destination VTs to
2577     // be the same.
2578     if (getOperator()->getName() == "INSERT_SUBREG") {
2579       assert(getChild(0).getNumTypes() == 1 && "FIXME: Unhandled");
2580       MadeChange |= UpdateNodeType(0, getChild(0).getExtType(0), TP);
2581       MadeChange |= getChild(0).UpdateNodeType(0, getExtType(0), TP);
2582     } else if (getOperator()->getName() == "REG_SEQUENCE") {
2583       // We need to do extra, custom typechecking for REG_SEQUENCE since it is
2584       // variadic.
2585 
2586       unsigned NChild = getNumChildren();
2587       if (NChild < 3) {
2588         TP.error("REG_SEQUENCE requires at least 3 operands!");
2589         return false;
2590       }
2591 
2592       if (NChild % 2 == 0) {
2593         TP.error("REG_SEQUENCE requires an odd number of operands!");
2594         return false;
2595       }
2596 
2597       if (!isOperandClass(getChild(0), "RegisterClass")) {
2598         TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
2599         return false;
2600       }
2601 
2602       for (unsigned I = 1; I < NChild; I += 2) {
2603         TreePatternNode &SubIdxChild = getChild(I + 1);
2604         if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
2605           TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
2606                    Twine(I + 1) + "!");
2607           return false;
2608         }
2609       }
2610     }
2611 
2612     unsigned NumResults = Inst.getNumResults();
2613     unsigned NumFixedOperands = InstInfo.Operands.size();
2614 
2615     // If one or more operands with a default value appear at the end of the
2616     // formal operand list for an instruction, we allow them to be overridden
2617     // by optional operands provided in the pattern.
2618     //
2619     // But if an operand B without a default appears at any point after an
2620     // operand A with a default, then we don't allow A to be overridden,
2621     // because there would be no way to specify whether the next operand in
2622     // the pattern was intended to override A or skip it.
2623     unsigned NonOverridableOperands = NumFixedOperands;
2624     while (NonOverridableOperands > NumResults &&
2625            CDP.operandHasDefault(
2626                InstInfo.Operands[NonOverridableOperands - 1].Rec))
2627       --NonOverridableOperands;
2628 
2629     unsigned ChildNo = 0;
2630     assert(NumResults <= NumFixedOperands);
2631     for (unsigned i = NumResults, e = NumFixedOperands; i != e; ++i) {
2632       const Record *OperandNode = InstInfo.Operands[i].Rec;
2633 
2634       // If the operand has a default value, do we use it? We must use the
2635       // default if we've run out of children of the pattern DAG to consume,
2636       // or if the operand is followed by a non-defaulted one.
2637       if (CDP.operandHasDefault(OperandNode) &&
2638           (i < NonOverridableOperands || ChildNo >= getNumChildren()))
2639         continue;
2640 
2641       // If we have run out of child nodes and there _isn't_ a default
2642       // value we can use for the next operand, give an error.
2643       if (ChildNo >= getNumChildren()) {
2644         emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
2645         return false;
2646       }
2647 
2648       TreePatternNode *Child = &getChild(ChildNo++);
2649       unsigned ChildResNo = 0; // Instructions always use res #0 of their op.
2650 
2651       // If the operand has sub-operands, they may be provided by distinct
2652       // child patterns, so attempt to match each sub-operand separately.
2653       if (OperandNode->isSubClassOf("Operand")) {
2654         DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
2655         if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
2656           // But don't do that if the whole operand is being provided by
2657           // a single ComplexPattern-related Operand.
2658 
2659           if (Child->getNumMIResults(CDP) < NumArgs) {
2660             // Match first sub-operand against the child we already have.
2661             Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
2662             MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2663 
2664             // And the remaining sub-operands against subsequent children.
2665             for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
2666               if (ChildNo >= getNumChildren()) {
2667                 emitTooFewOperandsError(TP, getOperator()->getName(),
2668                                         getNumChildren());
2669                 return false;
2670               }
2671               Child = &getChild(ChildNo++);
2672 
2673               SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
2674               MadeChange |=
2675                   Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2676             }
2677             continue;
2678           }
2679         }
2680       }
2681 
2682       // If we didn't match by pieces above, attempt to match the whole
2683       // operand now.
2684       MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
2685     }
2686 
2687     if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
2688       emitTooManyOperandsError(TP, getOperator()->getName(), ChildNo,
2689                                getNumChildren());
2690       return false;
2691     }
2692 
2693     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2694       MadeChange |= getChild(i).ApplyTypeConstraints(TP, NotRegisters);
2695     return MadeChange;
2696   }
2697 
2698   if (getOperator()->isSubClassOf("ComplexPattern")) {
2699     bool MadeChange = false;
2700 
2701     if (!NotRegisters) {
2702       assert(Types.size() == 1 && "ComplexPatterns only produce one result!");
2703       const Record *T = CDP.getComplexPattern(getOperator()).getValueType();
2704       const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2705       const ValueTypeByHwMode VVT = getValueTypeByHwMode(T, CGH);
2706       // TODO: AArch64 and AMDGPU use ComplexPattern<untyped, ...> and then
2707       // exclusively use those as non-leaf nodes with explicit type casts, so
2708       // for backwards compatibility we do no inference in that case. This is
2709       // not supported when the ComplexPattern is used as a leaf value,
2710       // however; this inconsistency should be resolved, either by adding this
2711       // case there or by altering the backends to not do this (e.g. using Any
2712       // instead may work).
2713       if (!VVT.isSimple() || VVT.getSimple() != MVT::Untyped)
2714         MadeChange |= UpdateNodeType(0, VVT, TP);
2715     }
2716 
2717     for (unsigned i = 0; i < getNumChildren(); ++i)
2718       MadeChange |= getChild(i).ApplyTypeConstraints(TP, NotRegisters);
2719 
2720     return MadeChange;
2721   }
2722 
2723   assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
2724 
2725   // Node transforms always take one operand.
2726   if (getNumChildren() != 1) {
2727     TP.error("Node transform '" + getOperator()->getName() +
2728              "' requires one operand!");
2729     return false;
2730   }
2731 
2732   bool MadeChange = getChild(0).ApplyTypeConstraints(TP, NotRegisters);
2733   return MadeChange;
2734 }
2735 
2736 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
2737 /// RHS of a commutative operation, not the on LHS.
2738 static bool OnlyOnRHSOfCommutative(TreePatternNode &N) {
2739   if (!N.isLeaf() && N.getOperator()->getName() == "imm")
2740     return true;
2741   if (N.isLeaf() && isa<IntInit>(N.getLeafValue()))
2742     return true;
2743   if (isImmAllOnesAllZerosMatch(N))
2744     return true;
2745   return false;
2746 }
2747 
2748 /// canPatternMatch - If it is impossible for this pattern to match on this
2749 /// target, fill in Reason and return false.  Otherwise, return true.  This is
2750 /// used as a sanity check for .td files (to prevent people from writing stuff
2751 /// that can never possibly work), and to prevent the pattern permuter from
2752 /// generating stuff that is useless.
2753 bool TreePatternNode::canPatternMatch(std::string &Reason,
2754                                       const CodeGenDAGPatterns &CDP) {
2755   if (isLeaf())
2756     return true;
2757 
2758   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2759     if (!getChild(i).canPatternMatch(Reason, CDP))
2760       return false;
2761 
2762   // If this is an intrinsic, handle cases that would make it not match.  For
2763   // example, if an operand is required to be an immediate.
2764   if (getOperator()->isSubClassOf("Intrinsic")) {
2765     // TODO:
2766     return true;
2767   }
2768 
2769   if (getOperator()->isSubClassOf("ComplexPattern"))
2770     return true;
2771 
2772   // If this node is a commutative operator, check that the LHS isn't an
2773   // immediate.
2774   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2775   bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2776   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2777     // Scan all of the operands of the node and make sure that only the last one
2778     // is a constant node, unless the RHS also is.
2779     if (!OnlyOnRHSOfCommutative(getChild(getNumChildren() - 1))) {
2780       unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2781       for (unsigned i = Skip, e = getNumChildren() - 1; i != e; ++i)
2782         if (OnlyOnRHSOfCommutative(getChild(i))) {
2783           Reason =
2784               "Immediate value must be on the RHS of commutative operators!";
2785           return false;
2786         }
2787     }
2788   }
2789 
2790   return true;
2791 }
2792 
2793 //===----------------------------------------------------------------------===//
2794 // TreePattern implementation
2795 //
2796 
2797 TreePattern::TreePattern(const Record *TheRec, ListInit *RawPat, bool isInput,
2798                          CodeGenDAGPatterns &cdp)
2799     : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2800       Infer(*this) {
2801   for (Init *I : RawPat->getValues())
2802     Trees.push_back(ParseTreePattern(I, ""));
2803 }
2804 
2805 TreePattern::TreePattern(const Record *TheRec, DagInit *Pat, bool isInput,
2806                          CodeGenDAGPatterns &cdp)
2807     : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2808       Infer(*this) {
2809   Trees.push_back(ParseTreePattern(Pat, ""));
2810 }
2811 
2812 TreePattern::TreePattern(const Record *TheRec, TreePatternNodePtr Pat,
2813                          bool isInput, CodeGenDAGPatterns &cdp)
2814     : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2815       Infer(*this) {
2816   Trees.push_back(Pat);
2817 }
2818 
2819 void TreePattern::error(const Twine &Msg) {
2820   if (HasError)
2821     return;
2822   dump();
2823   PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2824   HasError = true;
2825 }
2826 
2827 void TreePattern::ComputeNamedNodes() {
2828   for (TreePatternNodePtr &Tree : Trees)
2829     ComputeNamedNodes(*Tree);
2830 }
2831 
2832 void TreePattern::ComputeNamedNodes(TreePatternNode &N) {
2833   if (!N.getName().empty())
2834     NamedNodes[N.getName()].push_back(&N);
2835 
2836   for (unsigned i = 0, e = N.getNumChildren(); i != e; ++i)
2837     ComputeNamedNodes(N.getChild(i));
2838 }
2839 
2840 TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit,
2841                                                  StringRef OpName) {
2842   RecordKeeper &RK = TheInit->getRecordKeeper();
2843   if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
2844     Record *R = DI->getDef();
2845 
2846     // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
2847     // TreePatternNode of its own.  For example:
2848     ///   (foo GPR, imm) -> (foo GPR, (imm))
2849     if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags"))
2850       return ParseTreePattern(
2851           DagInit::get(DI, nullptr,
2852                        std::vector<std::pair<Init *, StringInit *>>()),
2853           OpName);
2854 
2855     // Input argument?
2856     TreePatternNodePtr Res = makeIntrusiveRefCnt<TreePatternNode>(DI, 1);
2857     if (R->getName() == "node" && !OpName.empty()) {
2858       if (OpName.empty())
2859         error("'node' argument requires a name to match with operand list");
2860       Args.push_back(std::string(OpName));
2861     }
2862 
2863     Res->setName(OpName);
2864     return Res;
2865   }
2866 
2867   // ?:$name or just $name.
2868   if (isa<UnsetInit>(TheInit)) {
2869     if (OpName.empty())
2870       error("'?' argument requires a name to match with operand list");
2871     TreePatternNodePtr Res = makeIntrusiveRefCnt<TreePatternNode>(TheInit, 1);
2872     Args.push_back(std::string(OpName));
2873     Res->setName(OpName);
2874     return Res;
2875   }
2876 
2877   if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) {
2878     if (!OpName.empty())
2879       error("Constant int or bit argument should not have a name!");
2880     if (isa<BitInit>(TheInit))
2881       TheInit = TheInit->convertInitializerTo(IntRecTy::get(RK));
2882     return makeIntrusiveRefCnt<TreePatternNode>(TheInit, 1);
2883   }
2884 
2885   if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
2886     // Turn this into an IntInit.
2887     Init *II = BI->convertInitializerTo(IntRecTy::get(RK));
2888     if (!II || !isa<IntInit>(II))
2889       error("Bits value must be constants!");
2890     return II ? ParseTreePattern(II, OpName) : nullptr;
2891   }
2892 
2893   DagInit *Dag = dyn_cast<DagInit>(TheInit);
2894   if (!Dag) {
2895     TheInit->print(errs());
2896     error("Pattern has unexpected init kind!");
2897     return nullptr;
2898   }
2899   DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2900   if (!OpDef) {
2901     error("Pattern has unexpected operator type!");
2902     return nullptr;
2903   }
2904   Record *Operator = OpDef->getDef();
2905 
2906   if (Operator->isSubClassOf("ValueType")) {
2907     // If the operator is a ValueType, then this must be "type cast" of a leaf
2908     // node.
2909     if (Dag->getNumArgs() != 1)
2910       error("Type cast only takes one operand!");
2911 
2912     TreePatternNodePtr New =
2913         ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0));
2914 
2915     // Apply the type cast.
2916     if (New->getNumTypes() != 1)
2917       error("Type cast can only have one type!");
2918     const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
2919     New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
2920 
2921     if (!OpName.empty())
2922       error("ValueType cast should not have a name!");
2923     return New;
2924   }
2925 
2926   // Verify that this is something that makes sense for an operator.
2927   if (!Operator->isSubClassOf("PatFrags") &&
2928       !Operator->isSubClassOf("SDNode") &&
2929       !Operator->isSubClassOf("Instruction") &&
2930       !Operator->isSubClassOf("SDNodeXForm") &&
2931       !Operator->isSubClassOf("Intrinsic") &&
2932       !Operator->isSubClassOf("ComplexPattern") &&
2933       Operator->getName() != "set" && Operator->getName() != "implicit")
2934     error("Unrecognized node '" + Operator->getName() + "'!");
2935 
2936   //  Check to see if this is something that is illegal in an input pattern.
2937   if (isInputPattern) {
2938     if (Operator->isSubClassOf("Instruction") ||
2939         Operator->isSubClassOf("SDNodeXForm"))
2940       error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2941   } else {
2942     if (Operator->isSubClassOf("Intrinsic"))
2943       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2944 
2945     if (Operator->isSubClassOf("SDNode") && Operator->getName() != "imm" &&
2946         Operator->getName() != "timm" && Operator->getName() != "fpimm" &&
2947         Operator->getName() != "tglobaltlsaddr" &&
2948         Operator->getName() != "tconstpool" &&
2949         Operator->getName() != "tjumptable" &&
2950         Operator->getName() != "tframeindex" &&
2951         Operator->getName() != "texternalsym" &&
2952         Operator->getName() != "tblockaddress" &&
2953         Operator->getName() != "tglobaladdr" && Operator->getName() != "bb" &&
2954         Operator->getName() != "vt" && Operator->getName() != "mcsym")
2955       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2956   }
2957 
2958   std::vector<TreePatternNodePtr> Children;
2959 
2960   // Parse all the operands.
2961   for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2962     Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
2963 
2964   // Get the actual number of results before Operator is converted to an
2965   // intrinsic node (which is hard-coded to have either zero or one result).
2966   unsigned NumResults = GetNumNodeResults(Operator, CDP);
2967 
2968   // If the operator is an intrinsic, then this is just syntactic sugar for
2969   // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
2970   // convert the intrinsic name to a number.
2971   if (Operator->isSubClassOf("Intrinsic")) {
2972     const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2973     unsigned IID = getDAGPatterns().getIntrinsicID(Operator) + 1;
2974 
2975     // If this intrinsic returns void, it must have side-effects and thus a
2976     // chain.
2977     if (Int.IS.RetTys.empty())
2978       Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2979     else if (!Int.ME.doesNotAccessMemory() || Int.hasSideEffects)
2980       // Has side-effects, requires chain.
2981       Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2982     else // Otherwise, no chain.
2983       Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2984 
2985     Children.insert(Children.begin(), makeIntrusiveRefCnt<TreePatternNode>(
2986                                           IntInit::get(RK, IID), 1));
2987   }
2988 
2989   if (Operator->isSubClassOf("ComplexPattern")) {
2990     for (unsigned i = 0; i < Children.size(); ++i) {
2991       TreePatternNodePtr Child = Children[i];
2992 
2993       if (Child->getName().empty())
2994         error("All arguments to a ComplexPattern must be named");
2995 
2996       // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
2997       // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
2998       // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
2999       auto OperandId = std::pair(Operator, i);
3000       auto PrevOp = ComplexPatternOperands.find(Child->getName());
3001       if (PrevOp != ComplexPatternOperands.end()) {
3002         if (PrevOp->getValue() != OperandId)
3003           error("All ComplexPattern operands must appear consistently: "
3004                 "in the same order in just one ComplexPattern instance.");
3005       } else
3006         ComplexPatternOperands[Child->getName()] = OperandId;
3007     }
3008   }
3009 
3010   TreePatternNodePtr Result = makeIntrusiveRefCnt<TreePatternNode>(
3011       Operator, std::move(Children), NumResults);
3012   Result->setName(OpName);
3013 
3014   if (Dag->getName()) {
3015     assert(Result->getName().empty());
3016     Result->setName(Dag->getNameStr());
3017   }
3018   return Result;
3019 }
3020 
3021 /// SimplifyTree - See if we can simplify this tree to eliminate something that
3022 /// will never match in favor of something obvious that will.  This is here
3023 /// strictly as a convenience to target authors because it allows them to write
3024 /// more type generic things and have useless type casts fold away.
3025 ///
3026 /// This returns true if any change is made.
3027 static bool SimplifyTree(TreePatternNodePtr &N) {
3028   if (N->isLeaf())
3029     return false;
3030 
3031   // If we have a bitconvert with a resolved type and if the source and
3032   // destination types are the same, then the bitconvert is useless, remove it.
3033   //
3034   // We make an exception if the types are completely empty. This can come up
3035   // when the pattern being simplified is in the Fragments list of a PatFrags,
3036   // so that the operand is just an untyped "node". In that situation we leave
3037   // bitconverts unsimplified, and simplify them later once the fragment is
3038   // expanded into its true context.
3039   if (N->getOperator()->getName() == "bitconvert" &&
3040       N->getExtType(0).isValueTypeByHwMode(false) &&
3041       !N->getExtType(0).empty() &&
3042       N->getExtType(0) == N->getChild(0).getExtType(0) &&
3043       N->getName().empty()) {
3044     N = N->getChildShared(0);
3045     SimplifyTree(N);
3046     return true;
3047   }
3048 
3049   // Walk all children.
3050   bool MadeChange = false;
3051   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3052     MadeChange |= SimplifyTree(N->getChildSharedPtr(i));
3053 
3054   return MadeChange;
3055 }
3056 
3057 /// InferAllTypes - Infer/propagate as many types throughout the expression
3058 /// patterns as possible.  Return true if all types are inferred, false
3059 /// otherwise.  Flags an error if a type contradiction is found.
3060 bool TreePattern::InferAllTypes(
3061     const StringMap<SmallVector<TreePatternNode *, 1>> *InNamedTypes) {
3062   if (NamedNodes.empty())
3063     ComputeNamedNodes();
3064 
3065   bool MadeChange = true;
3066   while (MadeChange) {
3067     MadeChange = false;
3068     for (TreePatternNodePtr &Tree : Trees) {
3069       MadeChange |= Tree->ApplyTypeConstraints(*this, false);
3070       MadeChange |= SimplifyTree(Tree);
3071     }
3072 
3073     // If there are constraints on our named nodes, apply them.
3074     for (auto &Entry : NamedNodes) {
3075       SmallVectorImpl<TreePatternNode *> &Nodes = Entry.second;
3076 
3077       // If we have input named node types, propagate their types to the named
3078       // values here.
3079       if (InNamedTypes) {
3080         if (!InNamedTypes->count(Entry.getKey())) {
3081           error("Node '" + std::string(Entry.getKey()) +
3082                 "' in output pattern but not input pattern");
3083           return true;
3084         }
3085 
3086         const SmallVectorImpl<TreePatternNode *> &InNodes =
3087             InNamedTypes->find(Entry.getKey())->second;
3088 
3089         // The input types should be fully resolved by now.
3090         for (TreePatternNode *Node : Nodes) {
3091           // If this node is a register class, and it is the root of the pattern
3092           // then we're mapping something onto an input register.  We allow
3093           // changing the type of the input register in this case.  This allows
3094           // us to match things like:
3095           //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
3096           if (Node == Trees[0].get() && Node->isLeaf()) {
3097             DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
3098             if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3099                        DI->getDef()->isSubClassOf("RegisterOperand")))
3100               continue;
3101           }
3102 
3103           assert(Node->getNumTypes() == 1 && InNodes[0]->getNumTypes() == 1 &&
3104                  "FIXME: cannot name multiple result nodes yet");
3105           MadeChange |=
3106               Node->UpdateNodeType(0, InNodes[0]->getExtType(0), *this);
3107         }
3108       }
3109 
3110       // If there are multiple nodes with the same name, they must all have the
3111       // same type.
3112       if (Entry.second.size() > 1) {
3113         for (unsigned i = 0, e = Nodes.size() - 1; i != e; ++i) {
3114           TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i + 1];
3115           assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
3116                  "FIXME: cannot name multiple result nodes yet");
3117 
3118           MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
3119           MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
3120         }
3121       }
3122     }
3123   }
3124 
3125   bool HasUnresolvedTypes = false;
3126   for (const TreePatternNodePtr &Tree : Trees)
3127     HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
3128   return !HasUnresolvedTypes;
3129 }
3130 
3131 void TreePattern::print(raw_ostream &OS) const {
3132   OS << getRecord()->getName();
3133   if (!Args.empty()) {
3134     OS << "(";
3135     ListSeparator LS;
3136     for (const std::string &Arg : Args)
3137       OS << LS << Arg;
3138     OS << ")";
3139   }
3140   OS << ": ";
3141 
3142   if (Trees.size() > 1)
3143     OS << "[\n";
3144   for (const TreePatternNodePtr &Tree : Trees) {
3145     OS << "\t";
3146     Tree->print(OS);
3147     OS << "\n";
3148   }
3149 
3150   if (Trees.size() > 1)
3151     OS << "]\n";
3152 }
3153 
3154 void TreePattern::dump() const { print(errs()); }
3155 
3156 //===----------------------------------------------------------------------===//
3157 // CodeGenDAGPatterns implementation
3158 //
3159 
3160 CodeGenDAGPatterns::CodeGenDAGPatterns(const RecordKeeper &R,
3161                                        PatternRewriterFn PatternRewriter)
3162     : Records(R), Target(R), Intrinsics(R),
3163       LegalVTS(Target.getLegalValueTypes()), PatternRewriter(PatternRewriter) {
3164   ParseNodeInfo();
3165   ParseNodeTransforms();
3166   ParseComplexPatterns();
3167   ParsePatternFragments();
3168   ParseDefaultOperands();
3169   ParseInstructions();
3170   ParsePatternFragments(/*OutFrags*/ true);
3171   ParsePatterns();
3172 
3173   // Generate variants.  For example, commutative patterns can match
3174   // multiple ways.  Add them to PatternsToMatch as well.
3175   GenerateVariants();
3176 
3177   // Break patterns with parameterized types into a series of patterns,
3178   // where each one has a fixed type and is predicated on the conditions
3179   // of the associated HW mode.
3180   ExpandHwModeBasedTypes();
3181 
3182   // Infer instruction flags.  For example, we can detect loads,
3183   // stores, and side effects in many cases by examining an
3184   // instruction's pattern.
3185   InferInstructionFlags();
3186 
3187   // Verify that instruction flags match the patterns.
3188   VerifyInstructionFlags();
3189 }
3190 
3191 Record *CodeGenDAGPatterns::getSDNodeNamed(StringRef Name) const {
3192   Record *N = Records.getDef(Name);
3193   if (!N || !N->isSubClassOf("SDNode"))
3194     PrintFatalError("Error getting SDNode '" + Name + "'!");
3195 
3196   return N;
3197 }
3198 
3199 // Parse all of the SDNode definitions for the target, populating SDNodes.
3200 void CodeGenDAGPatterns::ParseNodeInfo() {
3201   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
3202 
3203   for (const Record *R : reverse(Records.getAllDerivedDefinitions("SDNode")))
3204     SDNodes.insert(std::pair(R, SDNodeInfo(R, CGH)));
3205 
3206   // Get the builtin intrinsic nodes.
3207   intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
3208   intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
3209   intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
3210 }
3211 
3212 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
3213 /// map, and emit them to the file as functions.
3214 void CodeGenDAGPatterns::ParseNodeTransforms() {
3215   for (const Record *XFormNode :
3216        reverse(Records.getAllDerivedDefinitions("SDNodeXForm"))) {
3217     const Record *SDNode = XFormNode->getValueAsDef("Opcode");
3218     StringRef Code = XFormNode->getValueAsString("XFormFunction");
3219     SDNodeXForms.insert({XFormNode, NodeXForm(SDNode, std::string(Code))});
3220   }
3221 }
3222 
3223 void CodeGenDAGPatterns::ParseComplexPatterns() {
3224   for (const Record *R :
3225        reverse(Records.getAllDerivedDefinitions("ComplexPattern")))
3226     ComplexPatterns.insert({R, R});
3227 }
3228 
3229 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
3230 /// file, building up the PatternFragments map.  After we've collected them all,
3231 /// inline fragments together as necessary, so that there are no references left
3232 /// inside a pattern fragment to a pattern fragment.
3233 ///
3234 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
3235   // First step, parse all of the fragments.
3236   ArrayRef<const Record *> Fragments =
3237       Records.getAllDerivedDefinitions("PatFrags");
3238   for (const Record *Frag : Fragments) {
3239     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3240       continue;
3241 
3242     ListInit *LI = Frag->getValueAsListInit("Fragments");
3243     TreePattern *P = (PatternFragments[Frag] = std::make_unique<TreePattern>(
3244                           Frag, LI, !Frag->isSubClassOf("OutPatFrag"), *this))
3245                          .get();
3246 
3247     // Validate the argument list, converting it to set, to discard duplicates.
3248     std::vector<std::string> &Args = P->getArgList();
3249     // Copy the args so we can take StringRefs to them.
3250     auto ArgsCopy = Args;
3251     SmallDenseSet<StringRef, 4> OperandsSet;
3252     OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
3253 
3254     if (OperandsSet.count(""))
3255       P->error("Cannot have unnamed 'node' values in pattern fragment!");
3256 
3257     // Parse the operands list.
3258     DagInit *OpsList = Frag->getValueAsDag("Operands");
3259     DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
3260     // Special cases: ops == outs == ins. Different names are used to
3261     // improve readability.
3262     if (!OpsOp || (OpsOp->getDef()->getName() != "ops" &&
3263                    OpsOp->getDef()->getName() != "outs" &&
3264                    OpsOp->getDef()->getName() != "ins"))
3265       P->error("Operands list should start with '(ops ... '!");
3266 
3267     // Copy over the arguments.
3268     Args.clear();
3269     for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
3270       if (!isa<DefInit>(OpsList->getArg(j)) ||
3271           cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
3272         P->error("Operands list should all be 'node' values.");
3273       if (!OpsList->getArgName(j))
3274         P->error("Operands list should have names for each operand!");
3275       StringRef ArgNameStr = OpsList->getArgNameStr(j);
3276       if (!OperandsSet.count(ArgNameStr))
3277         P->error("'" + ArgNameStr +
3278                  "' does not occur in pattern or was multiply specified!");
3279       OperandsSet.erase(ArgNameStr);
3280       Args.push_back(std::string(ArgNameStr));
3281     }
3282 
3283     if (!OperandsSet.empty())
3284       P->error("Operands list does not contain an entry for operand '" +
3285                *OperandsSet.begin() + "'!");
3286 
3287     // If there is a node transformation corresponding to this, keep track of
3288     // it.
3289     Record *Transform = Frag->getValueAsDef("OperandTransform");
3290     if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
3291       for (const auto &T : P->getTrees())
3292         T->setTransformFn(Transform);
3293   }
3294 
3295   // Now that we've parsed all of the tree fragments, do a closure on them so
3296   // that there are not references to PatFrags left inside of them.
3297   for (const Record *Frag : Fragments) {
3298     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3299       continue;
3300 
3301     TreePattern &ThePat = *PatternFragments[Frag];
3302     ThePat.InlinePatternFragments();
3303 
3304     // Infer as many types as possible.  Don't worry about it if we don't infer
3305     // all of them, some may depend on the inputs of the pattern.  Also, don't
3306     // validate type sets; validation may cause spurious failures e.g. if a
3307     // fragment needs floating-point types but the current target does not have
3308     // any (this is only an error if that fragment is ever used!).
3309     {
3310       TypeInfer::SuppressValidation SV(ThePat.getInfer());
3311       ThePat.InferAllTypes();
3312       ThePat.resetError();
3313     }
3314 
3315     // If debugging, print out the pattern fragment result.
3316     LLVM_DEBUG(ThePat.dump());
3317   }
3318 }
3319 
3320 void CodeGenDAGPatterns::ParseDefaultOperands() {
3321   ArrayRef<const Record *> DefaultOps =
3322       Records.getAllDerivedDefinitions("OperandWithDefaultOps");
3323 
3324   // Find some SDNode.
3325   assert(!SDNodes.empty() && "No SDNodes parsed?");
3326   Init *SomeSDNode = SDNodes.begin()->first->getDefInit();
3327 
3328   for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
3329     DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
3330 
3331     // Clone the DefaultInfo dag node, changing the operator from 'ops' to
3332     // SomeSDnode so that we can parse this.
3333     std::vector<std::pair<Init *, StringInit *>> Ops;
3334     for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
3335       Ops.push_back(
3336           std::pair(DefaultInfo->getArg(op), DefaultInfo->getArgName(op)));
3337     DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
3338 
3339     // Create a TreePattern to parse this.
3340     TreePattern P(DefaultOps[i], DI, false, *this);
3341     assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
3342 
3343     // Copy the operands over into a DAGDefaultOperand.
3344     DAGDefaultOperand DefaultOpInfo;
3345 
3346     const TreePatternNodePtr &T = P.getTree(0);
3347     for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
3348       TreePatternNodePtr TPN = T->getChildShared(op);
3349       while (TPN->ApplyTypeConstraints(P, false))
3350         /* Resolve all types */;
3351 
3352       if (TPN->ContainsUnresolvedType(P)) {
3353         PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
3354                         DefaultOps[i]->getName() +
3355                         "' doesn't have a concrete type!");
3356       }
3357       DefaultOpInfo.DefaultOps.push_back(std::move(TPN));
3358     }
3359 
3360     // Insert it into the DefaultOperands map so we can find it later.
3361     DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
3362   }
3363 }
3364 
3365 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
3366 /// instruction input.  Return true if this is a real use.
3367 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat,
3368                       std::map<std::string, TreePatternNodePtr> &InstInputs) {
3369   // No name -> not interesting.
3370   if (Pat->getName().empty()) {
3371     if (Pat->isLeaf()) {
3372       DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3373       if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3374                  DI->getDef()->isSubClassOf("RegisterOperand")))
3375         I.error("Input " + DI->getDef()->getName() + " must be named!");
3376     }
3377     return false;
3378   }
3379 
3380   const Record *Rec;
3381   if (Pat->isLeaf()) {
3382     DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3383     if (!DI)
3384       I.error("Input $" + Pat->getName() + " must be an identifier!");
3385     Rec = DI->getDef();
3386   } else {
3387     Rec = Pat->getOperator();
3388   }
3389 
3390   // SRCVALUE nodes are ignored.
3391   if (Rec->getName() == "srcvalue")
3392     return false;
3393 
3394   TreePatternNodePtr &Slot = InstInputs[Pat->getName()];
3395   if (!Slot) {
3396     Slot = Pat;
3397     return true;
3398   }
3399   const Record *SlotRec;
3400   if (Slot->isLeaf()) {
3401     SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
3402   } else {
3403     assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
3404     SlotRec = Slot->getOperator();
3405   }
3406 
3407   // Ensure that the inputs agree if we've already seen this input.
3408   if (Rec != SlotRec)
3409     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3410   // Ensure that the types can agree as well.
3411   Slot->UpdateNodeType(0, Pat->getExtType(0), I);
3412   Pat->UpdateNodeType(0, Slot->getExtType(0), I);
3413   if (Slot->getExtTypes() != Pat->getExtTypes())
3414     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3415   return true;
3416 }
3417 
3418 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
3419 /// part of "I", the instruction), computing the set of inputs and outputs of
3420 /// the pattern.  Report errors if we see anything naughty.
3421 void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
3422     TreePattern &I, TreePatternNodePtr Pat,
3423     std::map<std::string, TreePatternNodePtr> &InstInputs,
3424     MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3425         &InstResults,
3426     std::vector<Record *> &InstImpResults) {
3427 
3428   // The instruction pattern still has unresolved fragments.  For *named*
3429   // nodes we must resolve those here.  This may not result in multiple
3430   // alternatives.
3431   if (!Pat->getName().empty()) {
3432     TreePattern SrcPattern(I.getRecord(), Pat, true, *this);
3433     SrcPattern.InlinePatternFragments();
3434     SrcPattern.InferAllTypes();
3435     Pat = SrcPattern.getOnlyTree();
3436   }
3437 
3438   if (Pat->isLeaf()) {
3439     bool isUse = HandleUse(I, Pat, InstInputs);
3440     if (!isUse && Pat->getTransformFn())
3441       I.error("Cannot specify a transform function for a non-input value!");
3442     return;
3443   }
3444 
3445   if (Pat->getOperator()->getName() == "implicit") {
3446     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3447       TreePatternNode &Dest = Pat->getChild(i);
3448       if (!Dest.isLeaf())
3449         I.error("implicitly defined value should be a register!");
3450 
3451       DefInit *Val = dyn_cast<DefInit>(Dest.getLeafValue());
3452       if (!Val || !Val->getDef()->isSubClassOf("Register"))
3453         I.error("implicitly defined value should be a register!");
3454       if (Val)
3455         InstImpResults.push_back(Val->getDef());
3456     }
3457     return;
3458   }
3459 
3460   if (Pat->getOperator()->getName() != "set") {
3461     // If this is not a set, verify that the children nodes are not void typed,
3462     // and recurse.
3463     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3464       if (Pat->getChild(i).getNumTypes() == 0)
3465         I.error("Cannot have void nodes inside of patterns!");
3466       FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs,
3467                                   InstResults, InstImpResults);
3468     }
3469 
3470     // If this is a non-leaf node with no children, treat it basically as if
3471     // it were a leaf.  This handles nodes like (imm).
3472     bool isUse = HandleUse(I, Pat, InstInputs);
3473 
3474     if (!isUse && Pat->getTransformFn())
3475       I.error("Cannot specify a transform function for a non-input value!");
3476     return;
3477   }
3478 
3479   // Otherwise, this is a set, validate and collect instruction results.
3480   if (Pat->getNumChildren() == 0)
3481     I.error("set requires operands!");
3482 
3483   if (Pat->getTransformFn())
3484     I.error("Cannot specify a transform function on a set node!");
3485 
3486   // Check the set destinations.
3487   unsigned NumDests = Pat->getNumChildren() - 1;
3488   for (unsigned i = 0; i != NumDests; ++i) {
3489     TreePatternNodePtr Dest = Pat->getChildShared(i);
3490     // For set destinations we also must resolve fragments here.
3491     TreePattern DestPattern(I.getRecord(), Dest, false, *this);
3492     DestPattern.InlinePatternFragments();
3493     DestPattern.InferAllTypes();
3494     Dest = DestPattern.getOnlyTree();
3495 
3496     if (!Dest->isLeaf())
3497       I.error("set destination should be a register!");
3498 
3499     DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3500     if (!Val) {
3501       I.error("set destination should be a register!");
3502       continue;
3503     }
3504 
3505     if (Val->getDef()->isSubClassOf("RegisterClass") ||
3506         Val->getDef()->isSubClassOf("ValueType") ||
3507         Val->getDef()->isSubClassOf("RegisterOperand") ||
3508         Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
3509       if (Dest->getName().empty())
3510         I.error("set destination must have a name!");
3511       if (InstResults.count(Dest->getName()))
3512         I.error("cannot set '" + Dest->getName() + "' multiple times");
3513       InstResults[Dest->getName()] = Dest;
3514     } else if (Val->getDef()->isSubClassOf("Register")) {
3515       InstImpResults.push_back(Val->getDef());
3516     } else {
3517       I.error("set destination should be a register!");
3518     }
3519   }
3520 
3521   // Verify and collect info from the computation.
3522   FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs,
3523                               InstResults, InstImpResults);
3524 }
3525 
3526 //===----------------------------------------------------------------------===//
3527 // Instruction Analysis
3528 //===----------------------------------------------------------------------===//
3529 
3530 class InstAnalyzer {
3531   const CodeGenDAGPatterns &CDP;
3532 
3533 public:
3534   bool hasSideEffects;
3535   bool mayStore;
3536   bool mayLoad;
3537   bool isBitcast;
3538   bool isVariadic;
3539   bool hasChain;
3540 
3541   InstAnalyzer(const CodeGenDAGPatterns &cdp)
3542       : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
3543         isBitcast(false), isVariadic(false), hasChain(false) {}
3544 
3545   void Analyze(const PatternToMatch &Pat) {
3546     const TreePatternNode &N = Pat.getSrcPattern();
3547     AnalyzeNode(N);
3548     // These properties are detected only on the root node.
3549     isBitcast = IsNodeBitcast(N);
3550   }
3551 
3552 private:
3553   bool IsNodeBitcast(const TreePatternNode &N) const {
3554     if (hasSideEffects || mayLoad || mayStore || isVariadic)
3555       return false;
3556 
3557     if (N.isLeaf())
3558       return false;
3559     if (N.getNumChildren() != 1 || !N.getChild(0).isLeaf())
3560       return false;
3561 
3562     if (N.getOperator()->isSubClassOf("ComplexPattern"))
3563       return false;
3564 
3565     const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N.getOperator());
3566     if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
3567       return false;
3568     return OpInfo.getEnumName() == "ISD::BITCAST";
3569   }
3570 
3571 public:
3572   void AnalyzeNode(const TreePatternNode &N) {
3573     if (N.isLeaf()) {
3574       if (DefInit *DI = dyn_cast<DefInit>(N.getLeafValue())) {
3575         Record *LeafRec = DI->getDef();
3576         // Handle ComplexPattern leaves.
3577         if (LeafRec->isSubClassOf("ComplexPattern")) {
3578           const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
3579           if (CP.hasProperty(SDNPMayStore))
3580             mayStore = true;
3581           if (CP.hasProperty(SDNPMayLoad))
3582             mayLoad = true;
3583           if (CP.hasProperty(SDNPSideEffect))
3584             hasSideEffects = true;
3585         }
3586       }
3587       return;
3588     }
3589 
3590     // Analyze children.
3591     for (unsigned i = 0, e = N.getNumChildren(); i != e; ++i)
3592       AnalyzeNode(N.getChild(i));
3593 
3594     // Notice properties of the node.
3595     if (N.NodeHasProperty(SDNPMayStore, CDP))
3596       mayStore = true;
3597     if (N.NodeHasProperty(SDNPMayLoad, CDP))
3598       mayLoad = true;
3599     if (N.NodeHasProperty(SDNPSideEffect, CDP))
3600       hasSideEffects = true;
3601     if (N.NodeHasProperty(SDNPVariadic, CDP))
3602       isVariadic = true;
3603     if (N.NodeHasProperty(SDNPHasChain, CDP))
3604       hasChain = true;
3605 
3606     if (const CodeGenIntrinsic *IntInfo = N.getIntrinsicInfo(CDP)) {
3607       ModRefInfo MR = IntInfo->ME.getModRef();
3608       // If this is an intrinsic, analyze it.
3609       if (isRefSet(MR))
3610         mayLoad = true; // These may load memory.
3611 
3612       if (isModSet(MR))
3613         mayStore = true; // Intrinsics that can write to memory are 'mayStore'.
3614 
3615       // Consider intrinsics that don't specify any restrictions on memory
3616       // effects as having a side-effect.
3617       if (IntInfo->ME == MemoryEffects::unknown() || IntInfo->hasSideEffects)
3618         hasSideEffects = true;
3619     }
3620   }
3621 };
3622 
3623 static bool InferFromPattern(CodeGenInstruction &InstInfo,
3624                              const InstAnalyzer &PatInfo,
3625                              const Record *PatDef) {
3626   bool Error = false;
3627 
3628   // Remember where InstInfo got its flags.
3629   if (InstInfo.hasUndefFlags())
3630     InstInfo.InferredFrom = PatDef;
3631 
3632   // Check explicitly set flags for consistency.
3633   if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
3634       !InstInfo.hasSideEffects_Unset) {
3635     // Allow explicitly setting hasSideEffects = 1 on instructions, even when
3636     // the pattern has no side effects. That could be useful for div/rem
3637     // instructions that may trap.
3638     if (!InstInfo.hasSideEffects) {
3639       Error = true;
3640       PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
3641                                        Twine(InstInfo.hasSideEffects));
3642     }
3643   }
3644 
3645   if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
3646     Error = true;
3647     PrintError(PatDef->getLoc(),
3648                "Pattern doesn't match mayStore = " + Twine(InstInfo.mayStore));
3649   }
3650 
3651   if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
3652     // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
3653     // Some targets translate immediates to loads.
3654     if (!InstInfo.mayLoad) {
3655       Error = true;
3656       PrintError(PatDef->getLoc(),
3657                  "Pattern doesn't match mayLoad = " + Twine(InstInfo.mayLoad));
3658     }
3659   }
3660 
3661   // Transfer inferred flags.
3662   InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
3663   InstInfo.mayStore |= PatInfo.mayStore;
3664   InstInfo.mayLoad |= PatInfo.mayLoad;
3665 
3666   // These flags are silently added without any verification.
3667   // FIXME: To match historical behavior of TableGen, for now add those flags
3668   // only when we're inferring from the primary instruction pattern.
3669   if (PatDef->isSubClassOf("Instruction")) {
3670     InstInfo.isBitcast |= PatInfo.isBitcast;
3671     InstInfo.hasChain |= PatInfo.hasChain;
3672     InstInfo.hasChain_Inferred = true;
3673   }
3674 
3675   // Don't infer isVariadic. This flag means something different on SDNodes and
3676   // instructions. For example, a CALL SDNode is variadic because it has the
3677   // call arguments as operands, but a CALL instruction is not variadic - it
3678   // has argument registers as implicit, not explicit uses.
3679 
3680   return Error;
3681 }
3682 
3683 /// hasNullFragReference - Return true if the DAG has any reference to the
3684 /// null_frag operator.
3685 static bool hasNullFragReference(DagInit *DI) {
3686   DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
3687   if (!OpDef)
3688     return false;
3689   Record *Operator = OpDef->getDef();
3690 
3691   // If this is the null fragment, return true.
3692   if (Operator->getName() == "null_frag")
3693     return true;
3694   // If any of the arguments reference the null fragment, return true.
3695   for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
3696     if (auto Arg = dyn_cast<DefInit>(DI->getArg(i)))
3697       if (Arg->getDef()->getName() == "null_frag")
3698         return true;
3699     DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
3700     if (Arg && hasNullFragReference(Arg))
3701       return true;
3702   }
3703 
3704   return false;
3705 }
3706 
3707 /// hasNullFragReference - Return true if any DAG in the list references
3708 /// the null_frag operator.
3709 static bool hasNullFragReference(ListInit *LI) {
3710   for (Init *I : LI->getValues()) {
3711     DagInit *DI = dyn_cast<DagInit>(I);
3712     assert(DI && "non-dag in an instruction Pattern list?!");
3713     if (hasNullFragReference(DI))
3714       return true;
3715   }
3716   return false;
3717 }
3718 
3719 /// Get all the instructions in a tree.
3720 static void getInstructionsInTree(TreePatternNode &Tree,
3721                                   SmallVectorImpl<const Record *> &Instrs) {
3722   if (Tree.isLeaf())
3723     return;
3724   if (Tree.getOperator()->isSubClassOf("Instruction"))
3725     Instrs.push_back(Tree.getOperator());
3726   for (unsigned i = 0, e = Tree.getNumChildren(); i != e; ++i)
3727     getInstructionsInTree(Tree.getChild(i), Instrs);
3728 }
3729 
3730 /// Check the class of a pattern leaf node against the instruction operand it
3731 /// represents.
3732 static bool checkOperandClass(CGIOperandList::OperandInfo &OI, Record *Leaf) {
3733   if (OI.Rec == Leaf)
3734     return true;
3735 
3736   // Allow direct value types to be used in instruction set patterns.
3737   // The type will be checked later.
3738   if (Leaf->isSubClassOf("ValueType"))
3739     return true;
3740 
3741   // Patterns can also be ComplexPattern instances.
3742   if (Leaf->isSubClassOf("ComplexPattern"))
3743     return true;
3744 
3745   return false;
3746 }
3747 
3748 void CodeGenDAGPatterns::parseInstructionPattern(CodeGenInstruction &CGI,
3749                                                  ListInit *Pat,
3750                                                  DAGInstMap &DAGInsts) {
3751 
3752   assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
3753 
3754   // Parse the instruction.
3755   TreePattern I(CGI.TheDef, Pat, true, *this);
3756 
3757   // InstInputs - Keep track of all of the inputs of the instruction, along
3758   // with the record they are declared as.
3759   std::map<std::string, TreePatternNodePtr> InstInputs;
3760 
3761   // InstResults - Keep track of all the virtual registers that are 'set'
3762   // in the instruction, including what reg class they are.
3763   MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3764       InstResults;
3765 
3766   std::vector<Record *> InstImpResults;
3767 
3768   // Verify that the top-level forms in the instruction are of void type, and
3769   // fill in the InstResults map.
3770   SmallString<32> TypesString;
3771   for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) {
3772     TypesString.clear();
3773     TreePatternNodePtr Pat = I.getTree(j);
3774     if (Pat->getNumTypes() != 0) {
3775       raw_svector_ostream OS(TypesString);
3776       ListSeparator LS;
3777       for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
3778         OS << LS;
3779         Pat->getExtType(k).writeToStream(OS);
3780       }
3781       I.error("Top-level forms in instruction pattern should have"
3782               " void types, has types " +
3783               OS.str());
3784     }
3785 
3786     // Find inputs and outputs, and verify the structure of the uses/defs.
3787     FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
3788                                 InstImpResults);
3789   }
3790 
3791   // Now that we have inputs and outputs of the pattern, inspect the operands
3792   // list for the instruction.  This determines the order that operands are
3793   // added to the machine instruction the node corresponds to.
3794   unsigned NumResults = InstResults.size();
3795 
3796   // Parse the operands list from the (ops) list, validating it.
3797   assert(I.getArgList().empty() && "Args list should still be empty here!");
3798 
3799   // Check that all of the results occur first in the list.
3800   std::vector<const Record *> Results;
3801   std::vector<unsigned> ResultIndices;
3802   SmallVector<TreePatternNodePtr, 2> ResNodes;
3803   for (unsigned i = 0; i != NumResults; ++i) {
3804     if (i == CGI.Operands.size()) {
3805       const std::string &OpName =
3806           llvm::find_if(
3807               InstResults,
3808               [](const std::pair<std::string, TreePatternNodePtr> &P) {
3809                 return P.second;
3810               })
3811               ->first;
3812 
3813       I.error("'" + OpName + "' set but does not appear in operand list!");
3814     }
3815 
3816     const std::string &OpName = CGI.Operands[i].Name;
3817 
3818     // Check that it exists in InstResults.
3819     auto InstResultIter = InstResults.find(OpName);
3820     if (InstResultIter == InstResults.end() || !InstResultIter->second)
3821       I.error("Operand $" + OpName + " does not exist in operand list!");
3822 
3823     TreePatternNodePtr RNode = InstResultIter->second;
3824     Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3825     ResNodes.push_back(std::move(RNode));
3826     if (!R)
3827       I.error("Operand $" + OpName +
3828               " should be a set destination: all "
3829               "outputs must occur before inputs in operand list!");
3830 
3831     if (!checkOperandClass(CGI.Operands[i], R))
3832       I.error("Operand $" + OpName + " class mismatch!");
3833 
3834     // Remember the return type.
3835     Results.push_back(CGI.Operands[i].Rec);
3836 
3837     // Remember the result index.
3838     ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter));
3839 
3840     // Okay, this one checks out.
3841     InstResultIter->second = nullptr;
3842   }
3843 
3844   // Loop over the inputs next.
3845   std::vector<TreePatternNodePtr> ResultNodeOperands;
3846   std::vector<const Record *> Operands;
3847   for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3848     CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3849     const std::string &OpName = Op.Name;
3850     if (OpName.empty()) {
3851       I.error("Operand #" + Twine(i) + " in operands list has no name!");
3852       continue;
3853     }
3854 
3855     if (!InstInputs.count(OpName)) {
3856       // If this is an operand with a DefaultOps set filled in, we can ignore
3857       // this.  When we codegen it, we will do so as always executed.
3858       if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3859         // Does it have a non-empty DefaultOps field?  If so, ignore this
3860         // operand.
3861         if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3862           continue;
3863       }
3864       I.error("Operand $" + OpName +
3865               " does not appear in the instruction pattern");
3866       continue;
3867     }
3868     TreePatternNodePtr InVal = InstInputs[OpName];
3869     InstInputs.erase(OpName); // It occurred, remove from map.
3870 
3871     if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3872       Record *InRec = cast<DefInit>(InVal->getLeafValue())->getDef();
3873       if (!checkOperandClass(Op, InRec)) {
3874         I.error("Operand $" + OpName +
3875                 "'s register class disagrees"
3876                 " between the operand and pattern");
3877         continue;
3878       }
3879     }
3880     Operands.push_back(Op.Rec);
3881 
3882     // Construct the result for the dest-pattern operand list.
3883     TreePatternNodePtr OpNode = InVal->clone();
3884 
3885     // No predicate is useful on the result.
3886     OpNode->clearPredicateCalls();
3887 
3888     // Promote the xform function to be an explicit node if set.
3889     if (Record *Xform = OpNode->getTransformFn()) {
3890       OpNode->setTransformFn(nullptr);
3891       std::vector<TreePatternNodePtr> Children;
3892       Children.push_back(OpNode);
3893       OpNode = makeIntrusiveRefCnt<TreePatternNode>(Xform, std::move(Children),
3894                                                     OpNode->getNumTypes());
3895     }
3896 
3897     ResultNodeOperands.push_back(std::move(OpNode));
3898   }
3899 
3900   if (!InstInputs.empty())
3901     I.error("Input operand $" + InstInputs.begin()->first +
3902             " occurs in pattern but not in operands list!");
3903 
3904   TreePatternNodePtr ResultPattern = makeIntrusiveRefCnt<TreePatternNode>(
3905       I.getRecord(), std::move(ResultNodeOperands),
3906       GetNumNodeResults(I.getRecord(), *this));
3907   // Copy fully inferred output node types to instruction result pattern.
3908   for (unsigned i = 0; i != NumResults; ++i) {
3909     assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
3910     ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3911     ResultPattern->setResultIndex(i, ResultIndices[i]);
3912   }
3913 
3914   // FIXME: Assume only the first tree is the pattern. The others are clobber
3915   // nodes.
3916   TreePatternNodePtr Pattern = I.getTree(0);
3917   TreePatternNodePtr SrcPattern;
3918   if (Pattern->getOperator()->getName() == "set") {
3919     SrcPattern = Pattern->getChild(Pattern->getNumChildren() - 1).clone();
3920   } else {
3921     // Not a set (store or something?)
3922     SrcPattern = Pattern;
3923   }
3924 
3925   // Create and insert the instruction.
3926   // FIXME: InstImpResults should not be part of DAGInstruction.
3927   DAGInsts.try_emplace(I.getRecord(), std::move(Results), std::move(Operands),
3928                        std::move(InstImpResults), SrcPattern, ResultPattern);
3929 
3930   LLVM_DEBUG(I.dump());
3931 }
3932 
3933 /// ParseInstructions - Parse all of the instructions, inlining and resolving
3934 /// any fragments involved.  This populates the Instructions list with fully
3935 /// resolved instructions.
3936 void CodeGenDAGPatterns::ParseInstructions() {
3937   for (const Record *Instr : Records.getAllDerivedDefinitions("Instruction")) {
3938     ListInit *LI = nullptr;
3939 
3940     if (isa<ListInit>(Instr->getValueInit("Pattern")))
3941       LI = Instr->getValueAsListInit("Pattern");
3942 
3943     // If there is no pattern, only collect minimal information about the
3944     // instruction for its operand list.  We have to assume that there is one
3945     // result, as we have no detailed info. A pattern which references the
3946     // null_frag operator is as-if no pattern were specified. Normally this
3947     // is from a multiclass expansion w/ a SDPatternOperator passed in as
3948     // null_frag.
3949     if (!LI || LI->empty() || hasNullFragReference(LI)) {
3950       std::vector<const Record *> Results;
3951       std::vector<const Record *> Operands;
3952 
3953       CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3954 
3955       if (InstInfo.Operands.size() != 0) {
3956         for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3957           Results.push_back(InstInfo.Operands[j].Rec);
3958 
3959         // The rest are inputs.
3960         for (unsigned j = InstInfo.Operands.NumDefs,
3961                       e = InstInfo.Operands.size();
3962              j < e; ++j)
3963           Operands.push_back(InstInfo.Operands[j].Rec);
3964       }
3965 
3966       // Create and insert the instruction.
3967       Instructions.try_emplace(Instr, std::move(Results), std::move(Operands),
3968                                std::vector<Record *>());
3969       continue; // no pattern.
3970     }
3971 
3972     CodeGenInstruction &CGI = Target.getInstruction(Instr);
3973     parseInstructionPattern(CGI, LI, Instructions);
3974   }
3975 
3976   // If we can, convert the instructions to be patterns that are matched!
3977   for (const auto &[Instr, TheInst] : Instructions) {
3978     TreePatternNodePtr SrcPattern = TheInst.getSrcPattern();
3979     TreePatternNodePtr ResultPattern = TheInst.getResultPattern();
3980 
3981     if (SrcPattern && ResultPattern) {
3982       TreePattern Pattern(Instr, SrcPattern, true, *this);
3983       TreePattern Result(Instr, ResultPattern, false, *this);
3984       ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults());
3985     }
3986   }
3987 }
3988 
3989 typedef std::pair<TreePatternNode *, unsigned> NameRecord;
3990 
3991 static void FindNames(TreePatternNode &P,
3992                       std::map<std::string, NameRecord> &Names,
3993                       TreePattern *PatternTop) {
3994   if (!P.getName().empty()) {
3995     NameRecord &Rec = Names[P.getName()];
3996     // If this is the first instance of the name, remember the node.
3997     if (Rec.second++ == 0)
3998       Rec.first = &P;
3999     else if (Rec.first->getExtTypes() != P.getExtTypes())
4000       PatternTop->error("repetition of value: $" + P.getName() +
4001                         " where different uses have different types!");
4002   }
4003 
4004   if (!P.isLeaf()) {
4005     for (unsigned i = 0, e = P.getNumChildren(); i != e; ++i)
4006       FindNames(P.getChild(i), Names, PatternTop);
4007   }
4008 }
4009 
4010 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
4011                                            PatternToMatch &&PTM) {
4012   // Do some sanity checking on the pattern we're about to match.
4013   std::string Reason;
4014   if (!PTM.getSrcPattern().canPatternMatch(Reason, *this)) {
4015     PrintWarning(Pattern->getRecord()->getLoc(),
4016                  Twine("Pattern can never match: ") + Reason);
4017     return;
4018   }
4019 
4020   // If the source pattern's root is a complex pattern, that complex pattern
4021   // must specify the nodes it can potentially match.
4022   if (const ComplexPattern *CP =
4023           PTM.getSrcPattern().getComplexPatternInfo(*this))
4024     if (CP->getRootNodes().empty())
4025       Pattern->error("ComplexPattern at root must specify list of opcodes it"
4026                      " could match");
4027 
4028   // Find all of the named values in the input and output, ensure they have the
4029   // same type.
4030   std::map<std::string, NameRecord> SrcNames, DstNames;
4031   FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
4032   FindNames(PTM.getDstPattern(), DstNames, Pattern);
4033 
4034   // Scan all of the named values in the destination pattern, rejecting them if
4035   // they don't exist in the input pattern.
4036   for (const auto &Entry : DstNames) {
4037     if (SrcNames[Entry.first].first == nullptr)
4038       Pattern->error("Pattern has input without matching name in output: $" +
4039                      Entry.first);
4040   }
4041 
4042   // Scan all of the named values in the source pattern, rejecting them if the
4043   // name isn't used in the dest, and isn't used to tie two values together.
4044   for (const auto &Entry : SrcNames)
4045     if (DstNames[Entry.first].first == nullptr &&
4046         SrcNames[Entry.first].second == 1)
4047       Pattern->error("Pattern has dead named input: $" + Entry.first);
4048 
4049   PatternsToMatch.push_back(std::move(PTM));
4050 }
4051 
4052 void CodeGenDAGPatterns::InferInstructionFlags() {
4053   ArrayRef<const CodeGenInstruction *> Instructions =
4054       Target.getInstructionsByEnumValue();
4055 
4056   unsigned Errors = 0;
4057 
4058   // Try to infer flags from all patterns in PatternToMatch.  These include
4059   // both the primary instruction patterns (which always come first) and
4060   // patterns defined outside the instruction.
4061   for (const PatternToMatch &PTM : ptms()) {
4062     // We can only infer from single-instruction patterns, otherwise we won't
4063     // know which instruction should get the flags.
4064     SmallVector<const Record *, 8> PatInstrs;
4065     getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
4066     if (PatInstrs.size() != 1)
4067       continue;
4068 
4069     // Get the single instruction.
4070     CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
4071 
4072     // Only infer properties from the first pattern. We'll verify the others.
4073     if (InstInfo.InferredFrom)
4074       continue;
4075 
4076     InstAnalyzer PatInfo(*this);
4077     PatInfo.Analyze(PTM);
4078     Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
4079   }
4080 
4081   if (Errors)
4082     PrintFatalError("pattern conflicts");
4083 
4084   // If requested by the target, guess any undefined properties.
4085   if (Target.guessInstructionProperties()) {
4086     for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
4087       CodeGenInstruction *InstInfo =
4088           const_cast<CodeGenInstruction *>(Instructions[i]);
4089       if (InstInfo->InferredFrom)
4090         continue;
4091       // The mayLoad and mayStore flags default to false.
4092       // Conservatively assume hasSideEffects if it wasn't explicit.
4093       if (InstInfo->hasSideEffects_Unset)
4094         InstInfo->hasSideEffects = true;
4095     }
4096     return;
4097   }
4098 
4099   // Complain about any flags that are still undefined.
4100   for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
4101     CodeGenInstruction *InstInfo =
4102         const_cast<CodeGenInstruction *>(Instructions[i]);
4103     if (InstInfo->InferredFrom)
4104       continue;
4105     if (InstInfo->hasSideEffects_Unset)
4106       PrintError(InstInfo->TheDef->getLoc(),
4107                  "Can't infer hasSideEffects from patterns");
4108     if (InstInfo->mayStore_Unset)
4109       PrintError(InstInfo->TheDef->getLoc(),
4110                  "Can't infer mayStore from patterns");
4111     if (InstInfo->mayLoad_Unset)
4112       PrintError(InstInfo->TheDef->getLoc(),
4113                  "Can't infer mayLoad from patterns");
4114   }
4115 }
4116 
4117 /// Verify instruction flags against pattern node properties.
4118 void CodeGenDAGPatterns::VerifyInstructionFlags() {
4119   unsigned Errors = 0;
4120   for (const PatternToMatch &PTM : ptms()) {
4121     SmallVector<const Record *, 8> Instrs;
4122     getInstructionsInTree(PTM.getDstPattern(), Instrs);
4123     if (Instrs.empty())
4124       continue;
4125 
4126     // Count the number of instructions with each flag set.
4127     unsigned NumSideEffects = 0;
4128     unsigned NumStores = 0;
4129     unsigned NumLoads = 0;
4130     for (const Record *Instr : Instrs) {
4131       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4132       NumSideEffects += InstInfo.hasSideEffects;
4133       NumStores += InstInfo.mayStore;
4134       NumLoads += InstInfo.mayLoad;
4135     }
4136 
4137     // Analyze the source pattern.
4138     InstAnalyzer PatInfo(*this);
4139     PatInfo.Analyze(PTM);
4140 
4141     // Collect error messages.
4142     SmallVector<std::string, 4> Msgs;
4143 
4144     // Check for missing flags in the output.
4145     // Permit extra flags for now at least.
4146     if (PatInfo.hasSideEffects && !NumSideEffects)
4147       Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
4148 
4149     // Don't verify store flags on instructions with side effects. At least for
4150     // intrinsics, side effects implies mayStore.
4151     if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
4152       Msgs.push_back("pattern may store, but mayStore isn't set");
4153 
4154     // Similarly, mayStore implies mayLoad on intrinsics.
4155     if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
4156       Msgs.push_back("pattern may load, but mayLoad isn't set");
4157 
4158     // Print error messages.
4159     if (Msgs.empty())
4160       continue;
4161     ++Errors;
4162 
4163     for (const std::string &Msg : Msgs)
4164       PrintError(
4165           PTM.getSrcRecord()->getLoc(),
4166           Twine(Msg) + " on the " +
4167               (Instrs.size() == 1 ? "instruction" : "output instructions"));
4168     // Provide the location of the relevant instruction definitions.
4169     for (const Record *Instr : Instrs) {
4170       if (Instr != PTM.getSrcRecord())
4171         PrintError(Instr->getLoc(), "defined here");
4172       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4173       if (InstInfo.InferredFrom && InstInfo.InferredFrom != InstInfo.TheDef &&
4174           InstInfo.InferredFrom != PTM.getSrcRecord())
4175         PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
4176     }
4177   }
4178   if (Errors)
4179     PrintFatalError("Errors in DAG patterns");
4180 }
4181 
4182 /// Given a pattern result with an unresolved type, see if we can find one
4183 /// instruction with an unresolved result type.  Force this result type to an
4184 /// arbitrary element if it's possible types to converge results.
4185 static bool ForceArbitraryInstResultType(TreePatternNode &N, TreePattern &TP) {
4186   if (N.isLeaf())
4187     return false;
4188 
4189   // Analyze children.
4190   for (unsigned i = 0, e = N.getNumChildren(); i != e; ++i)
4191     if (ForceArbitraryInstResultType(N.getChild(i), TP))
4192       return true;
4193 
4194   if (!N.getOperator()->isSubClassOf("Instruction"))
4195     return false;
4196 
4197   // If this type is already concrete or completely unknown we can't do
4198   // anything.
4199   TypeInfer &TI = TP.getInfer();
4200   for (unsigned i = 0, e = N.getNumTypes(); i != e; ++i) {
4201     if (N.getExtType(i).empty() || TI.isConcrete(N.getExtType(i), false))
4202       continue;
4203 
4204     // Otherwise, force its type to an arbitrary choice.
4205     if (TI.forceArbitrary(N.getExtType(i)))
4206       return true;
4207   }
4208 
4209   return false;
4210 }
4211 
4212 // Promote xform function to be an explicit node wherever set.
4213 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) {
4214   if (Record *Xform = N->getTransformFn()) {
4215     N->setTransformFn(nullptr);
4216     std::vector<TreePatternNodePtr> Children;
4217     Children.push_back(PromoteXForms(N));
4218     return makeIntrusiveRefCnt<TreePatternNode>(Xform, std::move(Children),
4219                                                 N->getNumTypes());
4220   }
4221 
4222   if (!N->isLeaf())
4223     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4224       TreePatternNodePtr Child = N->getChildShared(i);
4225       N->setChild(i, PromoteXForms(Child));
4226     }
4227   return N;
4228 }
4229 
4230 void CodeGenDAGPatterns::ParseOnePattern(
4231     const Record *TheDef, TreePattern &Pattern, TreePattern &Result,
4232     const std::vector<Record *> &InstImpResults, bool ShouldIgnore) {
4233 
4234   // Inline pattern fragments and expand multiple alternatives.
4235   Pattern.InlinePatternFragments();
4236   Result.InlinePatternFragments();
4237 
4238   if (Result.getNumTrees() != 1)
4239     Result.error("Cannot use multi-alternative fragments in result pattern!");
4240 
4241   // Infer types.
4242   bool IterateInference;
4243   bool InferredAllPatternTypes, InferredAllResultTypes;
4244   do {
4245     // Infer as many types as possible.  If we cannot infer all of them, we
4246     // can never do anything with this pattern: report it to the user.
4247     InferredAllPatternTypes =
4248         Pattern.InferAllTypes(&Pattern.getNamedNodesMap());
4249 
4250     // Infer as many types as possible.  If we cannot infer all of them, we
4251     // can never do anything with this pattern: report it to the user.
4252     InferredAllResultTypes = Result.InferAllTypes(&Pattern.getNamedNodesMap());
4253 
4254     IterateInference = false;
4255 
4256     // Apply the type of the result to the source pattern.  This helps us
4257     // resolve cases where the input type is known to be a pointer type (which
4258     // is considered resolved), but the result knows it needs to be 32- or
4259     // 64-bits.  Infer the other way for good measure.
4260     for (const auto &T : Pattern.getTrees())
4261       for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(),
4262                                         T->getNumTypes());
4263            i != e; ++i) {
4264         IterateInference |=
4265             T->UpdateNodeType(i, Result.getOnlyTree()->getExtType(i), Result);
4266         IterateInference |=
4267             Result.getOnlyTree()->UpdateNodeType(i, T->getExtType(i), Result);
4268       }
4269 
4270     // If our iteration has converged and the input pattern's types are fully
4271     // resolved but the result pattern is not fully resolved, we may have a
4272     // situation where we have two instructions in the result pattern and
4273     // the instructions require a common register class, but don't care about
4274     // what actual MVT is used.  This is actually a bug in our modelling:
4275     // output patterns should have register classes, not MVTs.
4276     //
4277     // In any case, to handle this, we just go through and disambiguate some
4278     // arbitrary types to the result pattern's nodes.
4279     if (!IterateInference && InferredAllPatternTypes && !InferredAllResultTypes)
4280       IterateInference =
4281           ForceArbitraryInstResultType(*Result.getTree(0), Result);
4282   } while (IterateInference);
4283 
4284   // Verify that we inferred enough types that we can do something with the
4285   // pattern and result.  If these fire the user has to add type casts.
4286   if (!InferredAllPatternTypes)
4287     Pattern.error("Could not infer all types in pattern!");
4288   if (!InferredAllResultTypes) {
4289     Pattern.dump();
4290     Result.error("Could not infer all types in pattern result!");
4291   }
4292 
4293   // Promote xform function to be an explicit node wherever set.
4294   TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree());
4295 
4296   TreePattern Temp(Result.getRecord(), DstShared, false, *this);
4297   Temp.InferAllTypes();
4298 
4299   ListInit *Preds = TheDef->getValueAsListInit("Predicates");
4300   int Complexity = TheDef->getValueAsInt("AddedComplexity");
4301 
4302   if (PatternRewriter)
4303     PatternRewriter(&Pattern);
4304 
4305   // A pattern may end up with an "impossible" type, i.e. a situation
4306   // where all types have been eliminated for some node in this pattern.
4307   // This could occur for intrinsics that only make sense for a specific
4308   // value type, and use a specific register class. If, for some mode,
4309   // that register class does not accept that type, the type inference
4310   // will lead to a contradiction, which is not an error however, but
4311   // a sign that this pattern will simply never match.
4312   if (Temp.getOnlyTree()->hasPossibleType()) {
4313     for (const auto &T : Pattern.getTrees()) {
4314       if (T->hasPossibleType())
4315         AddPatternToMatch(&Pattern,
4316                           PatternToMatch(TheDef, Preds, T, Temp.getOnlyTree(),
4317                                          InstImpResults, Complexity,
4318                                          TheDef->getID(), ShouldIgnore));
4319     }
4320   } else {
4321     // Show a message about a dropped pattern with some info to make it
4322     // easier to identify it in the .td files.
4323     LLVM_DEBUG({
4324       dbgs() << "Dropping: ";
4325       Pattern.dump();
4326       Temp.getOnlyTree()->dump();
4327       dbgs() << "\n";
4328     });
4329   }
4330 }
4331 
4332 void CodeGenDAGPatterns::ParsePatterns() {
4333   for (const Record *CurPattern : Records.getAllDerivedDefinitions("Pattern")) {
4334     DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
4335 
4336     // If the pattern references the null_frag, there's nothing to do.
4337     if (hasNullFragReference(Tree))
4338       continue;
4339 
4340     TreePattern Pattern(CurPattern, Tree, true, *this);
4341 
4342     ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
4343     if (LI->empty())
4344       continue; // no pattern.
4345 
4346     // Parse the instruction.
4347     TreePattern Result(CurPattern, LI, false, *this);
4348 
4349     if (Result.getNumTrees() != 1)
4350       Result.error("Cannot handle instructions producing instructions "
4351                    "with temporaries yet!");
4352 
4353     // Validate that the input pattern is correct.
4354     std::map<std::string, TreePatternNodePtr> InstInputs;
4355     MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
4356         InstResults;
4357     std::vector<Record *> InstImpResults;
4358     for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j)
4359       FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs,
4360                                   InstResults, InstImpResults);
4361 
4362     ParseOnePattern(CurPattern, Pattern, Result, InstImpResults,
4363                     CurPattern->getValueAsBit("GISelShouldIgnore"));
4364   }
4365 }
4366 
4367 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode &N) {
4368   for (const TypeSetByHwMode &VTS : N.getExtTypes())
4369     for (const auto &I : VTS)
4370       Modes.insert(I.first);
4371 
4372   for (unsigned i = 0, e = N.getNumChildren(); i != e; ++i)
4373     collectModes(Modes, N.getChild(i));
4374 }
4375 
4376 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
4377   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
4378   if (CGH.getNumModeIds() == 1)
4379     return;
4380 
4381   std::vector<PatternToMatch> Copy;
4382   PatternsToMatch.swap(Copy);
4383 
4384   auto AppendPattern = [this](PatternToMatch &P, unsigned Mode,
4385                               StringRef Check) {
4386     TreePatternNodePtr NewSrc = P.getSrcPattern().clone();
4387     TreePatternNodePtr NewDst = P.getDstPattern().clone();
4388     if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
4389       return;
4390     }
4391 
4392     PatternsToMatch.emplace_back(P.getSrcRecord(), P.getPredicates(),
4393                                  std::move(NewSrc), std::move(NewDst),
4394                                  P.getDstRegs(), P.getAddedComplexity(),
4395                                  getNewUID(), P.getGISelShouldIgnore(), Check);
4396   };
4397 
4398   for (PatternToMatch &P : Copy) {
4399     const TreePatternNode *SrcP = nullptr, *DstP = nullptr;
4400     if (P.getSrcPattern().hasProperTypeByHwMode())
4401       SrcP = &P.getSrcPattern();
4402     if (P.getDstPattern().hasProperTypeByHwMode())
4403       DstP = &P.getDstPattern();
4404     if (!SrcP && !DstP) {
4405       PatternsToMatch.push_back(P);
4406       continue;
4407     }
4408 
4409     std::set<unsigned> Modes;
4410     if (SrcP)
4411       collectModes(Modes, *SrcP);
4412     if (DstP)
4413       collectModes(Modes, *DstP);
4414 
4415     // The predicate for the default mode needs to be constructed for each
4416     // pattern separately.
4417     // Since not all modes must be present in each pattern, if a mode m is
4418     // absent, then there is no point in constructing a check for m. If such
4419     // a check was created, it would be equivalent to checking the default
4420     // mode, except not all modes' predicates would be a part of the checking
4421     // code. The subsequently generated check for the default mode would then
4422     // have the exact same patterns, but a different predicate code. To avoid
4423     // duplicated patterns with different predicate checks, construct the
4424     // default check as a negation of all predicates that are actually present
4425     // in the source/destination patterns.
4426     SmallString<128> DefaultCheck;
4427 
4428     for (unsigned M : Modes) {
4429       if (M == DefaultMode)
4430         continue;
4431 
4432       // Fill the map entry for this mode.
4433       const HwMode &HM = CGH.getMode(M);
4434       AppendPattern(P, M, HM.Predicates);
4435 
4436       // Add negations of the HM's predicates to the default predicate.
4437       if (!DefaultCheck.empty())
4438         DefaultCheck += " && ";
4439       DefaultCheck += "!(";
4440       DefaultCheck += HM.Predicates;
4441       DefaultCheck += ")";
4442     }
4443 
4444     bool HasDefault = Modes.count(DefaultMode);
4445     if (HasDefault)
4446       AppendPattern(P, DefaultMode, DefaultCheck);
4447   }
4448 }
4449 
4450 /// Dependent variable map for CodeGenDAGPattern variant generation
4451 typedef StringMap<int> DepVarMap;
4452 
4453 static void FindDepVarsOf(TreePatternNode &N, DepVarMap &DepMap) {
4454   if (N.isLeaf()) {
4455     if (N.hasName() && isa<DefInit>(N.getLeafValue()))
4456       DepMap[N.getName()]++;
4457   } else {
4458     for (size_t i = 0, e = N.getNumChildren(); i != e; ++i)
4459       FindDepVarsOf(N.getChild(i), DepMap);
4460   }
4461 }
4462 
4463 /// Find dependent variables within child patterns
4464 static void FindDepVars(TreePatternNode &N, MultipleUseVarSet &DepVars) {
4465   DepVarMap depcounts;
4466   FindDepVarsOf(N, depcounts);
4467   for (const auto &Pair : depcounts) {
4468     if (Pair.getValue() > 1)
4469       DepVars.insert(Pair.getKey());
4470   }
4471 }
4472 
4473 #ifndef NDEBUG
4474 /// Dump the dependent variable set:
4475 static void DumpDepVars(MultipleUseVarSet &DepVars) {
4476   if (DepVars.empty()) {
4477     LLVM_DEBUG(errs() << "<empty set>");
4478   } else {
4479     LLVM_DEBUG(errs() << "[ ");
4480     for (const auto &DepVar : DepVars) {
4481       LLVM_DEBUG(errs() << DepVar.getKey() << " ");
4482     }
4483     LLVM_DEBUG(errs() << "]");
4484   }
4485 }
4486 #endif
4487 
4488 /// CombineChildVariants - Given a bunch of permutations of each child of the
4489 /// 'operator' node, put them together in all possible ways.
4490 static void CombineChildVariants(
4491     TreePatternNodePtr Orig,
4492     const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants,
4493     std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP,
4494     const MultipleUseVarSet &DepVars) {
4495   // Make sure that each operand has at least one variant to choose from.
4496   for (const auto &Variants : ChildVariants)
4497     if (Variants.empty())
4498       return;
4499 
4500   // The end result is an all-pairs construction of the resultant pattern.
4501   std::vector<unsigned> Idxs(ChildVariants.size());
4502   bool NotDone;
4503   do {
4504 #ifndef NDEBUG
4505     LLVM_DEBUG(if (!Idxs.empty()) {
4506       errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
4507       for (unsigned Idx : Idxs) {
4508         errs() << Idx << " ";
4509       }
4510       errs() << "]\n";
4511     });
4512 #endif
4513     // Create the variant and add it to the output list.
4514     std::vector<TreePatternNodePtr> NewChildren;
4515     NewChildren.reserve(ChildVariants.size());
4516     for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
4517       NewChildren.push_back(ChildVariants[i][Idxs[i]]);
4518     TreePatternNodePtr R = makeIntrusiveRefCnt<TreePatternNode>(
4519         Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes());
4520 
4521     // Copy over properties.
4522     R->setName(Orig->getName());
4523     R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg());
4524     R->setPredicateCalls(Orig->getPredicateCalls());
4525     R->setGISelFlagsRecord(Orig->getGISelFlagsRecord());
4526     R->setTransformFn(Orig->getTransformFn());
4527     for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
4528       R->setType(i, Orig->getExtType(i));
4529 
4530     // If this pattern cannot match, do not include it as a variant.
4531     std::string ErrString;
4532     // Scan to see if this pattern has already been emitted.  We can get
4533     // duplication due to things like commuting:
4534     //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
4535     // which are the same pattern.  Ignore the dups.
4536     if (R->canPatternMatch(ErrString, CDP) &&
4537         none_of(OutVariants, [&](TreePatternNodePtr Variant) {
4538           return R->isIsomorphicTo(*Variant, DepVars);
4539         }))
4540       OutVariants.push_back(R);
4541 
4542     // Increment indices to the next permutation by incrementing the
4543     // indices from last index backward, e.g., generate the sequence
4544     // [0, 0], [0, 1], [1, 0], [1, 1].
4545     int IdxsIdx;
4546     for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
4547       if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
4548         Idxs[IdxsIdx] = 0;
4549       else
4550         break;
4551     }
4552     NotDone = (IdxsIdx >= 0);
4553   } while (NotDone);
4554 }
4555 
4556 /// CombineChildVariants - A helper function for binary operators.
4557 ///
4558 static void CombineChildVariants(TreePatternNodePtr Orig,
4559                                  const std::vector<TreePatternNodePtr> &LHS,
4560                                  const std::vector<TreePatternNodePtr> &RHS,
4561                                  std::vector<TreePatternNodePtr> &OutVariants,
4562                                  CodeGenDAGPatterns &CDP,
4563                                  const MultipleUseVarSet &DepVars) {
4564   std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4565   ChildVariants.push_back(LHS);
4566   ChildVariants.push_back(RHS);
4567   CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
4568 }
4569 
4570 static void
4571 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,
4572                                   std::vector<TreePatternNodePtr> &Children) {
4573   assert(N->getNumChildren() == 2 &&
4574          "Associative but doesn't have 2 children!");
4575   const Record *Operator = N->getOperator();
4576 
4577   // Only permit raw nodes.
4578   if (!N->getName().empty() || !N->getPredicateCalls().empty() ||
4579       N->getTransformFn()) {
4580     Children.push_back(N);
4581     return;
4582   }
4583 
4584   if (N->getChild(0).isLeaf() || N->getChild(0).getOperator() != Operator)
4585     Children.push_back(N->getChildShared(0));
4586   else
4587     GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children);
4588 
4589   if (N->getChild(1).isLeaf() || N->getChild(1).getOperator() != Operator)
4590     Children.push_back(N->getChildShared(1));
4591   else
4592     GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children);
4593 }
4594 
4595 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
4596 /// the (potentially recursive) pattern by using algebraic laws.
4597 ///
4598 static void GenerateVariantsOf(TreePatternNodePtr N,
4599                                std::vector<TreePatternNodePtr> &OutVariants,
4600                                CodeGenDAGPatterns &CDP,
4601                                const MultipleUseVarSet &DepVars) {
4602   // We cannot permute leaves or ComplexPattern uses.
4603   if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
4604     OutVariants.push_back(N);
4605     return;
4606   }
4607 
4608   // Look up interesting info about the node.
4609   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
4610 
4611   // If this node is associative, re-associate.
4612   if (NodeInfo.hasProperty(SDNPAssociative)) {
4613     // Re-associate by pulling together all of the linked operators
4614     std::vector<TreePatternNodePtr> MaximalChildren;
4615     GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
4616 
4617     // Only handle child sizes of 3.  Otherwise we'll end up trying too many
4618     // permutations.
4619     if (MaximalChildren.size() == 3) {
4620       // Find the variants of all of our maximal children.
4621       std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants;
4622       GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
4623       GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
4624       GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
4625 
4626       // There are only two ways we can permute the tree:
4627       //   (A op B) op C    and    A op (B op C)
4628       // Within these forms, we can also permute A/B/C.
4629 
4630       // Generate legal pair permutations of A/B/C.
4631       std::vector<TreePatternNodePtr> ABVariants;
4632       std::vector<TreePatternNodePtr> BAVariants;
4633       std::vector<TreePatternNodePtr> ACVariants;
4634       std::vector<TreePatternNodePtr> CAVariants;
4635       std::vector<TreePatternNodePtr> BCVariants;
4636       std::vector<TreePatternNodePtr> CBVariants;
4637       CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
4638       CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
4639       CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
4640       CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
4641       CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
4642       CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
4643 
4644       // Combine those into the result: (x op x) op x
4645       CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
4646       CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
4647       CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
4648       CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
4649       CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
4650       CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
4651 
4652       // Combine those into the result: x op (x op x)
4653       CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
4654       CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
4655       CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
4656       CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
4657       CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
4658       CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
4659       return;
4660     }
4661   }
4662 
4663   // Compute permutations of all children.
4664   std::vector<std::vector<TreePatternNodePtr>> ChildVariants(
4665       N->getNumChildren());
4666   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4667     GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars);
4668 
4669   // Build all permutations based on how the children were formed.
4670   CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4671 
4672   // If this node is commutative, consider the commuted order.
4673   bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
4674   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
4675     unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
4676     assert(N->getNumChildren() >= (2 + Skip) &&
4677            "Commutative but doesn't have 2 children!");
4678     // Don't allow commuting children which are actually register references.
4679     bool NoRegisters = true;
4680     unsigned i = 0 + Skip;
4681     unsigned e = 2 + Skip;
4682     for (; i != e; ++i) {
4683       TreePatternNode &Child = N->getChild(i);
4684       if (Child.isLeaf())
4685         if (DefInit *DI = dyn_cast<DefInit>(Child.getLeafValue())) {
4686           Record *RR = DI->getDef();
4687           if (RR->isSubClassOf("Register"))
4688             NoRegisters = false;
4689         }
4690     }
4691     // Consider the commuted order.
4692     if (NoRegisters) {
4693       // Swap the first two operands after the intrinsic id, if present.
4694       unsigned i = isCommIntrinsic ? 1 : 0;
4695       std::swap(ChildVariants[i], ChildVariants[i + 1]);
4696       CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4697     }
4698   }
4699 }
4700 
4701 // GenerateVariants - Generate variants.  For example, commutative patterns can
4702 // match multiple ways.  Add them to PatternsToMatch as well.
4703 void CodeGenDAGPatterns::GenerateVariants() {
4704   LLVM_DEBUG(errs() << "Generating instruction variants.\n");
4705 
4706   // Loop over all of the patterns we've collected, checking to see if we can
4707   // generate variants of the instruction, through the exploitation of
4708   // identities.  This permits the target to provide aggressive matching without
4709   // the .td file having to contain tons of variants of instructions.
4710   //
4711   // Note that this loop adds new patterns to the PatternsToMatch list, but we
4712   // intentionally do not reconsider these.  Any variants of added patterns have
4713   // already been added.
4714   //
4715   for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
4716     MultipleUseVarSet DepVars;
4717     std::vector<TreePatternNodePtr> Variants;
4718     FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
4719     LLVM_DEBUG(errs() << "Dependent/multiply used variables: ");
4720     LLVM_DEBUG(DumpDepVars(DepVars));
4721     LLVM_DEBUG(errs() << "\n");
4722     GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants,
4723                        *this, DepVars);
4724 
4725     assert(PatternsToMatch[i].getHwModeFeatures().empty() &&
4726            "HwModes should not have been expanded yet!");
4727 
4728     assert(!Variants.empty() && "Must create at least original variant!");
4729     if (Variants.size() == 1) // No additional variants for this pattern.
4730       continue;
4731 
4732     LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";
4733                PatternsToMatch[i].getSrcPattern().dump(); errs() << "\n");
4734 
4735     for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
4736       TreePatternNodePtr Variant = Variants[v];
4737 
4738       LLVM_DEBUG(errs() << "  VAR#" << v << ": "; Variant->dump();
4739                  errs() << "\n");
4740 
4741       // Scan to see if an instruction or explicit pattern already matches this.
4742       bool AlreadyExists = false;
4743       for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
4744         // Skip if the top level predicates do not match.
4745         if ((i != p) && (PatternsToMatch[i].getPredicates() !=
4746                          PatternsToMatch[p].getPredicates()))
4747           continue;
4748         // Check to see if this variant already exists.
4749         if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
4750                                     DepVars)) {
4751           LLVM_DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
4752           AlreadyExists = true;
4753           break;
4754         }
4755       }
4756       // If we already have it, ignore the variant.
4757       if (AlreadyExists)
4758         continue;
4759 
4760       // Otherwise, add it to the list of patterns we have.
4761       PatternsToMatch.emplace_back(
4762           PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
4763           Variant, PatternsToMatch[i].getDstPatternShared(),
4764           PatternsToMatch[i].getDstRegs(),
4765           PatternsToMatch[i].getAddedComplexity(), getNewUID(),
4766           PatternsToMatch[i].getGISelShouldIgnore(),
4767           PatternsToMatch[i].getHwModeFeatures());
4768     }
4769 
4770     LLVM_DEBUG(errs() << "\n");
4771   }
4772 }
4773 
4774 unsigned CodeGenDAGPatterns::getNewUID() {
4775   RecordKeeper &MutableRC = const_cast<RecordKeeper &>(Records);
4776   return Record::getNewUID(MutableRC);
4777 }
4778