1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the CodeGenDAGPatterns class, which is used to read and 10 // represent the patterns present in a .td file for instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenDAGPatterns.h" 15 #include "CodeGenInstruction.h" 16 #include "CodeGenRegisters.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallString.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/ADT/StringMap.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/TypeSize.h" 28 #include "llvm/TableGen/Error.h" 29 #include "llvm/TableGen/Record.h" 30 #include <algorithm> 31 #include <cstdio> 32 #include <iterator> 33 #include <set> 34 using namespace llvm; 35 36 #define DEBUG_TYPE "dag-patterns" 37 38 static inline bool isIntegerOrPtr(MVT VT) { 39 return VT.isInteger() || VT == MVT::iPTR; 40 } 41 static inline bool isFloatingPoint(MVT VT) { return VT.isFloatingPoint(); } 42 static inline bool isVector(MVT VT) { return VT.isVector(); } 43 static inline bool isScalar(MVT VT) { return !VT.isVector(); } 44 45 template <typename Predicate> 46 static bool berase_if(MachineValueTypeSet &S, Predicate P) { 47 bool Erased = false; 48 // It is ok to iterate over MachineValueTypeSet and remove elements from it 49 // at the same time. 50 for (MVT T : S) { 51 if (!P(T)) 52 continue; 53 Erased = true; 54 S.erase(T); 55 } 56 return Erased; 57 } 58 59 void MachineValueTypeSet::writeToStream(raw_ostream &OS) const { 60 SmallVector<MVT, 4> Types(begin(), end()); 61 array_pod_sort(Types.begin(), Types.end()); 62 63 OS << '['; 64 ListSeparator LS(" "); 65 for (const MVT &T : Types) 66 OS << LS << ValueTypeByHwMode::getMVTName(T); 67 OS << ']'; 68 } 69 70 // --- TypeSetByHwMode 71 72 // This is a parameterized type-set class. For each mode there is a list 73 // of types that are currently possible for a given tree node. Type 74 // inference will apply to each mode separately. 75 76 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) { 77 // Take the address space from the first type in the list. 78 if (!VTList.empty()) 79 AddrSpace = VTList[0].PtrAddrSpace; 80 81 for (const ValueTypeByHwMode &VVT : VTList) 82 insert(VVT); 83 } 84 85 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const { 86 for (const auto &I : *this) { 87 if (I.second.size() > 1) 88 return false; 89 if (!AllowEmpty && I.second.empty()) 90 return false; 91 } 92 return true; 93 } 94 95 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const { 96 assert(isValueTypeByHwMode(true) && 97 "The type set has multiple types for at least one HW mode"); 98 ValueTypeByHwMode VVT; 99 VVT.PtrAddrSpace = AddrSpace; 100 101 for (const auto &I : *this) { 102 MVT T = I.second.empty() ? MVT::Other : *I.second.begin(); 103 VVT.getOrCreateTypeForMode(I.first, T); 104 } 105 return VVT; 106 } 107 108 bool TypeSetByHwMode::isPossible() const { 109 for (const auto &I : *this) 110 if (!I.second.empty()) 111 return true; 112 return false; 113 } 114 115 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) { 116 bool Changed = false; 117 bool ContainsDefault = false; 118 MVT DT = MVT::Other; 119 120 for (const auto &P : VVT) { 121 unsigned M = P.first; 122 // Make sure there exists a set for each specific mode from VVT. 123 Changed |= getOrCreate(M).insert(P.second).second; 124 // Cache VVT's default mode. 125 if (DefaultMode == M) { 126 ContainsDefault = true; 127 DT = P.second; 128 } 129 } 130 131 // If VVT has a default mode, add the corresponding type to all 132 // modes in "this" that do not exist in VVT. 133 if (ContainsDefault) 134 for (auto &I : *this) 135 if (!VVT.hasMode(I.first)) 136 Changed |= I.second.insert(DT).second; 137 138 return Changed; 139 } 140 141 // Constrain the type set to be the intersection with VTS. 142 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) { 143 bool Changed = false; 144 if (hasDefault()) { 145 for (const auto &I : VTS) { 146 unsigned M = I.first; 147 if (M == DefaultMode || hasMode(M)) 148 continue; 149 Map.insert({M, Map.at(DefaultMode)}); 150 Changed = true; 151 } 152 } 153 154 for (auto &I : *this) { 155 unsigned M = I.first; 156 SetType &S = I.second; 157 if (VTS.hasMode(M) || VTS.hasDefault()) { 158 Changed |= intersect(I.second, VTS.get(M)); 159 } else if (!S.empty()) { 160 S.clear(); 161 Changed = true; 162 } 163 } 164 return Changed; 165 } 166 167 template <typename Predicate> bool TypeSetByHwMode::constrain(Predicate P) { 168 bool Changed = false; 169 for (auto &I : *this) 170 Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); }); 171 return Changed; 172 } 173 174 template <typename Predicate> 175 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) { 176 assert(empty()); 177 for (const auto &I : VTS) { 178 SetType &S = getOrCreate(I.first); 179 for (auto J : I.second) 180 if (P(J)) 181 S.insert(J); 182 } 183 return !empty(); 184 } 185 186 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const { 187 SmallVector<unsigned, 4> Modes; 188 Modes.reserve(Map.size()); 189 190 for (const auto &I : *this) 191 Modes.push_back(I.first); 192 if (Modes.empty()) { 193 OS << "{}"; 194 return; 195 } 196 array_pod_sort(Modes.begin(), Modes.end()); 197 198 OS << '{'; 199 for (unsigned M : Modes) { 200 OS << ' ' << getModeName(M) << ':'; 201 get(M).writeToStream(OS); 202 } 203 OS << " }"; 204 } 205 206 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const { 207 // The isSimple call is much quicker than hasDefault - check this first. 208 bool IsSimple = isSimple(); 209 bool VTSIsSimple = VTS.isSimple(); 210 if (IsSimple && VTSIsSimple) 211 return getSimple() == VTS.getSimple(); 212 213 // Speedup: We have a default if the set is simple. 214 bool HaveDefault = IsSimple || hasDefault(); 215 bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault(); 216 if (HaveDefault != VTSHaveDefault) 217 return false; 218 219 SmallSet<unsigned, 4> Modes; 220 for (auto &I : *this) 221 Modes.insert(I.first); 222 for (const auto &I : VTS) 223 Modes.insert(I.first); 224 225 if (HaveDefault) { 226 // Both sets have default mode. 227 for (unsigned M : Modes) { 228 if (get(M) != VTS.get(M)) 229 return false; 230 } 231 } else { 232 // Neither set has default mode. 233 for (unsigned M : Modes) { 234 // If there is no default mode, an empty set is equivalent to not having 235 // the corresponding mode. 236 bool NoModeThis = !hasMode(M) || get(M).empty(); 237 bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty(); 238 if (NoModeThis != NoModeVTS) 239 return false; 240 if (!NoModeThis) 241 if (get(M) != VTS.get(M)) 242 return false; 243 } 244 } 245 246 return true; 247 } 248 249 namespace llvm { 250 raw_ostream &operator<<(raw_ostream &OS, const MachineValueTypeSet &T) { 251 T.writeToStream(OS); 252 return OS; 253 } 254 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) { 255 T.writeToStream(OS); 256 return OS; 257 } 258 } // namespace llvm 259 260 LLVM_DUMP_METHOD 261 void TypeSetByHwMode::dump() const { dbgs() << *this << '\n'; } 262 263 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) { 264 auto IntersectP = [&](std::optional<MVT> WildVT, function_ref<bool(MVT)> P) { 265 // Complement of In within this partition. 266 auto CompIn = [&](MVT T) -> bool { return !In.count(T) && P(T); }; 267 268 if (!WildVT) 269 return berase_if(Out, CompIn); 270 271 bool OutW = Out.count(*WildVT), InW = In.count(*WildVT); 272 if (OutW == InW) 273 return berase_if(Out, CompIn); 274 275 // Compute the intersection of scalars separately to account for only one 276 // set containing WildVT. 277 // The intersection of WildVT with a set of corresponding types that does 278 // not include WildVT will result in the most specific type: 279 // - WildVT is more specific than any set with two elements or more 280 // - WildVT is less specific than any single type. 281 // For example, for iPTR and scalar integer types 282 // { iPTR } * { i32 } -> { i32 } 283 // { iPTR } * { i32 i64 } -> { iPTR } 284 // and 285 // { iPTR i32 } * { i32 } -> { i32 } 286 // { iPTR i32 } * { i32 i64 } -> { i32 i64 } 287 // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 } 288 289 // Looking at just this partition, let In' = elements only in In, 290 // Out' = elements only in Out, and IO = elements common to both. Normally 291 // IO would be returned as the result of the intersection, but we need to 292 // account for WildVT being a "wildcard" of sorts. Since elements in IO are 293 // those that match both sets exactly, they will all belong to the output. 294 // If any of the "leftovers" (i.e. In' or Out') contain WildVT, it means 295 // that the other set doesn't have it, but it could have (1) a more 296 // specific type, or (2) a set of types that is less specific. The 297 // "leftovers" from the other set is what we want to examine more closely. 298 299 auto Leftovers = [&](const SetType &A, const SetType &B) { 300 SetType Diff = A; 301 berase_if(Diff, [&](MVT T) { return B.count(T) || !P(T); }); 302 return Diff; 303 }; 304 305 if (InW) { 306 SetType OutLeftovers = Leftovers(Out, In); 307 if (OutLeftovers.size() < 2) { 308 // WildVT not added to Out. Keep the possible single leftover. 309 return false; 310 } 311 // WildVT replaces the leftovers. 312 berase_if(Out, CompIn); 313 Out.insert(*WildVT); 314 return true; 315 } 316 317 // OutW == true 318 SetType InLeftovers = Leftovers(In, Out); 319 unsigned SizeOut = Out.size(); 320 berase_if(Out, CompIn); // This will remove at least the WildVT. 321 if (InLeftovers.size() < 2) { 322 // WildVT deleted from Out. Add back the possible single leftover. 323 Out.insert(InLeftovers); 324 return true; 325 } 326 327 // Keep the WildVT in Out. 328 Out.insert(*WildVT); 329 // If WildVT was the only element initially removed from Out, then Out 330 // has not changed. 331 return SizeOut != Out.size(); 332 }; 333 334 // Note: must be non-overlapping 335 using WildPartT = std::pair<MVT, std::function<bool(MVT)>>; 336 static const WildPartT WildParts[] = { 337 {MVT::iPTR, [](MVT T) { return T.isScalarInteger() || T == MVT::iPTR; }}, 338 }; 339 340 bool Changed = false; 341 for (const auto &I : WildParts) 342 Changed |= IntersectP(I.first, I.second); 343 344 Changed |= IntersectP(std::nullopt, [&](MVT T) { 345 return !any_of(WildParts, [=](const WildPartT &I) { return I.second(T); }); 346 }); 347 348 return Changed; 349 } 350 351 bool TypeSetByHwMode::validate() const { 352 if (empty()) 353 return true; 354 bool AllEmpty = true; 355 for (const auto &I : *this) 356 AllEmpty &= I.second.empty(); 357 return !AllEmpty; 358 } 359 360 // --- TypeInfer 361 362 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out, 363 const TypeSetByHwMode &In) const { 364 ValidateOnExit _1(Out, *this); 365 In.validate(); 366 if (In.empty() || Out == In || TP.hasError()) 367 return false; 368 if (Out.empty()) { 369 Out = In; 370 return true; 371 } 372 373 bool Changed = Out.constrain(In); 374 if (Changed && Out.empty()) 375 TP.error("Type contradiction"); 376 377 return Changed; 378 } 379 380 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) { 381 ValidateOnExit _1(Out, *this); 382 if (TP.hasError()) 383 return false; 384 assert(!Out.empty() && "cannot pick from an empty set"); 385 386 bool Changed = false; 387 for (auto &I : Out) { 388 TypeSetByHwMode::SetType &S = I.second; 389 if (S.size() <= 1) 390 continue; 391 MVT T = *S.begin(); // Pick the first element. 392 S.clear(); 393 S.insert(T); 394 Changed = true; 395 } 396 return Changed; 397 } 398 399 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) { 400 ValidateOnExit _1(Out, *this); 401 if (TP.hasError()) 402 return false; 403 if (!Out.empty()) 404 return Out.constrain(isIntegerOrPtr); 405 406 return Out.assign_if(getLegalTypes(), isIntegerOrPtr); 407 } 408 409 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) { 410 ValidateOnExit _1(Out, *this); 411 if (TP.hasError()) 412 return false; 413 if (!Out.empty()) 414 return Out.constrain(isFloatingPoint); 415 416 return Out.assign_if(getLegalTypes(), isFloatingPoint); 417 } 418 419 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) { 420 ValidateOnExit _1(Out, *this); 421 if (TP.hasError()) 422 return false; 423 if (!Out.empty()) 424 return Out.constrain(isScalar); 425 426 return Out.assign_if(getLegalTypes(), isScalar); 427 } 428 429 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) { 430 ValidateOnExit _1(Out, *this); 431 if (TP.hasError()) 432 return false; 433 if (!Out.empty()) 434 return Out.constrain(isVector); 435 436 return Out.assign_if(getLegalTypes(), isVector); 437 } 438 439 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) { 440 ValidateOnExit _1(Out, *this); 441 if (TP.hasError() || !Out.empty()) 442 return false; 443 444 Out = getLegalTypes(); 445 return true; 446 } 447 448 template <typename Iter, typename Pred, typename Less> 449 static Iter min_if(Iter B, Iter E, Pred P, Less L) { 450 if (B == E) 451 return E; 452 Iter Min = E; 453 for (Iter I = B; I != E; ++I) { 454 if (!P(*I)) 455 continue; 456 if (Min == E || L(*I, *Min)) 457 Min = I; 458 } 459 return Min; 460 } 461 462 template <typename Iter, typename Pred, typename Less> 463 static Iter max_if(Iter B, Iter E, Pred P, Less L) { 464 if (B == E) 465 return E; 466 Iter Max = E; 467 for (Iter I = B; I != E; ++I) { 468 if (!P(*I)) 469 continue; 470 if (Max == E || L(*Max, *I)) 471 Max = I; 472 } 473 return Max; 474 } 475 476 /// Make sure that for each type in Small, there exists a larger type in Big. 477 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big, 478 bool SmallIsVT) { 479 ValidateOnExit _1(Small, *this), _2(Big, *this); 480 if (TP.hasError()) 481 return false; 482 bool Changed = false; 483 484 assert((!SmallIsVT || !Small.empty()) && 485 "Small should not be empty for SDTCisVTSmallerThanOp"); 486 487 if (Small.empty()) 488 Changed |= EnforceAny(Small); 489 if (Big.empty()) 490 Changed |= EnforceAny(Big); 491 492 assert(Small.hasDefault() && Big.hasDefault()); 493 494 SmallVector<unsigned, 4> Modes; 495 union_modes(Small, Big, Modes); 496 497 // 1. Only allow integer or floating point types and make sure that 498 // both sides are both integer or both floating point. 499 // 2. Make sure that either both sides have vector types, or neither 500 // of them does. 501 for (unsigned M : Modes) { 502 TypeSetByHwMode::SetType &S = Small.get(M); 503 TypeSetByHwMode::SetType &B = Big.get(M); 504 505 assert((!SmallIsVT || !S.empty()) && "Expected non-empty type"); 506 507 if (any_of(S, isIntegerOrPtr) && any_of(B, isIntegerOrPtr)) { 508 auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); }; 509 Changed |= berase_if(S, NotInt); 510 Changed |= berase_if(B, NotInt); 511 } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) { 512 auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); }; 513 Changed |= berase_if(S, NotFP); 514 Changed |= berase_if(B, NotFP); 515 } else if (SmallIsVT && B.empty()) { 516 // B is empty and since S is a specific VT, it will never be empty. Don't 517 // report this as a change, just clear S and continue. This prevents an 518 // infinite loop. 519 S.clear(); 520 } else if (S.empty() || B.empty()) { 521 Changed = !S.empty() || !B.empty(); 522 S.clear(); 523 B.clear(); 524 } else { 525 TP.error("Incompatible types"); 526 return Changed; 527 } 528 529 if (none_of(S, isVector) || none_of(B, isVector)) { 530 Changed |= berase_if(S, isVector); 531 Changed |= berase_if(B, isVector); 532 } 533 } 534 535 auto LT = [](MVT A, MVT B) -> bool { 536 // Always treat non-scalable MVTs as smaller than scalable MVTs for the 537 // purposes of ordering. 538 auto ASize = std::tuple(A.isScalableVector(), A.getScalarSizeInBits(), 539 A.getSizeInBits().getKnownMinValue()); 540 auto BSize = std::tuple(B.isScalableVector(), B.getScalarSizeInBits(), 541 B.getSizeInBits().getKnownMinValue()); 542 return ASize < BSize; 543 }; 544 auto SameKindLE = [](MVT A, MVT B) -> bool { 545 // This function is used when removing elements: when a vector is compared 546 // to a non-vector or a scalable vector to any non-scalable MVT, it should 547 // return false (to avoid removal). 548 if (std::tuple(A.isVector(), A.isScalableVector()) != 549 std::tuple(B.isVector(), B.isScalableVector())) 550 return false; 551 552 return std::tuple(A.getScalarSizeInBits(), 553 A.getSizeInBits().getKnownMinValue()) <= 554 std::tuple(B.getScalarSizeInBits(), 555 B.getSizeInBits().getKnownMinValue()); 556 }; 557 558 for (unsigned M : Modes) { 559 TypeSetByHwMode::SetType &S = Small.get(M); 560 TypeSetByHwMode::SetType &B = Big.get(M); 561 // MinS = min scalar in Small, remove all scalars from Big that are 562 // smaller-or-equal than MinS. 563 auto MinS = min_if(S.begin(), S.end(), isScalar, LT); 564 if (MinS != S.end()) 565 Changed |= 566 berase_if(B, std::bind(SameKindLE, std::placeholders::_1, *MinS)); 567 568 // MaxS = max scalar in Big, remove all scalars from Small that are 569 // larger than MaxS. 570 auto MaxS = max_if(B.begin(), B.end(), isScalar, LT); 571 if (MaxS != B.end()) 572 Changed |= 573 berase_if(S, std::bind(SameKindLE, *MaxS, std::placeholders::_1)); 574 575 // MinV = min vector in Small, remove all vectors from Big that are 576 // smaller-or-equal than MinV. 577 auto MinV = min_if(S.begin(), S.end(), isVector, LT); 578 if (MinV != S.end()) 579 Changed |= 580 berase_if(B, std::bind(SameKindLE, std::placeholders::_1, *MinV)); 581 582 // MaxV = max vector in Big, remove all vectors from Small that are 583 // larger than MaxV. 584 auto MaxV = max_if(B.begin(), B.end(), isVector, LT); 585 if (MaxV != B.end()) 586 Changed |= 587 berase_if(S, std::bind(SameKindLE, *MaxV, std::placeholders::_1)); 588 } 589 590 return Changed; 591 } 592 593 /// 1. Ensure that for each type T in Vec, T is a vector type, and that 594 /// for each type U in Elem, U is a scalar type. 595 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector) 596 /// type T in Vec, such that U is the element type of T. 597 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 598 TypeSetByHwMode &Elem) { 599 ValidateOnExit _1(Vec, *this), _2(Elem, *this); 600 if (TP.hasError()) 601 return false; 602 bool Changed = false; 603 604 if (Vec.empty()) 605 Changed |= EnforceVector(Vec); 606 if (Elem.empty()) 607 Changed |= EnforceScalar(Elem); 608 609 SmallVector<unsigned, 4> Modes; 610 union_modes(Vec, Elem, Modes); 611 for (unsigned M : Modes) { 612 TypeSetByHwMode::SetType &V = Vec.get(M); 613 TypeSetByHwMode::SetType &E = Elem.get(M); 614 615 Changed |= berase_if(V, isScalar); // Scalar = !vector 616 Changed |= berase_if(E, isVector); // Vector = !scalar 617 assert(!V.empty() && !E.empty()); 618 619 MachineValueTypeSet VT, ST; 620 // Collect element types from the "vector" set. 621 for (MVT T : V) 622 VT.insert(T.getVectorElementType()); 623 // Collect scalar types from the "element" set. 624 for (MVT T : E) 625 ST.insert(T); 626 627 // Remove from V all (vector) types whose element type is not in S. 628 Changed |= berase_if(V, [&ST](MVT T) -> bool { 629 return !ST.count(T.getVectorElementType()); 630 }); 631 // Remove from E all (scalar) types, for which there is no corresponding 632 // type in V. 633 Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); }); 634 } 635 636 return Changed; 637 } 638 639 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 640 const ValueTypeByHwMode &VVT) { 641 TypeSetByHwMode Tmp(VVT); 642 ValidateOnExit _1(Vec, *this), _2(Tmp, *this); 643 return EnforceVectorEltTypeIs(Vec, Tmp); 644 } 645 646 /// Ensure that for each type T in Sub, T is a vector type, and there 647 /// exists a type U in Vec such that U is a vector type with the same 648 /// element type as T and at least as many elements as T. 649 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec, 650 TypeSetByHwMode &Sub) { 651 ValidateOnExit _1(Vec, *this), _2(Sub, *this); 652 if (TP.hasError()) 653 return false; 654 655 /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B. 656 auto IsSubVec = [](MVT B, MVT P) -> bool { 657 if (!B.isVector() || !P.isVector()) 658 return false; 659 // Logically a <4 x i32> is a valid subvector of <n x 4 x i32> 660 // but until there are obvious use-cases for this, keep the 661 // types separate. 662 if (B.isScalableVector() != P.isScalableVector()) 663 return false; 664 if (B.getVectorElementType() != P.getVectorElementType()) 665 return false; 666 return B.getVectorMinNumElements() < P.getVectorMinNumElements(); 667 }; 668 669 /// Return true if S has no element (vector type) that T is a sub-vector of, 670 /// i.e. has the same element type as T and more elements. 671 auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 672 for (auto I : S) 673 if (IsSubVec(T, I)) 674 return false; 675 return true; 676 }; 677 678 /// Return true if S has no element (vector type) that T is a super-vector 679 /// of, i.e. has the same element type as T and fewer elements. 680 auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 681 for (auto I : S) 682 if (IsSubVec(I, T)) 683 return false; 684 return true; 685 }; 686 687 bool Changed = false; 688 689 if (Vec.empty()) 690 Changed |= EnforceVector(Vec); 691 if (Sub.empty()) 692 Changed |= EnforceVector(Sub); 693 694 SmallVector<unsigned, 4> Modes; 695 union_modes(Vec, Sub, Modes); 696 for (unsigned M : Modes) { 697 TypeSetByHwMode::SetType &S = Sub.get(M); 698 TypeSetByHwMode::SetType &V = Vec.get(M); 699 700 Changed |= berase_if(S, isScalar); 701 702 // Erase all types from S that are not sub-vectors of a type in V. 703 Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1)); 704 705 // Erase all types from V that are not super-vectors of a type in S. 706 Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1)); 707 } 708 709 return Changed; 710 } 711 712 /// 1. Ensure that V has a scalar type iff W has a scalar type. 713 /// 2. Ensure that for each vector type T in V, there exists a vector 714 /// type U in W, such that T and U have the same number of elements. 715 /// 3. Ensure that for each vector type U in W, there exists a vector 716 /// type T in V, such that T and U have the same number of elements 717 /// (reverse of 2). 718 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) { 719 ValidateOnExit _1(V, *this), _2(W, *this); 720 if (TP.hasError()) 721 return false; 722 723 bool Changed = false; 724 if (V.empty()) 725 Changed |= EnforceAny(V); 726 if (W.empty()) 727 Changed |= EnforceAny(W); 728 729 // An actual vector type cannot have 0 elements, so we can treat scalars 730 // as zero-length vectors. This way both vectors and scalars can be 731 // processed identically. 732 auto NoLength = [](const SmallDenseSet<ElementCount> &Lengths, 733 MVT T) -> bool { 734 return !Lengths.count(T.isVector() ? T.getVectorElementCount() 735 : ElementCount()); 736 }; 737 738 SmallVector<unsigned, 4> Modes; 739 union_modes(V, W, Modes); 740 for (unsigned M : Modes) { 741 TypeSetByHwMode::SetType &VS = V.get(M); 742 TypeSetByHwMode::SetType &WS = W.get(M); 743 744 SmallDenseSet<ElementCount> VN, WN; 745 for (MVT T : VS) 746 VN.insert(T.isVector() ? T.getVectorElementCount() : ElementCount()); 747 for (MVT T : WS) 748 WN.insert(T.isVector() ? T.getVectorElementCount() : ElementCount()); 749 750 Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1)); 751 Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1)); 752 } 753 return Changed; 754 } 755 756 namespace { 757 struct TypeSizeComparator { 758 bool operator()(const TypeSize &LHS, const TypeSize &RHS) const { 759 return std::tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 760 std::tuple(RHS.isScalable(), RHS.getKnownMinValue()); 761 } 762 }; 763 } // end anonymous namespace 764 765 /// 1. Ensure that for each type T in A, there exists a type U in B, 766 /// such that T and U have equal size in bits. 767 /// 2. Ensure that for each type U in B, there exists a type T in A 768 /// such that T and U have equal size in bits (reverse of 1). 769 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) { 770 ValidateOnExit _1(A, *this), _2(B, *this); 771 if (TP.hasError()) 772 return false; 773 bool Changed = false; 774 if (A.empty()) 775 Changed |= EnforceAny(A); 776 if (B.empty()) 777 Changed |= EnforceAny(B); 778 779 typedef SmallSet<TypeSize, 2, TypeSizeComparator> TypeSizeSet; 780 781 auto NoSize = [](const TypeSizeSet &Sizes, MVT T) -> bool { 782 return !Sizes.count(T.getSizeInBits()); 783 }; 784 785 SmallVector<unsigned, 4> Modes; 786 union_modes(A, B, Modes); 787 for (unsigned M : Modes) { 788 TypeSetByHwMode::SetType &AS = A.get(M); 789 TypeSetByHwMode::SetType &BS = B.get(M); 790 TypeSizeSet AN, BN; 791 792 for (MVT T : AS) 793 AN.insert(T.getSizeInBits()); 794 for (MVT T : BS) 795 BN.insert(T.getSizeInBits()); 796 797 Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1)); 798 Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1)); 799 } 800 801 return Changed; 802 } 803 804 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) const { 805 ValidateOnExit _1(VTS, *this); 806 const TypeSetByHwMode &Legal = getLegalTypes(); 807 assert(Legal.isSimple() && "Default-mode only expected"); 808 const TypeSetByHwMode::SetType &LegalTypes = Legal.getSimple(); 809 810 for (auto &I : VTS) 811 expandOverloads(I.second, LegalTypes); 812 } 813 814 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out, 815 const TypeSetByHwMode::SetType &Legal) const { 816 if (Out.count(MVT::pAny)) { 817 Out.erase(MVT::pAny); 818 Out.insert(MVT::iPTR); 819 } else if (Out.count(MVT::iAny)) { 820 Out.erase(MVT::iAny); 821 for (MVT T : MVT::integer_valuetypes()) 822 if (Legal.count(T)) 823 Out.insert(T); 824 for (MVT T : MVT::integer_fixedlen_vector_valuetypes()) 825 if (Legal.count(T)) 826 Out.insert(T); 827 for (MVT T : MVT::integer_scalable_vector_valuetypes()) 828 if (Legal.count(T)) 829 Out.insert(T); 830 } else if (Out.count(MVT::fAny)) { 831 Out.erase(MVT::fAny); 832 for (MVT T : MVT::fp_valuetypes()) 833 if (Legal.count(T)) 834 Out.insert(T); 835 for (MVT T : MVT::fp_fixedlen_vector_valuetypes()) 836 if (Legal.count(T)) 837 Out.insert(T); 838 for (MVT T : MVT::fp_scalable_vector_valuetypes()) 839 if (Legal.count(T)) 840 Out.insert(T); 841 } else if (Out.count(MVT::vAny)) { 842 Out.erase(MVT::vAny); 843 for (MVT T : MVT::vector_valuetypes()) 844 if (Legal.count(T)) 845 Out.insert(T); 846 } else if (Out.count(MVT::Any)) { 847 Out.erase(MVT::Any); 848 for (MVT T : MVT::all_valuetypes()) 849 if (Legal.count(T)) 850 Out.insert(T); 851 } 852 } 853 854 const TypeSetByHwMode &TypeInfer::getLegalTypes() const { 855 if (!LegalTypesCached) { 856 TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode); 857 // Stuff all types from all modes into the default mode. 858 const TypeSetByHwMode <S = TP.getDAGPatterns().getLegalTypes(); 859 for (const auto &I : LTS) 860 LegalTypes.insert(I.second); 861 LegalTypesCached = true; 862 } 863 assert(LegalCache.isSimple() && "Default-mode only expected"); 864 return LegalCache; 865 } 866 867 TypeInfer::ValidateOnExit::~ValidateOnExit() { 868 if (Infer.Validate && !VTS.validate()) { 869 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 870 errs() << "Type set is empty for each HW mode:\n" 871 "possible type contradiction in the pattern below " 872 "(use -print-records with llvm-tblgen to see all " 873 "expanded records).\n"; 874 Infer.TP.dump(); 875 errs() << "Generated from record:\n"; 876 Infer.TP.getRecord()->dump(); 877 #endif 878 PrintFatalError(Infer.TP.getRecord()->getLoc(), 879 "Type set is empty for each HW mode in '" + 880 Infer.TP.getRecord()->getName() + "'"); 881 } 882 } 883 884 //===----------------------------------------------------------------------===// 885 // ScopedName Implementation 886 //===----------------------------------------------------------------------===// 887 888 bool ScopedName::operator==(const ScopedName &o) const { 889 return Scope == o.Scope && Identifier == o.Identifier; 890 } 891 892 bool ScopedName::operator!=(const ScopedName &o) const { return !(*this == o); } 893 894 //===----------------------------------------------------------------------===// 895 // TreePredicateFn Implementation 896 //===----------------------------------------------------------------------===// 897 898 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 899 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) { 900 assert( 901 (!hasPredCode() || !hasImmCode()) && 902 ".td file corrupt: can't have a node predicate *and* an imm predicate"); 903 } 904 905 bool TreePredicateFn::hasPredCode() const { 906 return isLoad() || isStore() || isAtomic() || hasNoUse() || hasOneUse() || 907 !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty(); 908 } 909 910 std::string TreePredicateFn::getPredCode() const { 911 std::string Code; 912 913 if (!isLoad() && !isStore() && !isAtomic() && getMemoryVT()) 914 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 915 "MemoryVT requires IsLoad or IsStore"); 916 917 if (!isLoad() && !isStore()) { 918 if (isUnindexed()) 919 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 920 "IsUnindexed requires IsLoad or IsStore"); 921 922 if (getScalarMemoryVT()) 923 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 924 "ScalarMemoryVT requires IsLoad or IsStore"); 925 } 926 927 if (isLoad() + isStore() + isAtomic() > 1) 928 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 929 "IsLoad, IsStore, and IsAtomic are mutually exclusive"); 930 931 if (isLoad()) { 932 if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() && 933 !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr && 934 getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr && 935 getMinAlignment() < 1) 936 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 937 "IsLoad cannot be used by itself"); 938 } else { 939 if (isNonExtLoad()) 940 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 941 "IsNonExtLoad requires IsLoad"); 942 if (isAnyExtLoad()) 943 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 944 "IsAnyExtLoad requires IsLoad"); 945 946 if (!isAtomic()) { 947 if (isSignExtLoad()) 948 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 949 "IsSignExtLoad requires IsLoad or IsAtomic"); 950 if (isZeroExtLoad()) 951 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 952 "IsZeroExtLoad requires IsLoad or IsAtomic"); 953 } 954 } 955 956 if (isStore()) { 957 if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() && 958 getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr && 959 getAddressSpaces() == nullptr && getMinAlignment() < 1) 960 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 961 "IsStore cannot be used by itself"); 962 } else { 963 if (isNonTruncStore()) 964 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 965 "IsNonTruncStore requires IsStore"); 966 if (isTruncStore()) 967 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 968 "IsTruncStore requires IsStore"); 969 } 970 971 if (isAtomic()) { 972 if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() && 973 getAddressSpaces() == nullptr && 974 // FIXME: Should atomic loads be IsLoad, IsAtomic, or both? 975 !isZeroExtLoad() && !isSignExtLoad() && !isAtomicOrderingAcquire() && 976 !isAtomicOrderingRelease() && !isAtomicOrderingAcquireRelease() && 977 !isAtomicOrderingSequentiallyConsistent() && 978 !isAtomicOrderingAcquireOrStronger() && 979 !isAtomicOrderingReleaseOrStronger() && 980 !isAtomicOrderingWeakerThanAcquire() && 981 !isAtomicOrderingWeakerThanRelease()) 982 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 983 "IsAtomic cannot be used by itself"); 984 } else { 985 if (isAtomicOrderingMonotonic()) 986 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 987 "IsAtomicOrderingMonotonic requires IsAtomic"); 988 if (isAtomicOrderingAcquire()) 989 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 990 "IsAtomicOrderingAcquire requires IsAtomic"); 991 if (isAtomicOrderingRelease()) 992 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 993 "IsAtomicOrderingRelease requires IsAtomic"); 994 if (isAtomicOrderingAcquireRelease()) 995 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 996 "IsAtomicOrderingAcquireRelease requires IsAtomic"); 997 if (isAtomicOrderingSequentiallyConsistent()) 998 PrintFatalError( 999 getOrigPatFragRecord()->getRecord()->getLoc(), 1000 "IsAtomicOrderingSequentiallyConsistent requires IsAtomic"); 1001 if (isAtomicOrderingAcquireOrStronger()) 1002 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1003 "IsAtomicOrderingAcquireOrStronger requires IsAtomic"); 1004 if (isAtomicOrderingReleaseOrStronger()) 1005 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1006 "IsAtomicOrderingReleaseOrStronger requires IsAtomic"); 1007 if (isAtomicOrderingWeakerThanAcquire()) 1008 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1009 "IsAtomicOrderingWeakerThanAcquire requires IsAtomic"); 1010 } 1011 1012 if (isLoad() || isStore() || isAtomic()) { 1013 if (const ListInit *AddressSpaces = getAddressSpaces()) { 1014 Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n" 1015 " if ("; 1016 1017 ListSeparator LS(" && "); 1018 for (const Init *Val : AddressSpaces->getValues()) { 1019 Code += LS; 1020 1021 const IntInit *IntVal = dyn_cast<IntInit>(Val); 1022 if (!IntVal) { 1023 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1024 "AddressSpaces element must be integer"); 1025 } 1026 1027 Code += "AddrSpace != " + utostr(IntVal->getValue()); 1028 } 1029 1030 Code += ")\nreturn false;\n"; 1031 } 1032 1033 int64_t MinAlign = getMinAlignment(); 1034 if (MinAlign > 0) { 1035 Code += "if (cast<MemSDNode>(N)->getAlign() < Align("; 1036 Code += utostr(MinAlign); 1037 Code += "))\nreturn false;\n"; 1038 } 1039 1040 if (const Record *MemoryVT = getMemoryVT()) 1041 Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" + 1042 MemoryVT->getName() + ") return false;\n") 1043 .str(); 1044 } 1045 1046 if (isAtomic() && isAtomicOrderingMonotonic()) 1047 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " 1048 "AtomicOrdering::Monotonic) return false;\n"; 1049 if (isAtomic() && isAtomicOrderingAcquire()) 1050 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " 1051 "AtomicOrdering::Acquire) return false;\n"; 1052 if (isAtomic() && isAtomicOrderingRelease()) 1053 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " 1054 "AtomicOrdering::Release) return false;\n"; 1055 if (isAtomic() && isAtomicOrderingAcquireRelease()) 1056 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " 1057 "AtomicOrdering::AcquireRelease) return false;\n"; 1058 if (isAtomic() && isAtomicOrderingSequentiallyConsistent()) 1059 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " 1060 "AtomicOrdering::SequentiallyConsistent) return false;\n"; 1061 1062 if (isAtomic() && isAtomicOrderingAcquireOrStronger()) 1063 Code += 1064 "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) " 1065 "return false;\n"; 1066 if (isAtomic() && isAtomicOrderingWeakerThanAcquire()) 1067 Code += 1068 "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) " 1069 "return false;\n"; 1070 1071 if (isAtomic() && isAtomicOrderingReleaseOrStronger()) 1072 Code += 1073 "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) " 1074 "return false;\n"; 1075 if (isAtomic() && isAtomicOrderingWeakerThanRelease()) 1076 Code += 1077 "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) " 1078 "return false;\n"; 1079 1080 // TODO: Handle atomic sextload/zextload normally when ATOMIC_LOAD is removed. 1081 if (isAtomic() && (isZeroExtLoad() || isSignExtLoad())) 1082 Code += "return false;\n"; 1083 1084 if (isLoad() || isStore()) { 1085 StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode"; 1086 1087 if (isUnindexed()) 1088 Code += ("if (cast<" + SDNodeName + 1089 ">(N)->getAddressingMode() != ISD::UNINDEXED) " 1090 "return false;\n") 1091 .str(); 1092 1093 if (isLoad()) { 1094 if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() + 1095 isZeroExtLoad()) > 1) 1096 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1097 "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and " 1098 "IsZeroExtLoad are mutually exclusive"); 1099 if (isNonExtLoad()) 1100 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != " 1101 "ISD::NON_EXTLOAD) return false;\n"; 1102 if (isAnyExtLoad()) 1103 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) " 1104 "return false;\n"; 1105 if (isSignExtLoad()) 1106 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) " 1107 "return false;\n"; 1108 if (isZeroExtLoad()) 1109 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) " 1110 "return false;\n"; 1111 } else { 1112 if ((isNonTruncStore() + isTruncStore()) > 1) 1113 PrintFatalError( 1114 getOrigPatFragRecord()->getRecord()->getLoc(), 1115 "IsNonTruncStore, and IsTruncStore are mutually exclusive"); 1116 if (isNonTruncStore()) 1117 Code += 1118 " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 1119 if (isTruncStore()) 1120 Code += 1121 " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 1122 } 1123 1124 if (const Record *ScalarMemoryVT = getScalarMemoryVT()) 1125 Code += ("if (cast<" + SDNodeName + 1126 ">(N)->getMemoryVT().getScalarType() != MVT::" + 1127 ScalarMemoryVT->getName() + ") return false;\n") 1128 .str(); 1129 } 1130 1131 if (hasNoUse()) 1132 Code += "if (!SDValue(N, 0).use_empty()) return false;\n"; 1133 if (hasOneUse()) 1134 Code += "if (!SDValue(N, 0).hasOneUse()) return false;\n"; 1135 1136 std::string PredicateCode = 1137 std::string(PatFragRec->getRecord()->getValueAsString("PredicateCode")); 1138 1139 Code += PredicateCode; 1140 1141 if (PredicateCode.empty() && !Code.empty()) 1142 Code += "return true;\n"; 1143 1144 return Code; 1145 } 1146 1147 bool TreePredicateFn::hasImmCode() const { 1148 return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty(); 1149 } 1150 1151 std::string TreePredicateFn::getImmCode() const { 1152 return std::string( 1153 PatFragRec->getRecord()->getValueAsString("ImmediateCode")); 1154 } 1155 1156 bool TreePredicateFn::immCodeUsesAPInt() const { 1157 return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt"); 1158 } 1159 1160 bool TreePredicateFn::immCodeUsesAPFloat() const { 1161 bool Unset; 1162 // The return value will be false when IsAPFloat is unset. 1163 return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat", 1164 Unset); 1165 } 1166 1167 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field, 1168 bool Value) const { 1169 bool Unset; 1170 bool Result = 1171 getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset); 1172 if (Unset) 1173 return false; 1174 return Result == Value; 1175 } 1176 bool TreePredicateFn::usesOperands() const { 1177 return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true); 1178 } 1179 bool TreePredicateFn::hasNoUse() const { 1180 return isPredefinedPredicateEqualTo("HasNoUse", true); 1181 } 1182 bool TreePredicateFn::hasOneUse() const { 1183 return isPredefinedPredicateEqualTo("HasOneUse", true); 1184 } 1185 bool TreePredicateFn::isLoad() const { 1186 return isPredefinedPredicateEqualTo("IsLoad", true); 1187 } 1188 bool TreePredicateFn::isStore() const { 1189 return isPredefinedPredicateEqualTo("IsStore", true); 1190 } 1191 bool TreePredicateFn::isAtomic() const { 1192 return isPredefinedPredicateEqualTo("IsAtomic", true); 1193 } 1194 bool TreePredicateFn::isUnindexed() const { 1195 return isPredefinedPredicateEqualTo("IsUnindexed", true); 1196 } 1197 bool TreePredicateFn::isNonExtLoad() const { 1198 return isPredefinedPredicateEqualTo("IsNonExtLoad", true); 1199 } 1200 bool TreePredicateFn::isAnyExtLoad() const { 1201 return isPredefinedPredicateEqualTo("IsAnyExtLoad", true); 1202 } 1203 bool TreePredicateFn::isSignExtLoad() const { 1204 return isPredefinedPredicateEqualTo("IsSignExtLoad", true); 1205 } 1206 bool TreePredicateFn::isZeroExtLoad() const { 1207 return isPredefinedPredicateEqualTo("IsZeroExtLoad", true); 1208 } 1209 bool TreePredicateFn::isNonTruncStore() const { 1210 return isPredefinedPredicateEqualTo("IsTruncStore", false); 1211 } 1212 bool TreePredicateFn::isTruncStore() const { 1213 return isPredefinedPredicateEqualTo("IsTruncStore", true); 1214 } 1215 bool TreePredicateFn::isAtomicOrderingMonotonic() const { 1216 return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true); 1217 } 1218 bool TreePredicateFn::isAtomicOrderingAcquire() const { 1219 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true); 1220 } 1221 bool TreePredicateFn::isAtomicOrderingRelease() const { 1222 return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true); 1223 } 1224 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const { 1225 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true); 1226 } 1227 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const { 1228 return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent", 1229 true); 1230 } 1231 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const { 1232 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", 1233 true); 1234 } 1235 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const { 1236 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", 1237 false); 1238 } 1239 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const { 1240 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", 1241 true); 1242 } 1243 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const { 1244 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", 1245 false); 1246 } 1247 const Record *TreePredicateFn::getMemoryVT() const { 1248 const Record *R = getOrigPatFragRecord()->getRecord(); 1249 if (R->isValueUnset("MemoryVT")) 1250 return nullptr; 1251 return R->getValueAsDef("MemoryVT"); 1252 } 1253 1254 const ListInit *TreePredicateFn::getAddressSpaces() const { 1255 const Record *R = getOrigPatFragRecord()->getRecord(); 1256 if (R->isValueUnset("AddressSpaces")) 1257 return nullptr; 1258 return R->getValueAsListInit("AddressSpaces"); 1259 } 1260 1261 int64_t TreePredicateFn::getMinAlignment() const { 1262 const Record *R = getOrigPatFragRecord()->getRecord(); 1263 if (R->isValueUnset("MinAlignment")) 1264 return 0; 1265 return R->getValueAsInt("MinAlignment"); 1266 } 1267 1268 const Record *TreePredicateFn::getScalarMemoryVT() const { 1269 const Record *R = getOrigPatFragRecord()->getRecord(); 1270 if (R->isValueUnset("ScalarMemoryVT")) 1271 return nullptr; 1272 return R->getValueAsDef("ScalarMemoryVT"); 1273 } 1274 bool TreePredicateFn::hasGISelPredicateCode() const { 1275 return !PatFragRec->getRecord() 1276 ->getValueAsString("GISelPredicateCode") 1277 .empty(); 1278 } 1279 std::string TreePredicateFn::getGISelPredicateCode() const { 1280 return std::string( 1281 PatFragRec->getRecord()->getValueAsString("GISelPredicateCode")); 1282 } 1283 1284 StringRef TreePredicateFn::getImmType() const { 1285 if (immCodeUsesAPInt()) 1286 return "const APInt &"; 1287 if (immCodeUsesAPFloat()) 1288 return "const APFloat &"; 1289 return "int64_t"; 1290 } 1291 1292 StringRef TreePredicateFn::getImmTypeIdentifier() const { 1293 if (immCodeUsesAPInt()) 1294 return "APInt"; 1295 if (immCodeUsesAPFloat()) 1296 return "APFloat"; 1297 return "I64"; 1298 } 1299 1300 /// isAlwaysTrue - Return true if this is a noop predicate. 1301 bool TreePredicateFn::isAlwaysTrue() const { 1302 return !hasPredCode() && !hasImmCode(); 1303 } 1304 1305 /// Return the name to use in the generated code to reference this, this is 1306 /// "Predicate_foo" if from a pattern fragment "foo". 1307 std::string TreePredicateFn::getFnName() const { 1308 return "Predicate_" + PatFragRec->getRecord()->getName().str(); 1309 } 1310 1311 /// getCodeToRunOnSDNode - Return the code for the function body that 1312 /// evaluates this predicate. The argument is expected to be in "Node", 1313 /// not N. This handles casting and conversion to a concrete node type as 1314 /// appropriate. 1315 std::string TreePredicateFn::getCodeToRunOnSDNode() const { 1316 // Handle immediate predicates first. 1317 std::string ImmCode = getImmCode(); 1318 if (!ImmCode.empty()) { 1319 if (isLoad()) 1320 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1321 "IsLoad cannot be used with ImmLeaf or its subclasses"); 1322 if (isStore()) 1323 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1324 "IsStore cannot be used with ImmLeaf or its subclasses"); 1325 if (isUnindexed()) 1326 PrintFatalError( 1327 getOrigPatFragRecord()->getRecord()->getLoc(), 1328 "IsUnindexed cannot be used with ImmLeaf or its subclasses"); 1329 if (isNonExtLoad()) 1330 PrintFatalError( 1331 getOrigPatFragRecord()->getRecord()->getLoc(), 1332 "IsNonExtLoad cannot be used with ImmLeaf or its subclasses"); 1333 if (isAnyExtLoad()) 1334 PrintFatalError( 1335 getOrigPatFragRecord()->getRecord()->getLoc(), 1336 "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses"); 1337 if (isSignExtLoad()) 1338 PrintFatalError( 1339 getOrigPatFragRecord()->getRecord()->getLoc(), 1340 "IsSignExtLoad cannot be used with ImmLeaf or its subclasses"); 1341 if (isZeroExtLoad()) 1342 PrintFatalError( 1343 getOrigPatFragRecord()->getRecord()->getLoc(), 1344 "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses"); 1345 if (isNonTruncStore()) 1346 PrintFatalError( 1347 getOrigPatFragRecord()->getRecord()->getLoc(), 1348 "IsNonTruncStore cannot be used with ImmLeaf or its subclasses"); 1349 if (isTruncStore()) 1350 PrintFatalError( 1351 getOrigPatFragRecord()->getRecord()->getLoc(), 1352 "IsTruncStore cannot be used with ImmLeaf or its subclasses"); 1353 if (getMemoryVT()) 1354 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1355 "MemoryVT cannot be used with ImmLeaf or its subclasses"); 1356 if (getScalarMemoryVT()) 1357 PrintFatalError( 1358 getOrigPatFragRecord()->getRecord()->getLoc(), 1359 "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses"); 1360 1361 std::string Result = (" " + getImmType() + " Imm = ").str(); 1362 if (immCodeUsesAPFloat()) 1363 Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n"; 1364 else if (immCodeUsesAPInt()) 1365 Result += "Node->getAsAPIntVal();\n"; 1366 else 1367 Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n"; 1368 return Result + ImmCode; 1369 } 1370 1371 // Handle arbitrary node predicates. 1372 assert(hasPredCode() && "Don't have any predicate code!"); 1373 1374 // If this is using PatFrags, there are multiple trees to search. They should 1375 // all have the same class. FIXME: Is there a way to find a common 1376 // superclass? 1377 StringRef ClassName; 1378 for (const auto &Tree : PatFragRec->getTrees()) { 1379 StringRef TreeClassName; 1380 if (Tree->isLeaf()) 1381 TreeClassName = "SDNode"; 1382 else { 1383 const Record *Op = Tree->getOperator(); 1384 const SDNodeInfo &Info = PatFragRec->getDAGPatterns().getSDNodeInfo(Op); 1385 TreeClassName = Info.getSDClassName(); 1386 } 1387 1388 if (ClassName.empty()) 1389 ClassName = TreeClassName; 1390 else if (ClassName != TreeClassName) { 1391 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1392 "PatFrags trees do not have consistent class"); 1393 } 1394 } 1395 1396 std::string Result; 1397 if (ClassName == "SDNode") 1398 Result = " SDNode *N = Node;\n"; 1399 else 1400 Result = " auto *N = cast<" + ClassName.str() + ">(Node);\n"; 1401 1402 return (Twine(Result) + " (void)N;\n" + getPredCode()).str(); 1403 } 1404 1405 //===----------------------------------------------------------------------===// 1406 // PatternToMatch implementation 1407 // 1408 1409 static bool isImmAllOnesAllZerosMatch(const TreePatternNode &P) { 1410 if (!P.isLeaf()) 1411 return false; 1412 const DefInit *DI = dyn_cast<DefInit>(P.getLeafValue()); 1413 if (!DI) 1414 return false; 1415 1416 const Record *R = DI->getDef(); 1417 return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV"; 1418 } 1419 1420 /// getPatternSize - Return the 'size' of this pattern. We want to match large 1421 /// patterns before small ones. This is used to determine the size of a 1422 /// pattern. 1423 static unsigned getPatternSize(const TreePatternNode &P, 1424 const CodeGenDAGPatterns &CGP) { 1425 unsigned Size = 3; // The node itself. 1426 // If the root node is a ConstantSDNode, increases its size. 1427 // e.g. (set R32:$dst, 0). 1428 if (P.isLeaf() && isa<IntInit>(P.getLeafValue())) 1429 Size += 2; 1430 1431 if (const ComplexPattern *AM = P.getComplexPatternInfo(CGP)) { 1432 Size += AM->getComplexity(); 1433 // We don't want to count any children twice, so return early. 1434 return Size; 1435 } 1436 1437 // If this node has some predicate function that must match, it adds to the 1438 // complexity of this node. 1439 if (!P.getPredicateCalls().empty()) 1440 ++Size; 1441 1442 // Count children in the count if they are also nodes. 1443 for (const TreePatternNode &Child : P.children()) { 1444 if (!Child.isLeaf() && Child.getNumTypes()) { 1445 const TypeSetByHwMode &T0 = Child.getExtType(0); 1446 // At this point, all variable type sets should be simple, i.e. only 1447 // have a default mode. 1448 if (T0.getMachineValueType() != MVT::Other) { 1449 Size += getPatternSize(Child, CGP); 1450 continue; 1451 } 1452 } 1453 if (Child.isLeaf()) { 1454 if (isa<IntInit>(Child.getLeafValue())) 1455 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). 1456 else if (Child.getComplexPatternInfo(CGP)) 1457 Size += getPatternSize(Child, CGP); 1458 else if (isImmAllOnesAllZerosMatch(Child)) 1459 Size += 4; // Matches a build_vector(+3) and a predicate (+1). 1460 else if (!Child.getPredicateCalls().empty()) 1461 ++Size; 1462 } 1463 } 1464 1465 return Size; 1466 } 1467 1468 /// Compute the complexity metric for the input pattern. This roughly 1469 /// corresponds to the number of nodes that are covered. 1470 int PatternToMatch::getPatternComplexity(const CodeGenDAGPatterns &CGP) const { 1471 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); 1472 } 1473 1474 void PatternToMatch::getPredicateRecords( 1475 SmallVectorImpl<const Record *> &PredicateRecs) const { 1476 for (const Init *I : Predicates->getValues()) { 1477 if (const DefInit *Pred = dyn_cast<DefInit>(I)) { 1478 const Record *Def = Pred->getDef(); 1479 if (!Def->isSubClassOf("Predicate")) { 1480 #ifndef NDEBUG 1481 Def->dump(); 1482 #endif 1483 llvm_unreachable("Unknown predicate type!"); 1484 } 1485 PredicateRecs.push_back(Def); 1486 } 1487 } 1488 // Sort so that different orders get canonicalized to the same string. 1489 llvm::sort(PredicateRecs, LessRecord()); 1490 // Remove duplicate predicates. 1491 PredicateRecs.erase(llvm::unique(PredicateRecs), PredicateRecs.end()); 1492 } 1493 1494 /// getPredicateCheck - Return a single string containing all of this 1495 /// pattern's predicates concatenated with "&&" operators. 1496 /// 1497 std::string PatternToMatch::getPredicateCheck() const { 1498 SmallVector<const Record *, 4> PredicateRecs; 1499 getPredicateRecords(PredicateRecs); 1500 1501 SmallString<128> PredicateCheck; 1502 raw_svector_ostream OS(PredicateCheck); 1503 ListSeparator LS(" && "); 1504 for (const Record *Pred : PredicateRecs) { 1505 StringRef CondString = Pred->getValueAsString("CondString"); 1506 if (CondString.empty()) 1507 continue; 1508 OS << LS << '(' << CondString << ')'; 1509 } 1510 1511 if (!HwModeFeatures.empty()) 1512 OS << LS << HwModeFeatures; 1513 1514 return std::string(PredicateCheck); 1515 } 1516 1517 //===----------------------------------------------------------------------===// 1518 // SDTypeConstraint implementation 1519 // 1520 1521 SDTypeConstraint::SDTypeConstraint(const Record *R, const CodeGenHwModes &CGH) { 1522 OperandNo = R->getValueAsInt("OperandNum"); 1523 1524 if (R->isSubClassOf("SDTCisVT")) { 1525 ConstraintType = SDTCisVT; 1526 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1527 for (const auto &P : VVT) 1528 if (P.second == MVT::isVoid) 1529 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); 1530 } else if (R->isSubClassOf("SDTCisPtrTy")) { 1531 ConstraintType = SDTCisPtrTy; 1532 } else if (R->isSubClassOf("SDTCisInt")) { 1533 ConstraintType = SDTCisInt; 1534 } else if (R->isSubClassOf("SDTCisFP")) { 1535 ConstraintType = SDTCisFP; 1536 } else if (R->isSubClassOf("SDTCisVec")) { 1537 ConstraintType = SDTCisVec; 1538 } else if (R->isSubClassOf("SDTCisSameAs")) { 1539 ConstraintType = SDTCisSameAs; 1540 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); 1541 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { 1542 ConstraintType = SDTCisVTSmallerThanOp; 1543 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 1544 R->getValueAsInt("OtherOperandNum"); 1545 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { 1546 ConstraintType = SDTCisOpSmallerThanOp; 1547 x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 1548 R->getValueAsInt("BigOperandNum"); 1549 } else if (R->isSubClassOf("SDTCisEltOfVec")) { 1550 ConstraintType = SDTCisEltOfVec; 1551 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); 1552 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { 1553 ConstraintType = SDTCisSubVecOfVec; 1554 x.SDTCisSubVecOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); 1555 } else if (R->isSubClassOf("SDTCVecEltisVT")) { 1556 ConstraintType = SDTCVecEltisVT; 1557 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1558 for (const auto &P : VVT) { 1559 MVT T = P.second; 1560 if (T.isVector()) 1561 PrintFatalError(R->getLoc(), 1562 "Cannot use vector type as SDTCVecEltisVT"); 1563 if (!T.isInteger() && !T.isFloatingPoint()) 1564 PrintFatalError(R->getLoc(), "Must use integer or floating point type " 1565 "as SDTCVecEltisVT"); 1566 } 1567 } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) { 1568 ConstraintType = SDTCisSameNumEltsAs; 1569 x.SDTCisSameNumEltsAs_Info.OtherOperandNum = 1570 R->getValueAsInt("OtherOperandNum"); 1571 } else if (R->isSubClassOf("SDTCisSameSizeAs")) { 1572 ConstraintType = SDTCisSameSizeAs; 1573 x.SDTCisSameSizeAs_Info.OtherOperandNum = 1574 R->getValueAsInt("OtherOperandNum"); 1575 } else { 1576 PrintFatalError(R->getLoc(), 1577 "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n"); 1578 } 1579 } 1580 1581 /// getOperandNum - Return the node corresponding to operand #OpNo in tree 1582 /// N, and the result number in ResNo. 1583 static TreePatternNode &getOperandNum(unsigned OpNo, TreePatternNode &N, 1584 const SDNodeInfo &NodeInfo, 1585 unsigned &ResNo) { 1586 unsigned NumResults = NodeInfo.getNumResults(); 1587 if (OpNo < NumResults) { 1588 ResNo = OpNo; 1589 return N; 1590 } 1591 1592 OpNo -= NumResults; 1593 1594 if (OpNo >= N.getNumChildren()) { 1595 PrintFatalError([&N, OpNo, NumResults](raw_ostream &OS) { 1596 OS << "Invalid operand number in type constraint " << (OpNo + NumResults); 1597 N.print(OS); 1598 }); 1599 } 1600 return N.getChild(OpNo); 1601 } 1602 1603 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 1604 /// constraint to the nodes operands. This returns true if it makes a 1605 /// change, false otherwise. If a type contradiction is found, flag an error. 1606 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode &N, 1607 const SDNodeInfo &NodeInfo, 1608 TreePattern &TP) const { 1609 if (TP.hasError()) 1610 return false; 1611 1612 unsigned ResNo = 0; // The result number being referenced. 1613 TreePatternNode &NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); 1614 TypeInfer &TI = TP.getInfer(); 1615 1616 switch (ConstraintType) { 1617 case SDTCisVT: 1618 // Operand must be a particular type. 1619 return NodeToApply.UpdateNodeType(ResNo, VVT, TP); 1620 case SDTCisPtrTy: 1621 // Operand must be same as target pointer type. 1622 return NodeToApply.UpdateNodeType(ResNo, MVT::iPTR, TP); 1623 case SDTCisInt: 1624 // Require it to be one of the legal integer VTs. 1625 return TI.EnforceInteger(NodeToApply.getExtType(ResNo)); 1626 case SDTCisFP: 1627 // Require it to be one of the legal fp VTs. 1628 return TI.EnforceFloatingPoint(NodeToApply.getExtType(ResNo)); 1629 case SDTCisVec: 1630 // Require it to be one of the legal vector VTs. 1631 return TI.EnforceVector(NodeToApply.getExtType(ResNo)); 1632 case SDTCisSameAs: { 1633 unsigned OResNo = 0; 1634 TreePatternNode &OtherNode = 1635 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 1636 return (int)NodeToApply.UpdateNodeType(ResNo, OtherNode.getExtType(OResNo), 1637 TP) | 1638 (int)OtherNode.UpdateNodeType(OResNo, NodeToApply.getExtType(ResNo), 1639 TP); 1640 } 1641 case SDTCisVTSmallerThanOp: { 1642 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must 1643 // have an integer type that is smaller than the VT. 1644 if (!NodeToApply.isLeaf() || !isa<DefInit>(NodeToApply.getLeafValue()) || 1645 !cast<DefInit>(NodeToApply.getLeafValue()) 1646 ->getDef() 1647 ->isSubClassOf("ValueType")) { 1648 TP.error(N.getOperator()->getName() + " expects a VT operand!"); 1649 return false; 1650 } 1651 const DefInit *DI = cast<DefInit>(NodeToApply.getLeafValue()); 1652 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1653 auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes()); 1654 TypeSetByHwMode TypeListTmp(VVT); 1655 1656 unsigned OResNo = 0; 1657 TreePatternNode &OtherNode = getOperandNum( 1658 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, OResNo); 1659 1660 return TI.EnforceSmallerThan(TypeListTmp, OtherNode.getExtType(OResNo), 1661 /*SmallIsVT*/ true); 1662 } 1663 case SDTCisOpSmallerThanOp: { 1664 unsigned BResNo = 0; 1665 TreePatternNode &BigOperand = getOperandNum( 1666 x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, BResNo); 1667 return TI.EnforceSmallerThan(NodeToApply.getExtType(ResNo), 1668 BigOperand.getExtType(BResNo)); 1669 } 1670 case SDTCisEltOfVec: { 1671 unsigned VResNo = 0; 1672 TreePatternNode &VecOperand = getOperandNum( 1673 x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, VResNo); 1674 // Filter vector types out of VecOperand that don't have the right element 1675 // type. 1676 return TI.EnforceVectorEltTypeIs(VecOperand.getExtType(VResNo), 1677 NodeToApply.getExtType(ResNo)); 1678 } 1679 case SDTCisSubVecOfVec: { 1680 unsigned VResNo = 0; 1681 TreePatternNode &BigVecOperand = getOperandNum( 1682 x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, VResNo); 1683 1684 // Filter vector types out of BigVecOperand that don't have the 1685 // right subvector type. 1686 return TI.EnforceVectorSubVectorTypeIs(BigVecOperand.getExtType(VResNo), 1687 NodeToApply.getExtType(ResNo)); 1688 } 1689 case SDTCVecEltisVT: { 1690 return TI.EnforceVectorEltTypeIs(NodeToApply.getExtType(ResNo), VVT); 1691 } 1692 case SDTCisSameNumEltsAs: { 1693 unsigned OResNo = 0; 1694 TreePatternNode &OtherNode = getOperandNum( 1695 x.SDTCisSameNumEltsAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 1696 return TI.EnforceSameNumElts(OtherNode.getExtType(OResNo), 1697 NodeToApply.getExtType(ResNo)); 1698 } 1699 case SDTCisSameSizeAs: { 1700 unsigned OResNo = 0; 1701 TreePatternNode &OtherNode = getOperandNum( 1702 x.SDTCisSameSizeAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 1703 return TI.EnforceSameSize(OtherNode.getExtType(OResNo), 1704 NodeToApply.getExtType(ResNo)); 1705 } 1706 } 1707 llvm_unreachable("Invalid ConstraintType!"); 1708 } 1709 1710 // Update the node type to match an instruction operand or result as specified 1711 // in the ins or outs lists on the instruction definition. Return true if the 1712 // type was actually changed. 1713 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo, 1714 const Record *Operand, 1715 TreePattern &TP) { 1716 // The 'unknown' operand indicates that types should be inferred from the 1717 // context. 1718 if (Operand->isSubClassOf("unknown_class")) 1719 return false; 1720 1721 // The Operand class specifies a type directly. 1722 if (Operand->isSubClassOf("Operand")) { 1723 const Record *R = Operand->getValueAsDef("Type"); 1724 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1725 return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP); 1726 } 1727 1728 // PointerLikeRegClass has a type that is determined at runtime. 1729 if (Operand->isSubClassOf("PointerLikeRegClass")) 1730 return UpdateNodeType(ResNo, MVT::iPTR, TP); 1731 1732 // Both RegisterClass and RegisterOperand operands derive their types from a 1733 // register class def. 1734 const Record *RC = nullptr; 1735 if (Operand->isSubClassOf("RegisterClass")) 1736 RC = Operand; 1737 else if (Operand->isSubClassOf("RegisterOperand")) 1738 RC = Operand->getValueAsDef("RegClass"); 1739 1740 assert(RC && "Unknown operand type"); 1741 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo(); 1742 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP); 1743 } 1744 1745 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const { 1746 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1747 if (!TP.getInfer().isConcrete(Types[i], true)) 1748 return true; 1749 for (const TreePatternNode &Child : children()) 1750 if (Child.ContainsUnresolvedType(TP)) 1751 return true; 1752 return false; 1753 } 1754 1755 bool TreePatternNode::hasProperTypeByHwMode() const { 1756 for (const TypeSetByHwMode &S : Types) 1757 if (!S.isSimple()) 1758 return true; 1759 for (const TreePatternNodePtr &C : Children) 1760 if (C->hasProperTypeByHwMode()) 1761 return true; 1762 return false; 1763 } 1764 1765 bool TreePatternNode::hasPossibleType() const { 1766 for (const TypeSetByHwMode &S : Types) 1767 if (!S.isPossible()) 1768 return false; 1769 for (const TreePatternNodePtr &C : Children) 1770 if (!C->hasPossibleType()) 1771 return false; 1772 return true; 1773 } 1774 1775 bool TreePatternNode::setDefaultMode(unsigned Mode) { 1776 for (TypeSetByHwMode &S : Types) { 1777 S.makeSimple(Mode); 1778 // Check if the selected mode had a type conflict. 1779 if (S.get(DefaultMode).empty()) 1780 return false; 1781 } 1782 for (const TreePatternNodePtr &C : Children) 1783 if (!C->setDefaultMode(Mode)) 1784 return false; 1785 return true; 1786 } 1787 1788 //===----------------------------------------------------------------------===// 1789 // SDNodeInfo implementation 1790 // 1791 SDNodeInfo::SDNodeInfo(const Record *R, const CodeGenHwModes &CGH) : Def(R) { 1792 EnumName = R->getValueAsString("Opcode"); 1793 SDClassName = R->getValueAsString("SDClass"); 1794 const Record *TypeProfile = R->getValueAsDef("TypeProfile"); 1795 NumResults = TypeProfile->getValueAsInt("NumResults"); 1796 NumOperands = TypeProfile->getValueAsInt("NumOperands"); 1797 1798 // Parse the properties. 1799 Properties = parseSDPatternOperatorProperties(R); 1800 1801 // Parse the type constraints. 1802 for (const Record *R : TypeProfile->getValueAsListOfDefs("Constraints")) 1803 TypeConstraints.emplace_back(R, CGH); 1804 } 1805 1806 /// getKnownType - If the type constraints on this node imply a fixed type 1807 /// (e.g. all stores return void, etc), then return it as an 1808 /// MVT::SimpleValueType. Otherwise, return EEVT::Other. 1809 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { 1810 unsigned NumResults = getNumResults(); 1811 assert(NumResults <= 1 && 1812 "We only work with nodes with zero or one result so far!"); 1813 assert(ResNo == 0 && "Only handles single result nodes so far"); 1814 1815 for (const SDTypeConstraint &Constraint : TypeConstraints) { 1816 // Make sure that this applies to the correct node result. 1817 if (Constraint.OperandNo >= NumResults) // FIXME: need value # 1818 continue; 1819 1820 switch (Constraint.ConstraintType) { 1821 default: 1822 break; 1823 case SDTypeConstraint::SDTCisVT: 1824 if (Constraint.VVT.isSimple()) 1825 return Constraint.VVT.getSimple().SimpleTy; 1826 break; 1827 case SDTypeConstraint::SDTCisPtrTy: 1828 return MVT::iPTR; 1829 } 1830 } 1831 return MVT::Other; 1832 } 1833 1834 //===----------------------------------------------------------------------===// 1835 // TreePatternNode implementation 1836 // 1837 1838 static unsigned GetNumNodeResults(const Record *Operator, 1839 CodeGenDAGPatterns &CDP) { 1840 if (Operator->getName() == "set") 1841 return 0; // All return nothing. 1842 1843 if (Operator->isSubClassOf("Intrinsic")) 1844 return CDP.getIntrinsic(Operator).IS.RetTys.size(); 1845 1846 if (Operator->isSubClassOf("SDNode")) 1847 return CDP.getSDNodeInfo(Operator).getNumResults(); 1848 1849 if (Operator->isSubClassOf("PatFrags")) { 1850 // If we've already parsed this pattern fragment, get it. Otherwise, handle 1851 // the forward reference case where one pattern fragment references another 1852 // before it is processed. 1853 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) { 1854 // The number of results of a fragment with alternative records is the 1855 // maximum number of results across all alternatives. 1856 unsigned NumResults = 0; 1857 for (const auto &T : PFRec->getTrees()) 1858 NumResults = std::max(NumResults, T->getNumTypes()); 1859 return NumResults; 1860 } 1861 1862 const ListInit *LI = Operator->getValueAsListInit("Fragments"); 1863 assert(LI && "Invalid Fragment"); 1864 unsigned NumResults = 0; 1865 for (const Init *I : LI->getValues()) { 1866 const Record *Op = nullptr; 1867 if (const DagInit *Dag = dyn_cast<DagInit>(I)) 1868 if (const DefInit *DI = dyn_cast<DefInit>(Dag->getOperator())) 1869 Op = DI->getDef(); 1870 assert(Op && "Invalid Fragment"); 1871 NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP)); 1872 } 1873 return NumResults; 1874 } 1875 1876 if (Operator->isSubClassOf("Instruction")) { 1877 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); 1878 1879 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs; 1880 1881 // Subtract any defaulted outputs. 1882 for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) { 1883 const Record *OperandNode = InstInfo.Operands[i].Rec; 1884 1885 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 1886 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1887 --NumDefsToAdd; 1888 } 1889 1890 // Add on one implicit def if it has a resolvable type. 1891 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) != 1892 MVT::Other) 1893 ++NumDefsToAdd; 1894 return NumDefsToAdd; 1895 } 1896 1897 if (Operator->isSubClassOf("SDNodeXForm")) 1898 return 1; // FIXME: Generalize SDNodeXForm 1899 1900 if (Operator->isSubClassOf("ValueType")) 1901 return 1; // A type-cast of one result. 1902 1903 if (Operator->isSubClassOf("ComplexPattern")) 1904 return 1; 1905 1906 errs() << *Operator; 1907 PrintFatalError("Unhandled node in GetNumNodeResults"); 1908 } 1909 1910 void TreePatternNode::print(raw_ostream &OS) const { 1911 if (isLeaf()) 1912 OS << *getLeafValue(); 1913 else 1914 OS << '(' << getOperator()->getName(); 1915 1916 for (unsigned i = 0, e = Types.size(); i != e; ++i) { 1917 OS << ':'; 1918 getExtType(i).writeToStream(OS); 1919 } 1920 1921 if (!isLeaf()) { 1922 if (getNumChildren() != 0) { 1923 OS << " "; 1924 ListSeparator LS; 1925 for (const TreePatternNode &Child : children()) { 1926 OS << LS; 1927 Child.print(OS); 1928 } 1929 } 1930 OS << ")"; 1931 } 1932 1933 for (const TreePredicateCall &Pred : PredicateCalls) { 1934 OS << "<<P:"; 1935 if (Pred.Scope) 1936 OS << Pred.Scope << ":"; 1937 OS << Pred.Fn.getFnName() << ">>"; 1938 } 1939 if (TransformFn) 1940 OS << "<<X:" << TransformFn->getName() << ">>"; 1941 if (!getName().empty()) 1942 OS << ":$" << getName(); 1943 1944 for (const ScopedName &Name : NamesAsPredicateArg) 1945 OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier(); 1946 } 1947 void TreePatternNode::dump() const { print(errs()); } 1948 1949 /// isIsomorphicTo - Return true if this node is recursively 1950 /// isomorphic to the specified node. For this comparison, the node's 1951 /// entire state is considered. The assigned name is ignored, since 1952 /// nodes with differing names are considered isomorphic. However, if 1953 /// the assigned name is present in the dependent variable set, then 1954 /// the assigned name is considered significant and the node is 1955 /// isomorphic if the names match. 1956 bool TreePatternNode::isIsomorphicTo(const TreePatternNode &N, 1957 const MultipleUseVarSet &DepVars) const { 1958 if (&N == this) 1959 return true; 1960 if (N.isLeaf() != isLeaf()) 1961 return false; 1962 1963 // Check operator of non-leaves early since it can be cheaper than checking 1964 // types. 1965 if (!isLeaf()) 1966 if (N.getOperator() != getOperator() || 1967 N.getNumChildren() != getNumChildren()) 1968 return false; 1969 1970 if (getExtTypes() != N.getExtTypes() || 1971 getPredicateCalls() != N.getPredicateCalls() || 1972 getTransformFn() != N.getTransformFn()) 1973 return false; 1974 1975 if (isLeaf()) { 1976 if (const DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 1977 if (const DefInit *NDI = dyn_cast<DefInit>(N.getLeafValue())) { 1978 return ((DI->getDef() == NDI->getDef()) && 1979 (!DepVars.contains(getName()) || getName() == N.getName())); 1980 } 1981 } 1982 return getLeafValue() == N.getLeafValue(); 1983 } 1984 1985 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1986 if (!getChild(i).isIsomorphicTo(N.getChild(i), DepVars)) 1987 return false; 1988 return true; 1989 } 1990 1991 /// clone - Make a copy of this tree and all of its children. 1992 /// 1993 TreePatternNodePtr TreePatternNode::clone() const { 1994 TreePatternNodePtr New; 1995 if (isLeaf()) { 1996 New = makeIntrusiveRefCnt<TreePatternNode>(getLeafValue(), getNumTypes()); 1997 } else { 1998 std::vector<TreePatternNodePtr> CChildren; 1999 CChildren.reserve(Children.size()); 2000 for (const TreePatternNode &Child : children()) 2001 CChildren.push_back(Child.clone()); 2002 New = makeIntrusiveRefCnt<TreePatternNode>( 2003 getOperator(), std::move(CChildren), getNumTypes()); 2004 } 2005 New->setName(getName()); 2006 New->setNamesAsPredicateArg(getNamesAsPredicateArg()); 2007 New->Types = Types; 2008 New->setPredicateCalls(getPredicateCalls()); 2009 New->setGISelFlagsRecord(getGISelFlagsRecord()); 2010 New->setTransformFn(getTransformFn()); 2011 return New; 2012 } 2013 2014 /// RemoveAllTypes - Recursively strip all the types of this tree. 2015 void TreePatternNode::RemoveAllTypes() { 2016 // Reset to unknown type. 2017 std::fill(Types.begin(), Types.end(), TypeSetByHwMode()); 2018 if (isLeaf()) 2019 return; 2020 for (TreePatternNode &Child : children()) 2021 Child.RemoveAllTypes(); 2022 } 2023 2024 /// SubstituteFormalArguments - Replace the formal arguments in this tree 2025 /// with actual values specified by ArgMap. 2026 void TreePatternNode::SubstituteFormalArguments( 2027 std::map<std::string, TreePatternNodePtr> &ArgMap) { 2028 if (isLeaf()) 2029 return; 2030 2031 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 2032 TreePatternNode &Child = getChild(i); 2033 if (Child.isLeaf()) { 2034 const Init *Val = Child.getLeafValue(); 2035 // Note that, when substituting into an output pattern, Val might be an 2036 // UnsetInit. 2037 if (isa<UnsetInit>(Val) || 2038 (isa<DefInit>(Val) && 2039 cast<DefInit>(Val)->getDef()->getName() == "node")) { 2040 // We found a use of a formal argument, replace it with its value. 2041 TreePatternNodePtr NewChild = ArgMap[Child.getName()]; 2042 assert(NewChild && "Couldn't find formal argument!"); 2043 assert((Child.getPredicateCalls().empty() || 2044 NewChild->getPredicateCalls() == Child.getPredicateCalls()) && 2045 "Non-empty child predicate clobbered!"); 2046 setChild(i, std::move(NewChild)); 2047 } 2048 } else { 2049 getChild(i).SubstituteFormalArguments(ArgMap); 2050 } 2051 } 2052 } 2053 2054 /// InlinePatternFragments - If this pattern refers to any pattern 2055 /// fragments, return the set of inlined versions (this can be more than 2056 /// one if a PatFrags record has multiple alternatives). 2057 void TreePatternNode::InlinePatternFragments( 2058 TreePattern &TP, std::vector<TreePatternNodePtr> &OutAlternatives) { 2059 2060 if (TP.hasError()) 2061 return; 2062 2063 if (isLeaf()) { 2064 OutAlternatives.push_back(this); // nothing to do. 2065 return; 2066 } 2067 2068 const Record *Op = getOperator(); 2069 2070 if (!Op->isSubClassOf("PatFrags")) { 2071 if (getNumChildren() == 0) { 2072 OutAlternatives.push_back(this); 2073 return; 2074 } 2075 2076 // Recursively inline children nodes. 2077 std::vector<std::vector<TreePatternNodePtr>> ChildAlternatives( 2078 getNumChildren()); 2079 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 2080 TreePatternNodePtr Child = getChildShared(i); 2081 Child->InlinePatternFragments(TP, ChildAlternatives[i]); 2082 // If there are no alternatives for any child, there are no 2083 // alternatives for this expression as whole. 2084 if (ChildAlternatives[i].empty()) 2085 return; 2086 2087 assert((Child->getPredicateCalls().empty() || 2088 llvm::all_of(ChildAlternatives[i], 2089 [&](const TreePatternNodePtr &NewChild) { 2090 return NewChild->getPredicateCalls() == 2091 Child->getPredicateCalls(); 2092 })) && 2093 "Non-empty child predicate clobbered!"); 2094 } 2095 2096 // The end result is an all-pairs construction of the resultant pattern. 2097 std::vector<unsigned> Idxs(ChildAlternatives.size()); 2098 bool NotDone; 2099 do { 2100 // Create the variant and add it to the output list. 2101 std::vector<TreePatternNodePtr> NewChildren; 2102 NewChildren.reserve(ChildAlternatives.size()); 2103 for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i) 2104 NewChildren.push_back(ChildAlternatives[i][Idxs[i]]); 2105 TreePatternNodePtr R = makeIntrusiveRefCnt<TreePatternNode>( 2106 getOperator(), std::move(NewChildren), getNumTypes()); 2107 2108 // Copy over properties. 2109 R->setName(getName()); 2110 R->setNamesAsPredicateArg(getNamesAsPredicateArg()); 2111 R->setPredicateCalls(getPredicateCalls()); 2112 R->setGISelFlagsRecord(getGISelFlagsRecord()); 2113 R->setTransformFn(getTransformFn()); 2114 for (unsigned i = 0, e = getNumTypes(); i != e; ++i) 2115 R->setType(i, getExtType(i)); 2116 for (unsigned i = 0, e = getNumResults(); i != e; ++i) 2117 R->setResultIndex(i, getResultIndex(i)); 2118 2119 // Register alternative. 2120 OutAlternatives.push_back(R); 2121 2122 // Increment indices to the next permutation by incrementing the 2123 // indices from last index backward, e.g., generate the sequence 2124 // [0, 0], [0, 1], [1, 0], [1, 1]. 2125 int IdxsIdx; 2126 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 2127 if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size()) 2128 Idxs[IdxsIdx] = 0; 2129 else 2130 break; 2131 } 2132 NotDone = (IdxsIdx >= 0); 2133 } while (NotDone); 2134 2135 return; 2136 } 2137 2138 // Otherwise, we found a reference to a fragment. First, look up its 2139 // TreePattern record. 2140 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); 2141 2142 // Verify that we are passing the right number of operands. 2143 if (Frag->getNumArgs() != getNumChildren()) { 2144 TP.error("'" + Op->getName() + "' fragment requires " + 2145 Twine(Frag->getNumArgs()) + " operands!"); 2146 return; 2147 } 2148 2149 TreePredicateFn PredFn(Frag); 2150 unsigned Scope = 0; 2151 if (TreePredicateFn(Frag).usesOperands()) 2152 Scope = TP.getDAGPatterns().allocateScope(); 2153 2154 // Compute the map of formal to actual arguments. 2155 std::map<std::string, TreePatternNodePtr> ArgMap; 2156 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) { 2157 TreePatternNodePtr Child = getChildShared(i); 2158 if (Scope != 0) { 2159 Child = Child->clone(); 2160 Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i))); 2161 } 2162 ArgMap[Frag->getArgName(i)] = Child; 2163 } 2164 2165 // Loop over all fragment alternatives. 2166 for (const auto &Alternative : Frag->getTrees()) { 2167 TreePatternNodePtr FragTree = Alternative->clone(); 2168 2169 if (!PredFn.isAlwaysTrue()) 2170 FragTree->addPredicateCall(PredFn, Scope); 2171 2172 // Resolve formal arguments to their actual value. 2173 if (Frag->getNumArgs()) 2174 FragTree->SubstituteFormalArguments(ArgMap); 2175 2176 // Transfer types. Note that the resolved alternative may have fewer 2177 // (but not more) results than the PatFrags node. 2178 FragTree->setName(getName()); 2179 for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i) 2180 FragTree->UpdateNodeType(i, getExtType(i), TP); 2181 2182 if (Op->isSubClassOf("GISelFlags")) 2183 FragTree->setGISelFlagsRecord(Op); 2184 2185 // Transfer in the old predicates. 2186 for (const TreePredicateCall &Pred : getPredicateCalls()) 2187 FragTree->addPredicateCall(Pred); 2188 2189 // The fragment we inlined could have recursive inlining that is needed. See 2190 // if there are any pattern fragments in it and inline them as needed. 2191 FragTree->InlinePatternFragments(TP, OutAlternatives); 2192 } 2193 } 2194 2195 /// getImplicitType - Check to see if the specified record has an implicit 2196 /// type which should be applied to it. This will infer the type of register 2197 /// references from the register file information, for example. 2198 /// 2199 /// When Unnamed is set, return the type of a DAG operand with no name, such as 2200 /// the F8RC register class argument in: 2201 /// 2202 /// (COPY_TO_REGCLASS GPR:$src, F8RC) 2203 /// 2204 /// When Unnamed is false, return the type of a named DAG operand such as the 2205 /// GPR:$src operand above. 2206 /// 2207 static TypeSetByHwMode getImplicitType(const Record *R, unsigned ResNo, 2208 bool NotRegisters, bool Unnamed, 2209 TreePattern &TP) { 2210 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 2211 2212 // Check to see if this is a register operand. 2213 if (R->isSubClassOf("RegisterOperand")) { 2214 assert(ResNo == 0 && "Regoperand ref only has one result!"); 2215 if (NotRegisters) 2216 return TypeSetByHwMode(); // Unknown. 2217 const Record *RegClass = R->getValueAsDef("RegClass"); 2218 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2219 return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes()); 2220 } 2221 2222 // Check to see if this is a register or a register class. 2223 if (R->isSubClassOf("RegisterClass")) { 2224 assert(ResNo == 0 && "Regclass ref only has one result!"); 2225 // An unnamed register class represents itself as an i32 immediate, for 2226 // example on a COPY_TO_REGCLASS instruction. 2227 if (Unnamed) 2228 return TypeSetByHwMode(MVT::i32); 2229 2230 // In a named operand, the register class provides the possible set of 2231 // types. 2232 if (NotRegisters) 2233 return TypeSetByHwMode(); // Unknown. 2234 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2235 return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes()); 2236 } 2237 2238 if (R->isSubClassOf("PatFrags")) { 2239 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); 2240 // Pattern fragment types will be resolved when they are inlined. 2241 return TypeSetByHwMode(); // Unknown. 2242 } 2243 2244 if (R->isSubClassOf("Register")) { 2245 assert(ResNo == 0 && "Registers only produce one result!"); 2246 if (NotRegisters) 2247 return TypeSetByHwMode(); // Unknown. 2248 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2249 return TypeSetByHwMode(T.getRegisterVTs(R)); 2250 } 2251 2252 if (R->isSubClassOf("SubRegIndex")) { 2253 assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); 2254 return TypeSetByHwMode(MVT::i32); 2255 } 2256 2257 if (R->isSubClassOf("ValueType")) { 2258 assert(ResNo == 0 && "This node only has one result!"); 2259 // An unnamed VTSDNode represents itself as an MVT::Other immediate. 2260 // 2261 // (sext_inreg GPR:$src, i16) 2262 // ~~~ 2263 if (Unnamed) 2264 return TypeSetByHwMode(MVT::Other); 2265 // With a name, the ValueType simply provides the type of the named 2266 // variable. 2267 // 2268 // (sext_inreg i32:$src, i16) 2269 // ~~~~~~~~ 2270 if (NotRegisters) 2271 return TypeSetByHwMode(); // Unknown. 2272 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2273 return TypeSetByHwMode(getValueTypeByHwMode(R, CGH)); 2274 } 2275 2276 if (R->isSubClassOf("CondCode")) { 2277 assert(ResNo == 0 && "This node only has one result!"); 2278 // Using a CondCodeSDNode. 2279 return TypeSetByHwMode(MVT::Other); 2280 } 2281 2282 if (R->isSubClassOf("ComplexPattern")) { 2283 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); 2284 if (NotRegisters) 2285 return TypeSetByHwMode(); // Unknown. 2286 const Record *T = CDP.getComplexPattern(R).getValueType(); 2287 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2288 return TypeSetByHwMode(getValueTypeByHwMode(T, CGH)); 2289 } 2290 if (R->isSubClassOf("PointerLikeRegClass")) { 2291 assert(ResNo == 0 && "Regclass can only have one result!"); 2292 TypeSetByHwMode VTS(MVT::iPTR); 2293 TP.getInfer().expandOverloads(VTS); 2294 return VTS; 2295 } 2296 2297 if (R->getName() == "node" || R->getName() == "srcvalue" || 2298 R->getName() == "zero_reg" || R->getName() == "immAllOnesV" || 2299 R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") { 2300 // Placeholder. 2301 return TypeSetByHwMode(); // Unknown. 2302 } 2303 2304 if (R->isSubClassOf("Operand")) { 2305 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2306 const Record *T = R->getValueAsDef("Type"); 2307 return TypeSetByHwMode(getValueTypeByHwMode(T, CGH)); 2308 } 2309 2310 TP.error("Unknown node flavor used in pattern: " + R->getName()); 2311 return TypeSetByHwMode(MVT::Other); 2312 } 2313 2314 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 2315 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 2316 const CodeGenIntrinsic * 2317 TreePatternNode::getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { 2318 if (getOperator() != CDP.get_intrinsic_void_sdnode() && 2319 getOperator() != CDP.get_intrinsic_w_chain_sdnode() && 2320 getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) 2321 return nullptr; 2322 2323 unsigned IID = cast<IntInit>(getChild(0).getLeafValue())->getValue(); 2324 return &CDP.getIntrinsicInfo(IID); 2325 } 2326 2327 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 2328 /// return the ComplexPattern information, otherwise return null. 2329 const ComplexPattern * 2330 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { 2331 const Record *Rec; 2332 if (isLeaf()) { 2333 const DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2334 if (!DI) 2335 return nullptr; 2336 Rec = DI->getDef(); 2337 } else 2338 Rec = getOperator(); 2339 2340 if (!Rec->isSubClassOf("ComplexPattern")) 2341 return nullptr; 2342 return &CGP.getComplexPattern(Rec); 2343 } 2344 2345 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const { 2346 // A ComplexPattern specifically declares how many results it fills in. 2347 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2348 return CP->getNumOperands(); 2349 2350 // If MIOperandInfo is specified, that gives the count. 2351 if (isLeaf()) { 2352 const DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2353 if (DI && DI->getDef()->isSubClassOf("Operand")) { 2354 const DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo"); 2355 if (MIOps->getNumArgs()) 2356 return MIOps->getNumArgs(); 2357 } 2358 } 2359 2360 // Otherwise there is just one result. 2361 return 1; 2362 } 2363 2364 /// NodeHasProperty - Return true if this node has the specified property. 2365 bool TreePatternNode::NodeHasProperty(SDNP Property, 2366 const CodeGenDAGPatterns &CGP) const { 2367 if (isLeaf()) { 2368 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2369 return CP->hasProperty(Property); 2370 2371 return false; 2372 } 2373 2374 if (Property != SDNPHasChain) { 2375 // The chain proprety is already present on the different intrinsic node 2376 // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed 2377 // on the intrinsic. Anything else is specific to the individual intrinsic. 2378 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP)) 2379 return Int->hasProperty(Property); 2380 } 2381 2382 if (!getOperator()->isSubClassOf("SDPatternOperator")) 2383 return false; 2384 2385 return CGP.getSDNodeInfo(getOperator()).hasProperty(Property); 2386 } 2387 2388 /// TreeHasProperty - Return true if any node in this tree has the specified 2389 /// property. 2390 bool TreePatternNode::TreeHasProperty(SDNP Property, 2391 const CodeGenDAGPatterns &CGP) const { 2392 if (NodeHasProperty(Property, CGP)) 2393 return true; 2394 for (const TreePatternNode &Child : children()) 2395 if (Child.TreeHasProperty(Property, CGP)) 2396 return true; 2397 return false; 2398 } 2399 2400 /// isCommutativeIntrinsic - Return true if the node corresponds to a 2401 /// commutative intrinsic. 2402 bool TreePatternNode::isCommutativeIntrinsic( 2403 const CodeGenDAGPatterns &CDP) const { 2404 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) 2405 return Int->isCommutative; 2406 return false; 2407 } 2408 2409 static bool isOperandClass(const TreePatternNode &N, StringRef Class) { 2410 if (!N.isLeaf()) 2411 return N.getOperator()->isSubClassOf(Class); 2412 2413 const DefInit *DI = dyn_cast<DefInit>(N.getLeafValue()); 2414 if (DI && DI->getDef()->isSubClassOf(Class)) 2415 return true; 2416 2417 return false; 2418 } 2419 2420 static void emitTooManyOperandsError(TreePattern &TP, StringRef InstName, 2421 unsigned Expected, unsigned Actual) { 2422 TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) + 2423 " operands but expected only " + Twine(Expected) + "!"); 2424 } 2425 2426 static void emitTooFewOperandsError(TreePattern &TP, StringRef InstName, 2427 unsigned Actual) { 2428 TP.error("Instruction '" + InstName + "' expects more than the provided " + 2429 Twine(Actual) + " operands!"); 2430 } 2431 2432 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 2433 /// this node and its children in the tree. This returns true if it makes a 2434 /// change, false otherwise. If a type contradiction is found, flag an error. 2435 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { 2436 if (TP.hasError()) 2437 return false; 2438 2439 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 2440 if (isLeaf()) { 2441 if (const DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 2442 // If it's a regclass or something else known, include the type. 2443 bool MadeChange = false; 2444 for (unsigned i = 0, e = Types.size(); i != e; ++i) 2445 MadeChange |= UpdateNodeType( 2446 i, getImplicitType(DI->getDef(), i, NotRegisters, !hasName(), TP), 2447 TP); 2448 return MadeChange; 2449 } 2450 2451 if (const IntInit *II = dyn_cast<IntInit>(getLeafValue())) { 2452 assert(Types.size() == 1 && "Invalid IntInit"); 2453 2454 // Int inits are always integers. :) 2455 bool MadeChange = TP.getInfer().EnforceInteger(Types[0]); 2456 2457 if (!TP.getInfer().isConcrete(Types[0], false)) 2458 return MadeChange; 2459 2460 ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false); 2461 for (auto &P : VVT) { 2462 MVT::SimpleValueType VT = P.second.SimpleTy; 2463 // Can only check for types of a known size 2464 if (VT == MVT::iPTR) 2465 continue; 2466 2467 // Check that the value doesn't use more bits than we have. It must 2468 // either be a sign- or zero-extended equivalent of the original. 2469 unsigned Width = MVT(VT).getFixedSizeInBits(); 2470 int64_t Val = II->getValue(); 2471 if (!isIntN(Width, Val) && !isUIntN(Width, Val)) { 2472 TP.error("Integer value '" + Twine(Val) + 2473 "' is out of range for type '" + getEnumName(VT) + "'!"); 2474 break; 2475 } 2476 } 2477 return MadeChange; 2478 } 2479 2480 return false; 2481 } 2482 2483 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { 2484 bool MadeChange = false; 2485 2486 // Apply the result type to the node. 2487 unsigned NumRetVTs = Int->IS.RetTys.size(); 2488 unsigned NumParamVTs = Int->IS.ParamTys.size(); 2489 2490 for (unsigned i = 0, e = NumRetVTs; i != e; ++i) 2491 MadeChange |= UpdateNodeType( 2492 i, getValueType(Int->IS.RetTys[i]->getValueAsDef("VT")), TP); 2493 2494 if (getNumChildren() != NumParamVTs + 1) { 2495 TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) + 2496 " operands, not " + Twine(getNumChildren() - 1) + " operands!"); 2497 return false; 2498 } 2499 2500 // Apply type info to the intrinsic ID. 2501 MadeChange |= getChild(0).UpdateNodeType(0, MVT::iPTR, TP); 2502 2503 for (unsigned i = 0, e = getNumChildren() - 1; i != e; ++i) { 2504 MadeChange |= getChild(i + 1).ApplyTypeConstraints(TP, NotRegisters); 2505 2506 MVT::SimpleValueType OpVT = 2507 getValueType(Int->IS.ParamTys[i]->getValueAsDef("VT")); 2508 assert(getChild(i + 1).getNumTypes() == 1 && "Unhandled case"); 2509 MadeChange |= getChild(i + 1).UpdateNodeType(0, OpVT, TP); 2510 } 2511 return MadeChange; 2512 } 2513 2514 if (getOperator()->isSubClassOf("SDNode")) { 2515 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); 2516 2517 // Check that the number of operands is sane. Negative operands -> varargs. 2518 if (NI.getNumOperands() >= 0 && 2519 getNumChildren() != (unsigned)NI.getNumOperands()) { 2520 TP.error(getOperator()->getName() + " node requires exactly " + 2521 Twine(NI.getNumOperands()) + " operands!"); 2522 return false; 2523 } 2524 2525 bool MadeChange = false; 2526 for (TreePatternNode &Child : children()) 2527 MadeChange |= Child.ApplyTypeConstraints(TP, NotRegisters); 2528 MadeChange |= NI.ApplyTypeConstraints(*this, TP); 2529 return MadeChange; 2530 } 2531 2532 if (getOperator()->isSubClassOf("Instruction")) { 2533 const DAGInstruction &Inst = CDP.getInstruction(getOperator()); 2534 CodeGenInstruction &InstInfo = 2535 CDP.getTargetInfo().getInstruction(getOperator()); 2536 2537 bool MadeChange = false; 2538 2539 // Apply the result types to the node, these come from the things in the 2540 // (outs) list of the instruction. 2541 unsigned NumResultsToAdd = 2542 std::min(InstInfo.Operands.NumDefs, Inst.getNumResults()); 2543 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) 2544 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP); 2545 2546 // If the instruction has implicit defs, we apply the first one as a result. 2547 // FIXME: This sucks, it should apply all implicit defs. 2548 if (!InstInfo.ImplicitDefs.empty()) { 2549 unsigned ResNo = NumResultsToAdd; 2550 2551 // FIXME: Generalize to multiple possible types and multiple possible 2552 // ImplicitDefs. 2553 MVT::SimpleValueType VT = 2554 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); 2555 2556 if (VT != MVT::Other) 2557 MadeChange |= UpdateNodeType(ResNo, VT, TP); 2558 } 2559 2560 // If this is an INSERT_SUBREG, constrain the source and destination VTs to 2561 // be the same. 2562 if (getOperator()->getName() == "INSERT_SUBREG") { 2563 assert(getChild(0).getNumTypes() == 1 && "FIXME: Unhandled"); 2564 MadeChange |= UpdateNodeType(0, getChild(0).getExtType(0), TP); 2565 MadeChange |= getChild(0).UpdateNodeType(0, getExtType(0), TP); 2566 } else if (getOperator()->getName() == "REG_SEQUENCE") { 2567 // We need to do extra, custom typechecking for REG_SEQUENCE since it is 2568 // variadic. 2569 2570 unsigned NChild = getNumChildren(); 2571 if (NChild < 3) { 2572 TP.error("REG_SEQUENCE requires at least 3 operands!"); 2573 return false; 2574 } 2575 2576 if (NChild % 2 == 0) { 2577 TP.error("REG_SEQUENCE requires an odd number of operands!"); 2578 return false; 2579 } 2580 2581 if (!isOperandClass(getChild(0), "RegisterClass")) { 2582 TP.error("REG_SEQUENCE requires a RegisterClass for first operand!"); 2583 return false; 2584 } 2585 2586 for (unsigned I = 1; I < NChild; I += 2) { 2587 TreePatternNode &SubIdxChild = getChild(I + 1); 2588 if (!isOperandClass(SubIdxChild, "SubRegIndex")) { 2589 TP.error("REG_SEQUENCE requires a SubRegIndex for operand " + 2590 Twine(I + 1) + "!"); 2591 return false; 2592 } 2593 } 2594 } 2595 2596 unsigned NumResults = Inst.getNumResults(); 2597 unsigned NumFixedOperands = InstInfo.Operands.size(); 2598 2599 // If one or more operands with a default value appear at the end of the 2600 // formal operand list for an instruction, we allow them to be overridden 2601 // by optional operands provided in the pattern. 2602 // 2603 // But if an operand B without a default appears at any point after an 2604 // operand A with a default, then we don't allow A to be overridden, 2605 // because there would be no way to specify whether the next operand in 2606 // the pattern was intended to override A or skip it. 2607 unsigned NonOverridableOperands = NumFixedOperands; 2608 while (NonOverridableOperands > NumResults && 2609 CDP.operandHasDefault( 2610 InstInfo.Operands[NonOverridableOperands - 1].Rec)) 2611 --NonOverridableOperands; 2612 2613 unsigned ChildNo = 0; 2614 assert(NumResults <= NumFixedOperands); 2615 for (unsigned i = NumResults, e = NumFixedOperands; i != e; ++i) { 2616 const Record *OperandNode = InstInfo.Operands[i].Rec; 2617 2618 // If the operand has a default value, do we use it? We must use the 2619 // default if we've run out of children of the pattern DAG to consume, 2620 // or if the operand is followed by a non-defaulted one. 2621 if (CDP.operandHasDefault(OperandNode) && 2622 (i < NonOverridableOperands || ChildNo >= getNumChildren())) 2623 continue; 2624 2625 // If we have run out of child nodes and there _isn't_ a default 2626 // value we can use for the next operand, give an error. 2627 if (ChildNo >= getNumChildren()) { 2628 emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren()); 2629 return false; 2630 } 2631 2632 TreePatternNode *Child = &getChild(ChildNo++); 2633 unsigned ChildResNo = 0; // Instructions always use res #0 of their op. 2634 2635 // If the operand has sub-operands, they may be provided by distinct 2636 // child patterns, so attempt to match each sub-operand separately. 2637 if (OperandNode->isSubClassOf("Operand")) { 2638 const DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); 2639 if (unsigned NumArgs = MIOpInfo->getNumArgs()) { 2640 // But don't do that if the whole operand is being provided by 2641 // a single ComplexPattern-related Operand. 2642 2643 if (Child->getNumMIResults(CDP) < NumArgs) { 2644 // Match first sub-operand against the child we already have. 2645 const Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef(); 2646 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2647 2648 // And the remaining sub-operands against subsequent children. 2649 for (unsigned Arg = 1; Arg < NumArgs; ++Arg) { 2650 if (ChildNo >= getNumChildren()) { 2651 emitTooFewOperandsError(TP, getOperator()->getName(), 2652 getNumChildren()); 2653 return false; 2654 } 2655 Child = &getChild(ChildNo++); 2656 2657 SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef(); 2658 MadeChange |= 2659 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2660 } 2661 continue; 2662 } 2663 } 2664 } 2665 2666 // If we didn't match by pieces above, attempt to match the whole 2667 // operand now. 2668 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP); 2669 } 2670 2671 if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) { 2672 emitTooManyOperandsError(TP, getOperator()->getName(), ChildNo, 2673 getNumChildren()); 2674 return false; 2675 } 2676 2677 for (TreePatternNode &Child : children()) 2678 MadeChange |= Child.ApplyTypeConstraints(TP, NotRegisters); 2679 return MadeChange; 2680 } 2681 2682 if (getOperator()->isSubClassOf("ComplexPattern")) { 2683 bool MadeChange = false; 2684 2685 if (!NotRegisters) { 2686 assert(Types.size() == 1 && "ComplexPatterns only produce one result!"); 2687 const Record *T = CDP.getComplexPattern(getOperator()).getValueType(); 2688 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2689 const ValueTypeByHwMode VVT = getValueTypeByHwMode(T, CGH); 2690 // TODO: AArch64 and AMDGPU use ComplexPattern<untyped, ...> and then 2691 // exclusively use those as non-leaf nodes with explicit type casts, so 2692 // for backwards compatibility we do no inference in that case. This is 2693 // not supported when the ComplexPattern is used as a leaf value, 2694 // however; this inconsistency should be resolved, either by adding this 2695 // case there or by altering the backends to not do this (e.g. using Any 2696 // instead may work). 2697 if (!VVT.isSimple() || VVT.getSimple() != MVT::Untyped) 2698 MadeChange |= UpdateNodeType(0, VVT, TP); 2699 } 2700 2701 for (TreePatternNode &Child : children()) 2702 MadeChange |= Child.ApplyTypeConstraints(TP, NotRegisters); 2703 2704 return MadeChange; 2705 } 2706 2707 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); 2708 2709 // Node transforms always take one operand. 2710 if (getNumChildren() != 1) { 2711 TP.error("Node transform '" + getOperator()->getName() + 2712 "' requires one operand!"); 2713 return false; 2714 } 2715 2716 bool MadeChange = getChild(0).ApplyTypeConstraints(TP, NotRegisters); 2717 return MadeChange; 2718 } 2719 2720 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the 2721 /// RHS of a commutative operation, not the on LHS. 2722 static bool OnlyOnRHSOfCommutative(const TreePatternNode &N) { 2723 if (!N.isLeaf() && N.getOperator()->getName() == "imm") 2724 return true; 2725 if (N.isLeaf() && isa<IntInit>(N.getLeafValue())) 2726 return true; 2727 if (isImmAllOnesAllZerosMatch(N)) 2728 return true; 2729 return false; 2730 } 2731 2732 /// canPatternMatch - If it is impossible for this pattern to match on this 2733 /// target, fill in Reason and return false. Otherwise, return true. This is 2734 /// used as a sanity check for .td files (to prevent people from writing stuff 2735 /// that can never possibly work), and to prevent the pattern permuter from 2736 /// generating stuff that is useless. 2737 bool TreePatternNode::canPatternMatch(std::string &Reason, 2738 const CodeGenDAGPatterns &CDP) const { 2739 if (isLeaf()) 2740 return true; 2741 2742 for (const TreePatternNode &Child : children()) 2743 if (!Child.canPatternMatch(Reason, CDP)) 2744 return false; 2745 2746 // If this is an intrinsic, handle cases that would make it not match. For 2747 // example, if an operand is required to be an immediate. 2748 if (getOperator()->isSubClassOf("Intrinsic")) { 2749 // TODO: 2750 return true; 2751 } 2752 2753 if (getOperator()->isSubClassOf("ComplexPattern")) 2754 return true; 2755 2756 // If this node is a commutative operator, check that the LHS isn't an 2757 // immediate. 2758 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); 2759 bool isCommIntrinsic = isCommutativeIntrinsic(CDP); 2760 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 2761 // Scan all of the operands of the node and make sure that only the last one 2762 // is a constant node, unless the RHS also is. 2763 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren() - 1))) { 2764 unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 2765 for (unsigned i = Skip, e = getNumChildren() - 1; i != e; ++i) 2766 if (OnlyOnRHSOfCommutative(getChild(i))) { 2767 Reason = 2768 "Immediate value must be on the RHS of commutative operators!"; 2769 return false; 2770 } 2771 } 2772 } 2773 2774 return true; 2775 } 2776 2777 //===----------------------------------------------------------------------===// 2778 // TreePattern implementation 2779 // 2780 2781 TreePattern::TreePattern(const Record *TheRec, const ListInit *RawPat, 2782 bool isInput, CodeGenDAGPatterns &cdp) 2783 : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false), 2784 Infer(*this) { 2785 for (const Init *I : RawPat->getValues()) 2786 Trees.push_back(ParseTreePattern(I, "")); 2787 } 2788 2789 TreePattern::TreePattern(const Record *TheRec, const DagInit *Pat, bool isInput, 2790 CodeGenDAGPatterns &cdp) 2791 : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false), 2792 Infer(*this) { 2793 Trees.push_back(ParseTreePattern(Pat, "")); 2794 } 2795 2796 TreePattern::TreePattern(const Record *TheRec, TreePatternNodePtr Pat, 2797 bool isInput, CodeGenDAGPatterns &cdp) 2798 : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false), 2799 Infer(*this) { 2800 Trees.push_back(Pat); 2801 } 2802 2803 void TreePattern::error(const Twine &Msg) { 2804 if (HasError) 2805 return; 2806 dump(); 2807 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); 2808 HasError = true; 2809 } 2810 2811 void TreePattern::ComputeNamedNodes() { 2812 for (TreePatternNodePtr &Tree : Trees) 2813 ComputeNamedNodes(*Tree); 2814 } 2815 2816 void TreePattern::ComputeNamedNodes(TreePatternNode &N) { 2817 if (!N.getName().empty()) 2818 NamedNodes[N.getName()].push_back(&N); 2819 2820 for (TreePatternNode &Child : N.children()) 2821 ComputeNamedNodes(Child); 2822 } 2823 2824 TreePatternNodePtr TreePattern::ParseTreePattern(const Init *TheInit, 2825 StringRef OpName) { 2826 RecordKeeper &RK = TheInit->getRecordKeeper(); 2827 // Here, we are creating new records (BitsInit->InitInit), so const_cast 2828 // TheInit back to non-const pointer. 2829 if (const DefInit *DI = dyn_cast<DefInit>(TheInit)) { 2830 const Record *R = DI->getDef(); 2831 2832 // Direct reference to a leaf DagNode or PatFrag? Turn it into a 2833 // TreePatternNode of its own. For example: 2834 /// (foo GPR, imm) -> (foo GPR, (imm)) 2835 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags")) 2836 return ParseTreePattern( 2837 DagInit::get( 2838 DI, nullptr, 2839 std::vector<std::pair<const Init *, const StringInit *>>()), 2840 OpName); 2841 2842 // Input argument? 2843 TreePatternNodePtr Res = makeIntrusiveRefCnt<TreePatternNode>(DI, 1); 2844 if (R->getName() == "node" && !OpName.empty()) { 2845 if (OpName.empty()) 2846 error("'node' argument requires a name to match with operand list"); 2847 Args.push_back(std::string(OpName)); 2848 } 2849 2850 Res->setName(OpName); 2851 return Res; 2852 } 2853 2854 // ?:$name or just $name. 2855 if (isa<UnsetInit>(TheInit)) { 2856 if (OpName.empty()) 2857 error("'?' argument requires a name to match with operand list"); 2858 TreePatternNodePtr Res = makeIntrusiveRefCnt<TreePatternNode>(TheInit, 1); 2859 Args.push_back(std::string(OpName)); 2860 Res->setName(OpName); 2861 return Res; 2862 } 2863 2864 if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) { 2865 if (!OpName.empty()) 2866 error("Constant int or bit argument should not have a name!"); 2867 if (isa<BitInit>(TheInit)) 2868 TheInit = TheInit->convertInitializerTo(IntRecTy::get(RK)); 2869 return makeIntrusiveRefCnt<TreePatternNode>(TheInit, 1); 2870 } 2871 2872 if (const BitsInit *BI = dyn_cast<BitsInit>(TheInit)) { 2873 // Turn this into an IntInit. 2874 const Init *II = BI->convertInitializerTo(IntRecTy::get(RK)); 2875 if (!II || !isa<IntInit>(II)) 2876 error("Bits value must be constants!"); 2877 return II ? ParseTreePattern(II, OpName) : nullptr; 2878 } 2879 2880 const DagInit *Dag = dyn_cast<DagInit>(TheInit); 2881 if (!Dag) { 2882 TheInit->print(errs()); 2883 error("Pattern has unexpected init kind!"); 2884 return nullptr; 2885 } 2886 2887 auto ParseCastOperand = [this](const DagInit *Dag, StringRef OpName) { 2888 if (Dag->getNumArgs() != 1) 2889 error("Type cast only takes one operand!"); 2890 2891 if (!OpName.empty()) 2892 error("Type cast should not have a name!"); 2893 2894 return ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0)); 2895 }; 2896 2897 if (const ListInit *LI = dyn_cast<ListInit>(Dag->getOperator())) { 2898 // If the operator is a list (of value types), then this must be "type cast" 2899 // of a leaf node with multiple results. 2900 TreePatternNodePtr New = ParseCastOperand(Dag, OpName); 2901 2902 size_t NumTypes = New->getNumTypes(); 2903 if (LI->empty() || LI->size() != NumTypes) 2904 error("Invalid number of type casts!"); 2905 2906 // Apply the type casts. 2907 const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes(); 2908 for (unsigned i = 0; i < std::min(NumTypes, LI->size()); ++i) 2909 New->UpdateNodeType( 2910 i, getValueTypeByHwMode(LI->getElementAsRecord(i), CGH), *this); 2911 2912 return New; 2913 } 2914 2915 const DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator()); 2916 if (!OpDef) { 2917 error("Pattern has unexpected operator type!"); 2918 return nullptr; 2919 } 2920 const Record *Operator = OpDef->getDef(); 2921 2922 if (Operator->isSubClassOf("ValueType")) { 2923 // If the operator is a ValueType, then this must be "type cast" of a leaf 2924 // node. 2925 TreePatternNodePtr New = ParseCastOperand(Dag, OpName); 2926 2927 if (New->getNumTypes() != 1) 2928 error("ValueType cast can only have one type!"); 2929 2930 // Apply the type cast. 2931 const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes(); 2932 New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this); 2933 2934 return New; 2935 } 2936 2937 // Verify that this is something that makes sense for an operator. 2938 if (!Operator->isSubClassOf("PatFrags") && 2939 !Operator->isSubClassOf("SDNode") && 2940 !Operator->isSubClassOf("Instruction") && 2941 !Operator->isSubClassOf("SDNodeXForm") && 2942 !Operator->isSubClassOf("Intrinsic") && 2943 !Operator->isSubClassOf("ComplexPattern") && Operator->getName() != "set") 2944 error("Unrecognized node '" + Operator->getName() + "'!"); 2945 2946 // Check to see if this is something that is illegal in an input pattern. 2947 if (isInputPattern) { 2948 if (Operator->isSubClassOf("Instruction") || 2949 Operator->isSubClassOf("SDNodeXForm")) 2950 error("Cannot use '" + Operator->getName() + "' in an input pattern!"); 2951 } else { 2952 if (Operator->isSubClassOf("Intrinsic")) 2953 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2954 2955 if (Operator->isSubClassOf("SDNode") && Operator->getName() != "imm" && 2956 Operator->getName() != "timm" && Operator->getName() != "fpimm" && 2957 Operator->getName() != "tglobaltlsaddr" && 2958 Operator->getName() != "tconstpool" && 2959 Operator->getName() != "tjumptable" && 2960 Operator->getName() != "tframeindex" && 2961 Operator->getName() != "texternalsym" && 2962 Operator->getName() != "tblockaddress" && 2963 Operator->getName() != "tglobaladdr" && Operator->getName() != "bb" && 2964 Operator->getName() != "vt" && Operator->getName() != "mcsym") 2965 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2966 } 2967 2968 std::vector<TreePatternNodePtr> Children; 2969 2970 // Parse all the operands. 2971 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) 2972 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i))); 2973 2974 // Get the actual number of results before Operator is converted to an 2975 // intrinsic node (which is hard-coded to have either zero or one result). 2976 unsigned NumResults = GetNumNodeResults(Operator, CDP); 2977 2978 // If the operator is an intrinsic, then this is just syntactic sugar for 2979 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and 2980 // convert the intrinsic name to a number. 2981 if (Operator->isSubClassOf("Intrinsic")) { 2982 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); 2983 unsigned IID = getDAGPatterns().getIntrinsicID(Operator) + 1; 2984 2985 // If this intrinsic returns void, it must have side-effects and thus a 2986 // chain. 2987 if (Int.IS.RetTys.empty()) 2988 Operator = getDAGPatterns().get_intrinsic_void_sdnode(); 2989 else if (!Int.ME.doesNotAccessMemory() || Int.hasSideEffects) 2990 // Has side-effects, requires chain. 2991 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); 2992 else // Otherwise, no chain. 2993 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); 2994 2995 Children.insert(Children.begin(), makeIntrusiveRefCnt<TreePatternNode>( 2996 IntInit::get(RK, IID), 1)); 2997 } 2998 2999 if (Operator->isSubClassOf("ComplexPattern")) { 3000 for (unsigned i = 0; i < Children.size(); ++i) { 3001 TreePatternNodePtr Child = Children[i]; 3002 3003 if (Child->getName().empty()) 3004 error("All arguments to a ComplexPattern must be named"); 3005 3006 // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)" 3007 // and "(MY_PAT $b, $a)" should not be allowed in the same pattern; 3008 // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)". 3009 auto OperandId = std::pair(Operator, i); 3010 auto [PrevOp, Inserted] = 3011 ComplexPatternOperands.try_emplace(Child->getName(), OperandId); 3012 if (!Inserted && PrevOp->getValue() != OperandId) { 3013 error("All ComplexPattern operands must appear consistently: " 3014 "in the same order in just one ComplexPattern instance."); 3015 } 3016 } 3017 } 3018 3019 TreePatternNodePtr Result = makeIntrusiveRefCnt<TreePatternNode>( 3020 Operator, std::move(Children), NumResults); 3021 Result->setName(OpName); 3022 3023 if (Dag->getName()) { 3024 assert(Result->getName().empty()); 3025 Result->setName(Dag->getNameStr()); 3026 } 3027 return Result; 3028 } 3029 3030 /// SimplifyTree - See if we can simplify this tree to eliminate something that 3031 /// will never match in favor of something obvious that will. This is here 3032 /// strictly as a convenience to target authors because it allows them to write 3033 /// more type generic things and have useless type casts fold away. 3034 /// 3035 /// This returns true if any change is made. 3036 static bool SimplifyTree(TreePatternNodePtr &N) { 3037 if (N->isLeaf()) 3038 return false; 3039 3040 // If we have a bitconvert with a resolved type and if the source and 3041 // destination types are the same, then the bitconvert is useless, remove it. 3042 // 3043 // We make an exception if the types are completely empty. This can come up 3044 // when the pattern being simplified is in the Fragments list of a PatFrags, 3045 // so that the operand is just an untyped "node". In that situation we leave 3046 // bitconverts unsimplified, and simplify them later once the fragment is 3047 // expanded into its true context. 3048 if (N->getOperator()->getName() == "bitconvert" && 3049 N->getExtType(0).isValueTypeByHwMode(false) && 3050 !N->getExtType(0).empty() && 3051 N->getExtType(0) == N->getChild(0).getExtType(0) && 3052 N->getName().empty()) { 3053 if (!N->getPredicateCalls().empty()) { 3054 std::string Str; 3055 raw_string_ostream OS(Str); 3056 OS << *N 3057 << "\n trivial bitconvert node should not have predicate calls\n"; 3058 PrintFatalError(Str); 3059 return false; 3060 } 3061 N = N->getChildShared(0); 3062 SimplifyTree(N); 3063 return true; 3064 } 3065 3066 // Walk all children. 3067 bool MadeChange = false; 3068 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3069 MadeChange |= SimplifyTree(N->getChildSharedPtr(i)); 3070 3071 return MadeChange; 3072 } 3073 3074 /// InferAllTypes - Infer/propagate as many types throughout the expression 3075 /// patterns as possible. Return true if all types are inferred, false 3076 /// otherwise. Flags an error if a type contradiction is found. 3077 bool TreePattern::InferAllTypes( 3078 const StringMap<SmallVector<TreePatternNode *, 1>> *InNamedTypes) { 3079 if (NamedNodes.empty()) 3080 ComputeNamedNodes(); 3081 3082 bool MadeChange = true; 3083 while (MadeChange) { 3084 MadeChange = false; 3085 for (TreePatternNodePtr &Tree : Trees) { 3086 MadeChange |= Tree->ApplyTypeConstraints(*this, false); 3087 MadeChange |= SimplifyTree(Tree); 3088 } 3089 3090 // If there are constraints on our named nodes, apply them. 3091 for (auto &Entry : NamedNodes) { 3092 SmallVectorImpl<TreePatternNode *> &Nodes = Entry.second; 3093 3094 // If we have input named node types, propagate their types to the named 3095 // values here. 3096 if (InNamedTypes) { 3097 auto InIter = InNamedTypes->find(Entry.getKey()); 3098 if (InIter == InNamedTypes->end()) { 3099 error("Node '" + std::string(Entry.getKey()) + 3100 "' in output pattern but not input pattern"); 3101 return true; 3102 } 3103 3104 const SmallVectorImpl<TreePatternNode *> &InNodes = InIter->second; 3105 3106 // The input types should be fully resolved by now. 3107 for (TreePatternNode *Node : Nodes) { 3108 // If this node is a register class, and it is the root of the pattern 3109 // then we're mapping something onto an input register. We allow 3110 // changing the type of the input register in this case. This allows 3111 // us to match things like: 3112 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; 3113 if (Node == Trees[0].get() && Node->isLeaf()) { 3114 const DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue()); 3115 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 3116 DI->getDef()->isSubClassOf("RegisterOperand"))) 3117 continue; 3118 } 3119 3120 assert(Node->getNumTypes() == 1 && InNodes[0]->getNumTypes() == 1 && 3121 "FIXME: cannot name multiple result nodes yet"); 3122 MadeChange |= 3123 Node->UpdateNodeType(0, InNodes[0]->getExtType(0), *this); 3124 } 3125 } 3126 3127 // If there are multiple nodes with the same name, they must all have the 3128 // same type. 3129 if (Entry.second.size() > 1) { 3130 for (unsigned i = 0, e = Nodes.size() - 1; i != e; ++i) { 3131 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i + 1]; 3132 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && 3133 "FIXME: cannot name multiple result nodes yet"); 3134 3135 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); 3136 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); 3137 } 3138 } 3139 } 3140 } 3141 3142 bool HasUnresolvedTypes = false; 3143 for (const TreePatternNodePtr &Tree : Trees) 3144 HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this); 3145 return !HasUnresolvedTypes; 3146 } 3147 3148 void TreePattern::print(raw_ostream &OS) const { 3149 OS << getRecord()->getName(); 3150 if (!Args.empty()) { 3151 OS << "("; 3152 ListSeparator LS; 3153 for (const std::string &Arg : Args) 3154 OS << LS << Arg; 3155 OS << ")"; 3156 } 3157 OS << ": "; 3158 3159 if (Trees.size() > 1) 3160 OS << "[\n"; 3161 for (const TreePatternNodePtr &Tree : Trees) { 3162 OS << "\t"; 3163 Tree->print(OS); 3164 OS << "\n"; 3165 } 3166 3167 if (Trees.size() > 1) 3168 OS << "]\n"; 3169 } 3170 3171 void TreePattern::dump() const { print(errs()); } 3172 3173 //===----------------------------------------------------------------------===// 3174 // CodeGenDAGPatterns implementation 3175 // 3176 3177 CodeGenDAGPatterns::CodeGenDAGPatterns(const RecordKeeper &R, 3178 PatternRewriterFn PatternRewriter) 3179 : Records(R), Target(R), Intrinsics(R), 3180 LegalVTS(Target.getLegalValueTypes()), 3181 PatternRewriter(std::move(PatternRewriter)) { 3182 ParseNodeInfo(); 3183 ParseNodeTransforms(); 3184 ParseComplexPatterns(); 3185 ParsePatternFragments(); 3186 ParseDefaultOperands(); 3187 ParseInstructions(); 3188 ParsePatternFragments(/*OutFrags*/ true); 3189 ParsePatterns(); 3190 3191 // Generate variants. For example, commutative patterns can match 3192 // multiple ways. Add them to PatternsToMatch as well. 3193 GenerateVariants(); 3194 3195 // Break patterns with parameterized types into a series of patterns, 3196 // where each one has a fixed type and is predicated on the conditions 3197 // of the associated HW mode. 3198 ExpandHwModeBasedTypes(); 3199 3200 // Infer instruction flags. For example, we can detect loads, 3201 // stores, and side effects in many cases by examining an 3202 // instruction's pattern. 3203 InferInstructionFlags(); 3204 3205 // Verify that instruction flags match the patterns. 3206 VerifyInstructionFlags(); 3207 } 3208 3209 const Record *CodeGenDAGPatterns::getSDNodeNamed(StringRef Name) const { 3210 const Record *N = Records.getDef(Name); 3211 if (!N || !N->isSubClassOf("SDNode")) 3212 PrintFatalError("Error getting SDNode '" + Name + "'!"); 3213 return N; 3214 } 3215 3216 // Parse all of the SDNode definitions for the target, populating SDNodes. 3217 void CodeGenDAGPatterns::ParseNodeInfo() { 3218 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 3219 3220 for (const Record *R : reverse(Records.getAllDerivedDefinitions("SDNode"))) 3221 SDNodes.try_emplace(R, SDNodeInfo(R, CGH)); 3222 3223 // Get the builtin intrinsic nodes. 3224 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); 3225 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); 3226 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); 3227 } 3228 3229 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms 3230 /// map, and emit them to the file as functions. 3231 void CodeGenDAGPatterns::ParseNodeTransforms() { 3232 for (const Record *XFormNode : 3233 reverse(Records.getAllDerivedDefinitions("SDNodeXForm"))) { 3234 const Record *SDNode = XFormNode->getValueAsDef("Opcode"); 3235 StringRef Code = XFormNode->getValueAsString("XFormFunction"); 3236 SDNodeXForms.insert({XFormNode, NodeXForm(SDNode, std::string(Code))}); 3237 } 3238 } 3239 3240 void CodeGenDAGPatterns::ParseComplexPatterns() { 3241 for (const Record *R : 3242 reverse(Records.getAllDerivedDefinitions("ComplexPattern"))) 3243 ComplexPatterns.insert({R, R}); 3244 } 3245 3246 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td 3247 /// file, building up the PatternFragments map. After we've collected them all, 3248 /// inline fragments together as necessary, so that there are no references left 3249 /// inside a pattern fragment to a pattern fragment. 3250 /// 3251 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) { 3252 // First step, parse all of the fragments. 3253 ArrayRef<const Record *> Fragments = 3254 Records.getAllDerivedDefinitions("PatFrags"); 3255 for (const Record *Frag : Fragments) { 3256 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 3257 continue; 3258 3259 const ListInit *LI = Frag->getValueAsListInit("Fragments"); 3260 TreePattern *P = (PatternFragments[Frag] = std::make_unique<TreePattern>( 3261 Frag, LI, !Frag->isSubClassOf("OutPatFrag"), *this)) 3262 .get(); 3263 3264 // Validate the argument list, converting it to set, to discard duplicates. 3265 std::vector<std::string> &Args = P->getArgList(); 3266 // Copy the args so we can take StringRefs to them. 3267 auto ArgsCopy = Args; 3268 SmallDenseSet<StringRef, 4> OperandsSet; 3269 OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end()); 3270 3271 if (OperandsSet.count("")) 3272 P->error("Cannot have unnamed 'node' values in pattern fragment!"); 3273 3274 // Parse the operands list. 3275 const DagInit *OpsList = Frag->getValueAsDag("Operands"); 3276 const DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator()); 3277 // Special cases: ops == outs == ins. Different names are used to 3278 // improve readability. 3279 if (!OpsOp || (OpsOp->getDef()->getName() != "ops" && 3280 OpsOp->getDef()->getName() != "outs" && 3281 OpsOp->getDef()->getName() != "ins")) 3282 P->error("Operands list should start with '(ops ... '!"); 3283 3284 // Copy over the arguments. 3285 Args.clear(); 3286 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { 3287 if (!isa<DefInit>(OpsList->getArg(j)) || 3288 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node") 3289 P->error("Operands list should all be 'node' values."); 3290 if (!OpsList->getArgName(j)) 3291 P->error("Operands list should have names for each operand!"); 3292 StringRef ArgNameStr = OpsList->getArgNameStr(j); 3293 if (!OperandsSet.erase(ArgNameStr)) 3294 P->error("'" + ArgNameStr + 3295 "' does not occur in pattern or was multiply specified!"); 3296 Args.push_back(std::string(ArgNameStr)); 3297 } 3298 3299 if (!OperandsSet.empty()) 3300 P->error("Operands list does not contain an entry for operand '" + 3301 *OperandsSet.begin() + "'!"); 3302 3303 // If there is a node transformation corresponding to this, keep track of 3304 // it. 3305 const Record *Transform = Frag->getValueAsDef("OperandTransform"); 3306 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? 3307 for (const auto &T : P->getTrees()) 3308 T->setTransformFn(Transform); 3309 } 3310 3311 // Now that we've parsed all of the tree fragments, do a closure on them so 3312 // that there are not references to PatFrags left inside of them. 3313 for (const Record *Frag : Fragments) { 3314 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 3315 continue; 3316 3317 TreePattern &ThePat = *PatternFragments[Frag]; 3318 ThePat.InlinePatternFragments(); 3319 3320 // Infer as many types as possible. Don't worry about it if we don't infer 3321 // all of them, some may depend on the inputs of the pattern. Also, don't 3322 // validate type sets; validation may cause spurious failures e.g. if a 3323 // fragment needs floating-point types but the current target does not have 3324 // any (this is only an error if that fragment is ever used!). 3325 { 3326 TypeInfer::SuppressValidation SV(ThePat.getInfer()); 3327 ThePat.InferAllTypes(); 3328 ThePat.resetError(); 3329 } 3330 3331 // If debugging, print out the pattern fragment result. 3332 LLVM_DEBUG(ThePat.dump()); 3333 } 3334 } 3335 3336 void CodeGenDAGPatterns::ParseDefaultOperands() { 3337 ArrayRef<const Record *> DefaultOps = 3338 Records.getAllDerivedDefinitions("OperandWithDefaultOps"); 3339 3340 // Find some SDNode. 3341 assert(!SDNodes.empty() && "No SDNodes parsed?"); 3342 const Init *SomeSDNode = SDNodes.begin()->first->getDefInit(); 3343 3344 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) { 3345 const DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps"); 3346 3347 // Clone the DefaultInfo dag node, changing the operator from 'ops' to 3348 // SomeSDnode so that we can parse this. 3349 std::vector<std::pair<const Init *, const StringInit *>> Ops; 3350 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) 3351 Ops.emplace_back(DefaultInfo->getArg(op), DefaultInfo->getArgName(op)); 3352 const DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops); 3353 3354 // Create a TreePattern to parse this. 3355 TreePattern P(DefaultOps[i], DI, false, *this); 3356 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); 3357 3358 // Copy the operands over into a DAGDefaultOperand. 3359 DAGDefaultOperand DefaultOpInfo; 3360 3361 const TreePatternNodePtr &T = P.getTree(0); 3362 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { 3363 TreePatternNodePtr TPN = T->getChildShared(op); 3364 while (TPN->ApplyTypeConstraints(P, false)) 3365 /* Resolve all types */; 3366 3367 if (TPN->ContainsUnresolvedType(P)) { 3368 PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" + 3369 DefaultOps[i]->getName() + 3370 "' doesn't have a concrete type!"); 3371 } 3372 DefaultOpInfo.DefaultOps.push_back(std::move(TPN)); 3373 } 3374 3375 // Insert it into the DefaultOperands map so we can find it later. 3376 DefaultOperands[DefaultOps[i]] = DefaultOpInfo; 3377 } 3378 } 3379 3380 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an 3381 /// instruction input. Return true if this is a real use. 3382 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat, 3383 std::map<std::string, TreePatternNodePtr> &InstInputs) { 3384 // No name -> not interesting. 3385 if (Pat->getName().empty()) { 3386 if (Pat->isLeaf()) { 3387 const DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3388 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 3389 DI->getDef()->isSubClassOf("RegisterOperand"))) 3390 I.error("Input " + DI->getDef()->getName() + " must be named!"); 3391 } 3392 return false; 3393 } 3394 3395 const Record *Rec; 3396 if (Pat->isLeaf()) { 3397 const DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3398 if (!DI) 3399 I.error("Input $" + Pat->getName() + " must be an identifier!"); 3400 Rec = DI->getDef(); 3401 } else { 3402 Rec = Pat->getOperator(); 3403 } 3404 3405 // SRCVALUE nodes are ignored. 3406 if (Rec->getName() == "srcvalue") 3407 return false; 3408 3409 TreePatternNodePtr &Slot = InstInputs[Pat->getName()]; 3410 if (!Slot) { 3411 Slot = Pat; 3412 return true; 3413 } 3414 const Record *SlotRec; 3415 if (Slot->isLeaf()) { 3416 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef(); 3417 } else { 3418 assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); 3419 SlotRec = Slot->getOperator(); 3420 } 3421 3422 // Ensure that the inputs agree if we've already seen this input. 3423 if (Rec != SlotRec) 3424 I.error("All $" + Pat->getName() + " inputs must agree with each other"); 3425 // Ensure that the types can agree as well. 3426 Slot->UpdateNodeType(0, Pat->getExtType(0), I); 3427 Pat->UpdateNodeType(0, Slot->getExtType(0), I); 3428 if (Slot->getExtTypes() != Pat->getExtTypes()) 3429 I.error("All $" + Pat->getName() + " inputs must agree with each other"); 3430 return true; 3431 } 3432 3433 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is 3434 /// part of "I", the instruction), computing the set of inputs and outputs of 3435 /// the pattern. Report errors if we see anything naughty. 3436 void CodeGenDAGPatterns::FindPatternInputsAndOutputs( 3437 TreePattern &I, TreePatternNodePtr Pat, 3438 std::map<std::string, TreePatternNodePtr> &InstInputs, 3439 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 3440 &InstResults, 3441 std::vector<const Record *> &InstImpResults) { 3442 // The instruction pattern still has unresolved fragments. For *named* 3443 // nodes we must resolve those here. This may not result in multiple 3444 // alternatives. 3445 if (!Pat->getName().empty()) { 3446 TreePattern SrcPattern(I.getRecord(), Pat, true, *this); 3447 SrcPattern.InlinePatternFragments(); 3448 SrcPattern.InferAllTypes(); 3449 Pat = SrcPattern.getOnlyTree(); 3450 } 3451 3452 if (Pat->isLeaf()) { 3453 bool isUse = HandleUse(I, Pat, InstInputs); 3454 if (!isUse && Pat->getTransformFn()) 3455 I.error("Cannot specify a transform function for a non-input value!"); 3456 return; 3457 } 3458 3459 if (Pat->getOperator()->getName() != "set") { 3460 // If this is not a set, verify that the children nodes are not void typed, 3461 // and recurse. 3462 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3463 if (Pat->getChild(i).getNumTypes() == 0) 3464 I.error("Cannot have void nodes inside of patterns!"); 3465 FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs, 3466 InstResults, InstImpResults); 3467 } 3468 3469 // If this is a non-leaf node with no children, treat it basically as if 3470 // it were a leaf. This handles nodes like (imm). 3471 bool isUse = HandleUse(I, Pat, InstInputs); 3472 3473 if (!isUse && Pat->getTransformFn()) 3474 I.error("Cannot specify a transform function for a non-input value!"); 3475 return; 3476 } 3477 3478 // Otherwise, this is a set, validate and collect instruction results. 3479 if (Pat->getNumChildren() == 0) 3480 I.error("set requires operands!"); 3481 3482 if (Pat->getTransformFn()) 3483 I.error("Cannot specify a transform function on a set node!"); 3484 3485 // Check the set destinations. 3486 unsigned NumDests = Pat->getNumChildren() - 1; 3487 for (unsigned i = 0; i != NumDests; ++i) { 3488 TreePatternNodePtr Dest = Pat->getChildShared(i); 3489 // For set destinations we also must resolve fragments here. 3490 TreePattern DestPattern(I.getRecord(), Dest, false, *this); 3491 DestPattern.InlinePatternFragments(); 3492 DestPattern.InferAllTypes(); 3493 Dest = DestPattern.getOnlyTree(); 3494 3495 if (!Dest->isLeaf()) 3496 I.error("set destination should be a register!"); 3497 3498 const DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 3499 if (!Val) { 3500 I.error("set destination should be a register!"); 3501 continue; 3502 } 3503 3504 if (Val->getDef()->isSubClassOf("RegisterClass") || 3505 Val->getDef()->isSubClassOf("ValueType") || 3506 Val->getDef()->isSubClassOf("RegisterOperand") || 3507 Val->getDef()->isSubClassOf("PointerLikeRegClass")) { 3508 if (Dest->getName().empty()) 3509 I.error("set destination must have a name!"); 3510 if (!InstResults.insert_or_assign(Dest->getName(), Dest).second) 3511 I.error("cannot set '" + Dest->getName() + "' multiple times"); 3512 } else if (Val->getDef()->isSubClassOf("Register")) { 3513 InstImpResults.push_back(Val->getDef()); 3514 } else { 3515 I.error("set destination should be a register!"); 3516 } 3517 } 3518 3519 // Verify and collect info from the computation. 3520 FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs, 3521 InstResults, InstImpResults); 3522 } 3523 3524 //===----------------------------------------------------------------------===// 3525 // Instruction Analysis 3526 //===----------------------------------------------------------------------===// 3527 3528 class InstAnalyzer { 3529 const CodeGenDAGPatterns &CDP; 3530 3531 public: 3532 bool hasSideEffects; 3533 bool mayStore; 3534 bool mayLoad; 3535 bool isBitcast; 3536 bool isVariadic; 3537 bool hasChain; 3538 3539 InstAnalyzer(const CodeGenDAGPatterns &cdp) 3540 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false), 3541 isBitcast(false), isVariadic(false), hasChain(false) {} 3542 3543 void Analyze(const PatternToMatch &Pat) { 3544 const TreePatternNode &N = Pat.getSrcPattern(); 3545 AnalyzeNode(N); 3546 // These properties are detected only on the root node. 3547 isBitcast = IsNodeBitcast(N); 3548 } 3549 3550 private: 3551 bool IsNodeBitcast(const TreePatternNode &N) const { 3552 if (hasSideEffects || mayLoad || mayStore || isVariadic) 3553 return false; 3554 3555 if (N.isLeaf()) 3556 return false; 3557 if (N.getNumChildren() != 1 || !N.getChild(0).isLeaf()) 3558 return false; 3559 3560 if (N.getOperator()->isSubClassOf("ComplexPattern")) 3561 return false; 3562 3563 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N.getOperator()); 3564 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1) 3565 return false; 3566 return OpInfo.getEnumName() == "ISD::BITCAST"; 3567 } 3568 3569 public: 3570 void AnalyzeNode(const TreePatternNode &N) { 3571 if (N.isLeaf()) { 3572 if (const DefInit *DI = dyn_cast<DefInit>(N.getLeafValue())) { 3573 const Record *LeafRec = DI->getDef(); 3574 // Handle ComplexPattern leaves. 3575 if (LeafRec->isSubClassOf("ComplexPattern")) { 3576 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); 3577 if (CP.hasProperty(SDNPMayStore)) 3578 mayStore = true; 3579 if (CP.hasProperty(SDNPMayLoad)) 3580 mayLoad = true; 3581 if (CP.hasProperty(SDNPSideEffect)) 3582 hasSideEffects = true; 3583 } 3584 } 3585 return; 3586 } 3587 3588 // Analyze children. 3589 for (const TreePatternNode &Child : N.children()) 3590 AnalyzeNode(Child); 3591 3592 // Notice properties of the node. 3593 if (N.NodeHasProperty(SDNPMayStore, CDP)) 3594 mayStore = true; 3595 if (N.NodeHasProperty(SDNPMayLoad, CDP)) 3596 mayLoad = true; 3597 if (N.NodeHasProperty(SDNPSideEffect, CDP)) 3598 hasSideEffects = true; 3599 if (N.NodeHasProperty(SDNPVariadic, CDP)) 3600 isVariadic = true; 3601 if (N.NodeHasProperty(SDNPHasChain, CDP)) 3602 hasChain = true; 3603 3604 if (const CodeGenIntrinsic *IntInfo = N.getIntrinsicInfo(CDP)) { 3605 ModRefInfo MR = IntInfo->ME.getModRef(); 3606 // If this is an intrinsic, analyze it. 3607 if (isRefSet(MR)) 3608 mayLoad = true; // These may load memory. 3609 3610 if (isModSet(MR)) 3611 mayStore = true; // Intrinsics that can write to memory are 'mayStore'. 3612 3613 // Consider intrinsics that don't specify any restrictions on memory 3614 // effects as having a side-effect. 3615 if (IntInfo->ME == MemoryEffects::unknown() || IntInfo->hasSideEffects) 3616 hasSideEffects = true; 3617 } 3618 } 3619 }; 3620 3621 static bool InferFromPattern(CodeGenInstruction &InstInfo, 3622 const InstAnalyzer &PatInfo, 3623 const Record *PatDef) { 3624 bool Error = false; 3625 3626 // Remember where InstInfo got its flags. 3627 if (InstInfo.hasUndefFlags()) 3628 InstInfo.InferredFrom = PatDef; 3629 3630 // Check explicitly set flags for consistency. 3631 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects && 3632 !InstInfo.hasSideEffects_Unset) { 3633 // Allow explicitly setting hasSideEffects = 1 on instructions, even when 3634 // the pattern has no side effects. That could be useful for div/rem 3635 // instructions that may trap. 3636 if (!InstInfo.hasSideEffects) { 3637 Error = true; 3638 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " + 3639 Twine(InstInfo.hasSideEffects)); 3640 } 3641 } 3642 3643 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) { 3644 Error = true; 3645 PrintError(PatDef->getLoc(), 3646 "Pattern doesn't match mayStore = " + Twine(InstInfo.mayStore)); 3647 } 3648 3649 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) { 3650 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads. 3651 // Some targets translate immediates to loads. 3652 if (!InstInfo.mayLoad) { 3653 Error = true; 3654 PrintError(PatDef->getLoc(), 3655 "Pattern doesn't match mayLoad = " + Twine(InstInfo.mayLoad)); 3656 } 3657 } 3658 3659 // Transfer inferred flags. 3660 InstInfo.hasSideEffects |= PatInfo.hasSideEffects; 3661 InstInfo.mayStore |= PatInfo.mayStore; 3662 InstInfo.mayLoad |= PatInfo.mayLoad; 3663 3664 // These flags are silently added without any verification. 3665 // FIXME: To match historical behavior of TableGen, for now add those flags 3666 // only when we're inferring from the primary instruction pattern. 3667 if (PatDef->isSubClassOf("Instruction")) { 3668 InstInfo.isBitcast |= PatInfo.isBitcast; 3669 InstInfo.hasChain |= PatInfo.hasChain; 3670 InstInfo.hasChain_Inferred = true; 3671 } 3672 3673 // Don't infer isVariadic. This flag means something different on SDNodes and 3674 // instructions. For example, a CALL SDNode is variadic because it has the 3675 // call arguments as operands, but a CALL instruction is not variadic - it 3676 // has argument registers as implicit, not explicit uses. 3677 3678 return Error; 3679 } 3680 3681 /// hasNullFragReference - Return true if the DAG has any reference to the 3682 /// null_frag operator. 3683 static bool hasNullFragReference(const DagInit *DI) { 3684 const DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator()); 3685 if (!OpDef) 3686 return false; 3687 const Record *Operator = OpDef->getDef(); 3688 3689 // If this is the null fragment, return true. 3690 if (Operator->getName() == "null_frag") 3691 return true; 3692 // If any of the arguments reference the null fragment, return true. 3693 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) { 3694 if (auto Arg = dyn_cast<DefInit>(DI->getArg(i))) 3695 if (Arg->getDef()->getName() == "null_frag") 3696 return true; 3697 const DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i)); 3698 if (Arg && hasNullFragReference(Arg)) 3699 return true; 3700 } 3701 3702 return false; 3703 } 3704 3705 /// hasNullFragReference - Return true if any DAG in the list references 3706 /// the null_frag operator. 3707 static bool hasNullFragReference(const ListInit *LI) { 3708 for (const Init *I : LI->getValues()) { 3709 const DagInit *DI = dyn_cast<DagInit>(I); 3710 assert(DI && "non-dag in an instruction Pattern list?!"); 3711 if (hasNullFragReference(DI)) 3712 return true; 3713 } 3714 return false; 3715 } 3716 3717 /// Get all the instructions in a tree. 3718 static void getInstructionsInTree(TreePatternNode &Tree, 3719 SmallVectorImpl<const Record *> &Instrs) { 3720 if (Tree.isLeaf()) 3721 return; 3722 if (Tree.getOperator()->isSubClassOf("Instruction")) 3723 Instrs.push_back(Tree.getOperator()); 3724 for (TreePatternNode &Child : Tree.children()) 3725 getInstructionsInTree(Child, Instrs); 3726 } 3727 3728 /// Check the class of a pattern leaf node against the instruction operand it 3729 /// represents. 3730 static bool checkOperandClass(CGIOperandList::OperandInfo &OI, 3731 const Record *Leaf) { 3732 if (OI.Rec == Leaf) 3733 return true; 3734 3735 // Allow direct value types to be used in instruction set patterns. 3736 // The type will be checked later. 3737 if (Leaf->isSubClassOf("ValueType")) 3738 return true; 3739 3740 // Patterns can also be ComplexPattern instances. 3741 if (Leaf->isSubClassOf("ComplexPattern")) 3742 return true; 3743 3744 return false; 3745 } 3746 3747 void CodeGenDAGPatterns::parseInstructionPattern(CodeGenInstruction &CGI, 3748 const ListInit *Pat, 3749 DAGInstMap &DAGInsts) { 3750 3751 assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!"); 3752 3753 // Parse the instruction. 3754 TreePattern I(CGI.TheDef, Pat, true, *this); 3755 3756 // InstInputs - Keep track of all of the inputs of the instruction, along 3757 // with the record they are declared as. 3758 std::map<std::string, TreePatternNodePtr> InstInputs; 3759 3760 // InstResults - Keep track of all the virtual registers that are 'set' 3761 // in the instruction, including what reg class they are. 3762 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 3763 InstResults; 3764 3765 std::vector<const Record *> InstImpResults; 3766 3767 // Verify that the top-level forms in the instruction are of void type, and 3768 // fill in the InstResults map. 3769 SmallString<32> TypesString; 3770 for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) { 3771 TypesString.clear(); 3772 TreePatternNodePtr Pat = I.getTree(j); 3773 if (Pat->getNumTypes() != 0) { 3774 raw_svector_ostream OS(TypesString); 3775 ListSeparator LS; 3776 for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) { 3777 OS << LS; 3778 Pat->getExtType(k).writeToStream(OS); 3779 } 3780 I.error("Top-level forms in instruction pattern should have" 3781 " void types, has types " + 3782 OS.str()); 3783 } 3784 3785 // Find inputs and outputs, and verify the structure of the uses/defs. 3786 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, 3787 InstImpResults); 3788 } 3789 3790 // Now that we have inputs and outputs of the pattern, inspect the operands 3791 // list for the instruction. This determines the order that operands are 3792 // added to the machine instruction the node corresponds to. 3793 unsigned NumResults = InstResults.size(); 3794 3795 // Parse the operands list from the (ops) list, validating it. 3796 assert(I.getArgList().empty() && "Args list should still be empty here!"); 3797 3798 // Check that all of the results occur first in the list. 3799 std::vector<const Record *> Results; 3800 std::vector<unsigned> ResultIndices; 3801 SmallVector<TreePatternNodePtr, 2> ResNodes; 3802 for (unsigned i = 0; i != NumResults; ++i) { 3803 if (i == CGI.Operands.size()) { 3804 const std::string &OpName = 3805 llvm::find_if( 3806 InstResults, 3807 [](const std::pair<std::string, TreePatternNodePtr> &P) { 3808 return P.second; 3809 }) 3810 ->first; 3811 3812 I.error("'" + OpName + "' set but does not appear in operand list!"); 3813 } 3814 3815 const std::string &OpName = CGI.Operands[i].Name; 3816 3817 // Check that it exists in InstResults. 3818 auto InstResultIter = InstResults.find(OpName); 3819 if (InstResultIter == InstResults.end() || !InstResultIter->second) 3820 I.error("Operand $" + OpName + " does not exist in operand list!"); 3821 3822 TreePatternNodePtr RNode = InstResultIter->second; 3823 const Record *R = cast<DefInit>(RNode->getLeafValue())->getDef(); 3824 ResNodes.push_back(std::move(RNode)); 3825 if (!R) 3826 I.error("Operand $" + OpName + 3827 " should be a set destination: all " 3828 "outputs must occur before inputs in operand list!"); 3829 3830 if (!checkOperandClass(CGI.Operands[i], R)) 3831 I.error("Operand $" + OpName + " class mismatch!"); 3832 3833 // Remember the return type. 3834 Results.push_back(CGI.Operands[i].Rec); 3835 3836 // Remember the result index. 3837 ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter)); 3838 3839 // Okay, this one checks out. 3840 InstResultIter->second = nullptr; 3841 } 3842 3843 // Loop over the inputs next. 3844 std::vector<TreePatternNodePtr> ResultNodeOperands; 3845 std::vector<const Record *> Operands; 3846 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { 3847 CGIOperandList::OperandInfo &Op = CGI.Operands[i]; 3848 const std::string &OpName = Op.Name; 3849 if (OpName.empty()) { 3850 I.error("Operand #" + Twine(i) + " in operands list has no name!"); 3851 continue; 3852 } 3853 3854 auto InIter = InstInputs.find(OpName); 3855 if (InIter == InstInputs.end()) { 3856 // If this is an operand with a DefaultOps set filled in, we can ignore 3857 // this. When we codegen it, we will do so as always executed. 3858 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) { 3859 // Does it have a non-empty DefaultOps field? If so, ignore this 3860 // operand. 3861 if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) 3862 continue; 3863 } 3864 I.error("Operand $" + OpName + 3865 " does not appear in the instruction pattern"); 3866 continue; 3867 } 3868 TreePatternNodePtr InVal = InIter->second; 3869 InstInputs.erase(InIter); // It occurred, remove from map. 3870 3871 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) { 3872 const Record *InRec = cast<DefInit>(InVal->getLeafValue())->getDef(); 3873 if (!checkOperandClass(Op, InRec)) { 3874 I.error("Operand $" + OpName + 3875 "'s register class disagrees" 3876 " between the operand and pattern"); 3877 continue; 3878 } 3879 } 3880 Operands.push_back(Op.Rec); 3881 3882 // Construct the result for the dest-pattern operand list. 3883 TreePatternNodePtr OpNode = InVal->clone(); 3884 3885 // No predicate is useful on the result. 3886 OpNode->clearPredicateCalls(); 3887 3888 // Promote the xform function to be an explicit node if set. 3889 if (const Record *Xform = OpNode->getTransformFn()) { 3890 OpNode->setTransformFn(nullptr); 3891 std::vector<TreePatternNodePtr> Children; 3892 Children.push_back(OpNode); 3893 OpNode = makeIntrusiveRefCnt<TreePatternNode>(Xform, std::move(Children), 3894 OpNode->getNumTypes()); 3895 } 3896 3897 ResultNodeOperands.push_back(std::move(OpNode)); 3898 } 3899 3900 if (!InstInputs.empty()) 3901 I.error("Input operand $" + InstInputs.begin()->first + 3902 " occurs in pattern but not in operands list!"); 3903 3904 TreePatternNodePtr ResultPattern = makeIntrusiveRefCnt<TreePatternNode>( 3905 I.getRecord(), std::move(ResultNodeOperands), 3906 GetNumNodeResults(I.getRecord(), *this)); 3907 // Copy fully inferred output node types to instruction result pattern. 3908 for (unsigned i = 0; i != NumResults; ++i) { 3909 assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled"); 3910 ResultPattern->setType(i, ResNodes[i]->getExtType(0)); 3911 ResultPattern->setResultIndex(i, ResultIndices[i]); 3912 } 3913 3914 // FIXME: Assume only the first tree is the pattern. The others are clobber 3915 // nodes. 3916 TreePatternNodePtr Pattern = I.getTree(0); 3917 TreePatternNodePtr SrcPattern; 3918 if (Pattern->getOperator()->getName() == "set") { 3919 SrcPattern = Pattern->getChild(Pattern->getNumChildren() - 1).clone(); 3920 } else { 3921 // Not a set (store or something?) 3922 SrcPattern = Pattern; 3923 } 3924 3925 // Create and insert the instruction. 3926 // FIXME: InstImpResults should not be part of DAGInstruction. 3927 DAGInsts.try_emplace(I.getRecord(), std::move(Results), std::move(Operands), 3928 std::move(InstImpResults), SrcPattern, ResultPattern); 3929 3930 LLVM_DEBUG(I.dump()); 3931 } 3932 3933 /// ParseInstructions - Parse all of the instructions, inlining and resolving 3934 /// any fragments involved. This populates the Instructions list with fully 3935 /// resolved instructions. 3936 void CodeGenDAGPatterns::ParseInstructions() { 3937 for (const Record *Instr : Records.getAllDerivedDefinitions("Instruction")) { 3938 const ListInit *LI = nullptr; 3939 3940 if (isa<ListInit>(Instr->getValueInit("Pattern"))) 3941 LI = Instr->getValueAsListInit("Pattern"); 3942 3943 // If there is no pattern, only collect minimal information about the 3944 // instruction for its operand list. We have to assume that there is one 3945 // result, as we have no detailed info. A pattern which references the 3946 // null_frag operator is as-if no pattern were specified. Normally this 3947 // is from a multiclass expansion w/ a SDPatternOperator passed in as 3948 // null_frag. 3949 if (!LI || LI->empty() || hasNullFragReference(LI)) { 3950 std::vector<const Record *> Results; 3951 std::vector<const Record *> Operands; 3952 3953 CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3954 3955 if (InstInfo.Operands.size() != 0) { 3956 for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j) 3957 Results.push_back(InstInfo.Operands[j].Rec); 3958 3959 // The rest are inputs. 3960 for (unsigned j = InstInfo.Operands.NumDefs, 3961 e = InstInfo.Operands.size(); 3962 j < e; ++j) 3963 Operands.push_back(InstInfo.Operands[j].Rec); 3964 } 3965 3966 // Create and insert the instruction. 3967 Instructions.try_emplace(Instr, std::move(Results), std::move(Operands), 3968 std::vector<const Record *>()); 3969 continue; // no pattern. 3970 } 3971 3972 CodeGenInstruction &CGI = Target.getInstruction(Instr); 3973 parseInstructionPattern(CGI, LI, Instructions); 3974 } 3975 3976 // If we can, convert the instructions to be patterns that are matched! 3977 for (const auto &[Instr, TheInst] : Instructions) { 3978 TreePatternNodePtr SrcPattern = TheInst.getSrcPattern(); 3979 TreePatternNodePtr ResultPattern = TheInst.getResultPattern(); 3980 3981 if (SrcPattern && ResultPattern) { 3982 TreePattern Pattern(Instr, SrcPattern, true, *this); 3983 TreePattern Result(Instr, ResultPattern, false, *this); 3984 ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults()); 3985 } 3986 } 3987 } 3988 3989 typedef std::pair<TreePatternNode *, unsigned> NameRecord; 3990 3991 static void FindNames(TreePatternNode &P, 3992 std::map<std::string, NameRecord> &Names, 3993 TreePattern *PatternTop) { 3994 if (!P.getName().empty()) { 3995 NameRecord &Rec = Names[P.getName()]; 3996 // If this is the first instance of the name, remember the node. 3997 if (Rec.second++ == 0) 3998 Rec.first = &P; 3999 else if (Rec.first->getExtTypes() != P.getExtTypes()) 4000 PatternTop->error("repetition of value: $" + P.getName() + 4001 " where different uses have different types!"); 4002 } 4003 4004 if (!P.isLeaf()) { 4005 for (TreePatternNode &Child : P.children()) 4006 FindNames(Child, Names, PatternTop); 4007 } 4008 } 4009 4010 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern, 4011 PatternToMatch &&PTM) { 4012 // Do some sanity checking on the pattern we're about to match. 4013 std::string Reason; 4014 if (!PTM.getSrcPattern().canPatternMatch(Reason, *this)) { 4015 PrintWarning(Pattern->getRecord()->getLoc(), 4016 Twine("Pattern can never match: ") + Reason); 4017 return; 4018 } 4019 4020 // If the source pattern's root is a complex pattern, that complex pattern 4021 // must specify the nodes it can potentially match. 4022 if (const ComplexPattern *CP = 4023 PTM.getSrcPattern().getComplexPatternInfo(*this)) 4024 if (CP->getRootNodes().empty()) 4025 Pattern->error("ComplexPattern at root must specify list of opcodes it" 4026 " could match"); 4027 4028 // Find all of the named values in the input and output, ensure they have the 4029 // same type. 4030 std::map<std::string, NameRecord> SrcNames, DstNames; 4031 FindNames(PTM.getSrcPattern(), SrcNames, Pattern); 4032 FindNames(PTM.getDstPattern(), DstNames, Pattern); 4033 4034 // Scan all of the named values in the destination pattern, rejecting them if 4035 // they don't exist in the input pattern. 4036 for (const auto &Entry : DstNames) { 4037 if (SrcNames[Entry.first].first == nullptr) 4038 Pattern->error("Pattern has input without matching name in output: $" + 4039 Entry.first); 4040 } 4041 4042 // Scan all of the named values in the source pattern, rejecting them if the 4043 // name isn't used in the dest, and isn't used to tie two values together. 4044 for (const auto &Entry : SrcNames) 4045 if (DstNames[Entry.first].first == nullptr && 4046 SrcNames[Entry.first].second == 1) 4047 Pattern->error("Pattern has dead named input: $" + Entry.first); 4048 4049 PatternsToMatch.push_back(std::move(PTM)); 4050 } 4051 4052 void CodeGenDAGPatterns::InferInstructionFlags() { 4053 ArrayRef<const CodeGenInstruction *> Instructions = 4054 Target.getInstructionsByEnumValue(); 4055 4056 unsigned Errors = 0; 4057 4058 // Try to infer flags from all patterns in PatternToMatch. These include 4059 // both the primary instruction patterns (which always come first) and 4060 // patterns defined outside the instruction. 4061 for (const PatternToMatch &PTM : ptms()) { 4062 // We can only infer from single-instruction patterns, otherwise we won't 4063 // know which instruction should get the flags. 4064 SmallVector<const Record *, 8> PatInstrs; 4065 getInstructionsInTree(PTM.getDstPattern(), PatInstrs); 4066 if (PatInstrs.size() != 1) 4067 continue; 4068 4069 // Get the single instruction. 4070 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front()); 4071 4072 // Only infer properties from the first pattern. We'll verify the others. 4073 if (InstInfo.InferredFrom) 4074 continue; 4075 4076 InstAnalyzer PatInfo(*this); 4077 PatInfo.Analyze(PTM); 4078 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord()); 4079 } 4080 4081 if (Errors) 4082 PrintFatalError("pattern conflicts"); 4083 4084 // If requested by the target, guess any undefined properties. 4085 if (Target.guessInstructionProperties()) { 4086 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 4087 CodeGenInstruction *InstInfo = 4088 const_cast<CodeGenInstruction *>(Instructions[i]); 4089 if (InstInfo->InferredFrom) 4090 continue; 4091 // The mayLoad and mayStore flags default to false. 4092 // Conservatively assume hasSideEffects if it wasn't explicit. 4093 if (InstInfo->hasSideEffects_Unset) 4094 InstInfo->hasSideEffects = true; 4095 } 4096 return; 4097 } 4098 4099 // Complain about any flags that are still undefined. 4100 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 4101 CodeGenInstruction *InstInfo = 4102 const_cast<CodeGenInstruction *>(Instructions[i]); 4103 if (InstInfo->InferredFrom) 4104 continue; 4105 if (InstInfo->hasSideEffects_Unset) 4106 PrintError(InstInfo->TheDef->getLoc(), 4107 "Can't infer hasSideEffects from patterns"); 4108 if (InstInfo->mayStore_Unset) 4109 PrintError(InstInfo->TheDef->getLoc(), 4110 "Can't infer mayStore from patterns"); 4111 if (InstInfo->mayLoad_Unset) 4112 PrintError(InstInfo->TheDef->getLoc(), 4113 "Can't infer mayLoad from patterns"); 4114 } 4115 } 4116 4117 /// Verify instruction flags against pattern node properties. 4118 void CodeGenDAGPatterns::VerifyInstructionFlags() { 4119 unsigned Errors = 0; 4120 for (const PatternToMatch &PTM : ptms()) { 4121 SmallVector<const Record *, 8> Instrs; 4122 getInstructionsInTree(PTM.getDstPattern(), Instrs); 4123 if (Instrs.empty()) 4124 continue; 4125 4126 // Count the number of instructions with each flag set. 4127 unsigned NumSideEffects = 0; 4128 unsigned NumStores = 0; 4129 unsigned NumLoads = 0; 4130 for (const Record *Instr : Instrs) { 4131 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 4132 NumSideEffects += InstInfo.hasSideEffects; 4133 NumStores += InstInfo.mayStore; 4134 NumLoads += InstInfo.mayLoad; 4135 } 4136 4137 // Analyze the source pattern. 4138 InstAnalyzer PatInfo(*this); 4139 PatInfo.Analyze(PTM); 4140 4141 // Collect error messages. 4142 SmallVector<std::string, 4> Msgs; 4143 4144 // Check for missing flags in the output. 4145 // Permit extra flags for now at least. 4146 if (PatInfo.hasSideEffects && !NumSideEffects) 4147 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set"); 4148 4149 // Don't verify store flags on instructions with side effects. At least for 4150 // intrinsics, side effects implies mayStore. 4151 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores) 4152 Msgs.push_back("pattern may store, but mayStore isn't set"); 4153 4154 // Similarly, mayStore implies mayLoad on intrinsics. 4155 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads) 4156 Msgs.push_back("pattern may load, but mayLoad isn't set"); 4157 4158 // Print error messages. 4159 if (Msgs.empty()) 4160 continue; 4161 ++Errors; 4162 4163 for (const std::string &Msg : Msgs) 4164 PrintError( 4165 PTM.getSrcRecord()->getLoc(), 4166 Twine(Msg) + " on the " + 4167 (Instrs.size() == 1 ? "instruction" : "output instructions")); 4168 // Provide the location of the relevant instruction definitions. 4169 for (const Record *Instr : Instrs) { 4170 if (Instr != PTM.getSrcRecord()) 4171 PrintError(Instr->getLoc(), "defined here"); 4172 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 4173 if (InstInfo.InferredFrom && InstInfo.InferredFrom != InstInfo.TheDef && 4174 InstInfo.InferredFrom != PTM.getSrcRecord()) 4175 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern"); 4176 } 4177 } 4178 if (Errors) 4179 PrintFatalError("Errors in DAG patterns"); 4180 } 4181 4182 /// Given a pattern result with an unresolved type, see if we can find one 4183 /// instruction with an unresolved result type. Force this result type to an 4184 /// arbitrary element if it's possible types to converge results. 4185 static bool ForceArbitraryInstResultType(TreePatternNode &N, TreePattern &TP) { 4186 if (N.isLeaf()) 4187 return false; 4188 4189 // Analyze children. 4190 for (TreePatternNode &Child : N.children()) 4191 if (ForceArbitraryInstResultType(Child, TP)) 4192 return true; 4193 4194 if (!N.getOperator()->isSubClassOf("Instruction")) 4195 return false; 4196 4197 // If this type is already concrete or completely unknown we can't do 4198 // anything. 4199 TypeInfer &TI = TP.getInfer(); 4200 for (unsigned i = 0, e = N.getNumTypes(); i != e; ++i) { 4201 if (N.getExtType(i).empty() || TI.isConcrete(N.getExtType(i), false)) 4202 continue; 4203 4204 // Otherwise, force its type to an arbitrary choice. 4205 if (TI.forceArbitrary(N.getExtType(i))) 4206 return true; 4207 } 4208 4209 return false; 4210 } 4211 4212 // Promote xform function to be an explicit node wherever set. 4213 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) { 4214 if (const Record *Xform = N->getTransformFn()) { 4215 N->setTransformFn(nullptr); 4216 std::vector<TreePatternNodePtr> Children; 4217 Children.push_back(PromoteXForms(N)); 4218 return makeIntrusiveRefCnt<TreePatternNode>(Xform, std::move(Children), 4219 N->getNumTypes()); 4220 } 4221 4222 if (!N->isLeaf()) 4223 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 4224 TreePatternNodePtr Child = N->getChildShared(i); 4225 N->setChild(i, PromoteXForms(Child)); 4226 } 4227 return N; 4228 } 4229 4230 void CodeGenDAGPatterns::ParseOnePattern( 4231 const Record *TheDef, TreePattern &Pattern, TreePattern &Result, 4232 ArrayRef<const Record *> InstImpResults, bool ShouldIgnore) { 4233 // Inline pattern fragments and expand multiple alternatives. 4234 Pattern.InlinePatternFragments(); 4235 Result.InlinePatternFragments(); 4236 4237 if (Result.getNumTrees() != 1) { 4238 Result.error("Cannot use multi-alternative fragments in result pattern!"); 4239 return; 4240 } 4241 4242 // Infer types. 4243 bool IterateInference; 4244 bool InferredAllPatternTypes, InferredAllResultTypes; 4245 do { 4246 // Infer as many types as possible. If we cannot infer all of them, we 4247 // can never do anything with this pattern: report it to the user. 4248 InferredAllPatternTypes = 4249 Pattern.InferAllTypes(&Pattern.getNamedNodesMap()); 4250 4251 // Infer as many types as possible. If we cannot infer all of them, we 4252 // can never do anything with this pattern: report it to the user. 4253 InferredAllResultTypes = Result.InferAllTypes(&Pattern.getNamedNodesMap()); 4254 4255 IterateInference = false; 4256 4257 // Apply the type of the result to the source pattern. This helps us 4258 // resolve cases where the input type is known to be a pointer type (which 4259 // is considered resolved), but the result knows it needs to be 32- or 4260 // 64-bits. Infer the other way for good measure. 4261 for (const auto &T : Pattern.getTrees()) 4262 for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(), 4263 T->getNumTypes()); 4264 i != e; ++i) { 4265 IterateInference |= 4266 T->UpdateNodeType(i, Result.getOnlyTree()->getExtType(i), Result); 4267 IterateInference |= 4268 Result.getOnlyTree()->UpdateNodeType(i, T->getExtType(i), Result); 4269 } 4270 4271 // If our iteration has converged and the input pattern's types are fully 4272 // resolved but the result pattern is not fully resolved, we may have a 4273 // situation where we have two instructions in the result pattern and 4274 // the instructions require a common register class, but don't care about 4275 // what actual MVT is used. This is actually a bug in our modelling: 4276 // output patterns should have register classes, not MVTs. 4277 // 4278 // In any case, to handle this, we just go through and disambiguate some 4279 // arbitrary types to the result pattern's nodes. 4280 if (!IterateInference && InferredAllPatternTypes && !InferredAllResultTypes) 4281 IterateInference = 4282 ForceArbitraryInstResultType(*Result.getTree(0), Result); 4283 } while (IterateInference); 4284 4285 // Verify that we inferred enough types that we can do something with the 4286 // pattern and result. If these fire the user has to add type casts. 4287 if (!InferredAllPatternTypes) 4288 Pattern.error("Could not infer all types in pattern!"); 4289 if (!InferredAllResultTypes) { 4290 Pattern.dump(); 4291 Result.error("Could not infer all types in pattern result!"); 4292 } 4293 4294 // Promote xform function to be an explicit node wherever set. 4295 TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree()); 4296 4297 TreePattern Temp(Result.getRecord(), DstShared, false, *this); 4298 Temp.InferAllTypes(); 4299 4300 const ListInit *Preds = TheDef->getValueAsListInit("Predicates"); 4301 int Complexity = TheDef->getValueAsInt("AddedComplexity"); 4302 4303 if (PatternRewriter) 4304 PatternRewriter(&Pattern); 4305 4306 // A pattern may end up with an "impossible" type, i.e. a situation 4307 // where all types have been eliminated for some node in this pattern. 4308 // This could occur for intrinsics that only make sense for a specific 4309 // value type, and use a specific register class. If, for some mode, 4310 // that register class does not accept that type, the type inference 4311 // will lead to a contradiction, which is not an error however, but 4312 // a sign that this pattern will simply never match. 4313 if (Temp.getOnlyTree()->hasPossibleType()) { 4314 for (const auto &T : Pattern.getTrees()) { 4315 if (T->hasPossibleType()) 4316 AddPatternToMatch(&Pattern, 4317 PatternToMatch(TheDef, Preds, T, Temp.getOnlyTree(), 4318 InstImpResults, Complexity, 4319 TheDef->getID(), ShouldIgnore)); 4320 } 4321 } else { 4322 // Show a message about a dropped pattern with some info to make it 4323 // easier to identify it in the .td files. 4324 LLVM_DEBUG({ 4325 dbgs() << "Dropping: "; 4326 Pattern.dump(); 4327 Temp.getOnlyTree()->dump(); 4328 dbgs() << "\n"; 4329 }); 4330 } 4331 } 4332 4333 void CodeGenDAGPatterns::ParsePatterns() { 4334 for (const Record *CurPattern : Records.getAllDerivedDefinitions("Pattern")) { 4335 const DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); 4336 4337 // If the pattern references the null_frag, there's nothing to do. 4338 if (hasNullFragReference(Tree)) 4339 continue; 4340 4341 TreePattern Pattern(CurPattern, Tree, true, *this); 4342 4343 const ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); 4344 if (LI->empty()) 4345 continue; // no pattern. 4346 4347 // Parse the instruction. 4348 TreePattern Result(CurPattern, LI, false, *this); 4349 4350 if (Result.getNumTrees() != 1) 4351 Result.error("Cannot handle instructions producing instructions " 4352 "with temporaries yet!"); 4353 4354 // Validate that the input pattern is correct. 4355 std::map<std::string, TreePatternNodePtr> InstInputs; 4356 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 4357 InstResults; 4358 std::vector<const Record *> InstImpResults; 4359 for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j) 4360 FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs, 4361 InstResults, InstImpResults); 4362 4363 ParseOnePattern(CurPattern, Pattern, Result, InstImpResults, 4364 CurPattern->getValueAsBit("GISelShouldIgnore")); 4365 } 4366 } 4367 4368 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode &N) { 4369 for (const TypeSetByHwMode &VTS : N.getExtTypes()) 4370 for (const auto &I : VTS) 4371 Modes.insert(I.first); 4372 4373 for (const TreePatternNode &Child : N.children()) 4374 collectModes(Modes, Child); 4375 } 4376 4377 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() { 4378 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 4379 if (CGH.getNumModeIds() == 1) 4380 return; 4381 4382 std::vector<PatternToMatch> Copy; 4383 PatternsToMatch.swap(Copy); 4384 4385 auto AppendPattern = [this](PatternToMatch &P, unsigned Mode, 4386 StringRef Check) { 4387 TreePatternNodePtr NewSrc = P.getSrcPattern().clone(); 4388 TreePatternNodePtr NewDst = P.getDstPattern().clone(); 4389 if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) { 4390 return; 4391 } 4392 4393 PatternsToMatch.emplace_back(P.getSrcRecord(), P.getPredicates(), 4394 std::move(NewSrc), std::move(NewDst), 4395 P.getDstRegs(), P.getAddedComplexity(), 4396 getNewUID(), P.getGISelShouldIgnore(), Check); 4397 }; 4398 4399 for (PatternToMatch &P : Copy) { 4400 const TreePatternNode *SrcP = nullptr, *DstP = nullptr; 4401 if (P.getSrcPattern().hasProperTypeByHwMode()) 4402 SrcP = &P.getSrcPattern(); 4403 if (P.getDstPattern().hasProperTypeByHwMode()) 4404 DstP = &P.getDstPattern(); 4405 if (!SrcP && !DstP) { 4406 PatternsToMatch.push_back(P); 4407 continue; 4408 } 4409 4410 std::set<unsigned> Modes; 4411 if (SrcP) 4412 collectModes(Modes, *SrcP); 4413 if (DstP) 4414 collectModes(Modes, *DstP); 4415 4416 // The predicate for the default mode needs to be constructed for each 4417 // pattern separately. 4418 // Since not all modes must be present in each pattern, if a mode m is 4419 // absent, then there is no point in constructing a check for m. If such 4420 // a check was created, it would be equivalent to checking the default 4421 // mode, except not all modes' predicates would be a part of the checking 4422 // code. The subsequently generated check for the default mode would then 4423 // have the exact same patterns, but a different predicate code. To avoid 4424 // duplicated patterns with different predicate checks, construct the 4425 // default check as a negation of all predicates that are actually present 4426 // in the source/destination patterns. 4427 SmallString<128> DefaultCheck; 4428 4429 for (unsigned M : Modes) { 4430 if (M == DefaultMode) 4431 continue; 4432 4433 // Fill the map entry for this mode. 4434 const HwMode &HM = CGH.getMode(M); 4435 AppendPattern(P, M, HM.Predicates); 4436 4437 // Add negations of the HM's predicates to the default predicate. 4438 if (!DefaultCheck.empty()) 4439 DefaultCheck += " && "; 4440 DefaultCheck += "!("; 4441 DefaultCheck += HM.Predicates; 4442 DefaultCheck += ")"; 4443 } 4444 4445 bool HasDefault = Modes.count(DefaultMode); 4446 if (HasDefault) 4447 AppendPattern(P, DefaultMode, DefaultCheck); 4448 } 4449 } 4450 4451 /// Dependent variable map for CodeGenDAGPattern variant generation 4452 typedef StringMap<int> DepVarMap; 4453 4454 static void FindDepVarsOf(TreePatternNode &N, DepVarMap &DepMap) { 4455 if (N.isLeaf()) { 4456 if (N.hasName() && isa<DefInit>(N.getLeafValue())) 4457 DepMap[N.getName()]++; 4458 } else { 4459 for (TreePatternNode &Child : N.children()) 4460 FindDepVarsOf(Child, DepMap); 4461 } 4462 } 4463 4464 /// Find dependent variables within child patterns 4465 static void FindDepVars(TreePatternNode &N, MultipleUseVarSet &DepVars) { 4466 DepVarMap depcounts; 4467 FindDepVarsOf(N, depcounts); 4468 for (const auto &Pair : depcounts) { 4469 if (Pair.getValue() > 1) 4470 DepVars.insert(Pair.getKey()); 4471 } 4472 } 4473 4474 #ifndef NDEBUG 4475 /// Dump the dependent variable set: 4476 static void DumpDepVars(MultipleUseVarSet &DepVars) { 4477 if (DepVars.empty()) { 4478 LLVM_DEBUG(errs() << "<empty set>"); 4479 } else { 4480 LLVM_DEBUG(errs() << "[ "); 4481 for (const auto &DepVar : DepVars) { 4482 LLVM_DEBUG(errs() << DepVar.getKey() << " "); 4483 } 4484 LLVM_DEBUG(errs() << "]"); 4485 } 4486 } 4487 #endif 4488 4489 /// CombineChildVariants - Given a bunch of permutations of each child of the 4490 /// 'operator' node, put them together in all possible ways. 4491 static void CombineChildVariants( 4492 TreePatternNodePtr Orig, 4493 const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants, 4494 std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP, 4495 const MultipleUseVarSet &DepVars) { 4496 // Make sure that each operand has at least one variant to choose from. 4497 for (const auto &Variants : ChildVariants) 4498 if (Variants.empty()) 4499 return; 4500 4501 // The end result is an all-pairs construction of the resultant pattern. 4502 std::vector<unsigned> Idxs(ChildVariants.size()); 4503 bool NotDone; 4504 do { 4505 #ifndef NDEBUG 4506 LLVM_DEBUG(if (!Idxs.empty()) { 4507 errs() << Orig->getOperator()->getName() << ": Idxs = [ "; 4508 for (unsigned Idx : Idxs) { 4509 errs() << Idx << " "; 4510 } 4511 errs() << "]\n"; 4512 }); 4513 #endif 4514 // Create the variant and add it to the output list. 4515 std::vector<TreePatternNodePtr> NewChildren; 4516 NewChildren.reserve(ChildVariants.size()); 4517 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 4518 NewChildren.push_back(ChildVariants[i][Idxs[i]]); 4519 TreePatternNodePtr R = makeIntrusiveRefCnt<TreePatternNode>( 4520 Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes()); 4521 4522 // Copy over properties. 4523 R->setName(Orig->getName()); 4524 R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg()); 4525 R->setPredicateCalls(Orig->getPredicateCalls()); 4526 R->setGISelFlagsRecord(Orig->getGISelFlagsRecord()); 4527 R->setTransformFn(Orig->getTransformFn()); 4528 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) 4529 R->setType(i, Orig->getExtType(i)); 4530 4531 // If this pattern cannot match, do not include it as a variant. 4532 std::string ErrString; 4533 // Scan to see if this pattern has already been emitted. We can get 4534 // duplication due to things like commuting: 4535 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) 4536 // which are the same pattern. Ignore the dups. 4537 if (R->canPatternMatch(ErrString, CDP) && 4538 none_of(OutVariants, [&](TreePatternNodePtr Variant) { 4539 return R->isIsomorphicTo(*Variant, DepVars); 4540 })) 4541 OutVariants.push_back(R); 4542 4543 // Increment indices to the next permutation by incrementing the 4544 // indices from last index backward, e.g., generate the sequence 4545 // [0, 0], [0, 1], [1, 0], [1, 1]. 4546 int IdxsIdx; 4547 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 4548 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) 4549 Idxs[IdxsIdx] = 0; 4550 else 4551 break; 4552 } 4553 NotDone = (IdxsIdx >= 0); 4554 } while (NotDone); 4555 } 4556 4557 /// CombineChildVariants - A helper function for binary operators. 4558 /// 4559 static void CombineChildVariants(TreePatternNodePtr Orig, 4560 const std::vector<TreePatternNodePtr> &LHS, 4561 const std::vector<TreePatternNodePtr> &RHS, 4562 std::vector<TreePatternNodePtr> &OutVariants, 4563 CodeGenDAGPatterns &CDP, 4564 const MultipleUseVarSet &DepVars) { 4565 std::vector<std::vector<TreePatternNodePtr>> ChildVariants; 4566 ChildVariants.push_back(LHS); 4567 ChildVariants.push_back(RHS); 4568 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); 4569 } 4570 4571 static void 4572 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N, 4573 std::vector<TreePatternNodePtr> &Children) { 4574 assert(N->getNumChildren() == 2 && 4575 "Associative but doesn't have 2 children!"); 4576 const Record *Operator = N->getOperator(); 4577 4578 // Only permit raw nodes. 4579 if (!N->getName().empty() || !N->getPredicateCalls().empty() || 4580 N->getTransformFn()) { 4581 Children.push_back(N); 4582 return; 4583 } 4584 4585 if (N->getChild(0).isLeaf() || N->getChild(0).getOperator() != Operator) 4586 Children.push_back(N->getChildShared(0)); 4587 else 4588 GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children); 4589 4590 if (N->getChild(1).isLeaf() || N->getChild(1).getOperator() != Operator) 4591 Children.push_back(N->getChildShared(1)); 4592 else 4593 GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children); 4594 } 4595 4596 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of 4597 /// the (potentially recursive) pattern by using algebraic laws. 4598 /// 4599 static void GenerateVariantsOf(TreePatternNodePtr N, 4600 std::vector<TreePatternNodePtr> &OutVariants, 4601 CodeGenDAGPatterns &CDP, 4602 const MultipleUseVarSet &DepVars) { 4603 // We cannot permute leaves or ComplexPattern uses. 4604 if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) { 4605 OutVariants.push_back(N); 4606 return; 4607 } 4608 4609 // Look up interesting info about the node. 4610 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); 4611 4612 // If this node is associative, re-associate. 4613 if (NodeInfo.hasProperty(SDNPAssociative)) { 4614 // Re-associate by pulling together all of the linked operators 4615 std::vector<TreePatternNodePtr> MaximalChildren; 4616 GatherChildrenOfAssociativeOpcode(N, MaximalChildren); 4617 4618 // Only handle child sizes of 3. Otherwise we'll end up trying too many 4619 // permutations. 4620 if (MaximalChildren.size() == 3) { 4621 // Find the variants of all of our maximal children. 4622 std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants; 4623 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); 4624 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); 4625 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); 4626 4627 // There are only two ways we can permute the tree: 4628 // (A op B) op C and A op (B op C) 4629 // Within these forms, we can also permute A/B/C. 4630 4631 // Generate legal pair permutations of A/B/C. 4632 std::vector<TreePatternNodePtr> ABVariants; 4633 std::vector<TreePatternNodePtr> BAVariants; 4634 std::vector<TreePatternNodePtr> ACVariants; 4635 std::vector<TreePatternNodePtr> CAVariants; 4636 std::vector<TreePatternNodePtr> BCVariants; 4637 std::vector<TreePatternNodePtr> CBVariants; 4638 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); 4639 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); 4640 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); 4641 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); 4642 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); 4643 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); 4644 4645 // Combine those into the result: (x op x) op x 4646 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); 4647 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); 4648 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); 4649 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); 4650 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); 4651 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); 4652 4653 // Combine those into the result: x op (x op x) 4654 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); 4655 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); 4656 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); 4657 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); 4658 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); 4659 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); 4660 return; 4661 } 4662 } 4663 4664 // Compute permutations of all children. 4665 std::vector<std::vector<TreePatternNodePtr>> ChildVariants( 4666 N->getNumChildren()); 4667 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4668 GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars); 4669 4670 // Build all permutations based on how the children were formed. 4671 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 4672 4673 // If this node is commutative, consider the commuted order. 4674 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); 4675 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 4676 unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 4677 assert(N->getNumChildren() >= (2 + Skip) && 4678 "Commutative but doesn't have 2 children!"); 4679 // Don't allow commuting children which are actually register references. 4680 bool NoRegisters = true; 4681 unsigned i = 0 + Skip; 4682 unsigned e = 2 + Skip; 4683 for (; i != e; ++i) { 4684 TreePatternNode &Child = N->getChild(i); 4685 if (Child.isLeaf()) 4686 if (const DefInit *DI = dyn_cast<DefInit>(Child.getLeafValue())) { 4687 const Record *RR = DI->getDef(); 4688 if (RR->isSubClassOf("Register")) 4689 NoRegisters = false; 4690 } 4691 } 4692 // Consider the commuted order. 4693 if (NoRegisters) { 4694 // Swap the first two operands after the intrinsic id, if present. 4695 unsigned i = isCommIntrinsic ? 1 : 0; 4696 std::swap(ChildVariants[i], ChildVariants[i + 1]); 4697 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 4698 } 4699 } 4700 } 4701 4702 // GenerateVariants - Generate variants. For example, commutative patterns can 4703 // match multiple ways. Add them to PatternsToMatch as well. 4704 void CodeGenDAGPatterns::GenerateVariants() { 4705 LLVM_DEBUG(errs() << "Generating instruction variants.\n"); 4706 4707 // Loop over all of the patterns we've collected, checking to see if we can 4708 // generate variants of the instruction, through the exploitation of 4709 // identities. This permits the target to provide aggressive matching without 4710 // the .td file having to contain tons of variants of instructions. 4711 // 4712 // Note that this loop adds new patterns to the PatternsToMatch list, but we 4713 // intentionally do not reconsider these. Any variants of added patterns have 4714 // already been added. 4715 // 4716 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { 4717 MultipleUseVarSet DepVars; 4718 std::vector<TreePatternNodePtr> Variants; 4719 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); 4720 LLVM_DEBUG(errs() << "Dependent/multiply used variables: "); 4721 LLVM_DEBUG(DumpDepVars(DepVars)); 4722 LLVM_DEBUG(errs() << "\n"); 4723 GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants, 4724 *this, DepVars); 4725 4726 assert(PatternsToMatch[i].getHwModeFeatures().empty() && 4727 "HwModes should not have been expanded yet!"); 4728 4729 assert(!Variants.empty() && "Must create at least original variant!"); 4730 if (Variants.size() == 1) // No additional variants for this pattern. 4731 continue; 4732 4733 LLVM_DEBUG(errs() << "FOUND VARIANTS OF: "; 4734 PatternsToMatch[i].getSrcPattern().dump(); errs() << "\n"); 4735 4736 for (unsigned v = 0, e = Variants.size(); v != e; ++v) { 4737 TreePatternNodePtr Variant = Variants[v]; 4738 4739 LLVM_DEBUG(errs() << " VAR#" << v << ": "; Variant->dump(); 4740 errs() << "\n"); 4741 4742 // Scan to see if an instruction or explicit pattern already matches this. 4743 bool AlreadyExists = false; 4744 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { 4745 // Skip if the top level predicates do not match. 4746 if ((i != p) && (PatternsToMatch[i].getPredicates() != 4747 PatternsToMatch[p].getPredicates())) 4748 continue; 4749 // Check to see if this variant already exists. 4750 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), 4751 DepVars)) { 4752 LLVM_DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); 4753 AlreadyExists = true; 4754 break; 4755 } 4756 } 4757 // If we already have it, ignore the variant. 4758 if (AlreadyExists) 4759 continue; 4760 4761 // Otherwise, add it to the list of patterns we have. 4762 PatternsToMatch.emplace_back( 4763 PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(), 4764 Variant, PatternsToMatch[i].getDstPatternShared(), 4765 PatternsToMatch[i].getDstRegs(), 4766 PatternsToMatch[i].getAddedComplexity(), getNewUID(), 4767 PatternsToMatch[i].getGISelShouldIgnore(), 4768 PatternsToMatch[i].getHwModeFeatures()); 4769 } 4770 4771 LLVM_DEBUG(errs() << "\n"); 4772 } 4773 } 4774 4775 unsigned CodeGenDAGPatterns::getNewUID() { 4776 RecordKeeper &MutableRC = const_cast<RecordKeeper &>(Records); 4777 return Record::getNewUID(MutableRC); 4778 } 4779