xref: /llvm-project/llvm/utils/TableGen/Common/CodeGenDAGPatterns.cpp (revision 4e8c9d28132039a98feb97cec2759cddeb37d934)
1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CodeGenDAGPatterns class, which is used to read and
10 // represent the patterns present in a .td file for instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenDAGPatterns.h"
15 #include "CodeGenInstruction.h"
16 #include "CodeGenRegisters.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringMap.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/TypeSize.h"
28 #include "llvm/TableGen/Error.h"
29 #include "llvm/TableGen/Record.h"
30 #include <algorithm>
31 #include <cstdio>
32 #include <iterator>
33 #include <set>
34 using namespace llvm;
35 
36 #define DEBUG_TYPE "dag-patterns"
37 
38 static inline bool isIntegerOrPtr(MVT VT) {
39   return VT.isInteger() || VT == MVT::iPTR;
40 }
41 static inline bool isFloatingPoint(MVT VT) { return VT.isFloatingPoint(); }
42 static inline bool isVector(MVT VT) { return VT.isVector(); }
43 static inline bool isScalar(MVT VT) { return !VT.isVector(); }
44 
45 template <typename Predicate>
46 static bool berase_if(MachineValueTypeSet &S, Predicate P) {
47   bool Erased = false;
48   // It is ok to iterate over MachineValueTypeSet and remove elements from it
49   // at the same time.
50   for (MVT T : S) {
51     if (!P(T))
52       continue;
53     Erased = true;
54     S.erase(T);
55   }
56   return Erased;
57 }
58 
59 void MachineValueTypeSet::writeToStream(raw_ostream &OS) const {
60   SmallVector<MVT, 4> Types(begin(), end());
61   array_pod_sort(Types.begin(), Types.end());
62 
63   OS << '[';
64   ListSeparator LS(" ");
65   for (const MVT &T : Types)
66     OS << LS << ValueTypeByHwMode::getMVTName(T);
67   OS << ']';
68 }
69 
70 // --- TypeSetByHwMode
71 
72 // This is a parameterized type-set class. For each mode there is a list
73 // of types that are currently possible for a given tree node. Type
74 // inference will apply to each mode separately.
75 
76 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
77   // Take the address space from the first type in the list.
78   if (!VTList.empty())
79     AddrSpace = VTList[0].PtrAddrSpace;
80 
81   for (const ValueTypeByHwMode &VVT : VTList)
82     insert(VVT);
83 }
84 
85 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
86   for (const auto &I : *this) {
87     if (I.second.size() > 1)
88       return false;
89     if (!AllowEmpty && I.second.empty())
90       return false;
91   }
92   return true;
93 }
94 
95 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
96   assert(isValueTypeByHwMode(true) &&
97          "The type set has multiple types for at least one HW mode");
98   ValueTypeByHwMode VVT;
99   VVT.PtrAddrSpace = AddrSpace;
100 
101   for (const auto &I : *this) {
102     MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
103     VVT.getOrCreateTypeForMode(I.first, T);
104   }
105   return VVT;
106 }
107 
108 bool TypeSetByHwMode::isPossible() const {
109   for (const auto &I : *this)
110     if (!I.second.empty())
111       return true;
112   return false;
113 }
114 
115 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
116   bool Changed = false;
117   bool ContainsDefault = false;
118   MVT DT = MVT::Other;
119 
120   for (const auto &P : VVT) {
121     unsigned M = P.first;
122     // Make sure there exists a set for each specific mode from VVT.
123     Changed |= getOrCreate(M).insert(P.second).second;
124     // Cache VVT's default mode.
125     if (DefaultMode == M) {
126       ContainsDefault = true;
127       DT = P.second;
128     }
129   }
130 
131   // If VVT has a default mode, add the corresponding type to all
132   // modes in "this" that do not exist in VVT.
133   if (ContainsDefault)
134     for (auto &I : *this)
135       if (!VVT.hasMode(I.first))
136         Changed |= I.second.insert(DT).second;
137 
138   return Changed;
139 }
140 
141 // Constrain the type set to be the intersection with VTS.
142 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
143   bool Changed = false;
144   if (hasDefault()) {
145     for (const auto &I : VTS) {
146       unsigned M = I.first;
147       if (M == DefaultMode || hasMode(M))
148         continue;
149       Map.insert({M, Map.at(DefaultMode)});
150       Changed = true;
151     }
152   }
153 
154   for (auto &I : *this) {
155     unsigned M = I.first;
156     SetType &S = I.second;
157     if (VTS.hasMode(M) || VTS.hasDefault()) {
158       Changed |= intersect(I.second, VTS.get(M));
159     } else if (!S.empty()) {
160       S.clear();
161       Changed = true;
162     }
163   }
164   return Changed;
165 }
166 
167 template <typename Predicate> bool TypeSetByHwMode::constrain(Predicate P) {
168   bool Changed = false;
169   for (auto &I : *this)
170     Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
171   return Changed;
172 }
173 
174 template <typename Predicate>
175 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
176   assert(empty());
177   for (const auto &I : VTS) {
178     SetType &S = getOrCreate(I.first);
179     for (auto J : I.second)
180       if (P(J))
181         S.insert(J);
182   }
183   return !empty();
184 }
185 
186 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
187   SmallVector<unsigned, 4> Modes;
188   Modes.reserve(Map.size());
189 
190   for (const auto &I : *this)
191     Modes.push_back(I.first);
192   if (Modes.empty()) {
193     OS << "{}";
194     return;
195   }
196   array_pod_sort(Modes.begin(), Modes.end());
197 
198   OS << '{';
199   for (unsigned M : Modes) {
200     OS << ' ' << getModeName(M) << ':';
201     get(M).writeToStream(OS);
202   }
203   OS << " }";
204 }
205 
206 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
207   // The isSimple call is much quicker than hasDefault - check this first.
208   bool IsSimple = isSimple();
209   bool VTSIsSimple = VTS.isSimple();
210   if (IsSimple && VTSIsSimple)
211     return getSimple() == VTS.getSimple();
212 
213   // Speedup: We have a default if the set is simple.
214   bool HaveDefault = IsSimple || hasDefault();
215   bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault();
216   if (HaveDefault != VTSHaveDefault)
217     return false;
218 
219   SmallSet<unsigned, 4> Modes;
220   for (auto &I : *this)
221     Modes.insert(I.first);
222   for (const auto &I : VTS)
223     Modes.insert(I.first);
224 
225   if (HaveDefault) {
226     // Both sets have default mode.
227     for (unsigned M : Modes) {
228       if (get(M) != VTS.get(M))
229         return false;
230     }
231   } else {
232     // Neither set has default mode.
233     for (unsigned M : Modes) {
234       // If there is no default mode, an empty set is equivalent to not having
235       // the corresponding mode.
236       bool NoModeThis = !hasMode(M) || get(M).empty();
237       bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
238       if (NoModeThis != NoModeVTS)
239         return false;
240       if (!NoModeThis)
241         if (get(M) != VTS.get(M))
242           return false;
243     }
244   }
245 
246   return true;
247 }
248 
249 namespace llvm {
250 raw_ostream &operator<<(raw_ostream &OS, const MachineValueTypeSet &T) {
251   T.writeToStream(OS);
252   return OS;
253 }
254 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
255   T.writeToStream(OS);
256   return OS;
257 }
258 } // namespace llvm
259 
260 LLVM_DUMP_METHOD
261 void TypeSetByHwMode::dump() const { dbgs() << *this << '\n'; }
262 
263 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
264   auto IntersectP = [&](std::optional<MVT> WildVT, function_ref<bool(MVT)> P) {
265     // Complement of In within this partition.
266     auto CompIn = [&](MVT T) -> bool { return !In.count(T) && P(T); };
267 
268     if (!WildVT)
269       return berase_if(Out, CompIn);
270 
271     bool OutW = Out.count(*WildVT), InW = In.count(*WildVT);
272     if (OutW == InW)
273       return berase_if(Out, CompIn);
274 
275     // Compute the intersection of scalars separately to account for only one
276     // set containing WildVT.
277     // The intersection of WildVT with a set of corresponding types that does
278     // not include WildVT will result in the most specific type:
279     // - WildVT is more specific than any set with two elements or more
280     // - WildVT is less specific than any single type.
281     // For example, for iPTR and scalar integer types
282     // { iPTR } * { i32 }     -> { i32 }
283     // { iPTR } * { i32 i64 } -> { iPTR }
284     // and
285     // { iPTR i32 } * { i32 }          -> { i32 }
286     // { iPTR i32 } * { i32 i64 }      -> { i32 i64 }
287     // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
288 
289     // Looking at just this partition, let In' = elements only in In,
290     // Out' = elements only in Out, and IO = elements common to both. Normally
291     // IO would be returned as the result of the intersection, but we need to
292     // account for WildVT being a "wildcard" of sorts. Since elements in IO are
293     // those that match both sets exactly, they will all belong to the output.
294     // If any of the "leftovers" (i.e. In' or Out') contain WildVT, it means
295     // that the other set doesn't have it, but it could have (1) a more
296     // specific type, or (2) a set of types that is less specific. The
297     // "leftovers" from the other set is what we want to examine more closely.
298 
299     auto Leftovers = [&](const SetType &A, const SetType &B) {
300       SetType Diff = A;
301       berase_if(Diff, [&](MVT T) { return B.count(T) || !P(T); });
302       return Diff;
303     };
304 
305     if (InW) {
306       SetType OutLeftovers = Leftovers(Out, In);
307       if (OutLeftovers.size() < 2) {
308         // WildVT not added to Out. Keep the possible single leftover.
309         return false;
310       }
311       // WildVT replaces the leftovers.
312       berase_if(Out, CompIn);
313       Out.insert(*WildVT);
314       return true;
315     }
316 
317     // OutW == true
318     SetType InLeftovers = Leftovers(In, Out);
319     unsigned SizeOut = Out.size();
320     berase_if(Out, CompIn); // This will remove at least the WildVT.
321     if (InLeftovers.size() < 2) {
322       // WildVT deleted from Out. Add back the possible single leftover.
323       Out.insert(InLeftovers);
324       return true;
325     }
326 
327     // Keep the WildVT in Out.
328     Out.insert(*WildVT);
329     // If WildVT was the only element initially removed from Out, then Out
330     // has not changed.
331     return SizeOut != Out.size();
332   };
333 
334   // Note: must be non-overlapping
335   using WildPartT = std::pair<MVT, std::function<bool(MVT)>>;
336   static const WildPartT WildParts[] = {
337       {MVT::iPTR, [](MVT T) { return T.isScalarInteger() || T == MVT::iPTR; }},
338   };
339 
340   bool Changed = false;
341   for (const auto &I : WildParts)
342     Changed |= IntersectP(I.first, I.second);
343 
344   Changed |= IntersectP(std::nullopt, [&](MVT T) {
345     return !any_of(WildParts, [=](const WildPartT &I) { return I.second(T); });
346   });
347 
348   return Changed;
349 }
350 
351 bool TypeSetByHwMode::validate() const {
352   if (empty())
353     return true;
354   bool AllEmpty = true;
355   for (const auto &I : *this)
356     AllEmpty &= I.second.empty();
357   return !AllEmpty;
358 }
359 
360 // --- TypeInfer
361 
362 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
363                                 const TypeSetByHwMode &In) const {
364   ValidateOnExit _1(Out, *this);
365   In.validate();
366   if (In.empty() || Out == In || TP.hasError())
367     return false;
368   if (Out.empty()) {
369     Out = In;
370     return true;
371   }
372 
373   bool Changed = Out.constrain(In);
374   if (Changed && Out.empty())
375     TP.error("Type contradiction");
376 
377   return Changed;
378 }
379 
380 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
381   ValidateOnExit _1(Out, *this);
382   if (TP.hasError())
383     return false;
384   assert(!Out.empty() && "cannot pick from an empty set");
385 
386   bool Changed = false;
387   for (auto &I : Out) {
388     TypeSetByHwMode::SetType &S = I.second;
389     if (S.size() <= 1)
390       continue;
391     MVT T = *S.begin(); // Pick the first element.
392     S.clear();
393     S.insert(T);
394     Changed = true;
395   }
396   return Changed;
397 }
398 
399 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
400   ValidateOnExit _1(Out, *this);
401   if (TP.hasError())
402     return false;
403   if (!Out.empty())
404     return Out.constrain(isIntegerOrPtr);
405 
406   return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
407 }
408 
409 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
410   ValidateOnExit _1(Out, *this);
411   if (TP.hasError())
412     return false;
413   if (!Out.empty())
414     return Out.constrain(isFloatingPoint);
415 
416   return Out.assign_if(getLegalTypes(), isFloatingPoint);
417 }
418 
419 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
420   ValidateOnExit _1(Out, *this);
421   if (TP.hasError())
422     return false;
423   if (!Out.empty())
424     return Out.constrain(isScalar);
425 
426   return Out.assign_if(getLegalTypes(), isScalar);
427 }
428 
429 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
430   ValidateOnExit _1(Out, *this);
431   if (TP.hasError())
432     return false;
433   if (!Out.empty())
434     return Out.constrain(isVector);
435 
436   return Out.assign_if(getLegalTypes(), isVector);
437 }
438 
439 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
440   ValidateOnExit _1(Out, *this);
441   if (TP.hasError() || !Out.empty())
442     return false;
443 
444   Out = getLegalTypes();
445   return true;
446 }
447 
448 template <typename Iter, typename Pred, typename Less>
449 static Iter min_if(Iter B, Iter E, Pred P, Less L) {
450   if (B == E)
451     return E;
452   Iter Min = E;
453   for (Iter I = B; I != E; ++I) {
454     if (!P(*I))
455       continue;
456     if (Min == E || L(*I, *Min))
457       Min = I;
458   }
459   return Min;
460 }
461 
462 template <typename Iter, typename Pred, typename Less>
463 static Iter max_if(Iter B, Iter E, Pred P, Less L) {
464   if (B == E)
465     return E;
466   Iter Max = E;
467   for (Iter I = B; I != E; ++I) {
468     if (!P(*I))
469       continue;
470     if (Max == E || L(*Max, *I))
471       Max = I;
472   }
473   return Max;
474 }
475 
476 /// Make sure that for each type in Small, there exists a larger type in Big.
477 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big,
478                                    bool SmallIsVT) {
479   ValidateOnExit _1(Small, *this), _2(Big, *this);
480   if (TP.hasError())
481     return false;
482   bool Changed = false;
483 
484   assert((!SmallIsVT || !Small.empty()) &&
485          "Small should not be empty for SDTCisVTSmallerThanOp");
486 
487   if (Small.empty())
488     Changed |= EnforceAny(Small);
489   if (Big.empty())
490     Changed |= EnforceAny(Big);
491 
492   assert(Small.hasDefault() && Big.hasDefault());
493 
494   SmallVector<unsigned, 4> Modes;
495   union_modes(Small, Big, Modes);
496 
497   // 1. Only allow integer or floating point types and make sure that
498   //    both sides are both integer or both floating point.
499   // 2. Make sure that either both sides have vector types, or neither
500   //    of them does.
501   for (unsigned M : Modes) {
502     TypeSetByHwMode::SetType &S = Small.get(M);
503     TypeSetByHwMode::SetType &B = Big.get(M);
504 
505     assert((!SmallIsVT || !S.empty()) && "Expected non-empty type");
506 
507     if (any_of(S, isIntegerOrPtr) && any_of(B, isIntegerOrPtr)) {
508       auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
509       Changed |= berase_if(S, NotInt);
510       Changed |= berase_if(B, NotInt);
511     } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
512       auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
513       Changed |= berase_if(S, NotFP);
514       Changed |= berase_if(B, NotFP);
515     } else if (SmallIsVT && B.empty()) {
516       // B is empty and since S is a specific VT, it will never be empty. Don't
517       // report this as a change, just clear S and continue. This prevents an
518       // infinite loop.
519       S.clear();
520     } else if (S.empty() || B.empty()) {
521       Changed = !S.empty() || !B.empty();
522       S.clear();
523       B.clear();
524     } else {
525       TP.error("Incompatible types");
526       return Changed;
527     }
528 
529     if (none_of(S, isVector) || none_of(B, isVector)) {
530       Changed |= berase_if(S, isVector);
531       Changed |= berase_if(B, isVector);
532     }
533   }
534 
535   auto LT = [](MVT A, MVT B) -> bool {
536     // Always treat non-scalable MVTs as smaller than scalable MVTs for the
537     // purposes of ordering.
538     auto ASize = std::tuple(A.isScalableVector(), A.getScalarSizeInBits(),
539                             A.getSizeInBits().getKnownMinValue());
540     auto BSize = std::tuple(B.isScalableVector(), B.getScalarSizeInBits(),
541                             B.getSizeInBits().getKnownMinValue());
542     return ASize < BSize;
543   };
544   auto SameKindLE = [](MVT A, MVT B) -> bool {
545     // This function is used when removing elements: when a vector is compared
546     // to a non-vector or a scalable vector to any non-scalable MVT, it should
547     // return false (to avoid removal).
548     if (std::tuple(A.isVector(), A.isScalableVector()) !=
549         std::tuple(B.isVector(), B.isScalableVector()))
550       return false;
551 
552     return std::tuple(A.getScalarSizeInBits(),
553                       A.getSizeInBits().getKnownMinValue()) <=
554            std::tuple(B.getScalarSizeInBits(),
555                       B.getSizeInBits().getKnownMinValue());
556   };
557 
558   for (unsigned M : Modes) {
559     TypeSetByHwMode::SetType &S = Small.get(M);
560     TypeSetByHwMode::SetType &B = Big.get(M);
561     // MinS = min scalar in Small, remove all scalars from Big that are
562     // smaller-or-equal than MinS.
563     auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
564     if (MinS != S.end())
565       Changed |=
566           berase_if(B, std::bind(SameKindLE, std::placeholders::_1, *MinS));
567 
568     // MaxS = max scalar in Big, remove all scalars from Small that are
569     // larger than MaxS.
570     auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
571     if (MaxS != B.end())
572       Changed |=
573           berase_if(S, std::bind(SameKindLE, *MaxS, std::placeholders::_1));
574 
575     // MinV = min vector in Small, remove all vectors from Big that are
576     // smaller-or-equal than MinV.
577     auto MinV = min_if(S.begin(), S.end(), isVector, LT);
578     if (MinV != S.end())
579       Changed |=
580           berase_if(B, std::bind(SameKindLE, std::placeholders::_1, *MinV));
581 
582     // MaxV = max vector in Big, remove all vectors from Small that are
583     // larger than MaxV.
584     auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
585     if (MaxV != B.end())
586       Changed |=
587           berase_if(S, std::bind(SameKindLE, *MaxV, std::placeholders::_1));
588   }
589 
590   return Changed;
591 }
592 
593 /// 1. Ensure that for each type T in Vec, T is a vector type, and that
594 ///    for each type U in Elem, U is a scalar type.
595 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
596 ///    type T in Vec, such that U is the element type of T.
597 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
598                                        TypeSetByHwMode &Elem) {
599   ValidateOnExit _1(Vec, *this), _2(Elem, *this);
600   if (TP.hasError())
601     return false;
602   bool Changed = false;
603 
604   if (Vec.empty())
605     Changed |= EnforceVector(Vec);
606   if (Elem.empty())
607     Changed |= EnforceScalar(Elem);
608 
609   SmallVector<unsigned, 4> Modes;
610   union_modes(Vec, Elem, Modes);
611   for (unsigned M : Modes) {
612     TypeSetByHwMode::SetType &V = Vec.get(M);
613     TypeSetByHwMode::SetType &E = Elem.get(M);
614 
615     Changed |= berase_if(V, isScalar); // Scalar = !vector
616     Changed |= berase_if(E, isVector); // Vector = !scalar
617     assert(!V.empty() && !E.empty());
618 
619     MachineValueTypeSet VT, ST;
620     // Collect element types from the "vector" set.
621     for (MVT T : V)
622       VT.insert(T.getVectorElementType());
623     // Collect scalar types from the "element" set.
624     for (MVT T : E)
625       ST.insert(T);
626 
627     // Remove from V all (vector) types whose element type is not in S.
628     Changed |= berase_if(V, [&ST](MVT T) -> bool {
629       return !ST.count(T.getVectorElementType());
630     });
631     // Remove from E all (scalar) types, for which there is no corresponding
632     // type in V.
633     Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
634   }
635 
636   return Changed;
637 }
638 
639 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
640                                        const ValueTypeByHwMode &VVT) {
641   TypeSetByHwMode Tmp(VVT);
642   ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
643   return EnforceVectorEltTypeIs(Vec, Tmp);
644 }
645 
646 /// Ensure that for each type T in Sub, T is a vector type, and there
647 /// exists a type U in Vec such that U is a vector type with the same
648 /// element type as T and at least as many elements as T.
649 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
650                                              TypeSetByHwMode &Sub) {
651   ValidateOnExit _1(Vec, *this), _2(Sub, *this);
652   if (TP.hasError())
653     return false;
654 
655   /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
656   auto IsSubVec = [](MVT B, MVT P) -> bool {
657     if (!B.isVector() || !P.isVector())
658       return false;
659     // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
660     // but until there are obvious use-cases for this, keep the
661     // types separate.
662     if (B.isScalableVector() != P.isScalableVector())
663       return false;
664     if (B.getVectorElementType() != P.getVectorElementType())
665       return false;
666     return B.getVectorMinNumElements() < P.getVectorMinNumElements();
667   };
668 
669   /// Return true if S has no element (vector type) that T is a sub-vector of,
670   /// i.e. has the same element type as T and more elements.
671   auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
672     for (auto I : S)
673       if (IsSubVec(T, I))
674         return false;
675     return true;
676   };
677 
678   /// Return true if S has no element (vector type) that T is a super-vector
679   /// of, i.e. has the same element type as T and fewer elements.
680   auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
681     for (auto I : S)
682       if (IsSubVec(I, T))
683         return false;
684     return true;
685   };
686 
687   bool Changed = false;
688 
689   if (Vec.empty())
690     Changed |= EnforceVector(Vec);
691   if (Sub.empty())
692     Changed |= EnforceVector(Sub);
693 
694   SmallVector<unsigned, 4> Modes;
695   union_modes(Vec, Sub, Modes);
696   for (unsigned M : Modes) {
697     TypeSetByHwMode::SetType &S = Sub.get(M);
698     TypeSetByHwMode::SetType &V = Vec.get(M);
699 
700     Changed |= berase_if(S, isScalar);
701 
702     // Erase all types from S that are not sub-vectors of a type in V.
703     Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
704 
705     // Erase all types from V that are not super-vectors of a type in S.
706     Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
707   }
708 
709   return Changed;
710 }
711 
712 /// 1. Ensure that V has a scalar type iff W has a scalar type.
713 /// 2. Ensure that for each vector type T in V, there exists a vector
714 ///    type U in W, such that T and U have the same number of elements.
715 /// 3. Ensure that for each vector type U in W, there exists a vector
716 ///    type T in V, such that T and U have the same number of elements
717 ///    (reverse of 2).
718 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
719   ValidateOnExit _1(V, *this), _2(W, *this);
720   if (TP.hasError())
721     return false;
722 
723   bool Changed = false;
724   if (V.empty())
725     Changed |= EnforceAny(V);
726   if (W.empty())
727     Changed |= EnforceAny(W);
728 
729   // An actual vector type cannot have 0 elements, so we can treat scalars
730   // as zero-length vectors. This way both vectors and scalars can be
731   // processed identically.
732   auto NoLength = [](const SmallDenseSet<ElementCount> &Lengths,
733                      MVT T) -> bool {
734     return !Lengths.count(T.isVector() ? T.getVectorElementCount()
735                                        : ElementCount());
736   };
737 
738   SmallVector<unsigned, 4> Modes;
739   union_modes(V, W, Modes);
740   for (unsigned M : Modes) {
741     TypeSetByHwMode::SetType &VS = V.get(M);
742     TypeSetByHwMode::SetType &WS = W.get(M);
743 
744     SmallDenseSet<ElementCount> VN, WN;
745     for (MVT T : VS)
746       VN.insert(T.isVector() ? T.getVectorElementCount() : ElementCount());
747     for (MVT T : WS)
748       WN.insert(T.isVector() ? T.getVectorElementCount() : ElementCount());
749 
750     Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
751     Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
752   }
753   return Changed;
754 }
755 
756 namespace {
757 struct TypeSizeComparator {
758   bool operator()(const TypeSize &LHS, const TypeSize &RHS) const {
759     return std::tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
760            std::tuple(RHS.isScalable(), RHS.getKnownMinValue());
761   }
762 };
763 } // end anonymous namespace
764 
765 /// 1. Ensure that for each type T in A, there exists a type U in B,
766 ///    such that T and U have equal size in bits.
767 /// 2. Ensure that for each type U in B, there exists a type T in A
768 ///    such that T and U have equal size in bits (reverse of 1).
769 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
770   ValidateOnExit _1(A, *this), _2(B, *this);
771   if (TP.hasError())
772     return false;
773   bool Changed = false;
774   if (A.empty())
775     Changed |= EnforceAny(A);
776   if (B.empty())
777     Changed |= EnforceAny(B);
778 
779   typedef SmallSet<TypeSize, 2, TypeSizeComparator> TypeSizeSet;
780 
781   auto NoSize = [](const TypeSizeSet &Sizes, MVT T) -> bool {
782     return !Sizes.count(T.getSizeInBits());
783   };
784 
785   SmallVector<unsigned, 4> Modes;
786   union_modes(A, B, Modes);
787   for (unsigned M : Modes) {
788     TypeSetByHwMode::SetType &AS = A.get(M);
789     TypeSetByHwMode::SetType &BS = B.get(M);
790     TypeSizeSet AN, BN;
791 
792     for (MVT T : AS)
793       AN.insert(T.getSizeInBits());
794     for (MVT T : BS)
795       BN.insert(T.getSizeInBits());
796 
797     Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
798     Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
799   }
800 
801   return Changed;
802 }
803 
804 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) const {
805   ValidateOnExit _1(VTS, *this);
806   const TypeSetByHwMode &Legal = getLegalTypes();
807   assert(Legal.isSimple() && "Default-mode only expected");
808   const TypeSetByHwMode::SetType &LegalTypes = Legal.getSimple();
809 
810   for (auto &I : VTS)
811     expandOverloads(I.second, LegalTypes);
812 }
813 
814 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
815                                 const TypeSetByHwMode::SetType &Legal) const {
816   if (Out.count(MVT::pAny)) {
817     Out.erase(MVT::pAny);
818     Out.insert(MVT::iPTR);
819   } else if (Out.count(MVT::iAny)) {
820     Out.erase(MVT::iAny);
821     for (MVT T : MVT::integer_valuetypes())
822       if (Legal.count(T))
823         Out.insert(T);
824     for (MVT T : MVT::integer_fixedlen_vector_valuetypes())
825       if (Legal.count(T))
826         Out.insert(T);
827     for (MVT T : MVT::integer_scalable_vector_valuetypes())
828       if (Legal.count(T))
829         Out.insert(T);
830   } else if (Out.count(MVT::fAny)) {
831     Out.erase(MVT::fAny);
832     for (MVT T : MVT::fp_valuetypes())
833       if (Legal.count(T))
834         Out.insert(T);
835     for (MVT T : MVT::fp_fixedlen_vector_valuetypes())
836       if (Legal.count(T))
837         Out.insert(T);
838     for (MVT T : MVT::fp_scalable_vector_valuetypes())
839       if (Legal.count(T))
840         Out.insert(T);
841   } else if (Out.count(MVT::vAny)) {
842     Out.erase(MVT::vAny);
843     for (MVT T : MVT::vector_valuetypes())
844       if (Legal.count(T))
845         Out.insert(T);
846   } else if (Out.count(MVT::Any)) {
847     Out.erase(MVT::Any);
848     for (MVT T : MVT::all_valuetypes())
849       if (Legal.count(T))
850         Out.insert(T);
851   }
852 }
853 
854 const TypeSetByHwMode &TypeInfer::getLegalTypes() const {
855   if (!LegalTypesCached) {
856     TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode);
857     // Stuff all types from all modes into the default mode.
858     const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
859     for (const auto &I : LTS)
860       LegalTypes.insert(I.second);
861     LegalTypesCached = true;
862   }
863   assert(LegalCache.isSimple() && "Default-mode only expected");
864   return LegalCache;
865 }
866 
867 TypeInfer::ValidateOnExit::~ValidateOnExit() {
868   if (Infer.Validate && !VTS.validate()) {
869 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
870     errs() << "Type set is empty for each HW mode:\n"
871               "possible type contradiction in the pattern below "
872               "(use -print-records with llvm-tblgen to see all "
873               "expanded records).\n";
874     Infer.TP.dump();
875     errs() << "Generated from record:\n";
876     Infer.TP.getRecord()->dump();
877 #endif
878     PrintFatalError(Infer.TP.getRecord()->getLoc(),
879                     "Type set is empty for each HW mode in '" +
880                         Infer.TP.getRecord()->getName() + "'");
881   }
882 }
883 
884 //===----------------------------------------------------------------------===//
885 // ScopedName Implementation
886 //===----------------------------------------------------------------------===//
887 
888 bool ScopedName::operator==(const ScopedName &o) const {
889   return Scope == o.Scope && Identifier == o.Identifier;
890 }
891 
892 bool ScopedName::operator!=(const ScopedName &o) const { return !(*this == o); }
893 
894 //===----------------------------------------------------------------------===//
895 // TreePredicateFn Implementation
896 //===----------------------------------------------------------------------===//
897 
898 /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
899 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
900   assert(
901       (!hasPredCode() || !hasImmCode()) &&
902       ".td file corrupt: can't have a node predicate *and* an imm predicate");
903 }
904 
905 bool TreePredicateFn::hasPredCode() const {
906   return isLoad() || isStore() || isAtomic() || hasNoUse() || hasOneUse() ||
907          !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
908 }
909 
910 std::string TreePredicateFn::getPredCode() const {
911   std::string Code;
912 
913   if (!isLoad() && !isStore() && !isAtomic() && getMemoryVT())
914     PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
915                     "MemoryVT requires IsLoad or IsStore");
916 
917   if (!isLoad() && !isStore()) {
918     if (isUnindexed())
919       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
920                       "IsUnindexed requires IsLoad or IsStore");
921 
922     if (getScalarMemoryVT())
923       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
924                       "ScalarMemoryVT requires IsLoad or IsStore");
925   }
926 
927   if (isLoad() + isStore() + isAtomic() > 1)
928     PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
929                     "IsLoad, IsStore, and IsAtomic are mutually exclusive");
930 
931   if (isLoad()) {
932     if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
933         !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
934         getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr &&
935         getMinAlignment() < 1)
936       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
937                       "IsLoad cannot be used by itself");
938   } else {
939     if (isNonExtLoad())
940       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
941                       "IsNonExtLoad requires IsLoad");
942     if (isAnyExtLoad())
943       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
944                       "IsAnyExtLoad requires IsLoad");
945 
946     if (!isAtomic()) {
947       if (isSignExtLoad())
948         PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
949                         "IsSignExtLoad requires IsLoad or IsAtomic");
950       if (isZeroExtLoad())
951         PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
952                         "IsZeroExtLoad requires IsLoad or IsAtomic");
953     }
954   }
955 
956   if (isStore()) {
957     if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
958         getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr &&
959         getAddressSpaces() == nullptr && getMinAlignment() < 1)
960       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
961                       "IsStore cannot be used by itself");
962   } else {
963     if (isNonTruncStore())
964       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
965                       "IsNonTruncStore requires IsStore");
966     if (isTruncStore())
967       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
968                       "IsTruncStore requires IsStore");
969   }
970 
971   if (isAtomic()) {
972     if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
973         getAddressSpaces() == nullptr &&
974         // FIXME: Should atomic loads be IsLoad, IsAtomic, or both?
975         !isZeroExtLoad() && !isSignExtLoad() && !isAtomicOrderingAcquire() &&
976         !isAtomicOrderingRelease() && !isAtomicOrderingAcquireRelease() &&
977         !isAtomicOrderingSequentiallyConsistent() &&
978         !isAtomicOrderingAcquireOrStronger() &&
979         !isAtomicOrderingReleaseOrStronger() &&
980         !isAtomicOrderingWeakerThanAcquire() &&
981         !isAtomicOrderingWeakerThanRelease())
982       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
983                       "IsAtomic cannot be used by itself");
984   } else {
985     if (isAtomicOrderingMonotonic())
986       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
987                       "IsAtomicOrderingMonotonic requires IsAtomic");
988     if (isAtomicOrderingAcquire())
989       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
990                       "IsAtomicOrderingAcquire requires IsAtomic");
991     if (isAtomicOrderingRelease())
992       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
993                       "IsAtomicOrderingRelease requires IsAtomic");
994     if (isAtomicOrderingAcquireRelease())
995       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
996                       "IsAtomicOrderingAcquireRelease requires IsAtomic");
997     if (isAtomicOrderingSequentiallyConsistent())
998       PrintFatalError(
999           getOrigPatFragRecord()->getRecord()->getLoc(),
1000           "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
1001     if (isAtomicOrderingAcquireOrStronger())
1002       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1003                       "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
1004     if (isAtomicOrderingReleaseOrStronger())
1005       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1006                       "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
1007     if (isAtomicOrderingWeakerThanAcquire())
1008       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1009                       "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
1010   }
1011 
1012   if (isLoad() || isStore() || isAtomic()) {
1013     if (const ListInit *AddressSpaces = getAddressSpaces()) {
1014       Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n"
1015               " if (";
1016 
1017       ListSeparator LS(" && ");
1018       for (const Init *Val : AddressSpaces->getValues()) {
1019         Code += LS;
1020 
1021         const IntInit *IntVal = dyn_cast<IntInit>(Val);
1022         if (!IntVal) {
1023           PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1024                           "AddressSpaces element must be integer");
1025         }
1026 
1027         Code += "AddrSpace != " + utostr(IntVal->getValue());
1028       }
1029 
1030       Code += ")\nreturn false;\n";
1031     }
1032 
1033     int64_t MinAlign = getMinAlignment();
1034     if (MinAlign > 0) {
1035       Code += "if (cast<MemSDNode>(N)->getAlign() < Align(";
1036       Code += utostr(MinAlign);
1037       Code += "))\nreturn false;\n";
1038     }
1039 
1040     if (const Record *MemoryVT = getMemoryVT())
1041       Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" +
1042                MemoryVT->getName() + ") return false;\n")
1043                   .str();
1044   }
1045 
1046   if (isAtomic() && isAtomicOrderingMonotonic())
1047     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1048             "AtomicOrdering::Monotonic) return false;\n";
1049   if (isAtomic() && isAtomicOrderingAcquire())
1050     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1051             "AtomicOrdering::Acquire) return false;\n";
1052   if (isAtomic() && isAtomicOrderingRelease())
1053     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1054             "AtomicOrdering::Release) return false;\n";
1055   if (isAtomic() && isAtomicOrderingAcquireRelease())
1056     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1057             "AtomicOrdering::AcquireRelease) return false;\n";
1058   if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
1059     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1060             "AtomicOrdering::SequentiallyConsistent) return false;\n";
1061 
1062   if (isAtomic() && isAtomicOrderingAcquireOrStronger())
1063     Code +=
1064         "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1065         "return false;\n";
1066   if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
1067     Code +=
1068         "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1069         "return false;\n";
1070 
1071   if (isAtomic() && isAtomicOrderingReleaseOrStronger())
1072     Code +=
1073         "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1074         "return false;\n";
1075   if (isAtomic() && isAtomicOrderingWeakerThanRelease())
1076     Code +=
1077         "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1078         "return false;\n";
1079 
1080   // TODO: Handle atomic sextload/zextload normally when ATOMIC_LOAD is removed.
1081   if (isAtomic() && (isZeroExtLoad() || isSignExtLoad()))
1082     Code += "return false;\n";
1083 
1084   if (isLoad() || isStore()) {
1085     StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
1086 
1087     if (isUnindexed())
1088       Code += ("if (cast<" + SDNodeName +
1089                ">(N)->getAddressingMode() != ISD::UNINDEXED) "
1090                "return false;\n")
1091                   .str();
1092 
1093     if (isLoad()) {
1094       if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
1095            isZeroExtLoad()) > 1)
1096         PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1097                         "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
1098                         "IsZeroExtLoad are mutually exclusive");
1099       if (isNonExtLoad())
1100         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
1101                 "ISD::NON_EXTLOAD) return false;\n";
1102       if (isAnyExtLoad())
1103         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
1104                 "return false;\n";
1105       if (isSignExtLoad())
1106         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
1107                 "return false;\n";
1108       if (isZeroExtLoad())
1109         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
1110                 "return false;\n";
1111     } else {
1112       if ((isNonTruncStore() + isTruncStore()) > 1)
1113         PrintFatalError(
1114             getOrigPatFragRecord()->getRecord()->getLoc(),
1115             "IsNonTruncStore, and IsTruncStore are mutually exclusive");
1116       if (isNonTruncStore())
1117         Code +=
1118             " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1119       if (isTruncStore())
1120         Code +=
1121             " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1122     }
1123 
1124     if (const Record *ScalarMemoryVT = getScalarMemoryVT())
1125       Code += ("if (cast<" + SDNodeName +
1126                ">(N)->getMemoryVT().getScalarType() != MVT::" +
1127                ScalarMemoryVT->getName() + ") return false;\n")
1128                   .str();
1129   }
1130 
1131   if (hasNoUse())
1132     Code += "if (!SDValue(N, 0).use_empty()) return false;\n";
1133   if (hasOneUse())
1134     Code += "if (!SDValue(N, 0).hasOneUse()) return false;\n";
1135 
1136   std::string PredicateCode =
1137       std::string(PatFragRec->getRecord()->getValueAsString("PredicateCode"));
1138 
1139   Code += PredicateCode;
1140 
1141   if (PredicateCode.empty() && !Code.empty())
1142     Code += "return true;\n";
1143 
1144   return Code;
1145 }
1146 
1147 bool TreePredicateFn::hasImmCode() const {
1148   return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
1149 }
1150 
1151 std::string TreePredicateFn::getImmCode() const {
1152   return std::string(
1153       PatFragRec->getRecord()->getValueAsString("ImmediateCode"));
1154 }
1155 
1156 bool TreePredicateFn::immCodeUsesAPInt() const {
1157   return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
1158 }
1159 
1160 bool TreePredicateFn::immCodeUsesAPFloat() const {
1161   bool Unset;
1162   // The return value will be false when IsAPFloat is unset.
1163   return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
1164                                                                    Unset);
1165 }
1166 
1167 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
1168                                                    bool Value) const {
1169   bool Unset;
1170   bool Result =
1171       getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
1172   if (Unset)
1173     return false;
1174   return Result == Value;
1175 }
1176 bool TreePredicateFn::usesOperands() const {
1177   return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true);
1178 }
1179 bool TreePredicateFn::hasNoUse() const {
1180   return isPredefinedPredicateEqualTo("HasNoUse", true);
1181 }
1182 bool TreePredicateFn::hasOneUse() const {
1183   return isPredefinedPredicateEqualTo("HasOneUse", true);
1184 }
1185 bool TreePredicateFn::isLoad() const {
1186   return isPredefinedPredicateEqualTo("IsLoad", true);
1187 }
1188 bool TreePredicateFn::isStore() const {
1189   return isPredefinedPredicateEqualTo("IsStore", true);
1190 }
1191 bool TreePredicateFn::isAtomic() const {
1192   return isPredefinedPredicateEqualTo("IsAtomic", true);
1193 }
1194 bool TreePredicateFn::isUnindexed() const {
1195   return isPredefinedPredicateEqualTo("IsUnindexed", true);
1196 }
1197 bool TreePredicateFn::isNonExtLoad() const {
1198   return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
1199 }
1200 bool TreePredicateFn::isAnyExtLoad() const {
1201   return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
1202 }
1203 bool TreePredicateFn::isSignExtLoad() const {
1204   return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
1205 }
1206 bool TreePredicateFn::isZeroExtLoad() const {
1207   return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
1208 }
1209 bool TreePredicateFn::isNonTruncStore() const {
1210   return isPredefinedPredicateEqualTo("IsTruncStore", false);
1211 }
1212 bool TreePredicateFn::isTruncStore() const {
1213   return isPredefinedPredicateEqualTo("IsTruncStore", true);
1214 }
1215 bool TreePredicateFn::isAtomicOrderingMonotonic() const {
1216   return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
1217 }
1218 bool TreePredicateFn::isAtomicOrderingAcquire() const {
1219   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
1220 }
1221 bool TreePredicateFn::isAtomicOrderingRelease() const {
1222   return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
1223 }
1224 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
1225   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
1226 }
1227 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
1228   return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
1229                                       true);
1230 }
1231 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
1232   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger",
1233                                       true);
1234 }
1235 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
1236   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger",
1237                                       false);
1238 }
1239 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
1240   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger",
1241                                       true);
1242 }
1243 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
1244   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger",
1245                                       false);
1246 }
1247 const Record *TreePredicateFn::getMemoryVT() const {
1248   const Record *R = getOrigPatFragRecord()->getRecord();
1249   if (R->isValueUnset("MemoryVT"))
1250     return nullptr;
1251   return R->getValueAsDef("MemoryVT");
1252 }
1253 
1254 const ListInit *TreePredicateFn::getAddressSpaces() const {
1255   const Record *R = getOrigPatFragRecord()->getRecord();
1256   if (R->isValueUnset("AddressSpaces"))
1257     return nullptr;
1258   return R->getValueAsListInit("AddressSpaces");
1259 }
1260 
1261 int64_t TreePredicateFn::getMinAlignment() const {
1262   const Record *R = getOrigPatFragRecord()->getRecord();
1263   if (R->isValueUnset("MinAlignment"))
1264     return 0;
1265   return R->getValueAsInt("MinAlignment");
1266 }
1267 
1268 const Record *TreePredicateFn::getScalarMemoryVT() const {
1269   const Record *R = getOrigPatFragRecord()->getRecord();
1270   if (R->isValueUnset("ScalarMemoryVT"))
1271     return nullptr;
1272   return R->getValueAsDef("ScalarMemoryVT");
1273 }
1274 bool TreePredicateFn::hasGISelPredicateCode() const {
1275   return !PatFragRec->getRecord()
1276               ->getValueAsString("GISelPredicateCode")
1277               .empty();
1278 }
1279 std::string TreePredicateFn::getGISelPredicateCode() const {
1280   return std::string(
1281       PatFragRec->getRecord()->getValueAsString("GISelPredicateCode"));
1282 }
1283 
1284 StringRef TreePredicateFn::getImmType() const {
1285   if (immCodeUsesAPInt())
1286     return "const APInt &";
1287   if (immCodeUsesAPFloat())
1288     return "const APFloat &";
1289   return "int64_t";
1290 }
1291 
1292 StringRef TreePredicateFn::getImmTypeIdentifier() const {
1293   if (immCodeUsesAPInt())
1294     return "APInt";
1295   if (immCodeUsesAPFloat())
1296     return "APFloat";
1297   return "I64";
1298 }
1299 
1300 /// isAlwaysTrue - Return true if this is a noop predicate.
1301 bool TreePredicateFn::isAlwaysTrue() const {
1302   return !hasPredCode() && !hasImmCode();
1303 }
1304 
1305 /// Return the name to use in the generated code to reference this, this is
1306 /// "Predicate_foo" if from a pattern fragment "foo".
1307 std::string TreePredicateFn::getFnName() const {
1308   return "Predicate_" + PatFragRec->getRecord()->getName().str();
1309 }
1310 
1311 /// getCodeToRunOnSDNode - Return the code for the function body that
1312 /// evaluates this predicate.  The argument is expected to be in "Node",
1313 /// not N.  This handles casting and conversion to a concrete node type as
1314 /// appropriate.
1315 std::string TreePredicateFn::getCodeToRunOnSDNode() const {
1316   // Handle immediate predicates first.
1317   std::string ImmCode = getImmCode();
1318   if (!ImmCode.empty()) {
1319     if (isLoad())
1320       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1321                       "IsLoad cannot be used with ImmLeaf or its subclasses");
1322     if (isStore())
1323       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1324                       "IsStore cannot be used with ImmLeaf or its subclasses");
1325     if (isUnindexed())
1326       PrintFatalError(
1327           getOrigPatFragRecord()->getRecord()->getLoc(),
1328           "IsUnindexed cannot be used with ImmLeaf or its subclasses");
1329     if (isNonExtLoad())
1330       PrintFatalError(
1331           getOrigPatFragRecord()->getRecord()->getLoc(),
1332           "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
1333     if (isAnyExtLoad())
1334       PrintFatalError(
1335           getOrigPatFragRecord()->getRecord()->getLoc(),
1336           "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
1337     if (isSignExtLoad())
1338       PrintFatalError(
1339           getOrigPatFragRecord()->getRecord()->getLoc(),
1340           "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
1341     if (isZeroExtLoad())
1342       PrintFatalError(
1343           getOrigPatFragRecord()->getRecord()->getLoc(),
1344           "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
1345     if (isNonTruncStore())
1346       PrintFatalError(
1347           getOrigPatFragRecord()->getRecord()->getLoc(),
1348           "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
1349     if (isTruncStore())
1350       PrintFatalError(
1351           getOrigPatFragRecord()->getRecord()->getLoc(),
1352           "IsTruncStore cannot be used with ImmLeaf or its subclasses");
1353     if (getMemoryVT())
1354       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1355                       "MemoryVT cannot be used with ImmLeaf or its subclasses");
1356     if (getScalarMemoryVT())
1357       PrintFatalError(
1358           getOrigPatFragRecord()->getRecord()->getLoc(),
1359           "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
1360 
1361     std::string Result = ("    " + getImmType() + " Imm = ").str();
1362     if (immCodeUsesAPFloat())
1363       Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
1364     else if (immCodeUsesAPInt())
1365       Result += "Node->getAsAPIntVal();\n";
1366     else
1367       Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
1368     return Result + ImmCode;
1369   }
1370 
1371   // Handle arbitrary node predicates.
1372   assert(hasPredCode() && "Don't have any predicate code!");
1373 
1374   // If this is using PatFrags, there are multiple trees to search. They should
1375   // all have the same class.  FIXME: Is there a way to find a common
1376   // superclass?
1377   StringRef ClassName;
1378   for (const auto &Tree : PatFragRec->getTrees()) {
1379     StringRef TreeClassName;
1380     if (Tree->isLeaf())
1381       TreeClassName = "SDNode";
1382     else {
1383       const Record *Op = Tree->getOperator();
1384       const SDNodeInfo &Info = PatFragRec->getDAGPatterns().getSDNodeInfo(Op);
1385       TreeClassName = Info.getSDClassName();
1386     }
1387 
1388     if (ClassName.empty())
1389       ClassName = TreeClassName;
1390     else if (ClassName != TreeClassName) {
1391       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1392                       "PatFrags trees do not have consistent class");
1393     }
1394   }
1395 
1396   std::string Result;
1397   if (ClassName == "SDNode")
1398     Result = "    SDNode *N = Node;\n";
1399   else
1400     Result = "    auto *N = cast<" + ClassName.str() + ">(Node);\n";
1401 
1402   return (Twine(Result) + "    (void)N;\n" + getPredCode()).str();
1403 }
1404 
1405 //===----------------------------------------------------------------------===//
1406 // PatternToMatch implementation
1407 //
1408 
1409 static bool isImmAllOnesAllZerosMatch(const TreePatternNode &P) {
1410   if (!P.isLeaf())
1411     return false;
1412   const DefInit *DI = dyn_cast<DefInit>(P.getLeafValue());
1413   if (!DI)
1414     return false;
1415 
1416   const Record *R = DI->getDef();
1417   return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV";
1418 }
1419 
1420 /// getPatternSize - Return the 'size' of this pattern.  We want to match large
1421 /// patterns before small ones.  This is used to determine the size of a
1422 /// pattern.
1423 static unsigned getPatternSize(const TreePatternNode &P,
1424                                const CodeGenDAGPatterns &CGP) {
1425   unsigned Size = 3; // The node itself.
1426   // If the root node is a ConstantSDNode, increases its size.
1427   // e.g. (set R32:$dst, 0).
1428   if (P.isLeaf() && isa<IntInit>(P.getLeafValue()))
1429     Size += 2;
1430 
1431   if (const ComplexPattern *AM = P.getComplexPatternInfo(CGP)) {
1432     Size += AM->getComplexity();
1433     // We don't want to count any children twice, so return early.
1434     return Size;
1435   }
1436 
1437   // If this node has some predicate function that must match, it adds to the
1438   // complexity of this node.
1439   if (!P.getPredicateCalls().empty())
1440     ++Size;
1441 
1442   // Count children in the count if they are also nodes.
1443   for (const TreePatternNode &Child : P.children()) {
1444     if (!Child.isLeaf() && Child.getNumTypes()) {
1445       const TypeSetByHwMode &T0 = Child.getExtType(0);
1446       // At this point, all variable type sets should be simple, i.e. only
1447       // have a default mode.
1448       if (T0.getMachineValueType() != MVT::Other) {
1449         Size += getPatternSize(Child, CGP);
1450         continue;
1451       }
1452     }
1453     if (Child.isLeaf()) {
1454       if (isa<IntInit>(Child.getLeafValue()))
1455         Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
1456       else if (Child.getComplexPatternInfo(CGP))
1457         Size += getPatternSize(Child, CGP);
1458       else if (isImmAllOnesAllZerosMatch(Child))
1459         Size += 4; // Matches a build_vector(+3) and a predicate (+1).
1460       else if (!Child.getPredicateCalls().empty())
1461         ++Size;
1462     }
1463   }
1464 
1465   return Size;
1466 }
1467 
1468 /// Compute the complexity metric for the input pattern.  This roughly
1469 /// corresponds to the number of nodes that are covered.
1470 int PatternToMatch::getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
1471   return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
1472 }
1473 
1474 void PatternToMatch::getPredicateRecords(
1475     SmallVectorImpl<const Record *> &PredicateRecs) const {
1476   for (const Init *I : Predicates->getValues()) {
1477     if (const DefInit *Pred = dyn_cast<DefInit>(I)) {
1478       const Record *Def = Pred->getDef();
1479       if (!Def->isSubClassOf("Predicate")) {
1480 #ifndef NDEBUG
1481         Def->dump();
1482 #endif
1483         llvm_unreachable("Unknown predicate type!");
1484       }
1485       PredicateRecs.push_back(Def);
1486     }
1487   }
1488   // Sort so that different orders get canonicalized to the same string.
1489   llvm::sort(PredicateRecs, LessRecord());
1490   // Remove duplicate predicates.
1491   PredicateRecs.erase(llvm::unique(PredicateRecs), PredicateRecs.end());
1492 }
1493 
1494 /// getPredicateCheck - Return a single string containing all of this
1495 /// pattern's predicates concatenated with "&&" operators.
1496 ///
1497 std::string PatternToMatch::getPredicateCheck() const {
1498   SmallVector<const Record *, 4> PredicateRecs;
1499   getPredicateRecords(PredicateRecs);
1500 
1501   SmallString<128> PredicateCheck;
1502   raw_svector_ostream OS(PredicateCheck);
1503   ListSeparator LS(" && ");
1504   for (const Record *Pred : PredicateRecs) {
1505     StringRef CondString = Pred->getValueAsString("CondString");
1506     if (CondString.empty())
1507       continue;
1508     OS << LS << '(' << CondString << ')';
1509   }
1510 
1511   if (!HwModeFeatures.empty())
1512     OS << LS << HwModeFeatures;
1513 
1514   return std::string(PredicateCheck);
1515 }
1516 
1517 //===----------------------------------------------------------------------===//
1518 // SDTypeConstraint implementation
1519 //
1520 
1521 SDTypeConstraint::SDTypeConstraint(const Record *R, const CodeGenHwModes &CGH) {
1522   OperandNo = R->getValueAsInt("OperandNum");
1523 
1524   if (R->isSubClassOf("SDTCisVT")) {
1525     ConstraintType = SDTCisVT;
1526     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1527     for (const auto &P : VVT)
1528       if (P.second == MVT::isVoid)
1529         PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
1530   } else if (R->isSubClassOf("SDTCisPtrTy")) {
1531     ConstraintType = SDTCisPtrTy;
1532   } else if (R->isSubClassOf("SDTCisInt")) {
1533     ConstraintType = SDTCisInt;
1534   } else if (R->isSubClassOf("SDTCisFP")) {
1535     ConstraintType = SDTCisFP;
1536   } else if (R->isSubClassOf("SDTCisVec")) {
1537     ConstraintType = SDTCisVec;
1538   } else if (R->isSubClassOf("SDTCisSameAs")) {
1539     ConstraintType = SDTCisSameAs;
1540     x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
1541   } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
1542     ConstraintType = SDTCisVTSmallerThanOp;
1543     x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
1544         R->getValueAsInt("OtherOperandNum");
1545   } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
1546     ConstraintType = SDTCisOpSmallerThanOp;
1547     x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
1548         R->getValueAsInt("BigOperandNum");
1549   } else if (R->isSubClassOf("SDTCisEltOfVec")) {
1550     ConstraintType = SDTCisEltOfVec;
1551     x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1552   } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
1553     ConstraintType = SDTCisSubVecOfVec;
1554     x.SDTCisSubVecOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1555   } else if (R->isSubClassOf("SDTCVecEltisVT")) {
1556     ConstraintType = SDTCVecEltisVT;
1557     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1558     for (const auto &P : VVT) {
1559       MVT T = P.second;
1560       if (T.isVector())
1561         PrintFatalError(R->getLoc(),
1562                         "Cannot use vector type as SDTCVecEltisVT");
1563       if (!T.isInteger() && !T.isFloatingPoint())
1564         PrintFatalError(R->getLoc(), "Must use integer or floating point type "
1565                                      "as SDTCVecEltisVT");
1566     }
1567   } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
1568     ConstraintType = SDTCisSameNumEltsAs;
1569     x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
1570         R->getValueAsInt("OtherOperandNum");
1571   } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
1572     ConstraintType = SDTCisSameSizeAs;
1573     x.SDTCisSameSizeAs_Info.OtherOperandNum =
1574         R->getValueAsInt("OtherOperandNum");
1575   } else {
1576     PrintFatalError(R->getLoc(),
1577                     "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
1578   }
1579 }
1580 
1581 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
1582 /// N, and the result number in ResNo.
1583 static TreePatternNode &getOperandNum(unsigned OpNo, TreePatternNode &N,
1584                                       const SDNodeInfo &NodeInfo,
1585                                       unsigned &ResNo) {
1586   unsigned NumResults = NodeInfo.getNumResults();
1587   if (OpNo < NumResults) {
1588     ResNo = OpNo;
1589     return N;
1590   }
1591 
1592   OpNo -= NumResults;
1593 
1594   if (OpNo >= N.getNumChildren()) {
1595     PrintFatalError([&N, OpNo, NumResults](raw_ostream &OS) {
1596       OS << "Invalid operand number in type constraint " << (OpNo + NumResults);
1597       N.print(OS);
1598     });
1599   }
1600   return N.getChild(OpNo);
1601 }
1602 
1603 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
1604 /// constraint to the nodes operands.  This returns true if it makes a
1605 /// change, false otherwise.  If a type contradiction is found, flag an error.
1606 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode &N,
1607                                            const SDNodeInfo &NodeInfo,
1608                                            TreePattern &TP) const {
1609   if (TP.hasError())
1610     return false;
1611 
1612   unsigned ResNo = 0; // The result number being referenced.
1613   TreePatternNode &NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
1614   TypeInfer &TI = TP.getInfer();
1615 
1616   switch (ConstraintType) {
1617   case SDTCisVT:
1618     // Operand must be a particular type.
1619     return NodeToApply.UpdateNodeType(ResNo, VVT, TP);
1620   case SDTCisPtrTy:
1621     // Operand must be same as target pointer type.
1622     return NodeToApply.UpdateNodeType(ResNo, MVT::iPTR, TP);
1623   case SDTCisInt:
1624     // Require it to be one of the legal integer VTs.
1625     return TI.EnforceInteger(NodeToApply.getExtType(ResNo));
1626   case SDTCisFP:
1627     // Require it to be one of the legal fp VTs.
1628     return TI.EnforceFloatingPoint(NodeToApply.getExtType(ResNo));
1629   case SDTCisVec:
1630     // Require it to be one of the legal vector VTs.
1631     return TI.EnforceVector(NodeToApply.getExtType(ResNo));
1632   case SDTCisSameAs: {
1633     unsigned OResNo = 0;
1634     TreePatternNode &OtherNode =
1635         getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1636     return (int)NodeToApply.UpdateNodeType(ResNo, OtherNode.getExtType(OResNo),
1637                                            TP) |
1638            (int)OtherNode.UpdateNodeType(OResNo, NodeToApply.getExtType(ResNo),
1639                                          TP);
1640   }
1641   case SDTCisVTSmallerThanOp: {
1642     // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
1643     // have an integer type that is smaller than the VT.
1644     if (!NodeToApply.isLeaf() || !isa<DefInit>(NodeToApply.getLeafValue()) ||
1645         !cast<DefInit>(NodeToApply.getLeafValue())
1646              ->getDef()
1647              ->isSubClassOf("ValueType")) {
1648       TP.error(N.getOperator()->getName() + " expects a VT operand!");
1649       return false;
1650     }
1651     const DefInit *DI = cast<DefInit>(NodeToApply.getLeafValue());
1652     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1653     auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
1654     TypeSetByHwMode TypeListTmp(VVT);
1655 
1656     unsigned OResNo = 0;
1657     TreePatternNode &OtherNode = getOperandNum(
1658         x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, OResNo);
1659 
1660     return TI.EnforceSmallerThan(TypeListTmp, OtherNode.getExtType(OResNo),
1661                                  /*SmallIsVT*/ true);
1662   }
1663   case SDTCisOpSmallerThanOp: {
1664     unsigned BResNo = 0;
1665     TreePatternNode &BigOperand = getOperandNum(
1666         x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, BResNo);
1667     return TI.EnforceSmallerThan(NodeToApply.getExtType(ResNo),
1668                                  BigOperand.getExtType(BResNo));
1669   }
1670   case SDTCisEltOfVec: {
1671     unsigned VResNo = 0;
1672     TreePatternNode &VecOperand = getOperandNum(
1673         x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, VResNo);
1674     // Filter vector types out of VecOperand that don't have the right element
1675     // type.
1676     return TI.EnforceVectorEltTypeIs(VecOperand.getExtType(VResNo),
1677                                      NodeToApply.getExtType(ResNo));
1678   }
1679   case SDTCisSubVecOfVec: {
1680     unsigned VResNo = 0;
1681     TreePatternNode &BigVecOperand = getOperandNum(
1682         x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, VResNo);
1683 
1684     // Filter vector types out of BigVecOperand that don't have the
1685     // right subvector type.
1686     return TI.EnforceVectorSubVectorTypeIs(BigVecOperand.getExtType(VResNo),
1687                                            NodeToApply.getExtType(ResNo));
1688   }
1689   case SDTCVecEltisVT: {
1690     return TI.EnforceVectorEltTypeIs(NodeToApply.getExtType(ResNo), VVT);
1691   }
1692   case SDTCisSameNumEltsAs: {
1693     unsigned OResNo = 0;
1694     TreePatternNode &OtherNode = getOperandNum(
1695         x.SDTCisSameNumEltsAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1696     return TI.EnforceSameNumElts(OtherNode.getExtType(OResNo),
1697                                  NodeToApply.getExtType(ResNo));
1698   }
1699   case SDTCisSameSizeAs: {
1700     unsigned OResNo = 0;
1701     TreePatternNode &OtherNode = getOperandNum(
1702         x.SDTCisSameSizeAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1703     return TI.EnforceSameSize(OtherNode.getExtType(OResNo),
1704                               NodeToApply.getExtType(ResNo));
1705   }
1706   }
1707   llvm_unreachable("Invalid ConstraintType!");
1708 }
1709 
1710 // Update the node type to match an instruction operand or result as specified
1711 // in the ins or outs lists on the instruction definition. Return true if the
1712 // type was actually changed.
1713 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
1714                                              const Record *Operand,
1715                                              TreePattern &TP) {
1716   // The 'unknown' operand indicates that types should be inferred from the
1717   // context.
1718   if (Operand->isSubClassOf("unknown_class"))
1719     return false;
1720 
1721   // The Operand class specifies a type directly.
1722   if (Operand->isSubClassOf("Operand")) {
1723     const Record *R = Operand->getValueAsDef("Type");
1724     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1725     return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
1726   }
1727 
1728   // PointerLikeRegClass has a type that is determined at runtime.
1729   if (Operand->isSubClassOf("PointerLikeRegClass"))
1730     return UpdateNodeType(ResNo, MVT::iPTR, TP);
1731 
1732   // Both RegisterClass and RegisterOperand operands derive their types from a
1733   // register class def.
1734   const Record *RC = nullptr;
1735   if (Operand->isSubClassOf("RegisterClass"))
1736     RC = Operand;
1737   else if (Operand->isSubClassOf("RegisterOperand"))
1738     RC = Operand->getValueAsDef("RegClass");
1739 
1740   assert(RC && "Unknown operand type");
1741   CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1742   return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1743 }
1744 
1745 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
1746   for (unsigned i = 0, e = Types.size(); i != e; ++i)
1747     if (!TP.getInfer().isConcrete(Types[i], true))
1748       return true;
1749   for (const TreePatternNode &Child : children())
1750     if (Child.ContainsUnresolvedType(TP))
1751       return true;
1752   return false;
1753 }
1754 
1755 bool TreePatternNode::hasProperTypeByHwMode() const {
1756   for (const TypeSetByHwMode &S : Types)
1757     if (!S.isSimple())
1758       return true;
1759   for (const TreePatternNodePtr &C : Children)
1760     if (C->hasProperTypeByHwMode())
1761       return true;
1762   return false;
1763 }
1764 
1765 bool TreePatternNode::hasPossibleType() const {
1766   for (const TypeSetByHwMode &S : Types)
1767     if (!S.isPossible())
1768       return false;
1769   for (const TreePatternNodePtr &C : Children)
1770     if (!C->hasPossibleType())
1771       return false;
1772   return true;
1773 }
1774 
1775 bool TreePatternNode::setDefaultMode(unsigned Mode) {
1776   for (TypeSetByHwMode &S : Types) {
1777     S.makeSimple(Mode);
1778     // Check if the selected mode had a type conflict.
1779     if (S.get(DefaultMode).empty())
1780       return false;
1781   }
1782   for (const TreePatternNodePtr &C : Children)
1783     if (!C->setDefaultMode(Mode))
1784       return false;
1785   return true;
1786 }
1787 
1788 //===----------------------------------------------------------------------===//
1789 // SDNodeInfo implementation
1790 //
1791 SDNodeInfo::SDNodeInfo(const Record *R, const CodeGenHwModes &CGH) : Def(R) {
1792   EnumName = R->getValueAsString("Opcode");
1793   SDClassName = R->getValueAsString("SDClass");
1794   const Record *TypeProfile = R->getValueAsDef("TypeProfile");
1795   NumResults = TypeProfile->getValueAsInt("NumResults");
1796   NumOperands = TypeProfile->getValueAsInt("NumOperands");
1797 
1798   // Parse the properties.
1799   Properties = parseSDPatternOperatorProperties(R);
1800 
1801   // Parse the type constraints.
1802   for (const Record *R : TypeProfile->getValueAsListOfDefs("Constraints"))
1803     TypeConstraints.emplace_back(R, CGH);
1804 }
1805 
1806 /// getKnownType - If the type constraints on this node imply a fixed type
1807 /// (e.g. all stores return void, etc), then return it as an
1808 /// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
1809 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1810   unsigned NumResults = getNumResults();
1811   assert(NumResults <= 1 &&
1812          "We only work with nodes with zero or one result so far!");
1813   assert(ResNo == 0 && "Only handles single result nodes so far");
1814 
1815   for (const SDTypeConstraint &Constraint : TypeConstraints) {
1816     // Make sure that this applies to the correct node result.
1817     if (Constraint.OperandNo >= NumResults) // FIXME: need value #
1818       continue;
1819 
1820     switch (Constraint.ConstraintType) {
1821     default:
1822       break;
1823     case SDTypeConstraint::SDTCisVT:
1824       if (Constraint.VVT.isSimple())
1825         return Constraint.VVT.getSimple().SimpleTy;
1826       break;
1827     case SDTypeConstraint::SDTCisPtrTy:
1828       return MVT::iPTR;
1829     }
1830   }
1831   return MVT::Other;
1832 }
1833 
1834 //===----------------------------------------------------------------------===//
1835 // TreePatternNode implementation
1836 //
1837 
1838 static unsigned GetNumNodeResults(const Record *Operator,
1839                                   CodeGenDAGPatterns &CDP) {
1840   if (Operator->getName() == "set")
1841     return 0; // All return nothing.
1842 
1843   if (Operator->isSubClassOf("Intrinsic"))
1844     return CDP.getIntrinsic(Operator).IS.RetTys.size();
1845 
1846   if (Operator->isSubClassOf("SDNode"))
1847     return CDP.getSDNodeInfo(Operator).getNumResults();
1848 
1849   if (Operator->isSubClassOf("PatFrags")) {
1850     // If we've already parsed this pattern fragment, get it.  Otherwise, handle
1851     // the forward reference case where one pattern fragment references another
1852     // before it is processed.
1853     if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) {
1854       // The number of results of a fragment with alternative records is the
1855       // maximum number of results across all alternatives.
1856       unsigned NumResults = 0;
1857       for (const auto &T : PFRec->getTrees())
1858         NumResults = std::max(NumResults, T->getNumTypes());
1859       return NumResults;
1860     }
1861 
1862     const ListInit *LI = Operator->getValueAsListInit("Fragments");
1863     assert(LI && "Invalid Fragment");
1864     unsigned NumResults = 0;
1865     for (const Init *I : LI->getValues()) {
1866       const Record *Op = nullptr;
1867       if (const DagInit *Dag = dyn_cast<DagInit>(I))
1868         if (const DefInit *DI = dyn_cast<DefInit>(Dag->getOperator()))
1869           Op = DI->getDef();
1870       assert(Op && "Invalid Fragment");
1871       NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP));
1872     }
1873     return NumResults;
1874   }
1875 
1876   if (Operator->isSubClassOf("Instruction")) {
1877     CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1878 
1879     unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1880 
1881     // Subtract any defaulted outputs.
1882     for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1883       const Record *OperandNode = InstInfo.Operands[i].Rec;
1884 
1885       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1886           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1887         --NumDefsToAdd;
1888     }
1889 
1890     // Add on one implicit def if it has a resolvable type.
1891     if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=
1892         MVT::Other)
1893       ++NumDefsToAdd;
1894     return NumDefsToAdd;
1895   }
1896 
1897   if (Operator->isSubClassOf("SDNodeXForm"))
1898     return 1; // FIXME: Generalize SDNodeXForm
1899 
1900   if (Operator->isSubClassOf("ValueType"))
1901     return 1; // A type-cast of one result.
1902 
1903   if (Operator->isSubClassOf("ComplexPattern"))
1904     return 1;
1905 
1906   errs() << *Operator;
1907   PrintFatalError("Unhandled node in GetNumNodeResults");
1908 }
1909 
1910 void TreePatternNode::print(raw_ostream &OS) const {
1911   if (isLeaf())
1912     OS << *getLeafValue();
1913   else
1914     OS << '(' << getOperator()->getName();
1915 
1916   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1917     OS << ':';
1918     getExtType(i).writeToStream(OS);
1919   }
1920 
1921   if (!isLeaf()) {
1922     if (getNumChildren() != 0) {
1923       OS << " ";
1924       ListSeparator LS;
1925       for (const TreePatternNode &Child : children()) {
1926         OS << LS;
1927         Child.print(OS);
1928       }
1929     }
1930     OS << ")";
1931   }
1932 
1933   for (const TreePredicateCall &Pred : PredicateCalls) {
1934     OS << "<<P:";
1935     if (Pred.Scope)
1936       OS << Pred.Scope << ":";
1937     OS << Pred.Fn.getFnName() << ">>";
1938   }
1939   if (TransformFn)
1940     OS << "<<X:" << TransformFn->getName() << ">>";
1941   if (!getName().empty())
1942     OS << ":$" << getName();
1943 
1944   for (const ScopedName &Name : NamesAsPredicateArg)
1945     OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier();
1946 }
1947 void TreePatternNode::dump() const { print(errs()); }
1948 
1949 /// isIsomorphicTo - Return true if this node is recursively
1950 /// isomorphic to the specified node.  For this comparison, the node's
1951 /// entire state is considered. The assigned name is ignored, since
1952 /// nodes with differing names are considered isomorphic. However, if
1953 /// the assigned name is present in the dependent variable set, then
1954 /// the assigned name is considered significant and the node is
1955 /// isomorphic if the names match.
1956 bool TreePatternNode::isIsomorphicTo(const TreePatternNode &N,
1957                                      const MultipleUseVarSet &DepVars) const {
1958   if (&N == this)
1959     return true;
1960   if (N.isLeaf() != isLeaf())
1961     return false;
1962 
1963   // Check operator of non-leaves early since it can be cheaper than checking
1964   // types.
1965   if (!isLeaf())
1966     if (N.getOperator() != getOperator() ||
1967         N.getNumChildren() != getNumChildren())
1968       return false;
1969 
1970   if (getExtTypes() != N.getExtTypes() ||
1971       getPredicateCalls() != N.getPredicateCalls() ||
1972       getTransformFn() != N.getTransformFn())
1973     return false;
1974 
1975   if (isLeaf()) {
1976     if (const DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1977       if (const DefInit *NDI = dyn_cast<DefInit>(N.getLeafValue())) {
1978         return ((DI->getDef() == NDI->getDef()) &&
1979                 (!DepVars.contains(getName()) || getName() == N.getName()));
1980       }
1981     }
1982     return getLeafValue() == N.getLeafValue();
1983   }
1984 
1985   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1986     if (!getChild(i).isIsomorphicTo(N.getChild(i), DepVars))
1987       return false;
1988   return true;
1989 }
1990 
1991 /// clone - Make a copy of this tree and all of its children.
1992 ///
1993 TreePatternNodePtr TreePatternNode::clone() const {
1994   TreePatternNodePtr New;
1995   if (isLeaf()) {
1996     New = makeIntrusiveRefCnt<TreePatternNode>(getLeafValue(), getNumTypes());
1997   } else {
1998     std::vector<TreePatternNodePtr> CChildren;
1999     CChildren.reserve(Children.size());
2000     for (const TreePatternNode &Child : children())
2001       CChildren.push_back(Child.clone());
2002     New = makeIntrusiveRefCnt<TreePatternNode>(
2003         getOperator(), std::move(CChildren), getNumTypes());
2004   }
2005   New->setName(getName());
2006   New->setNamesAsPredicateArg(getNamesAsPredicateArg());
2007   New->Types = Types;
2008   New->setPredicateCalls(getPredicateCalls());
2009   New->setGISelFlagsRecord(getGISelFlagsRecord());
2010   New->setTransformFn(getTransformFn());
2011   return New;
2012 }
2013 
2014 /// RemoveAllTypes - Recursively strip all the types of this tree.
2015 void TreePatternNode::RemoveAllTypes() {
2016   // Reset to unknown type.
2017   std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
2018   if (isLeaf())
2019     return;
2020   for (TreePatternNode &Child : children())
2021     Child.RemoveAllTypes();
2022 }
2023 
2024 /// SubstituteFormalArguments - Replace the formal arguments in this tree
2025 /// with actual values specified by ArgMap.
2026 void TreePatternNode::SubstituteFormalArguments(
2027     std::map<std::string, TreePatternNodePtr> &ArgMap) {
2028   if (isLeaf())
2029     return;
2030 
2031   for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
2032     TreePatternNode &Child = getChild(i);
2033     if (Child.isLeaf()) {
2034       const Init *Val = Child.getLeafValue();
2035       // Note that, when substituting into an output pattern, Val might be an
2036       // UnsetInit.
2037       if (isa<UnsetInit>(Val) ||
2038           (isa<DefInit>(Val) &&
2039            cast<DefInit>(Val)->getDef()->getName() == "node")) {
2040         // We found a use of a formal argument, replace it with its value.
2041         TreePatternNodePtr NewChild = ArgMap[Child.getName()];
2042         assert(NewChild && "Couldn't find formal argument!");
2043         assert((Child.getPredicateCalls().empty() ||
2044                 NewChild->getPredicateCalls() == Child.getPredicateCalls()) &&
2045                "Non-empty child predicate clobbered!");
2046         setChild(i, std::move(NewChild));
2047       }
2048     } else {
2049       getChild(i).SubstituteFormalArguments(ArgMap);
2050     }
2051   }
2052 }
2053 
2054 /// InlinePatternFragments - If this pattern refers to any pattern
2055 /// fragments, return the set of inlined versions (this can be more than
2056 /// one if a PatFrags record has multiple alternatives).
2057 void TreePatternNode::InlinePatternFragments(
2058     TreePattern &TP, std::vector<TreePatternNodePtr> &OutAlternatives) {
2059 
2060   if (TP.hasError())
2061     return;
2062 
2063   if (isLeaf()) {
2064     OutAlternatives.push_back(this); // nothing to do.
2065     return;
2066   }
2067 
2068   const Record *Op = getOperator();
2069 
2070   if (!Op->isSubClassOf("PatFrags")) {
2071     if (getNumChildren() == 0) {
2072       OutAlternatives.push_back(this);
2073       return;
2074     }
2075 
2076     // Recursively inline children nodes.
2077     std::vector<std::vector<TreePatternNodePtr>> ChildAlternatives(
2078         getNumChildren());
2079     for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
2080       TreePatternNodePtr Child = getChildShared(i);
2081       Child->InlinePatternFragments(TP, ChildAlternatives[i]);
2082       // If there are no alternatives for any child, there are no
2083       // alternatives for this expression as whole.
2084       if (ChildAlternatives[i].empty())
2085         return;
2086 
2087       assert((Child->getPredicateCalls().empty() ||
2088               llvm::all_of(ChildAlternatives[i],
2089                            [&](const TreePatternNodePtr &NewChild) {
2090                              return NewChild->getPredicateCalls() ==
2091                                     Child->getPredicateCalls();
2092                            })) &&
2093              "Non-empty child predicate clobbered!");
2094     }
2095 
2096     // The end result is an all-pairs construction of the resultant pattern.
2097     std::vector<unsigned> Idxs(ChildAlternatives.size());
2098     bool NotDone;
2099     do {
2100       // Create the variant and add it to the output list.
2101       std::vector<TreePatternNodePtr> NewChildren;
2102       NewChildren.reserve(ChildAlternatives.size());
2103       for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i)
2104         NewChildren.push_back(ChildAlternatives[i][Idxs[i]]);
2105       TreePatternNodePtr R = makeIntrusiveRefCnt<TreePatternNode>(
2106           getOperator(), std::move(NewChildren), getNumTypes());
2107 
2108       // Copy over properties.
2109       R->setName(getName());
2110       R->setNamesAsPredicateArg(getNamesAsPredicateArg());
2111       R->setPredicateCalls(getPredicateCalls());
2112       R->setGISelFlagsRecord(getGISelFlagsRecord());
2113       R->setTransformFn(getTransformFn());
2114       for (unsigned i = 0, e = getNumTypes(); i != e; ++i)
2115         R->setType(i, getExtType(i));
2116       for (unsigned i = 0, e = getNumResults(); i != e; ++i)
2117         R->setResultIndex(i, getResultIndex(i));
2118 
2119       // Register alternative.
2120       OutAlternatives.push_back(R);
2121 
2122       // Increment indices to the next permutation by incrementing the
2123       // indices from last index backward, e.g., generate the sequence
2124       // [0, 0], [0, 1], [1, 0], [1, 1].
2125       int IdxsIdx;
2126       for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
2127         if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size())
2128           Idxs[IdxsIdx] = 0;
2129         else
2130           break;
2131       }
2132       NotDone = (IdxsIdx >= 0);
2133     } while (NotDone);
2134 
2135     return;
2136   }
2137 
2138   // Otherwise, we found a reference to a fragment.  First, look up its
2139   // TreePattern record.
2140   TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
2141 
2142   // Verify that we are passing the right number of operands.
2143   if (Frag->getNumArgs() != getNumChildren()) {
2144     TP.error("'" + Op->getName() + "' fragment requires " +
2145              Twine(Frag->getNumArgs()) + " operands!");
2146     return;
2147   }
2148 
2149   TreePredicateFn PredFn(Frag);
2150   unsigned Scope = 0;
2151   if (TreePredicateFn(Frag).usesOperands())
2152     Scope = TP.getDAGPatterns().allocateScope();
2153 
2154   // Compute the map of formal to actual arguments.
2155   std::map<std::string, TreePatternNodePtr> ArgMap;
2156   for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) {
2157     TreePatternNodePtr Child = getChildShared(i);
2158     if (Scope != 0) {
2159       Child = Child->clone();
2160       Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i)));
2161     }
2162     ArgMap[Frag->getArgName(i)] = Child;
2163   }
2164 
2165   // Loop over all fragment alternatives.
2166   for (const auto &Alternative : Frag->getTrees()) {
2167     TreePatternNodePtr FragTree = Alternative->clone();
2168 
2169     if (!PredFn.isAlwaysTrue())
2170       FragTree->addPredicateCall(PredFn, Scope);
2171 
2172     // Resolve formal arguments to their actual value.
2173     if (Frag->getNumArgs())
2174       FragTree->SubstituteFormalArguments(ArgMap);
2175 
2176     // Transfer types.  Note that the resolved alternative may have fewer
2177     // (but not more) results than the PatFrags node.
2178     FragTree->setName(getName());
2179     for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i)
2180       FragTree->UpdateNodeType(i, getExtType(i), TP);
2181 
2182     if (Op->isSubClassOf("GISelFlags"))
2183       FragTree->setGISelFlagsRecord(Op);
2184 
2185     // Transfer in the old predicates.
2186     for (const TreePredicateCall &Pred : getPredicateCalls())
2187       FragTree->addPredicateCall(Pred);
2188 
2189     // The fragment we inlined could have recursive inlining that is needed. See
2190     // if there are any pattern fragments in it and inline them as needed.
2191     FragTree->InlinePatternFragments(TP, OutAlternatives);
2192   }
2193 }
2194 
2195 /// getImplicitType - Check to see if the specified record has an implicit
2196 /// type which should be applied to it.  This will infer the type of register
2197 /// references from the register file information, for example.
2198 ///
2199 /// When Unnamed is set, return the type of a DAG operand with no name, such as
2200 /// the F8RC register class argument in:
2201 ///
2202 ///   (COPY_TO_REGCLASS GPR:$src, F8RC)
2203 ///
2204 /// When Unnamed is false, return the type of a named DAG operand such as the
2205 /// GPR:$src operand above.
2206 ///
2207 static TypeSetByHwMode getImplicitType(const Record *R, unsigned ResNo,
2208                                        bool NotRegisters, bool Unnamed,
2209                                        TreePattern &TP) {
2210   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2211 
2212   // Check to see if this is a register operand.
2213   if (R->isSubClassOf("RegisterOperand")) {
2214     assert(ResNo == 0 && "Regoperand ref only has one result!");
2215     if (NotRegisters)
2216       return TypeSetByHwMode(); // Unknown.
2217     const Record *RegClass = R->getValueAsDef("RegClass");
2218     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2219     return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
2220   }
2221 
2222   // Check to see if this is a register or a register class.
2223   if (R->isSubClassOf("RegisterClass")) {
2224     assert(ResNo == 0 && "Regclass ref only has one result!");
2225     // An unnamed register class represents itself as an i32 immediate, for
2226     // example on a COPY_TO_REGCLASS instruction.
2227     if (Unnamed)
2228       return TypeSetByHwMode(MVT::i32);
2229 
2230     // In a named operand, the register class provides the possible set of
2231     // types.
2232     if (NotRegisters)
2233       return TypeSetByHwMode(); // Unknown.
2234     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2235     return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
2236   }
2237 
2238   if (R->isSubClassOf("PatFrags")) {
2239     assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
2240     // Pattern fragment types will be resolved when they are inlined.
2241     return TypeSetByHwMode(); // Unknown.
2242   }
2243 
2244   if (R->isSubClassOf("Register")) {
2245     assert(ResNo == 0 && "Registers only produce one result!");
2246     if (NotRegisters)
2247       return TypeSetByHwMode(); // Unknown.
2248     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2249     return TypeSetByHwMode(T.getRegisterVTs(R));
2250   }
2251 
2252   if (R->isSubClassOf("SubRegIndex")) {
2253     assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
2254     return TypeSetByHwMode(MVT::i32);
2255   }
2256 
2257   if (R->isSubClassOf("ValueType")) {
2258     assert(ResNo == 0 && "This node only has one result!");
2259     // An unnamed VTSDNode represents itself as an MVT::Other immediate.
2260     //
2261     //   (sext_inreg GPR:$src, i16)
2262     //                         ~~~
2263     if (Unnamed)
2264       return TypeSetByHwMode(MVT::Other);
2265     // With a name, the ValueType simply provides the type of the named
2266     // variable.
2267     //
2268     //   (sext_inreg i32:$src, i16)
2269     //               ~~~~~~~~
2270     if (NotRegisters)
2271       return TypeSetByHwMode(); // Unknown.
2272     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2273     return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
2274   }
2275 
2276   if (R->isSubClassOf("CondCode")) {
2277     assert(ResNo == 0 && "This node only has one result!");
2278     // Using a CondCodeSDNode.
2279     return TypeSetByHwMode(MVT::Other);
2280   }
2281 
2282   if (R->isSubClassOf("ComplexPattern")) {
2283     assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
2284     if (NotRegisters)
2285       return TypeSetByHwMode(); // Unknown.
2286     const Record *T = CDP.getComplexPattern(R).getValueType();
2287     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2288     return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2289   }
2290   if (R->isSubClassOf("PointerLikeRegClass")) {
2291     assert(ResNo == 0 && "Regclass can only have one result!");
2292     TypeSetByHwMode VTS(MVT::iPTR);
2293     TP.getInfer().expandOverloads(VTS);
2294     return VTS;
2295   }
2296 
2297   if (R->getName() == "node" || R->getName() == "srcvalue" ||
2298       R->getName() == "zero_reg" || R->getName() == "immAllOnesV" ||
2299       R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") {
2300     // Placeholder.
2301     return TypeSetByHwMode(); // Unknown.
2302   }
2303 
2304   if (R->isSubClassOf("Operand")) {
2305     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2306     const Record *T = R->getValueAsDef("Type");
2307     return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2308   }
2309 
2310   TP.error("Unknown node flavor used in pattern: " + R->getName());
2311   return TypeSetByHwMode(MVT::Other);
2312 }
2313 
2314 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
2315 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
2316 const CodeGenIntrinsic *
2317 TreePatternNode::getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
2318   if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
2319       getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
2320       getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
2321     return nullptr;
2322 
2323   unsigned IID = cast<IntInit>(getChild(0).getLeafValue())->getValue();
2324   return &CDP.getIntrinsicInfo(IID);
2325 }
2326 
2327 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
2328 /// return the ComplexPattern information, otherwise return null.
2329 const ComplexPattern *
2330 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
2331   const Record *Rec;
2332   if (isLeaf()) {
2333     const DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2334     if (!DI)
2335       return nullptr;
2336     Rec = DI->getDef();
2337   } else
2338     Rec = getOperator();
2339 
2340   if (!Rec->isSubClassOf("ComplexPattern"))
2341     return nullptr;
2342   return &CGP.getComplexPattern(Rec);
2343 }
2344 
2345 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
2346   // A ComplexPattern specifically declares how many results it fills in.
2347   if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2348     return CP->getNumOperands();
2349 
2350   // If MIOperandInfo is specified, that gives the count.
2351   if (isLeaf()) {
2352     const DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2353     if (DI && DI->getDef()->isSubClassOf("Operand")) {
2354       const DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
2355       if (MIOps->getNumArgs())
2356         return MIOps->getNumArgs();
2357     }
2358   }
2359 
2360   // Otherwise there is just one result.
2361   return 1;
2362 }
2363 
2364 /// NodeHasProperty - Return true if this node has the specified property.
2365 bool TreePatternNode::NodeHasProperty(SDNP Property,
2366                                       const CodeGenDAGPatterns &CGP) const {
2367   if (isLeaf()) {
2368     if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2369       return CP->hasProperty(Property);
2370 
2371     return false;
2372   }
2373 
2374   if (Property != SDNPHasChain) {
2375     // The chain proprety is already present on the different intrinsic node
2376     // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
2377     // on the intrinsic. Anything else is specific to the individual intrinsic.
2378     if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
2379       return Int->hasProperty(Property);
2380   }
2381 
2382   if (!getOperator()->isSubClassOf("SDPatternOperator"))
2383     return false;
2384 
2385   return CGP.getSDNodeInfo(getOperator()).hasProperty(Property);
2386 }
2387 
2388 /// TreeHasProperty - Return true if any node in this tree has the specified
2389 /// property.
2390 bool TreePatternNode::TreeHasProperty(SDNP Property,
2391                                       const CodeGenDAGPatterns &CGP) const {
2392   if (NodeHasProperty(Property, CGP))
2393     return true;
2394   for (const TreePatternNode &Child : children())
2395     if (Child.TreeHasProperty(Property, CGP))
2396       return true;
2397   return false;
2398 }
2399 
2400 /// isCommutativeIntrinsic - Return true if the node corresponds to a
2401 /// commutative intrinsic.
2402 bool TreePatternNode::isCommutativeIntrinsic(
2403     const CodeGenDAGPatterns &CDP) const {
2404   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
2405     return Int->isCommutative;
2406   return false;
2407 }
2408 
2409 static bool isOperandClass(const TreePatternNode &N, StringRef Class) {
2410   if (!N.isLeaf())
2411     return N.getOperator()->isSubClassOf(Class);
2412 
2413   const DefInit *DI = dyn_cast<DefInit>(N.getLeafValue());
2414   if (DI && DI->getDef()->isSubClassOf(Class))
2415     return true;
2416 
2417   return false;
2418 }
2419 
2420 static void emitTooManyOperandsError(TreePattern &TP, StringRef InstName,
2421                                      unsigned Expected, unsigned Actual) {
2422   TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
2423            " operands but expected only " + Twine(Expected) + "!");
2424 }
2425 
2426 static void emitTooFewOperandsError(TreePattern &TP, StringRef InstName,
2427                                     unsigned Actual) {
2428   TP.error("Instruction '" + InstName + "' expects more than the provided " +
2429            Twine(Actual) + " operands!");
2430 }
2431 
2432 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
2433 /// this node and its children in the tree.  This returns true if it makes a
2434 /// change, false otherwise.  If a type contradiction is found, flag an error.
2435 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
2436   if (TP.hasError())
2437     return false;
2438 
2439   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2440   if (isLeaf()) {
2441     if (const DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
2442       // If it's a regclass or something else known, include the type.
2443       bool MadeChange = false;
2444       for (unsigned i = 0, e = Types.size(); i != e; ++i)
2445         MadeChange |= UpdateNodeType(
2446             i, getImplicitType(DI->getDef(), i, NotRegisters, !hasName(), TP),
2447             TP);
2448       return MadeChange;
2449     }
2450 
2451     if (const IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
2452       assert(Types.size() == 1 && "Invalid IntInit");
2453 
2454       // Int inits are always integers. :)
2455       bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
2456 
2457       if (!TP.getInfer().isConcrete(Types[0], false))
2458         return MadeChange;
2459 
2460       ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
2461       for (auto &P : VVT) {
2462         MVT::SimpleValueType VT = P.second.SimpleTy;
2463         // Can only check for types of a known size
2464         if (VT == MVT::iPTR)
2465           continue;
2466 
2467         // Check that the value doesn't use more bits than we have. It must
2468         // either be a sign- or zero-extended equivalent of the original.
2469         unsigned Width = MVT(VT).getFixedSizeInBits();
2470         int64_t Val = II->getValue();
2471         if (!isIntN(Width, Val) && !isUIntN(Width, Val)) {
2472           TP.error("Integer value '" + Twine(Val) +
2473                    "' is out of range for type '" + getEnumName(VT) + "'!");
2474           break;
2475         }
2476       }
2477       return MadeChange;
2478     }
2479 
2480     return false;
2481   }
2482 
2483   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
2484     bool MadeChange = false;
2485 
2486     // Apply the result type to the node.
2487     unsigned NumRetVTs = Int->IS.RetTys.size();
2488     unsigned NumParamVTs = Int->IS.ParamTys.size();
2489 
2490     for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
2491       MadeChange |= UpdateNodeType(
2492           i, getValueType(Int->IS.RetTys[i]->getValueAsDef("VT")), TP);
2493 
2494     if (getNumChildren() != NumParamVTs + 1) {
2495       TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
2496                " operands, not " + Twine(getNumChildren() - 1) + " operands!");
2497       return false;
2498     }
2499 
2500     // Apply type info to the intrinsic ID.
2501     MadeChange |= getChild(0).UpdateNodeType(0, MVT::iPTR, TP);
2502 
2503     for (unsigned i = 0, e = getNumChildren() - 1; i != e; ++i) {
2504       MadeChange |= getChild(i + 1).ApplyTypeConstraints(TP, NotRegisters);
2505 
2506       MVT::SimpleValueType OpVT =
2507           getValueType(Int->IS.ParamTys[i]->getValueAsDef("VT"));
2508       assert(getChild(i + 1).getNumTypes() == 1 && "Unhandled case");
2509       MadeChange |= getChild(i + 1).UpdateNodeType(0, OpVT, TP);
2510     }
2511     return MadeChange;
2512   }
2513 
2514   if (getOperator()->isSubClassOf("SDNode")) {
2515     const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
2516 
2517     // Check that the number of operands is sane.  Negative operands -> varargs.
2518     if (NI.getNumOperands() >= 0 &&
2519         getNumChildren() != (unsigned)NI.getNumOperands()) {
2520       TP.error(getOperator()->getName() + " node requires exactly " +
2521                Twine(NI.getNumOperands()) + " operands!");
2522       return false;
2523     }
2524 
2525     bool MadeChange = false;
2526     for (TreePatternNode &Child : children())
2527       MadeChange |= Child.ApplyTypeConstraints(TP, NotRegisters);
2528     MadeChange |= NI.ApplyTypeConstraints(*this, TP);
2529     return MadeChange;
2530   }
2531 
2532   if (getOperator()->isSubClassOf("Instruction")) {
2533     const DAGInstruction &Inst = CDP.getInstruction(getOperator());
2534     CodeGenInstruction &InstInfo =
2535         CDP.getTargetInfo().getInstruction(getOperator());
2536 
2537     bool MadeChange = false;
2538 
2539     // Apply the result types to the node, these come from the things in the
2540     // (outs) list of the instruction.
2541     unsigned NumResultsToAdd =
2542         std::min(InstInfo.Operands.NumDefs, Inst.getNumResults());
2543     for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
2544       MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
2545 
2546     // If the instruction has implicit defs, we apply the first one as a result.
2547     // FIXME: This sucks, it should apply all implicit defs.
2548     if (!InstInfo.ImplicitDefs.empty()) {
2549       unsigned ResNo = NumResultsToAdd;
2550 
2551       // FIXME: Generalize to multiple possible types and multiple possible
2552       // ImplicitDefs.
2553       MVT::SimpleValueType VT =
2554           InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
2555 
2556       if (VT != MVT::Other)
2557         MadeChange |= UpdateNodeType(ResNo, VT, TP);
2558     }
2559 
2560     // If this is an INSERT_SUBREG, constrain the source and destination VTs to
2561     // be the same.
2562     if (getOperator()->getName() == "INSERT_SUBREG") {
2563       assert(getChild(0).getNumTypes() == 1 && "FIXME: Unhandled");
2564       MadeChange |= UpdateNodeType(0, getChild(0).getExtType(0), TP);
2565       MadeChange |= getChild(0).UpdateNodeType(0, getExtType(0), TP);
2566     } else if (getOperator()->getName() == "REG_SEQUENCE") {
2567       // We need to do extra, custom typechecking for REG_SEQUENCE since it is
2568       // variadic.
2569 
2570       unsigned NChild = getNumChildren();
2571       if (NChild < 3) {
2572         TP.error("REG_SEQUENCE requires at least 3 operands!");
2573         return false;
2574       }
2575 
2576       if (NChild % 2 == 0) {
2577         TP.error("REG_SEQUENCE requires an odd number of operands!");
2578         return false;
2579       }
2580 
2581       if (!isOperandClass(getChild(0), "RegisterClass")) {
2582         TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
2583         return false;
2584       }
2585 
2586       for (unsigned I = 1; I < NChild; I += 2) {
2587         TreePatternNode &SubIdxChild = getChild(I + 1);
2588         if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
2589           TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
2590                    Twine(I + 1) + "!");
2591           return false;
2592         }
2593       }
2594     }
2595 
2596     unsigned NumResults = Inst.getNumResults();
2597     unsigned NumFixedOperands = InstInfo.Operands.size();
2598 
2599     // If one or more operands with a default value appear at the end of the
2600     // formal operand list for an instruction, we allow them to be overridden
2601     // by optional operands provided in the pattern.
2602     //
2603     // But if an operand B without a default appears at any point after an
2604     // operand A with a default, then we don't allow A to be overridden,
2605     // because there would be no way to specify whether the next operand in
2606     // the pattern was intended to override A or skip it.
2607     unsigned NonOverridableOperands = NumFixedOperands;
2608     while (NonOverridableOperands > NumResults &&
2609            CDP.operandHasDefault(
2610                InstInfo.Operands[NonOverridableOperands - 1].Rec))
2611       --NonOverridableOperands;
2612 
2613     unsigned ChildNo = 0;
2614     assert(NumResults <= NumFixedOperands);
2615     for (unsigned i = NumResults, e = NumFixedOperands; i != e; ++i) {
2616       const Record *OperandNode = InstInfo.Operands[i].Rec;
2617 
2618       // If the operand has a default value, do we use it? We must use the
2619       // default if we've run out of children of the pattern DAG to consume,
2620       // or if the operand is followed by a non-defaulted one.
2621       if (CDP.operandHasDefault(OperandNode) &&
2622           (i < NonOverridableOperands || ChildNo >= getNumChildren()))
2623         continue;
2624 
2625       // If we have run out of child nodes and there _isn't_ a default
2626       // value we can use for the next operand, give an error.
2627       if (ChildNo >= getNumChildren()) {
2628         emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
2629         return false;
2630       }
2631 
2632       TreePatternNode *Child = &getChild(ChildNo++);
2633       unsigned ChildResNo = 0; // Instructions always use res #0 of their op.
2634 
2635       // If the operand has sub-operands, they may be provided by distinct
2636       // child patterns, so attempt to match each sub-operand separately.
2637       if (OperandNode->isSubClassOf("Operand")) {
2638         const DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
2639         if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
2640           // But don't do that if the whole operand is being provided by
2641           // a single ComplexPattern-related Operand.
2642 
2643           if (Child->getNumMIResults(CDP) < NumArgs) {
2644             // Match first sub-operand against the child we already have.
2645             const Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
2646             MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2647 
2648             // And the remaining sub-operands against subsequent children.
2649             for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
2650               if (ChildNo >= getNumChildren()) {
2651                 emitTooFewOperandsError(TP, getOperator()->getName(),
2652                                         getNumChildren());
2653                 return false;
2654               }
2655               Child = &getChild(ChildNo++);
2656 
2657               SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
2658               MadeChange |=
2659                   Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2660             }
2661             continue;
2662           }
2663         }
2664       }
2665 
2666       // If we didn't match by pieces above, attempt to match the whole
2667       // operand now.
2668       MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
2669     }
2670 
2671     if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
2672       emitTooManyOperandsError(TP, getOperator()->getName(), ChildNo,
2673                                getNumChildren());
2674       return false;
2675     }
2676 
2677     for (TreePatternNode &Child : children())
2678       MadeChange |= Child.ApplyTypeConstraints(TP, NotRegisters);
2679     return MadeChange;
2680   }
2681 
2682   if (getOperator()->isSubClassOf("ComplexPattern")) {
2683     bool MadeChange = false;
2684 
2685     if (!NotRegisters) {
2686       assert(Types.size() == 1 && "ComplexPatterns only produce one result!");
2687       const Record *T = CDP.getComplexPattern(getOperator()).getValueType();
2688       const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2689       const ValueTypeByHwMode VVT = getValueTypeByHwMode(T, CGH);
2690       // TODO: AArch64 and AMDGPU use ComplexPattern<untyped, ...> and then
2691       // exclusively use those as non-leaf nodes with explicit type casts, so
2692       // for backwards compatibility we do no inference in that case. This is
2693       // not supported when the ComplexPattern is used as a leaf value,
2694       // however; this inconsistency should be resolved, either by adding this
2695       // case there or by altering the backends to not do this (e.g. using Any
2696       // instead may work).
2697       if (!VVT.isSimple() || VVT.getSimple() != MVT::Untyped)
2698         MadeChange |= UpdateNodeType(0, VVT, TP);
2699     }
2700 
2701     for (TreePatternNode &Child : children())
2702       MadeChange |= Child.ApplyTypeConstraints(TP, NotRegisters);
2703 
2704     return MadeChange;
2705   }
2706 
2707   assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
2708 
2709   // Node transforms always take one operand.
2710   if (getNumChildren() != 1) {
2711     TP.error("Node transform '" + getOperator()->getName() +
2712              "' requires one operand!");
2713     return false;
2714   }
2715 
2716   bool MadeChange = getChild(0).ApplyTypeConstraints(TP, NotRegisters);
2717   return MadeChange;
2718 }
2719 
2720 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
2721 /// RHS of a commutative operation, not the on LHS.
2722 static bool OnlyOnRHSOfCommutative(const TreePatternNode &N) {
2723   if (!N.isLeaf() && N.getOperator()->getName() == "imm")
2724     return true;
2725   if (N.isLeaf() && isa<IntInit>(N.getLeafValue()))
2726     return true;
2727   if (isImmAllOnesAllZerosMatch(N))
2728     return true;
2729   return false;
2730 }
2731 
2732 /// canPatternMatch - If it is impossible for this pattern to match on this
2733 /// target, fill in Reason and return false.  Otherwise, return true.  This is
2734 /// used as a sanity check for .td files (to prevent people from writing stuff
2735 /// that can never possibly work), and to prevent the pattern permuter from
2736 /// generating stuff that is useless.
2737 bool TreePatternNode::canPatternMatch(std::string &Reason,
2738                                       const CodeGenDAGPatterns &CDP) const {
2739   if (isLeaf())
2740     return true;
2741 
2742   for (const TreePatternNode &Child : children())
2743     if (!Child.canPatternMatch(Reason, CDP))
2744       return false;
2745 
2746   // If this is an intrinsic, handle cases that would make it not match.  For
2747   // example, if an operand is required to be an immediate.
2748   if (getOperator()->isSubClassOf("Intrinsic")) {
2749     // TODO:
2750     return true;
2751   }
2752 
2753   if (getOperator()->isSubClassOf("ComplexPattern"))
2754     return true;
2755 
2756   // If this node is a commutative operator, check that the LHS isn't an
2757   // immediate.
2758   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2759   bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2760   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2761     // Scan all of the operands of the node and make sure that only the last one
2762     // is a constant node, unless the RHS also is.
2763     if (!OnlyOnRHSOfCommutative(getChild(getNumChildren() - 1))) {
2764       unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2765       for (unsigned i = Skip, e = getNumChildren() - 1; i != e; ++i)
2766         if (OnlyOnRHSOfCommutative(getChild(i))) {
2767           Reason =
2768               "Immediate value must be on the RHS of commutative operators!";
2769           return false;
2770         }
2771     }
2772   }
2773 
2774   return true;
2775 }
2776 
2777 //===----------------------------------------------------------------------===//
2778 // TreePattern implementation
2779 //
2780 
2781 TreePattern::TreePattern(const Record *TheRec, const ListInit *RawPat,
2782                          bool isInput, CodeGenDAGPatterns &cdp)
2783     : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2784       Infer(*this) {
2785   for (const Init *I : RawPat->getValues())
2786     Trees.push_back(ParseTreePattern(I, ""));
2787 }
2788 
2789 TreePattern::TreePattern(const Record *TheRec, const DagInit *Pat, bool isInput,
2790                          CodeGenDAGPatterns &cdp)
2791     : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2792       Infer(*this) {
2793   Trees.push_back(ParseTreePattern(Pat, ""));
2794 }
2795 
2796 TreePattern::TreePattern(const Record *TheRec, TreePatternNodePtr Pat,
2797                          bool isInput, CodeGenDAGPatterns &cdp)
2798     : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2799       Infer(*this) {
2800   Trees.push_back(Pat);
2801 }
2802 
2803 void TreePattern::error(const Twine &Msg) {
2804   if (HasError)
2805     return;
2806   dump();
2807   PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2808   HasError = true;
2809 }
2810 
2811 void TreePattern::ComputeNamedNodes() {
2812   for (TreePatternNodePtr &Tree : Trees)
2813     ComputeNamedNodes(*Tree);
2814 }
2815 
2816 void TreePattern::ComputeNamedNodes(TreePatternNode &N) {
2817   if (!N.getName().empty())
2818     NamedNodes[N.getName()].push_back(&N);
2819 
2820   for (TreePatternNode &Child : N.children())
2821     ComputeNamedNodes(Child);
2822 }
2823 
2824 TreePatternNodePtr TreePattern::ParseTreePattern(const Init *TheInit,
2825                                                  StringRef OpName) {
2826   RecordKeeper &RK = TheInit->getRecordKeeper();
2827   // Here, we are creating new records (BitsInit->InitInit), so const_cast
2828   // TheInit back to non-const pointer.
2829   if (const DefInit *DI = dyn_cast<DefInit>(TheInit)) {
2830     const Record *R = DI->getDef();
2831 
2832     // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
2833     // TreePatternNode of its own.  For example:
2834     ///   (foo GPR, imm) -> (foo GPR, (imm))
2835     if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags"))
2836       return ParseTreePattern(
2837           DagInit::get(
2838               DI, nullptr,
2839               std::vector<std::pair<const Init *, const StringInit *>>()),
2840           OpName);
2841 
2842     // Input argument?
2843     TreePatternNodePtr Res = makeIntrusiveRefCnt<TreePatternNode>(DI, 1);
2844     if (R->getName() == "node" && !OpName.empty()) {
2845       if (OpName.empty())
2846         error("'node' argument requires a name to match with operand list");
2847       Args.push_back(std::string(OpName));
2848     }
2849 
2850     Res->setName(OpName);
2851     return Res;
2852   }
2853 
2854   // ?:$name or just $name.
2855   if (isa<UnsetInit>(TheInit)) {
2856     if (OpName.empty())
2857       error("'?' argument requires a name to match with operand list");
2858     TreePatternNodePtr Res = makeIntrusiveRefCnt<TreePatternNode>(TheInit, 1);
2859     Args.push_back(std::string(OpName));
2860     Res->setName(OpName);
2861     return Res;
2862   }
2863 
2864   if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) {
2865     if (!OpName.empty())
2866       error("Constant int or bit argument should not have a name!");
2867     if (isa<BitInit>(TheInit))
2868       TheInit = TheInit->convertInitializerTo(IntRecTy::get(RK));
2869     return makeIntrusiveRefCnt<TreePatternNode>(TheInit, 1);
2870   }
2871 
2872   if (const BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
2873     // Turn this into an IntInit.
2874     const Init *II = BI->convertInitializerTo(IntRecTy::get(RK));
2875     if (!II || !isa<IntInit>(II))
2876       error("Bits value must be constants!");
2877     return II ? ParseTreePattern(II, OpName) : nullptr;
2878   }
2879 
2880   const DagInit *Dag = dyn_cast<DagInit>(TheInit);
2881   if (!Dag) {
2882     TheInit->print(errs());
2883     error("Pattern has unexpected init kind!");
2884     return nullptr;
2885   }
2886 
2887   auto ParseCastOperand = [this](const DagInit *Dag, StringRef OpName) {
2888     if (Dag->getNumArgs() != 1)
2889       error("Type cast only takes one operand!");
2890 
2891     if (!OpName.empty())
2892       error("Type cast should not have a name!");
2893 
2894     return ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0));
2895   };
2896 
2897   if (const ListInit *LI = dyn_cast<ListInit>(Dag->getOperator())) {
2898     // If the operator is a list (of value types), then this must be "type cast"
2899     // of a leaf node with multiple results.
2900     TreePatternNodePtr New = ParseCastOperand(Dag, OpName);
2901 
2902     size_t NumTypes = New->getNumTypes();
2903     if (LI->empty() || LI->size() != NumTypes)
2904       error("Invalid number of type casts!");
2905 
2906     // Apply the type casts.
2907     const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
2908     for (unsigned i = 0; i < std::min(NumTypes, LI->size()); ++i)
2909       New->UpdateNodeType(
2910           i, getValueTypeByHwMode(LI->getElementAsRecord(i), CGH), *this);
2911 
2912     return New;
2913   }
2914 
2915   const DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2916   if (!OpDef) {
2917     error("Pattern has unexpected operator type!");
2918     return nullptr;
2919   }
2920   const Record *Operator = OpDef->getDef();
2921 
2922   if (Operator->isSubClassOf("ValueType")) {
2923     // If the operator is a ValueType, then this must be "type cast" of a leaf
2924     // node.
2925     TreePatternNodePtr New = ParseCastOperand(Dag, OpName);
2926 
2927     if (New->getNumTypes() != 1)
2928       error("ValueType cast can only have one type!");
2929 
2930     // Apply the type cast.
2931     const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
2932     New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
2933 
2934     return New;
2935   }
2936 
2937   // Verify that this is something that makes sense for an operator.
2938   if (!Operator->isSubClassOf("PatFrags") &&
2939       !Operator->isSubClassOf("SDNode") &&
2940       !Operator->isSubClassOf("Instruction") &&
2941       !Operator->isSubClassOf("SDNodeXForm") &&
2942       !Operator->isSubClassOf("Intrinsic") &&
2943       !Operator->isSubClassOf("ComplexPattern") && Operator->getName() != "set")
2944     error("Unrecognized node '" + Operator->getName() + "'!");
2945 
2946   //  Check to see if this is something that is illegal in an input pattern.
2947   if (isInputPattern) {
2948     if (Operator->isSubClassOf("Instruction") ||
2949         Operator->isSubClassOf("SDNodeXForm"))
2950       error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2951   } else {
2952     if (Operator->isSubClassOf("Intrinsic"))
2953       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2954 
2955     if (Operator->isSubClassOf("SDNode") && Operator->getName() != "imm" &&
2956         Operator->getName() != "timm" && Operator->getName() != "fpimm" &&
2957         Operator->getName() != "tglobaltlsaddr" &&
2958         Operator->getName() != "tconstpool" &&
2959         Operator->getName() != "tjumptable" &&
2960         Operator->getName() != "tframeindex" &&
2961         Operator->getName() != "texternalsym" &&
2962         Operator->getName() != "tblockaddress" &&
2963         Operator->getName() != "tglobaladdr" && Operator->getName() != "bb" &&
2964         Operator->getName() != "vt" && Operator->getName() != "mcsym")
2965       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2966   }
2967 
2968   std::vector<TreePatternNodePtr> Children;
2969 
2970   // Parse all the operands.
2971   for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2972     Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
2973 
2974   // Get the actual number of results before Operator is converted to an
2975   // intrinsic node (which is hard-coded to have either zero or one result).
2976   unsigned NumResults = GetNumNodeResults(Operator, CDP);
2977 
2978   // If the operator is an intrinsic, then this is just syntactic sugar for
2979   // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
2980   // convert the intrinsic name to a number.
2981   if (Operator->isSubClassOf("Intrinsic")) {
2982     const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2983     unsigned IID = getDAGPatterns().getIntrinsicID(Operator) + 1;
2984 
2985     // If this intrinsic returns void, it must have side-effects and thus a
2986     // chain.
2987     if (Int.IS.RetTys.empty())
2988       Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2989     else if (!Int.ME.doesNotAccessMemory() || Int.hasSideEffects)
2990       // Has side-effects, requires chain.
2991       Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2992     else // Otherwise, no chain.
2993       Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2994 
2995     Children.insert(Children.begin(), makeIntrusiveRefCnt<TreePatternNode>(
2996                                           IntInit::get(RK, IID), 1));
2997   }
2998 
2999   if (Operator->isSubClassOf("ComplexPattern")) {
3000     for (unsigned i = 0; i < Children.size(); ++i) {
3001       TreePatternNodePtr Child = Children[i];
3002 
3003       if (Child->getName().empty())
3004         error("All arguments to a ComplexPattern must be named");
3005 
3006       // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
3007       // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
3008       // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
3009       auto OperandId = std::pair(Operator, i);
3010       auto [PrevOp, Inserted] =
3011           ComplexPatternOperands.try_emplace(Child->getName(), OperandId);
3012       if (!Inserted && PrevOp->getValue() != OperandId) {
3013         error("All ComplexPattern operands must appear consistently: "
3014               "in the same order in just one ComplexPattern instance.");
3015       }
3016     }
3017   }
3018 
3019   TreePatternNodePtr Result = makeIntrusiveRefCnt<TreePatternNode>(
3020       Operator, std::move(Children), NumResults);
3021   Result->setName(OpName);
3022 
3023   if (Dag->getName()) {
3024     assert(Result->getName().empty());
3025     Result->setName(Dag->getNameStr());
3026   }
3027   return Result;
3028 }
3029 
3030 /// SimplifyTree - See if we can simplify this tree to eliminate something that
3031 /// will never match in favor of something obvious that will.  This is here
3032 /// strictly as a convenience to target authors because it allows them to write
3033 /// more type generic things and have useless type casts fold away.
3034 ///
3035 /// This returns true if any change is made.
3036 static bool SimplifyTree(TreePatternNodePtr &N) {
3037   if (N->isLeaf())
3038     return false;
3039 
3040   // If we have a bitconvert with a resolved type and if the source and
3041   // destination types are the same, then the bitconvert is useless, remove it.
3042   //
3043   // We make an exception if the types are completely empty. This can come up
3044   // when the pattern being simplified is in the Fragments list of a PatFrags,
3045   // so that the operand is just an untyped "node". In that situation we leave
3046   // bitconverts unsimplified, and simplify them later once the fragment is
3047   // expanded into its true context.
3048   if (N->getOperator()->getName() == "bitconvert" &&
3049       N->getExtType(0).isValueTypeByHwMode(false) &&
3050       !N->getExtType(0).empty() &&
3051       N->getExtType(0) == N->getChild(0).getExtType(0) &&
3052       N->getName().empty()) {
3053     if (!N->getPredicateCalls().empty()) {
3054       std::string Str;
3055       raw_string_ostream OS(Str);
3056       OS << *N
3057          << "\n trivial bitconvert node should not have predicate calls\n";
3058       PrintFatalError(Str);
3059       return false;
3060     }
3061     N = N->getChildShared(0);
3062     SimplifyTree(N);
3063     return true;
3064   }
3065 
3066   // Walk all children.
3067   bool MadeChange = false;
3068   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3069     MadeChange |= SimplifyTree(N->getChildSharedPtr(i));
3070 
3071   return MadeChange;
3072 }
3073 
3074 /// InferAllTypes - Infer/propagate as many types throughout the expression
3075 /// patterns as possible.  Return true if all types are inferred, false
3076 /// otherwise.  Flags an error if a type contradiction is found.
3077 bool TreePattern::InferAllTypes(
3078     const StringMap<SmallVector<TreePatternNode *, 1>> *InNamedTypes) {
3079   if (NamedNodes.empty())
3080     ComputeNamedNodes();
3081 
3082   bool MadeChange = true;
3083   while (MadeChange) {
3084     MadeChange = false;
3085     for (TreePatternNodePtr &Tree : Trees) {
3086       MadeChange |= Tree->ApplyTypeConstraints(*this, false);
3087       MadeChange |= SimplifyTree(Tree);
3088     }
3089 
3090     // If there are constraints on our named nodes, apply them.
3091     for (auto &Entry : NamedNodes) {
3092       SmallVectorImpl<TreePatternNode *> &Nodes = Entry.second;
3093 
3094       // If we have input named node types, propagate their types to the named
3095       // values here.
3096       if (InNamedTypes) {
3097         auto InIter = InNamedTypes->find(Entry.getKey());
3098         if (InIter == InNamedTypes->end()) {
3099           error("Node '" + std::string(Entry.getKey()) +
3100                 "' in output pattern but not input pattern");
3101           return true;
3102         }
3103 
3104         const SmallVectorImpl<TreePatternNode *> &InNodes = InIter->second;
3105 
3106         // The input types should be fully resolved by now.
3107         for (TreePatternNode *Node : Nodes) {
3108           // If this node is a register class, and it is the root of the pattern
3109           // then we're mapping something onto an input register.  We allow
3110           // changing the type of the input register in this case.  This allows
3111           // us to match things like:
3112           //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
3113           if (Node == Trees[0].get() && Node->isLeaf()) {
3114             const DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
3115             if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3116                        DI->getDef()->isSubClassOf("RegisterOperand")))
3117               continue;
3118           }
3119 
3120           assert(Node->getNumTypes() == 1 && InNodes[0]->getNumTypes() == 1 &&
3121                  "FIXME: cannot name multiple result nodes yet");
3122           MadeChange |=
3123               Node->UpdateNodeType(0, InNodes[0]->getExtType(0), *this);
3124         }
3125       }
3126 
3127       // If there are multiple nodes with the same name, they must all have the
3128       // same type.
3129       if (Entry.second.size() > 1) {
3130         for (unsigned i = 0, e = Nodes.size() - 1; i != e; ++i) {
3131           TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i + 1];
3132           assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
3133                  "FIXME: cannot name multiple result nodes yet");
3134 
3135           MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
3136           MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
3137         }
3138       }
3139     }
3140   }
3141 
3142   bool HasUnresolvedTypes = false;
3143   for (const TreePatternNodePtr &Tree : Trees)
3144     HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
3145   return !HasUnresolvedTypes;
3146 }
3147 
3148 void TreePattern::print(raw_ostream &OS) const {
3149   OS << getRecord()->getName();
3150   if (!Args.empty()) {
3151     OS << "(";
3152     ListSeparator LS;
3153     for (const std::string &Arg : Args)
3154       OS << LS << Arg;
3155     OS << ")";
3156   }
3157   OS << ": ";
3158 
3159   if (Trees.size() > 1)
3160     OS << "[\n";
3161   for (const TreePatternNodePtr &Tree : Trees) {
3162     OS << "\t";
3163     Tree->print(OS);
3164     OS << "\n";
3165   }
3166 
3167   if (Trees.size() > 1)
3168     OS << "]\n";
3169 }
3170 
3171 void TreePattern::dump() const { print(errs()); }
3172 
3173 //===----------------------------------------------------------------------===//
3174 // CodeGenDAGPatterns implementation
3175 //
3176 
3177 CodeGenDAGPatterns::CodeGenDAGPatterns(const RecordKeeper &R,
3178                                        PatternRewriterFn PatternRewriter)
3179     : Records(R), Target(R), Intrinsics(R),
3180       LegalVTS(Target.getLegalValueTypes()),
3181       PatternRewriter(std::move(PatternRewriter)) {
3182   ParseNodeInfo();
3183   ParseNodeTransforms();
3184   ParseComplexPatterns();
3185   ParsePatternFragments();
3186   ParseDefaultOperands();
3187   ParseInstructions();
3188   ParsePatternFragments(/*OutFrags*/ true);
3189   ParsePatterns();
3190 
3191   // Generate variants.  For example, commutative patterns can match
3192   // multiple ways.  Add them to PatternsToMatch as well.
3193   GenerateVariants();
3194 
3195   // Break patterns with parameterized types into a series of patterns,
3196   // where each one has a fixed type and is predicated on the conditions
3197   // of the associated HW mode.
3198   ExpandHwModeBasedTypes();
3199 
3200   // Infer instruction flags.  For example, we can detect loads,
3201   // stores, and side effects in many cases by examining an
3202   // instruction's pattern.
3203   InferInstructionFlags();
3204 
3205   // Verify that instruction flags match the patterns.
3206   VerifyInstructionFlags();
3207 }
3208 
3209 const Record *CodeGenDAGPatterns::getSDNodeNamed(StringRef Name) const {
3210   const Record *N = Records.getDef(Name);
3211   if (!N || !N->isSubClassOf("SDNode"))
3212     PrintFatalError("Error getting SDNode '" + Name + "'!");
3213   return N;
3214 }
3215 
3216 // Parse all of the SDNode definitions for the target, populating SDNodes.
3217 void CodeGenDAGPatterns::ParseNodeInfo() {
3218   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
3219 
3220   for (const Record *R : reverse(Records.getAllDerivedDefinitions("SDNode")))
3221     SDNodes.try_emplace(R, SDNodeInfo(R, CGH));
3222 
3223   // Get the builtin intrinsic nodes.
3224   intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
3225   intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
3226   intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
3227 }
3228 
3229 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
3230 /// map, and emit them to the file as functions.
3231 void CodeGenDAGPatterns::ParseNodeTransforms() {
3232   for (const Record *XFormNode :
3233        reverse(Records.getAllDerivedDefinitions("SDNodeXForm"))) {
3234     const Record *SDNode = XFormNode->getValueAsDef("Opcode");
3235     StringRef Code = XFormNode->getValueAsString("XFormFunction");
3236     SDNodeXForms.insert({XFormNode, NodeXForm(SDNode, std::string(Code))});
3237   }
3238 }
3239 
3240 void CodeGenDAGPatterns::ParseComplexPatterns() {
3241   for (const Record *R :
3242        reverse(Records.getAllDerivedDefinitions("ComplexPattern")))
3243     ComplexPatterns.insert({R, R});
3244 }
3245 
3246 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
3247 /// file, building up the PatternFragments map.  After we've collected them all,
3248 /// inline fragments together as necessary, so that there are no references left
3249 /// inside a pattern fragment to a pattern fragment.
3250 ///
3251 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
3252   // First step, parse all of the fragments.
3253   ArrayRef<const Record *> Fragments =
3254       Records.getAllDerivedDefinitions("PatFrags");
3255   for (const Record *Frag : Fragments) {
3256     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3257       continue;
3258 
3259     const ListInit *LI = Frag->getValueAsListInit("Fragments");
3260     TreePattern *P = (PatternFragments[Frag] = std::make_unique<TreePattern>(
3261                           Frag, LI, !Frag->isSubClassOf("OutPatFrag"), *this))
3262                          .get();
3263 
3264     // Validate the argument list, converting it to set, to discard duplicates.
3265     std::vector<std::string> &Args = P->getArgList();
3266     // Copy the args so we can take StringRefs to them.
3267     auto ArgsCopy = Args;
3268     SmallDenseSet<StringRef, 4> OperandsSet;
3269     OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
3270 
3271     if (OperandsSet.count(""))
3272       P->error("Cannot have unnamed 'node' values in pattern fragment!");
3273 
3274     // Parse the operands list.
3275     const DagInit *OpsList = Frag->getValueAsDag("Operands");
3276     const DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
3277     // Special cases: ops == outs == ins. Different names are used to
3278     // improve readability.
3279     if (!OpsOp || (OpsOp->getDef()->getName() != "ops" &&
3280                    OpsOp->getDef()->getName() != "outs" &&
3281                    OpsOp->getDef()->getName() != "ins"))
3282       P->error("Operands list should start with '(ops ... '!");
3283 
3284     // Copy over the arguments.
3285     Args.clear();
3286     for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
3287       if (!isa<DefInit>(OpsList->getArg(j)) ||
3288           cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
3289         P->error("Operands list should all be 'node' values.");
3290       if (!OpsList->getArgName(j))
3291         P->error("Operands list should have names for each operand!");
3292       StringRef ArgNameStr = OpsList->getArgNameStr(j);
3293       if (!OperandsSet.erase(ArgNameStr))
3294         P->error("'" + ArgNameStr +
3295                  "' does not occur in pattern or was multiply specified!");
3296       Args.push_back(std::string(ArgNameStr));
3297     }
3298 
3299     if (!OperandsSet.empty())
3300       P->error("Operands list does not contain an entry for operand '" +
3301                *OperandsSet.begin() + "'!");
3302 
3303     // If there is a node transformation corresponding to this, keep track of
3304     // it.
3305     const Record *Transform = Frag->getValueAsDef("OperandTransform");
3306     if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
3307       for (const auto &T : P->getTrees())
3308         T->setTransformFn(Transform);
3309   }
3310 
3311   // Now that we've parsed all of the tree fragments, do a closure on them so
3312   // that there are not references to PatFrags left inside of them.
3313   for (const Record *Frag : Fragments) {
3314     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3315       continue;
3316 
3317     TreePattern &ThePat = *PatternFragments[Frag];
3318     ThePat.InlinePatternFragments();
3319 
3320     // Infer as many types as possible.  Don't worry about it if we don't infer
3321     // all of them, some may depend on the inputs of the pattern.  Also, don't
3322     // validate type sets; validation may cause spurious failures e.g. if a
3323     // fragment needs floating-point types but the current target does not have
3324     // any (this is only an error if that fragment is ever used!).
3325     {
3326       TypeInfer::SuppressValidation SV(ThePat.getInfer());
3327       ThePat.InferAllTypes();
3328       ThePat.resetError();
3329     }
3330 
3331     // If debugging, print out the pattern fragment result.
3332     LLVM_DEBUG(ThePat.dump());
3333   }
3334 }
3335 
3336 void CodeGenDAGPatterns::ParseDefaultOperands() {
3337   ArrayRef<const Record *> DefaultOps =
3338       Records.getAllDerivedDefinitions("OperandWithDefaultOps");
3339 
3340   // Find some SDNode.
3341   assert(!SDNodes.empty() && "No SDNodes parsed?");
3342   const Init *SomeSDNode = SDNodes.begin()->first->getDefInit();
3343 
3344   for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
3345     const DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
3346 
3347     // Clone the DefaultInfo dag node, changing the operator from 'ops' to
3348     // SomeSDnode so that we can parse this.
3349     std::vector<std::pair<const Init *, const StringInit *>> Ops;
3350     for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
3351       Ops.emplace_back(DefaultInfo->getArg(op), DefaultInfo->getArgName(op));
3352     const DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
3353 
3354     // Create a TreePattern to parse this.
3355     TreePattern P(DefaultOps[i], DI, false, *this);
3356     assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
3357 
3358     // Copy the operands over into a DAGDefaultOperand.
3359     DAGDefaultOperand DefaultOpInfo;
3360 
3361     const TreePatternNodePtr &T = P.getTree(0);
3362     for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
3363       TreePatternNodePtr TPN = T->getChildShared(op);
3364       while (TPN->ApplyTypeConstraints(P, false))
3365         /* Resolve all types */;
3366 
3367       if (TPN->ContainsUnresolvedType(P)) {
3368         PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
3369                         DefaultOps[i]->getName() +
3370                         "' doesn't have a concrete type!");
3371       }
3372       DefaultOpInfo.DefaultOps.push_back(std::move(TPN));
3373     }
3374 
3375     // Insert it into the DefaultOperands map so we can find it later.
3376     DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
3377   }
3378 }
3379 
3380 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
3381 /// instruction input.  Return true if this is a real use.
3382 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat,
3383                       std::map<std::string, TreePatternNodePtr> &InstInputs) {
3384   // No name -> not interesting.
3385   if (Pat->getName().empty()) {
3386     if (Pat->isLeaf()) {
3387       const DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3388       if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3389                  DI->getDef()->isSubClassOf("RegisterOperand")))
3390         I.error("Input " + DI->getDef()->getName() + " must be named!");
3391     }
3392     return false;
3393   }
3394 
3395   const Record *Rec;
3396   if (Pat->isLeaf()) {
3397     const DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3398     if (!DI)
3399       I.error("Input $" + Pat->getName() + " must be an identifier!");
3400     Rec = DI->getDef();
3401   } else {
3402     Rec = Pat->getOperator();
3403   }
3404 
3405   // SRCVALUE nodes are ignored.
3406   if (Rec->getName() == "srcvalue")
3407     return false;
3408 
3409   TreePatternNodePtr &Slot = InstInputs[Pat->getName()];
3410   if (!Slot) {
3411     Slot = Pat;
3412     return true;
3413   }
3414   const Record *SlotRec;
3415   if (Slot->isLeaf()) {
3416     SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
3417   } else {
3418     assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
3419     SlotRec = Slot->getOperator();
3420   }
3421 
3422   // Ensure that the inputs agree if we've already seen this input.
3423   if (Rec != SlotRec)
3424     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3425   // Ensure that the types can agree as well.
3426   Slot->UpdateNodeType(0, Pat->getExtType(0), I);
3427   Pat->UpdateNodeType(0, Slot->getExtType(0), I);
3428   if (Slot->getExtTypes() != Pat->getExtTypes())
3429     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3430   return true;
3431 }
3432 
3433 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
3434 /// part of "I", the instruction), computing the set of inputs and outputs of
3435 /// the pattern.  Report errors if we see anything naughty.
3436 void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
3437     TreePattern &I, TreePatternNodePtr Pat,
3438     std::map<std::string, TreePatternNodePtr> &InstInputs,
3439     MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3440         &InstResults,
3441     std::vector<const Record *> &InstImpResults) {
3442   // The instruction pattern still has unresolved fragments.  For *named*
3443   // nodes we must resolve those here.  This may not result in multiple
3444   // alternatives.
3445   if (!Pat->getName().empty()) {
3446     TreePattern SrcPattern(I.getRecord(), Pat, true, *this);
3447     SrcPattern.InlinePatternFragments();
3448     SrcPattern.InferAllTypes();
3449     Pat = SrcPattern.getOnlyTree();
3450   }
3451 
3452   if (Pat->isLeaf()) {
3453     bool isUse = HandleUse(I, Pat, InstInputs);
3454     if (!isUse && Pat->getTransformFn())
3455       I.error("Cannot specify a transform function for a non-input value!");
3456     return;
3457   }
3458 
3459   if (Pat->getOperator()->getName() != "set") {
3460     // If this is not a set, verify that the children nodes are not void typed,
3461     // and recurse.
3462     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3463       if (Pat->getChild(i).getNumTypes() == 0)
3464         I.error("Cannot have void nodes inside of patterns!");
3465       FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs,
3466                                   InstResults, InstImpResults);
3467     }
3468 
3469     // If this is a non-leaf node with no children, treat it basically as if
3470     // it were a leaf.  This handles nodes like (imm).
3471     bool isUse = HandleUse(I, Pat, InstInputs);
3472 
3473     if (!isUse && Pat->getTransformFn())
3474       I.error("Cannot specify a transform function for a non-input value!");
3475     return;
3476   }
3477 
3478   // Otherwise, this is a set, validate and collect instruction results.
3479   if (Pat->getNumChildren() == 0)
3480     I.error("set requires operands!");
3481 
3482   if (Pat->getTransformFn())
3483     I.error("Cannot specify a transform function on a set node!");
3484 
3485   // Check the set destinations.
3486   unsigned NumDests = Pat->getNumChildren() - 1;
3487   for (unsigned i = 0; i != NumDests; ++i) {
3488     TreePatternNodePtr Dest = Pat->getChildShared(i);
3489     // For set destinations we also must resolve fragments here.
3490     TreePattern DestPattern(I.getRecord(), Dest, false, *this);
3491     DestPattern.InlinePatternFragments();
3492     DestPattern.InferAllTypes();
3493     Dest = DestPattern.getOnlyTree();
3494 
3495     if (!Dest->isLeaf())
3496       I.error("set destination should be a register!");
3497 
3498     const DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3499     if (!Val) {
3500       I.error("set destination should be a register!");
3501       continue;
3502     }
3503 
3504     if (Val->getDef()->isSubClassOf("RegisterClass") ||
3505         Val->getDef()->isSubClassOf("ValueType") ||
3506         Val->getDef()->isSubClassOf("RegisterOperand") ||
3507         Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
3508       if (Dest->getName().empty())
3509         I.error("set destination must have a name!");
3510       if (!InstResults.insert_or_assign(Dest->getName(), Dest).second)
3511         I.error("cannot set '" + Dest->getName() + "' multiple times");
3512     } else if (Val->getDef()->isSubClassOf("Register")) {
3513       InstImpResults.push_back(Val->getDef());
3514     } else {
3515       I.error("set destination should be a register!");
3516     }
3517   }
3518 
3519   // Verify and collect info from the computation.
3520   FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs,
3521                               InstResults, InstImpResults);
3522 }
3523 
3524 //===----------------------------------------------------------------------===//
3525 // Instruction Analysis
3526 //===----------------------------------------------------------------------===//
3527 
3528 class InstAnalyzer {
3529   const CodeGenDAGPatterns &CDP;
3530 
3531 public:
3532   bool hasSideEffects;
3533   bool mayStore;
3534   bool mayLoad;
3535   bool isBitcast;
3536   bool isVariadic;
3537   bool hasChain;
3538 
3539   InstAnalyzer(const CodeGenDAGPatterns &cdp)
3540       : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
3541         isBitcast(false), isVariadic(false), hasChain(false) {}
3542 
3543   void Analyze(const PatternToMatch &Pat) {
3544     const TreePatternNode &N = Pat.getSrcPattern();
3545     AnalyzeNode(N);
3546     // These properties are detected only on the root node.
3547     isBitcast = IsNodeBitcast(N);
3548   }
3549 
3550 private:
3551   bool IsNodeBitcast(const TreePatternNode &N) const {
3552     if (hasSideEffects || mayLoad || mayStore || isVariadic)
3553       return false;
3554 
3555     if (N.isLeaf())
3556       return false;
3557     if (N.getNumChildren() != 1 || !N.getChild(0).isLeaf())
3558       return false;
3559 
3560     if (N.getOperator()->isSubClassOf("ComplexPattern"))
3561       return false;
3562 
3563     const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N.getOperator());
3564     if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
3565       return false;
3566     return OpInfo.getEnumName() == "ISD::BITCAST";
3567   }
3568 
3569 public:
3570   void AnalyzeNode(const TreePatternNode &N) {
3571     if (N.isLeaf()) {
3572       if (const DefInit *DI = dyn_cast<DefInit>(N.getLeafValue())) {
3573         const Record *LeafRec = DI->getDef();
3574         // Handle ComplexPattern leaves.
3575         if (LeafRec->isSubClassOf("ComplexPattern")) {
3576           const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
3577           if (CP.hasProperty(SDNPMayStore))
3578             mayStore = true;
3579           if (CP.hasProperty(SDNPMayLoad))
3580             mayLoad = true;
3581           if (CP.hasProperty(SDNPSideEffect))
3582             hasSideEffects = true;
3583         }
3584       }
3585       return;
3586     }
3587 
3588     // Analyze children.
3589     for (const TreePatternNode &Child : N.children())
3590       AnalyzeNode(Child);
3591 
3592     // Notice properties of the node.
3593     if (N.NodeHasProperty(SDNPMayStore, CDP))
3594       mayStore = true;
3595     if (N.NodeHasProperty(SDNPMayLoad, CDP))
3596       mayLoad = true;
3597     if (N.NodeHasProperty(SDNPSideEffect, CDP))
3598       hasSideEffects = true;
3599     if (N.NodeHasProperty(SDNPVariadic, CDP))
3600       isVariadic = true;
3601     if (N.NodeHasProperty(SDNPHasChain, CDP))
3602       hasChain = true;
3603 
3604     if (const CodeGenIntrinsic *IntInfo = N.getIntrinsicInfo(CDP)) {
3605       ModRefInfo MR = IntInfo->ME.getModRef();
3606       // If this is an intrinsic, analyze it.
3607       if (isRefSet(MR))
3608         mayLoad = true; // These may load memory.
3609 
3610       if (isModSet(MR))
3611         mayStore = true; // Intrinsics that can write to memory are 'mayStore'.
3612 
3613       // Consider intrinsics that don't specify any restrictions on memory
3614       // effects as having a side-effect.
3615       if (IntInfo->ME == MemoryEffects::unknown() || IntInfo->hasSideEffects)
3616         hasSideEffects = true;
3617     }
3618   }
3619 };
3620 
3621 static bool InferFromPattern(CodeGenInstruction &InstInfo,
3622                              const InstAnalyzer &PatInfo,
3623                              const Record *PatDef) {
3624   bool Error = false;
3625 
3626   // Remember where InstInfo got its flags.
3627   if (InstInfo.hasUndefFlags())
3628     InstInfo.InferredFrom = PatDef;
3629 
3630   // Check explicitly set flags for consistency.
3631   if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
3632       !InstInfo.hasSideEffects_Unset) {
3633     // Allow explicitly setting hasSideEffects = 1 on instructions, even when
3634     // the pattern has no side effects. That could be useful for div/rem
3635     // instructions that may trap.
3636     if (!InstInfo.hasSideEffects) {
3637       Error = true;
3638       PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
3639                                        Twine(InstInfo.hasSideEffects));
3640     }
3641   }
3642 
3643   if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
3644     Error = true;
3645     PrintError(PatDef->getLoc(),
3646                "Pattern doesn't match mayStore = " + Twine(InstInfo.mayStore));
3647   }
3648 
3649   if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
3650     // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
3651     // Some targets translate immediates to loads.
3652     if (!InstInfo.mayLoad) {
3653       Error = true;
3654       PrintError(PatDef->getLoc(),
3655                  "Pattern doesn't match mayLoad = " + Twine(InstInfo.mayLoad));
3656     }
3657   }
3658 
3659   // Transfer inferred flags.
3660   InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
3661   InstInfo.mayStore |= PatInfo.mayStore;
3662   InstInfo.mayLoad |= PatInfo.mayLoad;
3663 
3664   // These flags are silently added without any verification.
3665   // FIXME: To match historical behavior of TableGen, for now add those flags
3666   // only when we're inferring from the primary instruction pattern.
3667   if (PatDef->isSubClassOf("Instruction")) {
3668     InstInfo.isBitcast |= PatInfo.isBitcast;
3669     InstInfo.hasChain |= PatInfo.hasChain;
3670     InstInfo.hasChain_Inferred = true;
3671   }
3672 
3673   // Don't infer isVariadic. This flag means something different on SDNodes and
3674   // instructions. For example, a CALL SDNode is variadic because it has the
3675   // call arguments as operands, but a CALL instruction is not variadic - it
3676   // has argument registers as implicit, not explicit uses.
3677 
3678   return Error;
3679 }
3680 
3681 /// hasNullFragReference - Return true if the DAG has any reference to the
3682 /// null_frag operator.
3683 static bool hasNullFragReference(const DagInit *DI) {
3684   const DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
3685   if (!OpDef)
3686     return false;
3687   const Record *Operator = OpDef->getDef();
3688 
3689   // If this is the null fragment, return true.
3690   if (Operator->getName() == "null_frag")
3691     return true;
3692   // If any of the arguments reference the null fragment, return true.
3693   for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
3694     if (auto Arg = dyn_cast<DefInit>(DI->getArg(i)))
3695       if (Arg->getDef()->getName() == "null_frag")
3696         return true;
3697     const DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
3698     if (Arg && hasNullFragReference(Arg))
3699       return true;
3700   }
3701 
3702   return false;
3703 }
3704 
3705 /// hasNullFragReference - Return true if any DAG in the list references
3706 /// the null_frag operator.
3707 static bool hasNullFragReference(const ListInit *LI) {
3708   for (const Init *I : LI->getValues()) {
3709     const DagInit *DI = dyn_cast<DagInit>(I);
3710     assert(DI && "non-dag in an instruction Pattern list?!");
3711     if (hasNullFragReference(DI))
3712       return true;
3713   }
3714   return false;
3715 }
3716 
3717 /// Get all the instructions in a tree.
3718 static void getInstructionsInTree(TreePatternNode &Tree,
3719                                   SmallVectorImpl<const Record *> &Instrs) {
3720   if (Tree.isLeaf())
3721     return;
3722   if (Tree.getOperator()->isSubClassOf("Instruction"))
3723     Instrs.push_back(Tree.getOperator());
3724   for (TreePatternNode &Child : Tree.children())
3725     getInstructionsInTree(Child, Instrs);
3726 }
3727 
3728 /// Check the class of a pattern leaf node against the instruction operand it
3729 /// represents.
3730 static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
3731                               const Record *Leaf) {
3732   if (OI.Rec == Leaf)
3733     return true;
3734 
3735   // Allow direct value types to be used in instruction set patterns.
3736   // The type will be checked later.
3737   if (Leaf->isSubClassOf("ValueType"))
3738     return true;
3739 
3740   // Patterns can also be ComplexPattern instances.
3741   if (Leaf->isSubClassOf("ComplexPattern"))
3742     return true;
3743 
3744   return false;
3745 }
3746 
3747 void CodeGenDAGPatterns::parseInstructionPattern(CodeGenInstruction &CGI,
3748                                                  const ListInit *Pat,
3749                                                  DAGInstMap &DAGInsts) {
3750 
3751   assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
3752 
3753   // Parse the instruction.
3754   TreePattern I(CGI.TheDef, Pat, true, *this);
3755 
3756   // InstInputs - Keep track of all of the inputs of the instruction, along
3757   // with the record they are declared as.
3758   std::map<std::string, TreePatternNodePtr> InstInputs;
3759 
3760   // InstResults - Keep track of all the virtual registers that are 'set'
3761   // in the instruction, including what reg class they are.
3762   MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3763       InstResults;
3764 
3765   std::vector<const Record *> InstImpResults;
3766 
3767   // Verify that the top-level forms in the instruction are of void type, and
3768   // fill in the InstResults map.
3769   SmallString<32> TypesString;
3770   for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) {
3771     TypesString.clear();
3772     TreePatternNodePtr Pat = I.getTree(j);
3773     if (Pat->getNumTypes() != 0) {
3774       raw_svector_ostream OS(TypesString);
3775       ListSeparator LS;
3776       for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
3777         OS << LS;
3778         Pat->getExtType(k).writeToStream(OS);
3779       }
3780       I.error("Top-level forms in instruction pattern should have"
3781               " void types, has types " +
3782               OS.str());
3783     }
3784 
3785     // Find inputs and outputs, and verify the structure of the uses/defs.
3786     FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
3787                                 InstImpResults);
3788   }
3789 
3790   // Now that we have inputs and outputs of the pattern, inspect the operands
3791   // list for the instruction.  This determines the order that operands are
3792   // added to the machine instruction the node corresponds to.
3793   unsigned NumResults = InstResults.size();
3794 
3795   // Parse the operands list from the (ops) list, validating it.
3796   assert(I.getArgList().empty() && "Args list should still be empty here!");
3797 
3798   // Check that all of the results occur first in the list.
3799   std::vector<const Record *> Results;
3800   std::vector<unsigned> ResultIndices;
3801   SmallVector<TreePatternNodePtr, 2> ResNodes;
3802   for (unsigned i = 0; i != NumResults; ++i) {
3803     if (i == CGI.Operands.size()) {
3804       const std::string &OpName =
3805           llvm::find_if(
3806               InstResults,
3807               [](const std::pair<std::string, TreePatternNodePtr> &P) {
3808                 return P.second;
3809               })
3810               ->first;
3811 
3812       I.error("'" + OpName + "' set but does not appear in operand list!");
3813     }
3814 
3815     const std::string &OpName = CGI.Operands[i].Name;
3816 
3817     // Check that it exists in InstResults.
3818     auto InstResultIter = InstResults.find(OpName);
3819     if (InstResultIter == InstResults.end() || !InstResultIter->second)
3820       I.error("Operand $" + OpName + " does not exist in operand list!");
3821 
3822     TreePatternNodePtr RNode = InstResultIter->second;
3823     const Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3824     ResNodes.push_back(std::move(RNode));
3825     if (!R)
3826       I.error("Operand $" + OpName +
3827               " should be a set destination: all "
3828               "outputs must occur before inputs in operand list!");
3829 
3830     if (!checkOperandClass(CGI.Operands[i], R))
3831       I.error("Operand $" + OpName + " class mismatch!");
3832 
3833     // Remember the return type.
3834     Results.push_back(CGI.Operands[i].Rec);
3835 
3836     // Remember the result index.
3837     ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter));
3838 
3839     // Okay, this one checks out.
3840     InstResultIter->second = nullptr;
3841   }
3842 
3843   // Loop over the inputs next.
3844   std::vector<TreePatternNodePtr> ResultNodeOperands;
3845   std::vector<const Record *> Operands;
3846   for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3847     CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3848     const std::string &OpName = Op.Name;
3849     if (OpName.empty()) {
3850       I.error("Operand #" + Twine(i) + " in operands list has no name!");
3851       continue;
3852     }
3853 
3854     auto InIter = InstInputs.find(OpName);
3855     if (InIter == InstInputs.end()) {
3856       // If this is an operand with a DefaultOps set filled in, we can ignore
3857       // this.  When we codegen it, we will do so as always executed.
3858       if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3859         // Does it have a non-empty DefaultOps field?  If so, ignore this
3860         // operand.
3861         if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3862           continue;
3863       }
3864       I.error("Operand $" + OpName +
3865               " does not appear in the instruction pattern");
3866       continue;
3867     }
3868     TreePatternNodePtr InVal = InIter->second;
3869     InstInputs.erase(InIter); // It occurred, remove from map.
3870 
3871     if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3872       const Record *InRec = cast<DefInit>(InVal->getLeafValue())->getDef();
3873       if (!checkOperandClass(Op, InRec)) {
3874         I.error("Operand $" + OpName +
3875                 "'s register class disagrees"
3876                 " between the operand and pattern");
3877         continue;
3878       }
3879     }
3880     Operands.push_back(Op.Rec);
3881 
3882     // Construct the result for the dest-pattern operand list.
3883     TreePatternNodePtr OpNode = InVal->clone();
3884 
3885     // No predicate is useful on the result.
3886     OpNode->clearPredicateCalls();
3887 
3888     // Promote the xform function to be an explicit node if set.
3889     if (const Record *Xform = OpNode->getTransformFn()) {
3890       OpNode->setTransformFn(nullptr);
3891       std::vector<TreePatternNodePtr> Children;
3892       Children.push_back(OpNode);
3893       OpNode = makeIntrusiveRefCnt<TreePatternNode>(Xform, std::move(Children),
3894                                                     OpNode->getNumTypes());
3895     }
3896 
3897     ResultNodeOperands.push_back(std::move(OpNode));
3898   }
3899 
3900   if (!InstInputs.empty())
3901     I.error("Input operand $" + InstInputs.begin()->first +
3902             " occurs in pattern but not in operands list!");
3903 
3904   TreePatternNodePtr ResultPattern = makeIntrusiveRefCnt<TreePatternNode>(
3905       I.getRecord(), std::move(ResultNodeOperands),
3906       GetNumNodeResults(I.getRecord(), *this));
3907   // Copy fully inferred output node types to instruction result pattern.
3908   for (unsigned i = 0; i != NumResults; ++i) {
3909     assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
3910     ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3911     ResultPattern->setResultIndex(i, ResultIndices[i]);
3912   }
3913 
3914   // FIXME: Assume only the first tree is the pattern. The others are clobber
3915   // nodes.
3916   TreePatternNodePtr Pattern = I.getTree(0);
3917   TreePatternNodePtr SrcPattern;
3918   if (Pattern->getOperator()->getName() == "set") {
3919     SrcPattern = Pattern->getChild(Pattern->getNumChildren() - 1).clone();
3920   } else {
3921     // Not a set (store or something?)
3922     SrcPattern = Pattern;
3923   }
3924 
3925   // Create and insert the instruction.
3926   // FIXME: InstImpResults should not be part of DAGInstruction.
3927   DAGInsts.try_emplace(I.getRecord(), std::move(Results), std::move(Operands),
3928                        std::move(InstImpResults), SrcPattern, ResultPattern);
3929 
3930   LLVM_DEBUG(I.dump());
3931 }
3932 
3933 /// ParseInstructions - Parse all of the instructions, inlining and resolving
3934 /// any fragments involved.  This populates the Instructions list with fully
3935 /// resolved instructions.
3936 void CodeGenDAGPatterns::ParseInstructions() {
3937   for (const Record *Instr : Records.getAllDerivedDefinitions("Instruction")) {
3938     const ListInit *LI = nullptr;
3939 
3940     if (isa<ListInit>(Instr->getValueInit("Pattern")))
3941       LI = Instr->getValueAsListInit("Pattern");
3942 
3943     // If there is no pattern, only collect minimal information about the
3944     // instruction for its operand list.  We have to assume that there is one
3945     // result, as we have no detailed info. A pattern which references the
3946     // null_frag operator is as-if no pattern were specified. Normally this
3947     // is from a multiclass expansion w/ a SDPatternOperator passed in as
3948     // null_frag.
3949     if (!LI || LI->empty() || hasNullFragReference(LI)) {
3950       std::vector<const Record *> Results;
3951       std::vector<const Record *> Operands;
3952 
3953       CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3954 
3955       if (InstInfo.Operands.size() != 0) {
3956         for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3957           Results.push_back(InstInfo.Operands[j].Rec);
3958 
3959         // The rest are inputs.
3960         for (unsigned j = InstInfo.Operands.NumDefs,
3961                       e = InstInfo.Operands.size();
3962              j < e; ++j)
3963           Operands.push_back(InstInfo.Operands[j].Rec);
3964       }
3965 
3966       // Create and insert the instruction.
3967       Instructions.try_emplace(Instr, std::move(Results), std::move(Operands),
3968                                std::vector<const Record *>());
3969       continue; // no pattern.
3970     }
3971 
3972     CodeGenInstruction &CGI = Target.getInstruction(Instr);
3973     parseInstructionPattern(CGI, LI, Instructions);
3974   }
3975 
3976   // If we can, convert the instructions to be patterns that are matched!
3977   for (const auto &[Instr, TheInst] : Instructions) {
3978     TreePatternNodePtr SrcPattern = TheInst.getSrcPattern();
3979     TreePatternNodePtr ResultPattern = TheInst.getResultPattern();
3980 
3981     if (SrcPattern && ResultPattern) {
3982       TreePattern Pattern(Instr, SrcPattern, true, *this);
3983       TreePattern Result(Instr, ResultPattern, false, *this);
3984       ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults());
3985     }
3986   }
3987 }
3988 
3989 typedef std::pair<TreePatternNode *, unsigned> NameRecord;
3990 
3991 static void FindNames(TreePatternNode &P,
3992                       std::map<std::string, NameRecord> &Names,
3993                       TreePattern *PatternTop) {
3994   if (!P.getName().empty()) {
3995     NameRecord &Rec = Names[P.getName()];
3996     // If this is the first instance of the name, remember the node.
3997     if (Rec.second++ == 0)
3998       Rec.first = &P;
3999     else if (Rec.first->getExtTypes() != P.getExtTypes())
4000       PatternTop->error("repetition of value: $" + P.getName() +
4001                         " where different uses have different types!");
4002   }
4003 
4004   if (!P.isLeaf()) {
4005     for (TreePatternNode &Child : P.children())
4006       FindNames(Child, Names, PatternTop);
4007   }
4008 }
4009 
4010 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
4011                                            PatternToMatch &&PTM) {
4012   // Do some sanity checking on the pattern we're about to match.
4013   std::string Reason;
4014   if (!PTM.getSrcPattern().canPatternMatch(Reason, *this)) {
4015     PrintWarning(Pattern->getRecord()->getLoc(),
4016                  Twine("Pattern can never match: ") + Reason);
4017     return;
4018   }
4019 
4020   // If the source pattern's root is a complex pattern, that complex pattern
4021   // must specify the nodes it can potentially match.
4022   if (const ComplexPattern *CP =
4023           PTM.getSrcPattern().getComplexPatternInfo(*this))
4024     if (CP->getRootNodes().empty())
4025       Pattern->error("ComplexPattern at root must specify list of opcodes it"
4026                      " could match");
4027 
4028   // Find all of the named values in the input and output, ensure they have the
4029   // same type.
4030   std::map<std::string, NameRecord> SrcNames, DstNames;
4031   FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
4032   FindNames(PTM.getDstPattern(), DstNames, Pattern);
4033 
4034   // Scan all of the named values in the destination pattern, rejecting them if
4035   // they don't exist in the input pattern.
4036   for (const auto &Entry : DstNames) {
4037     if (SrcNames[Entry.first].first == nullptr)
4038       Pattern->error("Pattern has input without matching name in output: $" +
4039                      Entry.first);
4040   }
4041 
4042   // Scan all of the named values in the source pattern, rejecting them if the
4043   // name isn't used in the dest, and isn't used to tie two values together.
4044   for (const auto &Entry : SrcNames)
4045     if (DstNames[Entry.first].first == nullptr &&
4046         SrcNames[Entry.first].second == 1)
4047       Pattern->error("Pattern has dead named input: $" + Entry.first);
4048 
4049   PatternsToMatch.push_back(std::move(PTM));
4050 }
4051 
4052 void CodeGenDAGPatterns::InferInstructionFlags() {
4053   ArrayRef<const CodeGenInstruction *> Instructions =
4054       Target.getInstructionsByEnumValue();
4055 
4056   unsigned Errors = 0;
4057 
4058   // Try to infer flags from all patterns in PatternToMatch.  These include
4059   // both the primary instruction patterns (which always come first) and
4060   // patterns defined outside the instruction.
4061   for (const PatternToMatch &PTM : ptms()) {
4062     // We can only infer from single-instruction patterns, otherwise we won't
4063     // know which instruction should get the flags.
4064     SmallVector<const Record *, 8> PatInstrs;
4065     getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
4066     if (PatInstrs.size() != 1)
4067       continue;
4068 
4069     // Get the single instruction.
4070     CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
4071 
4072     // Only infer properties from the first pattern. We'll verify the others.
4073     if (InstInfo.InferredFrom)
4074       continue;
4075 
4076     InstAnalyzer PatInfo(*this);
4077     PatInfo.Analyze(PTM);
4078     Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
4079   }
4080 
4081   if (Errors)
4082     PrintFatalError("pattern conflicts");
4083 
4084   // If requested by the target, guess any undefined properties.
4085   if (Target.guessInstructionProperties()) {
4086     for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
4087       CodeGenInstruction *InstInfo =
4088           const_cast<CodeGenInstruction *>(Instructions[i]);
4089       if (InstInfo->InferredFrom)
4090         continue;
4091       // The mayLoad and mayStore flags default to false.
4092       // Conservatively assume hasSideEffects if it wasn't explicit.
4093       if (InstInfo->hasSideEffects_Unset)
4094         InstInfo->hasSideEffects = true;
4095     }
4096     return;
4097   }
4098 
4099   // Complain about any flags that are still undefined.
4100   for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
4101     CodeGenInstruction *InstInfo =
4102         const_cast<CodeGenInstruction *>(Instructions[i]);
4103     if (InstInfo->InferredFrom)
4104       continue;
4105     if (InstInfo->hasSideEffects_Unset)
4106       PrintError(InstInfo->TheDef->getLoc(),
4107                  "Can't infer hasSideEffects from patterns");
4108     if (InstInfo->mayStore_Unset)
4109       PrintError(InstInfo->TheDef->getLoc(),
4110                  "Can't infer mayStore from patterns");
4111     if (InstInfo->mayLoad_Unset)
4112       PrintError(InstInfo->TheDef->getLoc(),
4113                  "Can't infer mayLoad from patterns");
4114   }
4115 }
4116 
4117 /// Verify instruction flags against pattern node properties.
4118 void CodeGenDAGPatterns::VerifyInstructionFlags() {
4119   unsigned Errors = 0;
4120   for (const PatternToMatch &PTM : ptms()) {
4121     SmallVector<const Record *, 8> Instrs;
4122     getInstructionsInTree(PTM.getDstPattern(), Instrs);
4123     if (Instrs.empty())
4124       continue;
4125 
4126     // Count the number of instructions with each flag set.
4127     unsigned NumSideEffects = 0;
4128     unsigned NumStores = 0;
4129     unsigned NumLoads = 0;
4130     for (const Record *Instr : Instrs) {
4131       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4132       NumSideEffects += InstInfo.hasSideEffects;
4133       NumStores += InstInfo.mayStore;
4134       NumLoads += InstInfo.mayLoad;
4135     }
4136 
4137     // Analyze the source pattern.
4138     InstAnalyzer PatInfo(*this);
4139     PatInfo.Analyze(PTM);
4140 
4141     // Collect error messages.
4142     SmallVector<std::string, 4> Msgs;
4143 
4144     // Check for missing flags in the output.
4145     // Permit extra flags for now at least.
4146     if (PatInfo.hasSideEffects && !NumSideEffects)
4147       Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
4148 
4149     // Don't verify store flags on instructions with side effects. At least for
4150     // intrinsics, side effects implies mayStore.
4151     if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
4152       Msgs.push_back("pattern may store, but mayStore isn't set");
4153 
4154     // Similarly, mayStore implies mayLoad on intrinsics.
4155     if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
4156       Msgs.push_back("pattern may load, but mayLoad isn't set");
4157 
4158     // Print error messages.
4159     if (Msgs.empty())
4160       continue;
4161     ++Errors;
4162 
4163     for (const std::string &Msg : Msgs)
4164       PrintError(
4165           PTM.getSrcRecord()->getLoc(),
4166           Twine(Msg) + " on the " +
4167               (Instrs.size() == 1 ? "instruction" : "output instructions"));
4168     // Provide the location of the relevant instruction definitions.
4169     for (const Record *Instr : Instrs) {
4170       if (Instr != PTM.getSrcRecord())
4171         PrintError(Instr->getLoc(), "defined here");
4172       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4173       if (InstInfo.InferredFrom && InstInfo.InferredFrom != InstInfo.TheDef &&
4174           InstInfo.InferredFrom != PTM.getSrcRecord())
4175         PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
4176     }
4177   }
4178   if (Errors)
4179     PrintFatalError("Errors in DAG patterns");
4180 }
4181 
4182 /// Given a pattern result with an unresolved type, see if we can find one
4183 /// instruction with an unresolved result type.  Force this result type to an
4184 /// arbitrary element if it's possible types to converge results.
4185 static bool ForceArbitraryInstResultType(TreePatternNode &N, TreePattern &TP) {
4186   if (N.isLeaf())
4187     return false;
4188 
4189   // Analyze children.
4190   for (TreePatternNode &Child : N.children())
4191     if (ForceArbitraryInstResultType(Child, TP))
4192       return true;
4193 
4194   if (!N.getOperator()->isSubClassOf("Instruction"))
4195     return false;
4196 
4197   // If this type is already concrete or completely unknown we can't do
4198   // anything.
4199   TypeInfer &TI = TP.getInfer();
4200   for (unsigned i = 0, e = N.getNumTypes(); i != e; ++i) {
4201     if (N.getExtType(i).empty() || TI.isConcrete(N.getExtType(i), false))
4202       continue;
4203 
4204     // Otherwise, force its type to an arbitrary choice.
4205     if (TI.forceArbitrary(N.getExtType(i)))
4206       return true;
4207   }
4208 
4209   return false;
4210 }
4211 
4212 // Promote xform function to be an explicit node wherever set.
4213 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) {
4214   if (const Record *Xform = N->getTransformFn()) {
4215     N->setTransformFn(nullptr);
4216     std::vector<TreePatternNodePtr> Children;
4217     Children.push_back(PromoteXForms(N));
4218     return makeIntrusiveRefCnt<TreePatternNode>(Xform, std::move(Children),
4219                                                 N->getNumTypes());
4220   }
4221 
4222   if (!N->isLeaf())
4223     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4224       TreePatternNodePtr Child = N->getChildShared(i);
4225       N->setChild(i, PromoteXForms(Child));
4226     }
4227   return N;
4228 }
4229 
4230 void CodeGenDAGPatterns::ParseOnePattern(
4231     const Record *TheDef, TreePattern &Pattern, TreePattern &Result,
4232     ArrayRef<const Record *> InstImpResults, bool ShouldIgnore) {
4233   // Inline pattern fragments and expand multiple alternatives.
4234   Pattern.InlinePatternFragments();
4235   Result.InlinePatternFragments();
4236 
4237   if (Result.getNumTrees() != 1) {
4238     Result.error("Cannot use multi-alternative fragments in result pattern!");
4239     return;
4240   }
4241 
4242   // Infer types.
4243   bool IterateInference;
4244   bool InferredAllPatternTypes, InferredAllResultTypes;
4245   do {
4246     // Infer as many types as possible.  If we cannot infer all of them, we
4247     // can never do anything with this pattern: report it to the user.
4248     InferredAllPatternTypes =
4249         Pattern.InferAllTypes(&Pattern.getNamedNodesMap());
4250 
4251     // Infer as many types as possible.  If we cannot infer all of them, we
4252     // can never do anything with this pattern: report it to the user.
4253     InferredAllResultTypes = Result.InferAllTypes(&Pattern.getNamedNodesMap());
4254 
4255     IterateInference = false;
4256 
4257     // Apply the type of the result to the source pattern.  This helps us
4258     // resolve cases where the input type is known to be a pointer type (which
4259     // is considered resolved), but the result knows it needs to be 32- or
4260     // 64-bits.  Infer the other way for good measure.
4261     for (const auto &T : Pattern.getTrees())
4262       for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(),
4263                                         T->getNumTypes());
4264            i != e; ++i) {
4265         IterateInference |=
4266             T->UpdateNodeType(i, Result.getOnlyTree()->getExtType(i), Result);
4267         IterateInference |=
4268             Result.getOnlyTree()->UpdateNodeType(i, T->getExtType(i), Result);
4269       }
4270 
4271     // If our iteration has converged and the input pattern's types are fully
4272     // resolved but the result pattern is not fully resolved, we may have a
4273     // situation where we have two instructions in the result pattern and
4274     // the instructions require a common register class, but don't care about
4275     // what actual MVT is used.  This is actually a bug in our modelling:
4276     // output patterns should have register classes, not MVTs.
4277     //
4278     // In any case, to handle this, we just go through and disambiguate some
4279     // arbitrary types to the result pattern's nodes.
4280     if (!IterateInference && InferredAllPatternTypes && !InferredAllResultTypes)
4281       IterateInference =
4282           ForceArbitraryInstResultType(*Result.getTree(0), Result);
4283   } while (IterateInference);
4284 
4285   // Verify that we inferred enough types that we can do something with the
4286   // pattern and result.  If these fire the user has to add type casts.
4287   if (!InferredAllPatternTypes)
4288     Pattern.error("Could not infer all types in pattern!");
4289   if (!InferredAllResultTypes) {
4290     Pattern.dump();
4291     Result.error("Could not infer all types in pattern result!");
4292   }
4293 
4294   // Promote xform function to be an explicit node wherever set.
4295   TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree());
4296 
4297   TreePattern Temp(Result.getRecord(), DstShared, false, *this);
4298   Temp.InferAllTypes();
4299 
4300   const ListInit *Preds = TheDef->getValueAsListInit("Predicates");
4301   int Complexity = TheDef->getValueAsInt("AddedComplexity");
4302 
4303   if (PatternRewriter)
4304     PatternRewriter(&Pattern);
4305 
4306   // A pattern may end up with an "impossible" type, i.e. a situation
4307   // where all types have been eliminated for some node in this pattern.
4308   // This could occur for intrinsics that only make sense for a specific
4309   // value type, and use a specific register class. If, for some mode,
4310   // that register class does not accept that type, the type inference
4311   // will lead to a contradiction, which is not an error however, but
4312   // a sign that this pattern will simply never match.
4313   if (Temp.getOnlyTree()->hasPossibleType()) {
4314     for (const auto &T : Pattern.getTrees()) {
4315       if (T->hasPossibleType())
4316         AddPatternToMatch(&Pattern,
4317                           PatternToMatch(TheDef, Preds, T, Temp.getOnlyTree(),
4318                                          InstImpResults, Complexity,
4319                                          TheDef->getID(), ShouldIgnore));
4320     }
4321   } else {
4322     // Show a message about a dropped pattern with some info to make it
4323     // easier to identify it in the .td files.
4324     LLVM_DEBUG({
4325       dbgs() << "Dropping: ";
4326       Pattern.dump();
4327       Temp.getOnlyTree()->dump();
4328       dbgs() << "\n";
4329     });
4330   }
4331 }
4332 
4333 void CodeGenDAGPatterns::ParsePatterns() {
4334   for (const Record *CurPattern : Records.getAllDerivedDefinitions("Pattern")) {
4335     const DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
4336 
4337     // If the pattern references the null_frag, there's nothing to do.
4338     if (hasNullFragReference(Tree))
4339       continue;
4340 
4341     TreePattern Pattern(CurPattern, Tree, true, *this);
4342 
4343     const ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
4344     if (LI->empty())
4345       continue; // no pattern.
4346 
4347     // Parse the instruction.
4348     TreePattern Result(CurPattern, LI, false, *this);
4349 
4350     if (Result.getNumTrees() != 1)
4351       Result.error("Cannot handle instructions producing instructions "
4352                    "with temporaries yet!");
4353 
4354     // Validate that the input pattern is correct.
4355     std::map<std::string, TreePatternNodePtr> InstInputs;
4356     MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
4357         InstResults;
4358     std::vector<const Record *> InstImpResults;
4359     for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j)
4360       FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs,
4361                                   InstResults, InstImpResults);
4362 
4363     ParseOnePattern(CurPattern, Pattern, Result, InstImpResults,
4364                     CurPattern->getValueAsBit("GISelShouldIgnore"));
4365   }
4366 }
4367 
4368 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode &N) {
4369   for (const TypeSetByHwMode &VTS : N.getExtTypes())
4370     for (const auto &I : VTS)
4371       Modes.insert(I.first);
4372 
4373   for (const TreePatternNode &Child : N.children())
4374     collectModes(Modes, Child);
4375 }
4376 
4377 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
4378   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
4379   if (CGH.getNumModeIds() == 1)
4380     return;
4381 
4382   std::vector<PatternToMatch> Copy;
4383   PatternsToMatch.swap(Copy);
4384 
4385   auto AppendPattern = [this](PatternToMatch &P, unsigned Mode,
4386                               StringRef Check) {
4387     TreePatternNodePtr NewSrc = P.getSrcPattern().clone();
4388     TreePatternNodePtr NewDst = P.getDstPattern().clone();
4389     if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
4390       return;
4391     }
4392 
4393     PatternsToMatch.emplace_back(P.getSrcRecord(), P.getPredicates(),
4394                                  std::move(NewSrc), std::move(NewDst),
4395                                  P.getDstRegs(), P.getAddedComplexity(),
4396                                  getNewUID(), P.getGISelShouldIgnore(), Check);
4397   };
4398 
4399   for (PatternToMatch &P : Copy) {
4400     const TreePatternNode *SrcP = nullptr, *DstP = nullptr;
4401     if (P.getSrcPattern().hasProperTypeByHwMode())
4402       SrcP = &P.getSrcPattern();
4403     if (P.getDstPattern().hasProperTypeByHwMode())
4404       DstP = &P.getDstPattern();
4405     if (!SrcP && !DstP) {
4406       PatternsToMatch.push_back(P);
4407       continue;
4408     }
4409 
4410     std::set<unsigned> Modes;
4411     if (SrcP)
4412       collectModes(Modes, *SrcP);
4413     if (DstP)
4414       collectModes(Modes, *DstP);
4415 
4416     // The predicate for the default mode needs to be constructed for each
4417     // pattern separately.
4418     // Since not all modes must be present in each pattern, if a mode m is
4419     // absent, then there is no point in constructing a check for m. If such
4420     // a check was created, it would be equivalent to checking the default
4421     // mode, except not all modes' predicates would be a part of the checking
4422     // code. The subsequently generated check for the default mode would then
4423     // have the exact same patterns, but a different predicate code. To avoid
4424     // duplicated patterns with different predicate checks, construct the
4425     // default check as a negation of all predicates that are actually present
4426     // in the source/destination patterns.
4427     SmallString<128> DefaultCheck;
4428 
4429     for (unsigned M : Modes) {
4430       if (M == DefaultMode)
4431         continue;
4432 
4433       // Fill the map entry for this mode.
4434       const HwMode &HM = CGH.getMode(M);
4435       AppendPattern(P, M, HM.Predicates);
4436 
4437       // Add negations of the HM's predicates to the default predicate.
4438       if (!DefaultCheck.empty())
4439         DefaultCheck += " && ";
4440       DefaultCheck += "!(";
4441       DefaultCheck += HM.Predicates;
4442       DefaultCheck += ")";
4443     }
4444 
4445     bool HasDefault = Modes.count(DefaultMode);
4446     if (HasDefault)
4447       AppendPattern(P, DefaultMode, DefaultCheck);
4448   }
4449 }
4450 
4451 /// Dependent variable map for CodeGenDAGPattern variant generation
4452 typedef StringMap<int> DepVarMap;
4453 
4454 static void FindDepVarsOf(TreePatternNode &N, DepVarMap &DepMap) {
4455   if (N.isLeaf()) {
4456     if (N.hasName() && isa<DefInit>(N.getLeafValue()))
4457       DepMap[N.getName()]++;
4458   } else {
4459     for (TreePatternNode &Child : N.children())
4460       FindDepVarsOf(Child, DepMap);
4461   }
4462 }
4463 
4464 /// Find dependent variables within child patterns
4465 static void FindDepVars(TreePatternNode &N, MultipleUseVarSet &DepVars) {
4466   DepVarMap depcounts;
4467   FindDepVarsOf(N, depcounts);
4468   for (const auto &Pair : depcounts) {
4469     if (Pair.getValue() > 1)
4470       DepVars.insert(Pair.getKey());
4471   }
4472 }
4473 
4474 #ifndef NDEBUG
4475 /// Dump the dependent variable set:
4476 static void DumpDepVars(MultipleUseVarSet &DepVars) {
4477   if (DepVars.empty()) {
4478     LLVM_DEBUG(errs() << "<empty set>");
4479   } else {
4480     LLVM_DEBUG(errs() << "[ ");
4481     for (const auto &DepVar : DepVars) {
4482       LLVM_DEBUG(errs() << DepVar.getKey() << " ");
4483     }
4484     LLVM_DEBUG(errs() << "]");
4485   }
4486 }
4487 #endif
4488 
4489 /// CombineChildVariants - Given a bunch of permutations of each child of the
4490 /// 'operator' node, put them together in all possible ways.
4491 static void CombineChildVariants(
4492     TreePatternNodePtr Orig,
4493     const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants,
4494     std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP,
4495     const MultipleUseVarSet &DepVars) {
4496   // Make sure that each operand has at least one variant to choose from.
4497   for (const auto &Variants : ChildVariants)
4498     if (Variants.empty())
4499       return;
4500 
4501   // The end result is an all-pairs construction of the resultant pattern.
4502   std::vector<unsigned> Idxs(ChildVariants.size());
4503   bool NotDone;
4504   do {
4505 #ifndef NDEBUG
4506     LLVM_DEBUG(if (!Idxs.empty()) {
4507       errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
4508       for (unsigned Idx : Idxs) {
4509         errs() << Idx << " ";
4510       }
4511       errs() << "]\n";
4512     });
4513 #endif
4514     // Create the variant and add it to the output list.
4515     std::vector<TreePatternNodePtr> NewChildren;
4516     NewChildren.reserve(ChildVariants.size());
4517     for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
4518       NewChildren.push_back(ChildVariants[i][Idxs[i]]);
4519     TreePatternNodePtr R = makeIntrusiveRefCnt<TreePatternNode>(
4520         Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes());
4521 
4522     // Copy over properties.
4523     R->setName(Orig->getName());
4524     R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg());
4525     R->setPredicateCalls(Orig->getPredicateCalls());
4526     R->setGISelFlagsRecord(Orig->getGISelFlagsRecord());
4527     R->setTransformFn(Orig->getTransformFn());
4528     for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
4529       R->setType(i, Orig->getExtType(i));
4530 
4531     // If this pattern cannot match, do not include it as a variant.
4532     std::string ErrString;
4533     // Scan to see if this pattern has already been emitted.  We can get
4534     // duplication due to things like commuting:
4535     //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
4536     // which are the same pattern.  Ignore the dups.
4537     if (R->canPatternMatch(ErrString, CDP) &&
4538         none_of(OutVariants, [&](TreePatternNodePtr Variant) {
4539           return R->isIsomorphicTo(*Variant, DepVars);
4540         }))
4541       OutVariants.push_back(R);
4542 
4543     // Increment indices to the next permutation by incrementing the
4544     // indices from last index backward, e.g., generate the sequence
4545     // [0, 0], [0, 1], [1, 0], [1, 1].
4546     int IdxsIdx;
4547     for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
4548       if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
4549         Idxs[IdxsIdx] = 0;
4550       else
4551         break;
4552     }
4553     NotDone = (IdxsIdx >= 0);
4554   } while (NotDone);
4555 }
4556 
4557 /// CombineChildVariants - A helper function for binary operators.
4558 ///
4559 static void CombineChildVariants(TreePatternNodePtr Orig,
4560                                  const std::vector<TreePatternNodePtr> &LHS,
4561                                  const std::vector<TreePatternNodePtr> &RHS,
4562                                  std::vector<TreePatternNodePtr> &OutVariants,
4563                                  CodeGenDAGPatterns &CDP,
4564                                  const MultipleUseVarSet &DepVars) {
4565   std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4566   ChildVariants.push_back(LHS);
4567   ChildVariants.push_back(RHS);
4568   CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
4569 }
4570 
4571 static void
4572 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,
4573                                   std::vector<TreePatternNodePtr> &Children) {
4574   assert(N->getNumChildren() == 2 &&
4575          "Associative but doesn't have 2 children!");
4576   const Record *Operator = N->getOperator();
4577 
4578   // Only permit raw nodes.
4579   if (!N->getName().empty() || !N->getPredicateCalls().empty() ||
4580       N->getTransformFn()) {
4581     Children.push_back(N);
4582     return;
4583   }
4584 
4585   if (N->getChild(0).isLeaf() || N->getChild(0).getOperator() != Operator)
4586     Children.push_back(N->getChildShared(0));
4587   else
4588     GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children);
4589 
4590   if (N->getChild(1).isLeaf() || N->getChild(1).getOperator() != Operator)
4591     Children.push_back(N->getChildShared(1));
4592   else
4593     GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children);
4594 }
4595 
4596 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
4597 /// the (potentially recursive) pattern by using algebraic laws.
4598 ///
4599 static void GenerateVariantsOf(TreePatternNodePtr N,
4600                                std::vector<TreePatternNodePtr> &OutVariants,
4601                                CodeGenDAGPatterns &CDP,
4602                                const MultipleUseVarSet &DepVars) {
4603   // We cannot permute leaves or ComplexPattern uses.
4604   if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
4605     OutVariants.push_back(N);
4606     return;
4607   }
4608 
4609   // Look up interesting info about the node.
4610   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
4611 
4612   // If this node is associative, re-associate.
4613   if (NodeInfo.hasProperty(SDNPAssociative)) {
4614     // Re-associate by pulling together all of the linked operators
4615     std::vector<TreePatternNodePtr> MaximalChildren;
4616     GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
4617 
4618     // Only handle child sizes of 3.  Otherwise we'll end up trying too many
4619     // permutations.
4620     if (MaximalChildren.size() == 3) {
4621       // Find the variants of all of our maximal children.
4622       std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants;
4623       GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
4624       GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
4625       GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
4626 
4627       // There are only two ways we can permute the tree:
4628       //   (A op B) op C    and    A op (B op C)
4629       // Within these forms, we can also permute A/B/C.
4630 
4631       // Generate legal pair permutations of A/B/C.
4632       std::vector<TreePatternNodePtr> ABVariants;
4633       std::vector<TreePatternNodePtr> BAVariants;
4634       std::vector<TreePatternNodePtr> ACVariants;
4635       std::vector<TreePatternNodePtr> CAVariants;
4636       std::vector<TreePatternNodePtr> BCVariants;
4637       std::vector<TreePatternNodePtr> CBVariants;
4638       CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
4639       CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
4640       CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
4641       CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
4642       CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
4643       CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
4644 
4645       // Combine those into the result: (x op x) op x
4646       CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
4647       CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
4648       CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
4649       CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
4650       CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
4651       CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
4652 
4653       // Combine those into the result: x op (x op x)
4654       CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
4655       CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
4656       CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
4657       CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
4658       CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
4659       CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
4660       return;
4661     }
4662   }
4663 
4664   // Compute permutations of all children.
4665   std::vector<std::vector<TreePatternNodePtr>> ChildVariants(
4666       N->getNumChildren());
4667   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4668     GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars);
4669 
4670   // Build all permutations based on how the children were formed.
4671   CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4672 
4673   // If this node is commutative, consider the commuted order.
4674   bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
4675   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
4676     unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
4677     assert(N->getNumChildren() >= (2 + Skip) &&
4678            "Commutative but doesn't have 2 children!");
4679     // Don't allow commuting children which are actually register references.
4680     bool NoRegisters = true;
4681     unsigned i = 0 + Skip;
4682     unsigned e = 2 + Skip;
4683     for (; i != e; ++i) {
4684       TreePatternNode &Child = N->getChild(i);
4685       if (Child.isLeaf())
4686         if (const DefInit *DI = dyn_cast<DefInit>(Child.getLeafValue())) {
4687           const Record *RR = DI->getDef();
4688           if (RR->isSubClassOf("Register"))
4689             NoRegisters = false;
4690         }
4691     }
4692     // Consider the commuted order.
4693     if (NoRegisters) {
4694       // Swap the first two operands after the intrinsic id, if present.
4695       unsigned i = isCommIntrinsic ? 1 : 0;
4696       std::swap(ChildVariants[i], ChildVariants[i + 1]);
4697       CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4698     }
4699   }
4700 }
4701 
4702 // GenerateVariants - Generate variants.  For example, commutative patterns can
4703 // match multiple ways.  Add them to PatternsToMatch as well.
4704 void CodeGenDAGPatterns::GenerateVariants() {
4705   LLVM_DEBUG(errs() << "Generating instruction variants.\n");
4706 
4707   // Loop over all of the patterns we've collected, checking to see if we can
4708   // generate variants of the instruction, through the exploitation of
4709   // identities.  This permits the target to provide aggressive matching without
4710   // the .td file having to contain tons of variants of instructions.
4711   //
4712   // Note that this loop adds new patterns to the PatternsToMatch list, but we
4713   // intentionally do not reconsider these.  Any variants of added patterns have
4714   // already been added.
4715   //
4716   for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
4717     MultipleUseVarSet DepVars;
4718     std::vector<TreePatternNodePtr> Variants;
4719     FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
4720     LLVM_DEBUG(errs() << "Dependent/multiply used variables: ");
4721     LLVM_DEBUG(DumpDepVars(DepVars));
4722     LLVM_DEBUG(errs() << "\n");
4723     GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants,
4724                        *this, DepVars);
4725 
4726     assert(PatternsToMatch[i].getHwModeFeatures().empty() &&
4727            "HwModes should not have been expanded yet!");
4728 
4729     assert(!Variants.empty() && "Must create at least original variant!");
4730     if (Variants.size() == 1) // No additional variants for this pattern.
4731       continue;
4732 
4733     LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";
4734                PatternsToMatch[i].getSrcPattern().dump(); errs() << "\n");
4735 
4736     for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
4737       TreePatternNodePtr Variant = Variants[v];
4738 
4739       LLVM_DEBUG(errs() << "  VAR#" << v << ": "; Variant->dump();
4740                  errs() << "\n");
4741 
4742       // Scan to see if an instruction or explicit pattern already matches this.
4743       bool AlreadyExists = false;
4744       for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
4745         // Skip if the top level predicates do not match.
4746         if ((i != p) && (PatternsToMatch[i].getPredicates() !=
4747                          PatternsToMatch[p].getPredicates()))
4748           continue;
4749         // Check to see if this variant already exists.
4750         if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
4751                                     DepVars)) {
4752           LLVM_DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
4753           AlreadyExists = true;
4754           break;
4755         }
4756       }
4757       // If we already have it, ignore the variant.
4758       if (AlreadyExists)
4759         continue;
4760 
4761       // Otherwise, add it to the list of patterns we have.
4762       PatternsToMatch.emplace_back(
4763           PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
4764           Variant, PatternsToMatch[i].getDstPatternShared(),
4765           PatternsToMatch[i].getDstRegs(),
4766           PatternsToMatch[i].getAddedComplexity(), getNewUID(),
4767           PatternsToMatch[i].getGISelShouldIgnore(),
4768           PatternsToMatch[i].getHwModeFeatures());
4769     }
4770 
4771     LLVM_DEBUG(errs() << "\n");
4772   }
4773 }
4774 
4775 unsigned CodeGenDAGPatterns::getNewUID() {
4776   RecordKeeper &MutableRC = const_cast<RecordKeeper &>(Records);
4777   return Record::getNewUID(MutableRC);
4778 }
4779