xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision d72b9fd14168abf06a800ae5b3f3782644142004)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This program is a utility that works like binutils "objdump", that is, it
11 // dumps out a plethora of information about an object file depending on the
12 // flags.
13 //
14 // The flags and output of this program should be near identical to those of
15 // binutils objdump.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm-objdump.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringSet.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/CodeGen/FaultMaps.h"
26 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
27 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCContext.h"
30 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
31 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
32 #include "llvm/MC/MCInst.h"
33 #include "llvm/MC/MCInstPrinter.h"
34 #include "llvm/MC/MCInstrAnalysis.h"
35 #include "llvm/MC/MCInstrInfo.h"
36 #include "llvm/MC/MCObjectFileInfo.h"
37 #include "llvm/MC/MCRegisterInfo.h"
38 #include "llvm/MC/MCSubtargetInfo.h"
39 #include "llvm/Object/Archive.h"
40 #include "llvm/Object/COFF.h"
41 #include "llvm/Object/COFFImportFile.h"
42 #include "llvm/Object/ELFObjectFile.h"
43 #include "llvm/Object/MachO.h"
44 #include "llvm/Object/ObjectFile.h"
45 #include "llvm/Object/Wasm.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/Errc.h"
50 #include "llvm/Support/FileSystem.h"
51 #include "llvm/Support/Format.h"
52 #include "llvm/Support/GraphWriter.h"
53 #include "llvm/Support/Host.h"
54 #include "llvm/Support/InitLLVM.h"
55 #include "llvm/Support/MemoryBuffer.h"
56 #include "llvm/Support/SourceMgr.h"
57 #include "llvm/Support/TargetRegistry.h"
58 #include "llvm/Support/TargetSelect.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <algorithm>
61 #include <cctype>
62 #include <cstring>
63 #include <system_error>
64 #include <unordered_map>
65 #include <utility>
66 
67 using namespace llvm;
68 using namespace object;
69 
70 static cl::list<std::string>
71 InputFilenames(cl::Positional, cl::desc("<input object files>"),cl::ZeroOrMore);
72 
73 cl::opt<bool>
74 llvm::Disassemble("disassemble",
75   cl::desc("Display assembler mnemonics for the machine instructions"));
76 static cl::alias
77 Disassembled("d", cl::desc("Alias for --disassemble"),
78              cl::aliasopt(Disassemble));
79 
80 cl::opt<bool>
81 llvm::DisassembleAll("disassemble-all",
82   cl::desc("Display assembler mnemonics for the machine instructions"));
83 static cl::alias
84 DisassembleAlld("D", cl::desc("Alias for --disassemble-all"),
85              cl::aliasopt(DisassembleAll));
86 
87 static cl::list<std::string>
88 DisassembleFunctions("df",
89                      cl::CommaSeparated,
90                      cl::desc("List of functions to disassemble"));
91 static StringSet<> DisasmFuncsSet;
92 
93 cl::opt<bool>
94 llvm::Relocations("r", cl::desc("Display the relocation entries in the file"));
95 
96 cl::opt<bool>
97 llvm::SectionContents("s", cl::desc("Display the content of each section"));
98 
99 cl::opt<bool>
100 llvm::SymbolTable("t", cl::desc("Display the symbol table"));
101 
102 cl::opt<bool>
103 llvm::ExportsTrie("exports-trie", cl::desc("Display mach-o exported symbols"));
104 
105 cl::opt<bool>
106 llvm::Rebase("rebase", cl::desc("Display mach-o rebasing info"));
107 
108 cl::opt<bool>
109 llvm::Bind("bind", cl::desc("Display mach-o binding info"));
110 
111 cl::opt<bool>
112 llvm::LazyBind("lazy-bind", cl::desc("Display mach-o lazy binding info"));
113 
114 cl::opt<bool>
115 llvm::WeakBind("weak-bind", cl::desc("Display mach-o weak binding info"));
116 
117 cl::opt<bool>
118 llvm::RawClangAST("raw-clang-ast",
119     cl::desc("Dump the raw binary contents of the clang AST section"));
120 
121 static cl::opt<bool>
122 MachOOpt("macho", cl::desc("Use MachO specific object file parser"));
123 static cl::alias
124 MachOm("m", cl::desc("Alias for --macho"), cl::aliasopt(MachOOpt));
125 
126 cl::opt<std::string>
127 llvm::TripleName("triple", cl::desc("Target triple to disassemble for, "
128                                     "see -version for available targets"));
129 
130 cl::opt<std::string>
131 llvm::MCPU("mcpu",
132      cl::desc("Target a specific cpu type (-mcpu=help for details)"),
133      cl::value_desc("cpu-name"),
134      cl::init(""));
135 
136 cl::opt<std::string>
137 llvm::ArchName("arch-name", cl::desc("Target arch to disassemble for, "
138                                 "see -version for available targets"));
139 
140 cl::opt<bool>
141 llvm::SectionHeaders("section-headers", cl::desc("Display summaries of the "
142                                                  "headers for each section."));
143 static cl::alias
144 SectionHeadersShort("headers", cl::desc("Alias for --section-headers"),
145                     cl::aliasopt(SectionHeaders));
146 static cl::alias
147 SectionHeadersShorter("h", cl::desc("Alias for --section-headers"),
148                       cl::aliasopt(SectionHeaders));
149 
150 cl::list<std::string>
151 llvm::FilterSections("section", cl::desc("Operate on the specified sections only. "
152                                          "With -macho dump segment,section"));
153 cl::alias
154 static FilterSectionsj("j", cl::desc("Alias for --section"),
155                  cl::aliasopt(llvm::FilterSections));
156 
157 cl::list<std::string>
158 llvm::MAttrs("mattr",
159   cl::CommaSeparated,
160   cl::desc("Target specific attributes"),
161   cl::value_desc("a1,+a2,-a3,..."));
162 
163 cl::opt<bool>
164 llvm::NoShowRawInsn("no-show-raw-insn", cl::desc("When disassembling "
165                                                  "instructions, do not print "
166                                                  "the instruction bytes."));
167 cl::opt<bool>
168 llvm::NoLeadingAddr("no-leading-addr", cl::desc("Print no leading address"));
169 
170 cl::opt<bool>
171 llvm::UnwindInfo("unwind-info", cl::desc("Display unwind information"));
172 
173 static cl::alias
174 UnwindInfoShort("u", cl::desc("Alias for --unwind-info"),
175                 cl::aliasopt(UnwindInfo));
176 
177 cl::opt<bool>
178 llvm::PrivateHeaders("private-headers",
179                      cl::desc("Display format specific file headers"));
180 
181 cl::opt<bool>
182 llvm::FirstPrivateHeader("private-header",
183                          cl::desc("Display only the first format specific file "
184                                   "header"));
185 
186 static cl::alias
187 PrivateHeadersShort("p", cl::desc("Alias for --private-headers"),
188                     cl::aliasopt(PrivateHeaders));
189 
190 cl::opt<bool>
191     llvm::PrintImmHex("print-imm-hex",
192                       cl::desc("Use hex format for immediate values"));
193 
194 cl::opt<bool> PrintFaultMaps("fault-map-section",
195                              cl::desc("Display contents of faultmap section"));
196 
197 cl::opt<DIDumpType> llvm::DwarfDumpType(
198     "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"),
199     cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame")));
200 
201 cl::opt<bool> PrintSource(
202     "source",
203     cl::desc(
204         "Display source inlined with disassembly. Implies disassemble object"));
205 
206 cl::alias PrintSourceShort("S", cl::desc("Alias for -source"),
207                            cl::aliasopt(PrintSource));
208 
209 cl::opt<bool> PrintLines("line-numbers",
210                          cl::desc("Display source line numbers with "
211                                   "disassembly. Implies disassemble object"));
212 
213 cl::alias PrintLinesShort("l", cl::desc("Alias for -line-numbers"),
214                           cl::aliasopt(PrintLines));
215 
216 cl::opt<unsigned long long>
217     StartAddress("start-address", cl::desc("Disassemble beginning at address"),
218                  cl::value_desc("address"), cl::init(0));
219 cl::opt<unsigned long long>
220     StopAddress("stop-address", cl::desc("Stop disassembly at address"),
221                 cl::value_desc("address"), cl::init(UINT64_MAX));
222 static StringRef ToolName;
223 
224 typedef std::vector<std::tuple<uint64_t, StringRef, uint8_t>> SectionSymbolsTy;
225 
226 namespace {
227 typedef std::function<bool(llvm::object::SectionRef const &)> FilterPredicate;
228 
229 class SectionFilterIterator {
230 public:
231   SectionFilterIterator(FilterPredicate P,
232                         llvm::object::section_iterator const &I,
233                         llvm::object::section_iterator const &E)
234       : Predicate(std::move(P)), Iterator(I), End(E) {
235     ScanPredicate();
236   }
237   const llvm::object::SectionRef &operator*() const { return *Iterator; }
238   SectionFilterIterator &operator++() {
239     ++Iterator;
240     ScanPredicate();
241     return *this;
242   }
243   bool operator!=(SectionFilterIterator const &Other) const {
244     return Iterator != Other.Iterator;
245   }
246 
247 private:
248   void ScanPredicate() {
249     while (Iterator != End && !Predicate(*Iterator)) {
250       ++Iterator;
251     }
252   }
253   FilterPredicate Predicate;
254   llvm::object::section_iterator Iterator;
255   llvm::object::section_iterator End;
256 };
257 
258 class SectionFilter {
259 public:
260   SectionFilter(FilterPredicate P, llvm::object::ObjectFile const &O)
261       : Predicate(std::move(P)), Object(O) {}
262   SectionFilterIterator begin() {
263     return SectionFilterIterator(Predicate, Object.section_begin(),
264                                  Object.section_end());
265   }
266   SectionFilterIterator end() {
267     return SectionFilterIterator(Predicate, Object.section_end(),
268                                  Object.section_end());
269   }
270 
271 private:
272   FilterPredicate Predicate;
273   llvm::object::ObjectFile const &Object;
274 };
275 SectionFilter ToolSectionFilter(llvm::object::ObjectFile const &O) {
276   return SectionFilter(
277       [](llvm::object::SectionRef const &S) {
278         if (FilterSections.empty())
279           return true;
280         llvm::StringRef String;
281         std::error_code error = S.getName(String);
282         if (error)
283           return false;
284         return is_contained(FilterSections, String);
285       },
286       O);
287 }
288 }
289 
290 void llvm::error(std::error_code EC) {
291   if (!EC)
292     return;
293 
294   errs() << ToolName << ": error reading file: " << EC.message() << ".\n";
295   errs().flush();
296   exit(1);
297 }
298 
299 LLVM_ATTRIBUTE_NORETURN void llvm::error(Twine Message) {
300   errs() << ToolName << ": " << Message << ".\n";
301   errs().flush();
302   exit(1);
303 }
304 
305 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
306                                                 Twine Message) {
307   errs() << ToolName << ": '" << File << "': " << Message << ".\n";
308   exit(1);
309 }
310 
311 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
312                                                 std::error_code EC) {
313   assert(EC);
314   errs() << ToolName << ": '" << File << "': " << EC.message() << ".\n";
315   exit(1);
316 }
317 
318 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
319                                                 llvm::Error E) {
320   assert(E);
321   std::string Buf;
322   raw_string_ostream OS(Buf);
323   logAllUnhandledErrors(std::move(E), OS, "");
324   OS.flush();
325   errs() << ToolName << ": '" << File << "': " << Buf;
326   exit(1);
327 }
328 
329 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
330                                                 StringRef FileName,
331                                                 llvm::Error E,
332                                                 StringRef ArchitectureName) {
333   assert(E);
334   errs() << ToolName << ": ";
335   if (ArchiveName != "")
336     errs() << ArchiveName << "(" << FileName << ")";
337   else
338     errs() << "'" << FileName << "'";
339   if (!ArchitectureName.empty())
340     errs() << " (for architecture " << ArchitectureName << ")";
341   std::string Buf;
342   raw_string_ostream OS(Buf);
343   logAllUnhandledErrors(std::move(E), OS, "");
344   OS.flush();
345   errs() << ": " << Buf;
346   exit(1);
347 }
348 
349 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
350                                                 const object::Archive::Child &C,
351                                                 llvm::Error E,
352                                                 StringRef ArchitectureName) {
353   Expected<StringRef> NameOrErr = C.getName();
354   // TODO: if we have a error getting the name then it would be nice to print
355   // the index of which archive member this is and or its offset in the
356   // archive instead of "???" as the name.
357   if (!NameOrErr) {
358     consumeError(NameOrErr.takeError());
359     llvm::report_error(ArchiveName, "???", std::move(E), ArchitectureName);
360   } else
361     llvm::report_error(ArchiveName, NameOrErr.get(), std::move(E),
362                        ArchitectureName);
363 }
364 
365 static const Target *getTarget(const ObjectFile *Obj = nullptr) {
366   // Figure out the target triple.
367   llvm::Triple TheTriple("unknown-unknown-unknown");
368   if (TripleName.empty()) {
369     if (Obj) {
370       TheTriple = Obj->makeTriple();
371     }
372   } else {
373     TheTriple.setTriple(Triple::normalize(TripleName));
374 
375     // Use the triple, but also try to combine with ARM build attributes.
376     if (Obj) {
377       auto Arch = Obj->getArch();
378       if (Arch == Triple::arm || Arch == Triple::armeb) {
379         Obj->setARMSubArch(TheTriple);
380       }
381     }
382   }
383 
384   // Get the target specific parser.
385   std::string Error;
386   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
387                                                          Error);
388   if (!TheTarget) {
389     if (Obj)
390       report_error(Obj->getFileName(), "can't find target: " + Error);
391     else
392       error("can't find target: " + Error);
393   }
394 
395   // Update the triple name and return the found target.
396   TripleName = TheTriple.getTriple();
397   return TheTarget;
398 }
399 
400 bool llvm::RelocAddressLess(RelocationRef a, RelocationRef b) {
401   return a.getOffset() < b.getOffset();
402 }
403 
404 template <class ELFT>
405 static std::error_code getRelocationValueString(const ELFObjectFile<ELFT> *Obj,
406                                                 const RelocationRef &RelRef,
407                                                 SmallVectorImpl<char> &Result) {
408   DataRefImpl Rel = RelRef.getRawDataRefImpl();
409 
410   typedef typename ELFObjectFile<ELFT>::Elf_Sym Elf_Sym;
411   typedef typename ELFObjectFile<ELFT>::Elf_Shdr Elf_Shdr;
412   typedef typename ELFObjectFile<ELFT>::Elf_Rela Elf_Rela;
413 
414   const ELFFile<ELFT> &EF = *Obj->getELFFile();
415 
416   auto SecOrErr = EF.getSection(Rel.d.a);
417   if (!SecOrErr)
418     return errorToErrorCode(SecOrErr.takeError());
419   const Elf_Shdr *Sec = *SecOrErr;
420   auto SymTabOrErr = EF.getSection(Sec->sh_link);
421   if (!SymTabOrErr)
422     return errorToErrorCode(SymTabOrErr.takeError());
423   const Elf_Shdr *SymTab = *SymTabOrErr;
424   assert(SymTab->sh_type == ELF::SHT_SYMTAB ||
425          SymTab->sh_type == ELF::SHT_DYNSYM);
426   auto StrTabSec = EF.getSection(SymTab->sh_link);
427   if (!StrTabSec)
428     return errorToErrorCode(StrTabSec.takeError());
429   auto StrTabOrErr = EF.getStringTable(*StrTabSec);
430   if (!StrTabOrErr)
431     return errorToErrorCode(StrTabOrErr.takeError());
432   StringRef StrTab = *StrTabOrErr;
433   int64_t addend = 0;
434   switch (Sec->sh_type) {
435   default:
436     return object_error::parse_failed;
437   case ELF::SHT_REL: {
438     // TODO: Read implicit addend from section data.
439     break;
440   }
441   case ELF::SHT_RELA: {
442     const Elf_Rela *ERela = Obj->getRela(Rel);
443     addend = ERela->r_addend;
444     break;
445   }
446   }
447   symbol_iterator SI = RelRef.getSymbol();
448   const Elf_Sym *symb = Obj->getSymbol(SI->getRawDataRefImpl());
449   StringRef Target;
450   if (symb->getType() == ELF::STT_SECTION) {
451     Expected<section_iterator> SymSI = SI->getSection();
452     if (!SymSI)
453       return errorToErrorCode(SymSI.takeError());
454     const Elf_Shdr *SymSec = Obj->getSection((*SymSI)->getRawDataRefImpl());
455     auto SecName = EF.getSectionName(SymSec);
456     if (!SecName)
457       return errorToErrorCode(SecName.takeError());
458     Target = *SecName;
459   } else {
460     Expected<StringRef> SymName = symb->getName(StrTab);
461     if (!SymName)
462       return errorToErrorCode(SymName.takeError());
463     Target = *SymName;
464   }
465 
466   // Default scheme is to print Target, as well as "+ <addend>" for nonzero
467   // addend. Should be acceptable for all normal purposes.
468   std::string fmtbuf;
469   raw_string_ostream fmt(fmtbuf);
470   fmt << Target;
471   if (addend != 0)
472     fmt << (addend < 0 ? "" : "+") << addend;
473   fmt.flush();
474   Result.append(fmtbuf.begin(), fmtbuf.end());
475   return std::error_code();
476 }
477 
478 static std::error_code getRelocationValueString(const ELFObjectFileBase *Obj,
479                                                 const RelocationRef &Rel,
480                                                 SmallVectorImpl<char> &Result) {
481   if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj))
482     return getRelocationValueString(ELF32LE, Rel, Result);
483   if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj))
484     return getRelocationValueString(ELF64LE, Rel, Result);
485   if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj))
486     return getRelocationValueString(ELF32BE, Rel, Result);
487   auto *ELF64BE = cast<ELF64BEObjectFile>(Obj);
488   return getRelocationValueString(ELF64BE, Rel, Result);
489 }
490 
491 static std::error_code getRelocationValueString(const COFFObjectFile *Obj,
492                                                 const RelocationRef &Rel,
493                                                 SmallVectorImpl<char> &Result) {
494   symbol_iterator SymI = Rel.getSymbol();
495   Expected<StringRef> SymNameOrErr = SymI->getName();
496   if (!SymNameOrErr)
497     return errorToErrorCode(SymNameOrErr.takeError());
498   StringRef SymName = *SymNameOrErr;
499   Result.append(SymName.begin(), SymName.end());
500   return std::error_code();
501 }
502 
503 static void printRelocationTargetName(const MachOObjectFile *O,
504                                       const MachO::any_relocation_info &RE,
505                                       raw_string_ostream &fmt) {
506   bool IsScattered = O->isRelocationScattered(RE);
507 
508   // Target of a scattered relocation is an address.  In the interest of
509   // generating pretty output, scan through the symbol table looking for a
510   // symbol that aligns with that address.  If we find one, print it.
511   // Otherwise, we just print the hex address of the target.
512   if (IsScattered) {
513     uint32_t Val = O->getPlainRelocationSymbolNum(RE);
514 
515     for (const SymbolRef &Symbol : O->symbols()) {
516       std::error_code ec;
517       Expected<uint64_t> Addr = Symbol.getAddress();
518       if (!Addr)
519         report_error(O->getFileName(), Addr.takeError());
520       if (*Addr != Val)
521         continue;
522       Expected<StringRef> Name = Symbol.getName();
523       if (!Name)
524         report_error(O->getFileName(), Name.takeError());
525       fmt << *Name;
526       return;
527     }
528 
529     // If we couldn't find a symbol that this relocation refers to, try
530     // to find a section beginning instead.
531     for (const SectionRef &Section : ToolSectionFilter(*O)) {
532       std::error_code ec;
533 
534       StringRef Name;
535       uint64_t Addr = Section.getAddress();
536       if (Addr != Val)
537         continue;
538       if ((ec = Section.getName(Name)))
539         report_error(O->getFileName(), ec);
540       fmt << Name;
541       return;
542     }
543 
544     fmt << format("0x%x", Val);
545     return;
546   }
547 
548   StringRef S;
549   bool isExtern = O->getPlainRelocationExternal(RE);
550   uint64_t Val = O->getPlainRelocationSymbolNum(RE);
551 
552   if (O->getAnyRelocationType(RE) == MachO::ARM64_RELOC_ADDEND) {
553     fmt << format("0x%0" PRIx64, Val);
554     return;
555   } else if (isExtern) {
556     symbol_iterator SI = O->symbol_begin();
557     advance(SI, Val);
558     Expected<StringRef> SOrErr = SI->getName();
559     if (!SOrErr)
560       report_error(O->getFileName(), SOrErr.takeError());
561     S = *SOrErr;
562   } else {
563     section_iterator SI = O->section_begin();
564     // Adjust for the fact that sections are 1-indexed.
565     if (Val == 0) {
566       fmt << "0 (?,?)";
567       return;
568     }
569     uint32_t i = Val - 1;
570     while (i != 0 && SI != O->section_end()) {
571       i--;
572       advance(SI, 1);
573     }
574     if (SI == O->section_end())
575       fmt << Val << " (?,?)";
576     else
577       SI->getName(S);
578   }
579 
580   fmt << S;
581 }
582 
583 static std::error_code getRelocationValueString(const WasmObjectFile *Obj,
584                                                 const RelocationRef &RelRef,
585                                                 SmallVectorImpl<char> &Result) {
586   const wasm::WasmRelocation& Rel = Obj->getWasmRelocation(RelRef);
587   symbol_iterator SI = RelRef.getSymbol();
588   std::string fmtbuf;
589   raw_string_ostream fmt(fmtbuf);
590   if (SI == Obj->symbol_end()) {
591     // Not all wasm relocations have symbols associated with them.
592     // In particular R_WEBASSEMBLY_TYPE_INDEX_LEB.
593     fmt << Rel.Index;
594   } else {
595     Expected<StringRef> SymNameOrErr = SI->getName();
596     if (!SymNameOrErr)
597       return errorToErrorCode(SymNameOrErr.takeError());
598     StringRef SymName = *SymNameOrErr;
599     Result.append(SymName.begin(), SymName.end());
600   }
601   fmt << (Rel.Addend < 0 ? "" : "+") << Rel.Addend;
602   fmt.flush();
603   Result.append(fmtbuf.begin(), fmtbuf.end());
604   return std::error_code();
605 }
606 
607 static std::error_code getRelocationValueString(const MachOObjectFile *Obj,
608                                                 const RelocationRef &RelRef,
609                                                 SmallVectorImpl<char> &Result) {
610   DataRefImpl Rel = RelRef.getRawDataRefImpl();
611   MachO::any_relocation_info RE = Obj->getRelocation(Rel);
612 
613   unsigned Arch = Obj->getArch();
614 
615   std::string fmtbuf;
616   raw_string_ostream fmt(fmtbuf);
617   unsigned Type = Obj->getAnyRelocationType(RE);
618   bool IsPCRel = Obj->getAnyRelocationPCRel(RE);
619 
620   // Determine any addends that should be displayed with the relocation.
621   // These require decoding the relocation type, which is triple-specific.
622 
623   // X86_64 has entirely custom relocation types.
624   if (Arch == Triple::x86_64) {
625     bool isPCRel = Obj->getAnyRelocationPCRel(RE);
626 
627     switch (Type) {
628     case MachO::X86_64_RELOC_GOT_LOAD:
629     case MachO::X86_64_RELOC_GOT: {
630       printRelocationTargetName(Obj, RE, fmt);
631       fmt << "@GOT";
632       if (isPCRel)
633         fmt << "PCREL";
634       break;
635     }
636     case MachO::X86_64_RELOC_SUBTRACTOR: {
637       DataRefImpl RelNext = Rel;
638       Obj->moveRelocationNext(RelNext);
639       MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
640 
641       // X86_64_RELOC_SUBTRACTOR must be followed by a relocation of type
642       // X86_64_RELOC_UNSIGNED.
643       // NOTE: Scattered relocations don't exist on x86_64.
644       unsigned RType = Obj->getAnyRelocationType(RENext);
645       if (RType != MachO::X86_64_RELOC_UNSIGNED)
646         report_error(Obj->getFileName(), "Expected X86_64_RELOC_UNSIGNED after "
647                      "X86_64_RELOC_SUBTRACTOR.");
648 
649       // The X86_64_RELOC_UNSIGNED contains the minuend symbol;
650       // X86_64_RELOC_SUBTRACTOR contains the subtrahend.
651       printRelocationTargetName(Obj, RENext, fmt);
652       fmt << "-";
653       printRelocationTargetName(Obj, RE, fmt);
654       break;
655     }
656     case MachO::X86_64_RELOC_TLV:
657       printRelocationTargetName(Obj, RE, fmt);
658       fmt << "@TLV";
659       if (isPCRel)
660         fmt << "P";
661       break;
662     case MachO::X86_64_RELOC_SIGNED_1:
663       printRelocationTargetName(Obj, RE, fmt);
664       fmt << "-1";
665       break;
666     case MachO::X86_64_RELOC_SIGNED_2:
667       printRelocationTargetName(Obj, RE, fmt);
668       fmt << "-2";
669       break;
670     case MachO::X86_64_RELOC_SIGNED_4:
671       printRelocationTargetName(Obj, RE, fmt);
672       fmt << "-4";
673       break;
674     default:
675       printRelocationTargetName(Obj, RE, fmt);
676       break;
677     }
678     // X86 and ARM share some relocation types in common.
679   } else if (Arch == Triple::x86 || Arch == Triple::arm ||
680              Arch == Triple::ppc) {
681     // Generic relocation types...
682     switch (Type) {
683     case MachO::GENERIC_RELOC_PAIR: // prints no info
684       return std::error_code();
685     case MachO::GENERIC_RELOC_SECTDIFF: {
686       DataRefImpl RelNext = Rel;
687       Obj->moveRelocationNext(RelNext);
688       MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
689 
690       // X86 sect diff's must be followed by a relocation of type
691       // GENERIC_RELOC_PAIR.
692       unsigned RType = Obj->getAnyRelocationType(RENext);
693 
694       if (RType != MachO::GENERIC_RELOC_PAIR)
695         report_error(Obj->getFileName(), "Expected GENERIC_RELOC_PAIR after "
696                      "GENERIC_RELOC_SECTDIFF.");
697 
698       printRelocationTargetName(Obj, RE, fmt);
699       fmt << "-";
700       printRelocationTargetName(Obj, RENext, fmt);
701       break;
702     }
703     }
704 
705     if (Arch == Triple::x86 || Arch == Triple::ppc) {
706       switch (Type) {
707       case MachO::GENERIC_RELOC_LOCAL_SECTDIFF: {
708         DataRefImpl RelNext = Rel;
709         Obj->moveRelocationNext(RelNext);
710         MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
711 
712         // X86 sect diff's must be followed by a relocation of type
713         // GENERIC_RELOC_PAIR.
714         unsigned RType = Obj->getAnyRelocationType(RENext);
715         if (RType != MachO::GENERIC_RELOC_PAIR)
716           report_error(Obj->getFileName(), "Expected GENERIC_RELOC_PAIR after "
717                        "GENERIC_RELOC_LOCAL_SECTDIFF.");
718 
719         printRelocationTargetName(Obj, RE, fmt);
720         fmt << "-";
721         printRelocationTargetName(Obj, RENext, fmt);
722         break;
723       }
724       case MachO::GENERIC_RELOC_TLV: {
725         printRelocationTargetName(Obj, RE, fmt);
726         fmt << "@TLV";
727         if (IsPCRel)
728           fmt << "P";
729         break;
730       }
731       default:
732         printRelocationTargetName(Obj, RE, fmt);
733       }
734     } else { // ARM-specific relocations
735       switch (Type) {
736       case MachO::ARM_RELOC_HALF:
737       case MachO::ARM_RELOC_HALF_SECTDIFF: {
738         // Half relocations steal a bit from the length field to encode
739         // whether this is an upper16 or a lower16 relocation.
740         bool isUpper = (Obj->getAnyRelocationLength(RE) & 0x1) == 1;
741 
742         if (isUpper)
743           fmt << ":upper16:(";
744         else
745           fmt << ":lower16:(";
746         printRelocationTargetName(Obj, RE, fmt);
747 
748         DataRefImpl RelNext = Rel;
749         Obj->moveRelocationNext(RelNext);
750         MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
751 
752         // ARM half relocs must be followed by a relocation of type
753         // ARM_RELOC_PAIR.
754         unsigned RType = Obj->getAnyRelocationType(RENext);
755         if (RType != MachO::ARM_RELOC_PAIR)
756           report_error(Obj->getFileName(), "Expected ARM_RELOC_PAIR after "
757                        "ARM_RELOC_HALF");
758 
759         // NOTE: The half of the target virtual address is stashed in the
760         // address field of the secondary relocation, but we can't reverse
761         // engineer the constant offset from it without decoding the movw/movt
762         // instruction to find the other half in its immediate field.
763 
764         // ARM_RELOC_HALF_SECTDIFF encodes the second section in the
765         // symbol/section pointer of the follow-on relocation.
766         if (Type == MachO::ARM_RELOC_HALF_SECTDIFF) {
767           fmt << "-";
768           printRelocationTargetName(Obj, RENext, fmt);
769         }
770 
771         fmt << ")";
772         break;
773       }
774       default: { printRelocationTargetName(Obj, RE, fmt); }
775       }
776     }
777   } else
778     printRelocationTargetName(Obj, RE, fmt);
779 
780   fmt.flush();
781   Result.append(fmtbuf.begin(), fmtbuf.end());
782   return std::error_code();
783 }
784 
785 static std::error_code getRelocationValueString(const RelocationRef &Rel,
786                                                 SmallVectorImpl<char> &Result) {
787   const ObjectFile *Obj = Rel.getObject();
788   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
789     return getRelocationValueString(ELF, Rel, Result);
790   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
791     return getRelocationValueString(COFF, Rel, Result);
792   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
793     return getRelocationValueString(Wasm, Rel, Result);
794   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
795     return getRelocationValueString(MachO, Rel, Result);
796   llvm_unreachable("unknown object file format");
797 }
798 
799 /// Indicates whether this relocation should hidden when listing
800 /// relocations, usually because it is the trailing part of a multipart
801 /// relocation that will be printed as part of the leading relocation.
802 static bool getHidden(RelocationRef RelRef) {
803   const ObjectFile *Obj = RelRef.getObject();
804   auto *MachO = dyn_cast<MachOObjectFile>(Obj);
805   if (!MachO)
806     return false;
807 
808   unsigned Arch = MachO->getArch();
809   DataRefImpl Rel = RelRef.getRawDataRefImpl();
810   uint64_t Type = MachO->getRelocationType(Rel);
811 
812   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
813   // is always hidden.
814   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) {
815     if (Type == MachO::GENERIC_RELOC_PAIR)
816       return true;
817   } else if (Arch == Triple::x86_64) {
818     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
819     // an X86_64_RELOC_SUBTRACTOR.
820     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
821       DataRefImpl RelPrev = Rel;
822       RelPrev.d.a--;
823       uint64_t PrevType = MachO->getRelocationType(RelPrev);
824       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
825         return true;
826     }
827   }
828 
829   return false;
830 }
831 
832 namespace {
833 class SourcePrinter {
834 protected:
835   DILineInfo OldLineInfo;
836   const ObjectFile *Obj = nullptr;
837   std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
838   // File name to file contents of source
839   std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache;
840   // Mark the line endings of the cached source
841   std::unordered_map<std::string, std::vector<StringRef>> LineCache;
842 
843 private:
844   bool cacheSource(const DILineInfo& LineInfoFile);
845 
846 public:
847   SourcePrinter() = default;
848   SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch) : Obj(Obj) {
849     symbolize::LLVMSymbolizer::Options SymbolizerOpts(
850         DILineInfoSpecifier::FunctionNameKind::None, true, false, false,
851         DefaultArch);
852     Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts));
853   }
854   virtual ~SourcePrinter() = default;
855   virtual void printSourceLine(raw_ostream &OS, uint64_t Address,
856                                StringRef Delimiter = "; ");
857 };
858 
859 bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) {
860   std::unique_ptr<MemoryBuffer> Buffer;
861   if (LineInfo.Source) {
862     Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source);
863   } else {
864     auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName);
865     if (!BufferOrError)
866       return false;
867     Buffer = std::move(*BufferOrError);
868   }
869   // Chomp the file to get lines
870   size_t BufferSize = Buffer->getBufferSize();
871   const char *BufferStart = Buffer->getBufferStart();
872   for (const char *Start = BufferStart, *End = BufferStart;
873        End < BufferStart + BufferSize; End++)
874     if (*End == '\n' || End == BufferStart + BufferSize - 1 ||
875         (*End == '\r' && *(End + 1) == '\n')) {
876       LineCache[LineInfo.FileName].push_back(StringRef(Start, End - Start));
877       if (*End == '\r')
878         End++;
879       Start = End + 1;
880     }
881   SourceCache[LineInfo.FileName] = std::move(Buffer);
882   return true;
883 }
884 
885 void SourcePrinter::printSourceLine(raw_ostream &OS, uint64_t Address,
886                                     StringRef Delimiter) {
887   if (!Symbolizer)
888     return;
889   DILineInfo LineInfo = DILineInfo();
890   auto ExpectecLineInfo =
891       Symbolizer->symbolizeCode(Obj->getFileName(), Address);
892   if (!ExpectecLineInfo)
893     consumeError(ExpectecLineInfo.takeError());
894   else
895     LineInfo = *ExpectecLineInfo;
896 
897   if ((LineInfo.FileName == "<invalid>") || OldLineInfo.Line == LineInfo.Line ||
898       LineInfo.Line == 0)
899     return;
900 
901   if (PrintLines)
902     OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line << "\n";
903   if (PrintSource) {
904     if (SourceCache.find(LineInfo.FileName) == SourceCache.end())
905       if (!cacheSource(LineInfo))
906         return;
907     auto FileBuffer = SourceCache.find(LineInfo.FileName);
908     if (FileBuffer != SourceCache.end()) {
909       auto LineBuffer = LineCache.find(LineInfo.FileName);
910       if (LineBuffer != LineCache.end()) {
911         if (LineInfo.Line > LineBuffer->second.size())
912           return;
913         // Vector begins at 0, line numbers are non-zero
914         OS << Delimiter << LineBuffer->second[LineInfo.Line - 1].ltrim()
915            << "\n";
916       }
917     }
918   }
919   OldLineInfo = LineInfo;
920 }
921 
922 static bool isArmElf(const ObjectFile *Obj) {
923   return (Obj->isELF() &&
924           (Obj->getArch() == Triple::aarch64 ||
925            Obj->getArch() == Triple::aarch64_be ||
926            Obj->getArch() == Triple::arm || Obj->getArch() == Triple::armeb ||
927            Obj->getArch() == Triple::thumb ||
928            Obj->getArch() == Triple::thumbeb));
929 }
930 
931 class PrettyPrinter {
932 public:
933   virtual ~PrettyPrinter() = default;
934   virtual void printInst(MCInstPrinter &IP, const MCInst *MI,
935                          ArrayRef<uint8_t> Bytes, uint64_t Address,
936                          raw_ostream &OS, StringRef Annot,
937                          MCSubtargetInfo const &STI, SourcePrinter *SP,
938                          std::vector<RelocationRef> *Rels = nullptr) {
939     if (SP && (PrintSource || PrintLines))
940       SP->printSourceLine(OS, Address);
941     if (!NoLeadingAddr)
942       OS << format("%8" PRIx64 ":", Address);
943     if (!NoShowRawInsn) {
944       OS << "\t";
945       dumpBytes(Bytes, OS);
946     }
947     if (MI)
948       IP.printInst(MI, OS, "", STI);
949     else
950       OS << " <unknown>";
951   }
952 };
953 PrettyPrinter PrettyPrinterInst;
954 class HexagonPrettyPrinter : public PrettyPrinter {
955 public:
956   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
957                  raw_ostream &OS) {
958     uint32_t opcode =
959       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
960     if (!NoLeadingAddr)
961       OS << format("%8" PRIx64 ":", Address);
962     if (!NoShowRawInsn) {
963       OS << "\t";
964       dumpBytes(Bytes.slice(0, 4), OS);
965       OS << format("%08" PRIx32, opcode);
966     }
967   }
968   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
969                  uint64_t Address, raw_ostream &OS, StringRef Annot,
970                  MCSubtargetInfo const &STI, SourcePrinter *SP,
971                  std::vector<RelocationRef> *Rels) override {
972     if (SP && (PrintSource || PrintLines))
973       SP->printSourceLine(OS, Address, "");
974     if (!MI) {
975       printLead(Bytes, Address, OS);
976       OS << " <unknown>";
977       return;
978     }
979     std::string Buffer;
980     {
981       raw_string_ostream TempStream(Buffer);
982       IP.printInst(MI, TempStream, "", STI);
983     }
984     StringRef Contents(Buffer);
985     // Split off bundle attributes
986     auto PacketBundle = Contents.rsplit('\n');
987     // Split off first instruction from the rest
988     auto HeadTail = PacketBundle.first.split('\n');
989     auto Preamble = " { ";
990     auto Separator = "";
991     StringRef Fmt = "\t\t\t%08" PRIx64 ":  ";
992     std::vector<RelocationRef>::const_iterator rel_cur = Rels->begin();
993     std::vector<RelocationRef>::const_iterator rel_end = Rels->end();
994 
995     // Hexagon's packets require relocations to be inline rather than
996     // clustered at the end of the packet.
997     auto PrintReloc = [&]() -> void {
998       while ((rel_cur != rel_end) && (rel_cur->getOffset() <= Address)) {
999         if (rel_cur->getOffset() == Address) {
1000           SmallString<16> name;
1001           SmallString<32> val;
1002           rel_cur->getTypeName(name);
1003           error(getRelocationValueString(*rel_cur, val));
1004           OS << Separator << format(Fmt.data(), Address) << name << "\t" << val
1005                 << "\n";
1006           return;
1007         }
1008         rel_cur++;
1009       }
1010     };
1011 
1012     while(!HeadTail.first.empty()) {
1013       OS << Separator;
1014       Separator = "\n";
1015       if (SP && (PrintSource || PrintLines))
1016         SP->printSourceLine(OS, Address, "");
1017       printLead(Bytes, Address, OS);
1018       OS << Preamble;
1019       Preamble = "   ";
1020       StringRef Inst;
1021       auto Duplex = HeadTail.first.split('\v');
1022       if(!Duplex.second.empty()){
1023         OS << Duplex.first;
1024         OS << "; ";
1025         Inst = Duplex.second;
1026       }
1027       else
1028         Inst = HeadTail.first;
1029       OS << Inst;
1030       HeadTail = HeadTail.second.split('\n');
1031       if (HeadTail.first.empty())
1032         OS << " } " << PacketBundle.second;
1033       PrintReloc();
1034       Bytes = Bytes.slice(4);
1035       Address += 4;
1036     }
1037   }
1038 };
1039 HexagonPrettyPrinter HexagonPrettyPrinterInst;
1040 
1041 class AMDGCNPrettyPrinter : public PrettyPrinter {
1042 public:
1043   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
1044                  uint64_t Address, raw_ostream &OS, StringRef Annot,
1045                  MCSubtargetInfo const &STI, SourcePrinter *SP,
1046                  std::vector<RelocationRef> *Rels) override {
1047     if (SP && (PrintSource || PrintLines))
1048       SP->printSourceLine(OS, Address);
1049 
1050     typedef support::ulittle32_t U32;
1051 
1052     if (MI) {
1053       SmallString<40> InstStr;
1054       raw_svector_ostream IS(InstStr);
1055 
1056       IP.printInst(MI, IS, "", STI);
1057 
1058       OS << left_justify(IS.str(), 60);
1059     } else {
1060       // an unrecognized encoding - this is probably data so represent it
1061       // using the .long directive, or .byte directive if fewer than 4 bytes
1062       // remaining
1063       if (Bytes.size() >= 4) {
1064         OS << format("\t.long 0x%08" PRIx32 " ",
1065                      static_cast<uint32_t>(*reinterpret_cast<const U32*>(Bytes.data())));
1066         OS.indent(42);
1067       } else {
1068           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
1069           for (unsigned int i = 1; i < Bytes.size(); i++)
1070             OS << format(", 0x%02" PRIx8, Bytes[i]);
1071           OS.indent(55 - (6 * Bytes.size()));
1072       }
1073     }
1074 
1075     OS << format("// %012" PRIX64 ": ", Address);
1076     if (Bytes.size() >=4) {
1077       for (auto D : makeArrayRef(reinterpret_cast<const U32*>(Bytes.data()),
1078                                  Bytes.size() / sizeof(U32)))
1079         // D should be explicitly casted to uint32_t here as it is passed
1080         // by format to snprintf as vararg.
1081         OS << format("%08" PRIX32 " ", static_cast<uint32_t>(D));
1082     } else {
1083       for (unsigned int i = 0; i < Bytes.size(); i++)
1084         OS << format("%02" PRIX8 " ", Bytes[i]);
1085     }
1086 
1087     if (!Annot.empty())
1088       OS << "// " << Annot;
1089   }
1090 };
1091 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
1092 
1093 class BPFPrettyPrinter : public PrettyPrinter {
1094 public:
1095   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
1096                  uint64_t Address, raw_ostream &OS, StringRef Annot,
1097                  MCSubtargetInfo const &STI, SourcePrinter *SP,
1098                  std::vector<RelocationRef> *Rels) override {
1099     if (SP && (PrintSource || PrintLines))
1100       SP->printSourceLine(OS, Address);
1101     if (!NoLeadingAddr)
1102       OS << format("%8" PRId64 ":", Address / 8);
1103     if (!NoShowRawInsn) {
1104       OS << "\t";
1105       dumpBytes(Bytes, OS);
1106     }
1107     if (MI)
1108       IP.printInst(MI, OS, "", STI);
1109     else
1110       OS << " <unknown>";
1111   }
1112 };
1113 BPFPrettyPrinter BPFPrettyPrinterInst;
1114 
1115 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
1116   switch(Triple.getArch()) {
1117   default:
1118     return PrettyPrinterInst;
1119   case Triple::hexagon:
1120     return HexagonPrettyPrinterInst;
1121   case Triple::amdgcn:
1122     return AMDGCNPrettyPrinterInst;
1123   case Triple::bpfel:
1124   case Triple::bpfeb:
1125     return BPFPrettyPrinterInst;
1126   }
1127 }
1128 }
1129 
1130 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
1131   assert(Obj->isELF());
1132   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
1133     return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1134   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
1135     return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1136   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
1137     return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1138   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
1139     return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1140   llvm_unreachable("Unsupported binary format");
1141 }
1142 
1143 template <class ELFT> static void
1144 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
1145                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1146   for (auto Symbol : Obj->getDynamicSymbolIterators()) {
1147     uint8_t SymbolType = Symbol.getELFType();
1148     if (SymbolType != ELF::STT_FUNC || Symbol.getSize() == 0)
1149       continue;
1150 
1151     Expected<uint64_t> AddressOrErr = Symbol.getAddress();
1152     if (!AddressOrErr)
1153       report_error(Obj->getFileName(), AddressOrErr.takeError());
1154     uint64_t Address = *AddressOrErr;
1155 
1156     Expected<StringRef> Name = Symbol.getName();
1157     if (!Name)
1158       report_error(Obj->getFileName(), Name.takeError());
1159     if (Name->empty())
1160       continue;
1161 
1162     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1163     if (!SectionOrErr)
1164       report_error(Obj->getFileName(), SectionOrErr.takeError());
1165     section_iterator SecI = *SectionOrErr;
1166     if (SecI == Obj->section_end())
1167       continue;
1168 
1169     AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType);
1170   }
1171 }
1172 
1173 static void
1174 addDynamicElfSymbols(const ObjectFile *Obj,
1175                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1176   assert(Obj->isELF());
1177   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
1178     addDynamicElfSymbols(Elf32LEObj, AllSymbols);
1179   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
1180     addDynamicElfSymbols(Elf64LEObj, AllSymbols);
1181   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
1182     addDynamicElfSymbols(Elf32BEObj, AllSymbols);
1183   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
1184     addDynamicElfSymbols(Elf64BEObj, AllSymbols);
1185   else
1186     llvm_unreachable("Unsupported binary format");
1187 }
1188 
1189 static void DisassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
1190   if (StartAddress > StopAddress)
1191     error("Start address should be less than stop address");
1192 
1193   const Target *TheTarget = getTarget(Obj);
1194 
1195   // Package up features to be passed to target/subtarget
1196   SubtargetFeatures Features = Obj->getFeatures();
1197   if (MAttrs.size()) {
1198     for (unsigned i = 0; i != MAttrs.size(); ++i)
1199       Features.AddFeature(MAttrs[i]);
1200   }
1201 
1202   std::unique_ptr<const MCRegisterInfo> MRI(
1203       TheTarget->createMCRegInfo(TripleName));
1204   if (!MRI)
1205     report_error(Obj->getFileName(), "no register info for target " +
1206                  TripleName);
1207 
1208   // Set up disassembler.
1209   std::unique_ptr<const MCAsmInfo> AsmInfo(
1210       TheTarget->createMCAsmInfo(*MRI, TripleName));
1211   if (!AsmInfo)
1212     report_error(Obj->getFileName(), "no assembly info for target " +
1213                  TripleName);
1214   std::unique_ptr<const MCSubtargetInfo> STI(
1215       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1216   if (!STI)
1217     report_error(Obj->getFileName(), "no subtarget info for target " +
1218                  TripleName);
1219   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
1220   if (!MII)
1221     report_error(Obj->getFileName(), "no instruction info for target " +
1222                  TripleName);
1223   MCObjectFileInfo MOFI;
1224   MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI);
1225   // FIXME: for now initialize MCObjectFileInfo with default values
1226   MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx);
1227 
1228   std::unique_ptr<MCDisassembler> DisAsm(
1229     TheTarget->createMCDisassembler(*STI, Ctx));
1230   if (!DisAsm)
1231     report_error(Obj->getFileName(), "no disassembler for target " +
1232                  TripleName);
1233 
1234   std::unique_ptr<const MCInstrAnalysis> MIA(
1235       TheTarget->createMCInstrAnalysis(MII.get()));
1236 
1237   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1238   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
1239       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
1240   if (!IP)
1241     report_error(Obj->getFileName(), "no instruction printer for target " +
1242                  TripleName);
1243   IP->setPrintImmHex(PrintImmHex);
1244   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
1245 
1246   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "\t\t%016" PRIx64 ":  " :
1247                                                  "\t\t\t%08" PRIx64 ":  ";
1248 
1249   SourcePrinter SP(Obj, TheTarget->getName());
1250 
1251   // Create a mapping, RelocSecs = SectionRelocMap[S], where sections
1252   // in RelocSecs contain the relocations for section S.
1253   std::error_code EC;
1254   std::map<SectionRef, SmallVector<SectionRef, 1>> SectionRelocMap;
1255   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1256     section_iterator Sec2 = Section.getRelocatedSection();
1257     if (Sec2 != Obj->section_end())
1258       SectionRelocMap[*Sec2].push_back(Section);
1259   }
1260 
1261   // Create a mapping from virtual address to symbol name.  This is used to
1262   // pretty print the symbols while disassembling.
1263   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1264   for (const SymbolRef &Symbol : Obj->symbols()) {
1265     Expected<uint64_t> AddressOrErr = Symbol.getAddress();
1266     if (!AddressOrErr)
1267       report_error(Obj->getFileName(), AddressOrErr.takeError());
1268     uint64_t Address = *AddressOrErr;
1269 
1270     Expected<StringRef> Name = Symbol.getName();
1271     if (!Name)
1272       report_error(Obj->getFileName(), Name.takeError());
1273     if (Name->empty())
1274       continue;
1275 
1276     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1277     if (!SectionOrErr)
1278       report_error(Obj->getFileName(), SectionOrErr.takeError());
1279     section_iterator SecI = *SectionOrErr;
1280     if (SecI == Obj->section_end())
1281       continue;
1282 
1283     uint8_t SymbolType = ELF::STT_NOTYPE;
1284     if (Obj->isELF())
1285       SymbolType = getElfSymbolType(Obj, Symbol);
1286 
1287     AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType);
1288 
1289   }
1290   if (AllSymbols.empty() && Obj->isELF())
1291     addDynamicElfSymbols(Obj, AllSymbols);
1292 
1293   // Create a mapping from virtual address to section.
1294   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1295   for (SectionRef Sec : Obj->sections())
1296     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1297   array_pod_sort(SectionAddresses.begin(), SectionAddresses.end());
1298 
1299   // Linked executables (.exe and .dll files) typically don't include a real
1300   // symbol table but they might contain an export table.
1301   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
1302     for (const auto &ExportEntry : COFFObj->export_directories()) {
1303       StringRef Name;
1304       error(ExportEntry.getSymbolName(Name));
1305       if (Name.empty())
1306         continue;
1307       uint32_t RVA;
1308       error(ExportEntry.getExportRVA(RVA));
1309 
1310       uint64_t VA = COFFObj->getImageBase() + RVA;
1311       auto Sec = std::upper_bound(
1312           SectionAddresses.begin(), SectionAddresses.end(), VA,
1313           [](uint64_t LHS, const std::pair<uint64_t, SectionRef> &RHS) {
1314             return LHS < RHS.first;
1315           });
1316       if (Sec != SectionAddresses.begin())
1317         --Sec;
1318       else
1319         Sec = SectionAddresses.end();
1320 
1321       if (Sec != SectionAddresses.end())
1322         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1323     }
1324   }
1325 
1326   // Sort all the symbols, this allows us to use a simple binary search to find
1327   // a symbol near an address.
1328   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1329     array_pod_sort(SecSyms.second.begin(), SecSyms.second.end());
1330 
1331   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1332     if (!DisassembleAll && (!Section.isText() || Section.isVirtual()))
1333       continue;
1334 
1335     uint64_t SectionAddr = Section.getAddress();
1336     uint64_t SectSize = Section.getSize();
1337     if (!SectSize)
1338       continue;
1339 
1340     // Get the list of all the symbols in this section.
1341     SectionSymbolsTy &Symbols = AllSymbols[Section];
1342     std::vector<uint64_t> DataMappingSymsAddr;
1343     std::vector<uint64_t> TextMappingSymsAddr;
1344     if (isArmElf(Obj)) {
1345       for (const auto &Symb : Symbols) {
1346         uint64_t Address = std::get<0>(Symb);
1347         StringRef Name = std::get<1>(Symb);
1348         if (Name.startswith("$d"))
1349           DataMappingSymsAddr.push_back(Address - SectionAddr);
1350         if (Name.startswith("$x"))
1351           TextMappingSymsAddr.push_back(Address - SectionAddr);
1352         if (Name.startswith("$a"))
1353           TextMappingSymsAddr.push_back(Address - SectionAddr);
1354         if (Name.startswith("$t"))
1355           TextMappingSymsAddr.push_back(Address - SectionAddr);
1356       }
1357     }
1358 
1359     llvm::sort(DataMappingSymsAddr.begin(), DataMappingSymsAddr.end());
1360     llvm::sort(TextMappingSymsAddr.begin(), TextMappingSymsAddr.end());
1361 
1362     if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1363       // AMDGPU disassembler uses symbolizer for printing labels
1364       std::unique_ptr<MCRelocationInfo> RelInfo(
1365         TheTarget->createMCRelocationInfo(TripleName, Ctx));
1366       if (RelInfo) {
1367         std::unique_ptr<MCSymbolizer> Symbolizer(
1368           TheTarget->createMCSymbolizer(
1369             TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1370         DisAsm->setSymbolizer(std::move(Symbolizer));
1371       }
1372     }
1373 
1374     // Make a list of all the relocations for this section.
1375     std::vector<RelocationRef> Rels;
1376     if (InlineRelocs) {
1377       for (const SectionRef &RelocSec : SectionRelocMap[Section]) {
1378         for (const RelocationRef &Reloc : RelocSec.relocations()) {
1379           Rels.push_back(Reloc);
1380         }
1381       }
1382     }
1383 
1384     // Sort relocations by address.
1385     llvm::sort(Rels.begin(), Rels.end(), RelocAddressLess);
1386 
1387     StringRef SegmentName = "";
1388     if (const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj)) {
1389       DataRefImpl DR = Section.getRawDataRefImpl();
1390       SegmentName = MachO->getSectionFinalSegmentName(DR);
1391     }
1392     StringRef SectionName;
1393     error(Section.getName(SectionName));
1394 
1395     // If the section has no symbol at the start, just insert a dummy one.
1396     if (Symbols.empty() || std::get<0>(Symbols[0]) != 0) {
1397       Symbols.insert(
1398           Symbols.begin(),
1399           std::make_tuple(SectionAddr, SectionName,
1400                           Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT));
1401     }
1402 
1403     SmallString<40> Comments;
1404     raw_svector_ostream CommentStream(Comments);
1405 
1406     StringRef BytesStr;
1407     error(Section.getContents(BytesStr));
1408     ArrayRef<uint8_t> Bytes(reinterpret_cast<const uint8_t *>(BytesStr.data()),
1409                             BytesStr.size());
1410 
1411     uint64_t Size;
1412     uint64_t Index;
1413     bool PrintedSection = false;
1414 
1415     std::vector<RelocationRef>::const_iterator rel_cur = Rels.begin();
1416     std::vector<RelocationRef>::const_iterator rel_end = Rels.end();
1417     // Disassemble symbol by symbol.
1418     for (unsigned si = 0, se = Symbols.size(); si != se; ++si) {
1419       uint64_t Start = std::get<0>(Symbols[si]) - SectionAddr;
1420       // The end is either the section end or the beginning of the next
1421       // symbol.
1422       uint64_t End =
1423           (si == se - 1) ? SectSize : std::get<0>(Symbols[si + 1]) - SectionAddr;
1424       // Don't try to disassemble beyond the end of section contents.
1425       if (End > SectSize)
1426         End = SectSize;
1427       // If this symbol has the same address as the next symbol, then skip it.
1428       if (Start >= End)
1429         continue;
1430 
1431       // Check if we need to skip symbol
1432       // Skip if the symbol's data is not between StartAddress and StopAddress
1433       if (End + SectionAddr < StartAddress ||
1434           Start + SectionAddr > StopAddress) {
1435         continue;
1436       }
1437 
1438       /// Skip if user requested specific symbols and this is not in the list
1439       if (!DisasmFuncsSet.empty() &&
1440           !DisasmFuncsSet.count(std::get<1>(Symbols[si])))
1441         continue;
1442 
1443       if (!PrintedSection) {
1444         PrintedSection = true;
1445         outs() << "Disassembly of section ";
1446         if (!SegmentName.empty())
1447           outs() << SegmentName << ",";
1448         outs() << SectionName << ':';
1449       }
1450 
1451       // Stop disassembly at the stop address specified
1452       if (End + SectionAddr > StopAddress)
1453         End = StopAddress - SectionAddr;
1454 
1455       if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1456         if (std::get<2>(Symbols[si]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1457           // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes)
1458           Start += 256;
1459         }
1460         if (si == se - 1 ||
1461             std::get<2>(Symbols[si + 1]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1462           // cut trailing zeroes at the end of kernel
1463           // cut up to 256 bytes
1464           const uint64_t EndAlign = 256;
1465           const auto Limit = End - (std::min)(EndAlign, End - Start);
1466           while (End > Limit &&
1467             *reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0)
1468             End -= 4;
1469         }
1470       }
1471 
1472       outs() << '\n' << std::get<1>(Symbols[si]) << ":\n";
1473 
1474       // Don't print raw contents of a virtual section. A virtual section
1475       // doesn't have any contents in the file.
1476       if (Section.isVirtual()) {
1477         outs() << "...\n";
1478         continue;
1479       }
1480 
1481 #ifndef NDEBUG
1482       raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
1483 #else
1484       raw_ostream &DebugOut = nulls();
1485 #endif
1486 
1487       for (Index = Start; Index < End; Index += Size) {
1488         MCInst Inst;
1489 
1490         if (Index + SectionAddr < StartAddress ||
1491             Index + SectionAddr > StopAddress) {
1492           // skip byte by byte till StartAddress is reached
1493           Size = 1;
1494           continue;
1495         }
1496         // AArch64 ELF binaries can interleave data and text in the
1497         // same section. We rely on the markers introduced to
1498         // understand what we need to dump. If the data marker is within a
1499         // function, it is denoted as a word/short etc
1500         if (isArmElf(Obj) && std::get<2>(Symbols[si]) != ELF::STT_OBJECT &&
1501             !DisassembleAll) {
1502           uint64_t Stride = 0;
1503 
1504           auto DAI = std::lower_bound(DataMappingSymsAddr.begin(),
1505                                       DataMappingSymsAddr.end(), Index);
1506           if (DAI != DataMappingSymsAddr.end() && *DAI == Index) {
1507             // Switch to data.
1508             while (Index < End) {
1509               outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1510               outs() << "\t";
1511               if (Index + 4 <= End) {
1512                 Stride = 4;
1513                 dumpBytes(Bytes.slice(Index, 4), outs());
1514                 outs() << "\t.word\t";
1515                 uint32_t Data = 0;
1516                 if (Obj->isLittleEndian()) {
1517                   const auto Word =
1518                       reinterpret_cast<const support::ulittle32_t *>(
1519                           Bytes.data() + Index);
1520                   Data = *Word;
1521                 } else {
1522                   const auto Word = reinterpret_cast<const support::ubig32_t *>(
1523                       Bytes.data() + Index);
1524                   Data = *Word;
1525                 }
1526                 outs() << "0x" << format("%08" PRIx32, Data);
1527               } else if (Index + 2 <= End) {
1528                 Stride = 2;
1529                 dumpBytes(Bytes.slice(Index, 2), outs());
1530                 outs() << "\t\t.short\t";
1531                 uint16_t Data = 0;
1532                 if (Obj->isLittleEndian()) {
1533                   const auto Short =
1534                       reinterpret_cast<const support::ulittle16_t *>(
1535                           Bytes.data() + Index);
1536                   Data = *Short;
1537                 } else {
1538                   const auto Short =
1539                       reinterpret_cast<const support::ubig16_t *>(Bytes.data() +
1540                                                                   Index);
1541                   Data = *Short;
1542                 }
1543                 outs() << "0x" << format("%04" PRIx16, Data);
1544               } else {
1545                 Stride = 1;
1546                 dumpBytes(Bytes.slice(Index, 1), outs());
1547                 outs() << "\t\t.byte\t";
1548                 outs() << "0x" << format("%02" PRIx8, Bytes.slice(Index, 1)[0]);
1549               }
1550               Index += Stride;
1551               outs() << "\n";
1552               auto TAI = std::lower_bound(TextMappingSymsAddr.begin(),
1553                                           TextMappingSymsAddr.end(), Index);
1554               if (TAI != TextMappingSymsAddr.end() && *TAI == Index)
1555                 break;
1556             }
1557           }
1558         }
1559 
1560         // If there is a data symbol inside an ELF text section and we are only
1561         // disassembling text (applicable all architectures),
1562         // we are in a situation where we must print the data and not
1563         // disassemble it.
1564         if (Obj->isELF() && std::get<2>(Symbols[si]) == ELF::STT_OBJECT &&
1565             !DisassembleAll && Section.isText()) {
1566           // print out data up to 8 bytes at a time in hex and ascii
1567           uint8_t AsciiData[9] = {'\0'};
1568           uint8_t Byte;
1569           int NumBytes = 0;
1570 
1571           for (Index = Start; Index < End; Index += 1) {
1572             if (((SectionAddr + Index) < StartAddress) ||
1573                 ((SectionAddr + Index) > StopAddress))
1574               continue;
1575             if (NumBytes == 0) {
1576               outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1577               outs() << "\t";
1578             }
1579             Byte = Bytes.slice(Index)[0];
1580             outs() << format(" %02x", Byte);
1581             AsciiData[NumBytes] = isprint(Byte) ? Byte : '.';
1582 
1583             uint8_t IndentOffset = 0;
1584             NumBytes++;
1585             if (Index == End - 1 || NumBytes > 8) {
1586               // Indent the space for less than 8 bytes data.
1587               // 2 spaces for byte and one for space between bytes
1588               IndentOffset = 3 * (8 - NumBytes);
1589               for (int Excess = 8 - NumBytes; Excess < 8; Excess++)
1590                 AsciiData[Excess] = '\0';
1591               NumBytes = 8;
1592             }
1593             if (NumBytes == 8) {
1594               AsciiData[8] = '\0';
1595               outs() << std::string(IndentOffset, ' ') << "         ";
1596               outs() << reinterpret_cast<char *>(AsciiData);
1597               outs() << '\n';
1598               NumBytes = 0;
1599             }
1600           }
1601         }
1602         if (Index >= End)
1603           break;
1604 
1605         // Disassemble a real instruction or a data when disassemble all is
1606         // provided
1607         bool Disassembled = DisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
1608                                                    SectionAddr + Index, DebugOut,
1609                                                    CommentStream);
1610         if (Size == 0)
1611           Size = 1;
1612 
1613         PIP.printInst(*IP, Disassembled ? &Inst : nullptr,
1614                       Bytes.slice(Index, Size), SectionAddr + Index, outs(), "",
1615                       *STI, &SP, &Rels);
1616         outs() << CommentStream.str();
1617         Comments.clear();
1618 
1619         // Try to resolve the target of a call, tail call, etc. to a specific
1620         // symbol.
1621         if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) ||
1622                     MIA->isConditionalBranch(Inst))) {
1623           uint64_t Target;
1624           if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) {
1625             // In a relocatable object, the target's section must reside in
1626             // the same section as the call instruction or it is accessed
1627             // through a relocation.
1628             //
1629             // In a non-relocatable object, the target may be in any section.
1630             //
1631             // N.B. We don't walk the relocations in the relocatable case yet.
1632             auto *TargetSectionSymbols = &Symbols;
1633             if (!Obj->isRelocatableObject()) {
1634               auto SectionAddress = std::upper_bound(
1635                   SectionAddresses.begin(), SectionAddresses.end(), Target,
1636                   [](uint64_t LHS,
1637                       const std::pair<uint64_t, SectionRef> &RHS) {
1638                     return LHS < RHS.first;
1639                   });
1640               if (SectionAddress != SectionAddresses.begin()) {
1641                 --SectionAddress;
1642                 TargetSectionSymbols = &AllSymbols[SectionAddress->second];
1643               } else {
1644                 TargetSectionSymbols = nullptr;
1645               }
1646             }
1647 
1648             // Find the first symbol in the section whose offset is less than
1649             // or equal to the target.
1650             if (TargetSectionSymbols) {
1651               auto TargetSym = std::upper_bound(
1652                   TargetSectionSymbols->begin(), TargetSectionSymbols->end(),
1653                   Target, [](uint64_t LHS,
1654                              const std::tuple<uint64_t, StringRef, uint8_t> &RHS) {
1655                     return LHS < std::get<0>(RHS);
1656                   });
1657               if (TargetSym != TargetSectionSymbols->begin()) {
1658                 --TargetSym;
1659                 uint64_t TargetAddress = std::get<0>(*TargetSym);
1660                 StringRef TargetName = std::get<1>(*TargetSym);
1661                 outs() << " <" << TargetName;
1662                 uint64_t Disp = Target - TargetAddress;
1663                 if (Disp)
1664                   outs() << "+0x" << Twine::utohexstr(Disp);
1665                 outs() << '>';
1666               }
1667             }
1668           }
1669         }
1670         outs() << "\n";
1671 
1672         // Hexagon does this in pretty printer
1673         if (Obj->getArch() != Triple::hexagon)
1674           // Print relocation for instruction.
1675           while (rel_cur != rel_end) {
1676             bool hidden = getHidden(*rel_cur);
1677             uint64_t addr = rel_cur->getOffset();
1678             SmallString<16> name;
1679             SmallString<32> val;
1680 
1681             // If this relocation is hidden, skip it.
1682             if (hidden || ((SectionAddr + addr) < StartAddress)) {
1683               ++rel_cur;
1684               continue;
1685             }
1686 
1687             // Stop when rel_cur's address is past the current instruction.
1688             if (addr >= Index + Size) break;
1689             rel_cur->getTypeName(name);
1690             error(getRelocationValueString(*rel_cur, val));
1691             outs() << format(Fmt.data(), SectionAddr + addr) << name
1692                    << "\t" << val << "\n";
1693             ++rel_cur;
1694           }
1695       }
1696     }
1697   }
1698 }
1699 
1700 void llvm::PrintRelocations(const ObjectFile *Obj) {
1701   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
1702                                                  "%08" PRIx64;
1703   // Regular objdump doesn't print relocations in non-relocatable object
1704   // files.
1705   if (!Obj->isRelocatableObject())
1706     return;
1707 
1708   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1709     if (Section.relocation_begin() == Section.relocation_end())
1710       continue;
1711     StringRef secname;
1712     error(Section.getName(secname));
1713     outs() << "RELOCATION RECORDS FOR [" << secname << "]:\n";
1714     for (const RelocationRef &Reloc : Section.relocations()) {
1715       bool hidden = getHidden(Reloc);
1716       uint64_t address = Reloc.getOffset();
1717       SmallString<32> relocname;
1718       SmallString<32> valuestr;
1719       if (address < StartAddress || address > StopAddress || hidden)
1720         continue;
1721       Reloc.getTypeName(relocname);
1722       error(getRelocationValueString(Reloc, valuestr));
1723       outs() << format(Fmt.data(), address) << " " << relocname << " "
1724              << valuestr << "\n";
1725     }
1726     outs() << "\n";
1727   }
1728 }
1729 
1730 void llvm::PrintSectionHeaders(const ObjectFile *Obj) {
1731   outs() << "Sections:\n"
1732             "Idx Name          Size      Address          Type\n";
1733   unsigned i = 0;
1734   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1735     StringRef Name;
1736     error(Section.getName(Name));
1737     uint64_t Address = Section.getAddress();
1738     uint64_t Size = Section.getSize();
1739     bool Text = Section.isText();
1740     bool Data = Section.isData();
1741     bool BSS = Section.isBSS();
1742     std::string Type = (std::string(Text ? "TEXT " : "") +
1743                         (Data ? "DATA " : "") + (BSS ? "BSS" : ""));
1744     outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %s\n", i,
1745                      Name.str().c_str(), Size, Address, Type.c_str());
1746     ++i;
1747   }
1748 }
1749 
1750 void llvm::PrintSectionContents(const ObjectFile *Obj) {
1751   std::error_code EC;
1752   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1753     StringRef Name;
1754     StringRef Contents;
1755     error(Section.getName(Name));
1756     uint64_t BaseAddr = Section.getAddress();
1757     uint64_t Size = Section.getSize();
1758     if (!Size)
1759       continue;
1760 
1761     outs() << "Contents of section " << Name << ":\n";
1762     if (Section.isBSS()) {
1763       outs() << format("<skipping contents of bss section at [%04" PRIx64
1764                        ", %04" PRIx64 ")>\n",
1765                        BaseAddr, BaseAddr + Size);
1766       continue;
1767     }
1768 
1769     error(Section.getContents(Contents));
1770 
1771     // Dump out the content as hex and printable ascii characters.
1772     for (std::size_t addr = 0, end = Contents.size(); addr < end; addr += 16) {
1773       outs() << format(" %04" PRIx64 " ", BaseAddr + addr);
1774       // Dump line of hex.
1775       for (std::size_t i = 0; i < 16; ++i) {
1776         if (i != 0 && i % 4 == 0)
1777           outs() << ' ';
1778         if (addr + i < end)
1779           outs() << hexdigit((Contents[addr + i] >> 4) & 0xF, true)
1780                  << hexdigit(Contents[addr + i] & 0xF, true);
1781         else
1782           outs() << "  ";
1783       }
1784       // Print ascii.
1785       outs() << "  ";
1786       for (std::size_t i = 0; i < 16 && addr + i < end; ++i) {
1787         if (std::isprint(static_cast<unsigned char>(Contents[addr + i]) & 0xFF))
1788           outs() << Contents[addr + i];
1789         else
1790           outs() << ".";
1791       }
1792       outs() << "\n";
1793     }
1794   }
1795 }
1796 
1797 void llvm::PrintSymbolTable(const ObjectFile *o, StringRef ArchiveName,
1798                             StringRef ArchitectureName) {
1799   outs() << "SYMBOL TABLE:\n";
1800 
1801   if (const COFFObjectFile *coff = dyn_cast<const COFFObjectFile>(o)) {
1802     printCOFFSymbolTable(coff);
1803     return;
1804   }
1805   for (const SymbolRef &Symbol : o->symbols()) {
1806     Expected<uint64_t> AddressOrError = Symbol.getAddress();
1807     if (!AddressOrError)
1808       report_error(ArchiveName, o->getFileName(), AddressOrError.takeError(),
1809                    ArchitectureName);
1810     uint64_t Address = *AddressOrError;
1811     if ((Address < StartAddress) || (Address > StopAddress))
1812       continue;
1813     Expected<SymbolRef::Type> TypeOrError = Symbol.getType();
1814     if (!TypeOrError)
1815       report_error(ArchiveName, o->getFileName(), TypeOrError.takeError(),
1816                    ArchitectureName);
1817     SymbolRef::Type Type = *TypeOrError;
1818     uint32_t Flags = Symbol.getFlags();
1819     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1820     if (!SectionOrErr)
1821       report_error(ArchiveName, o->getFileName(), SectionOrErr.takeError(),
1822                    ArchitectureName);
1823     section_iterator Section = *SectionOrErr;
1824     StringRef Name;
1825     if (Type == SymbolRef::ST_Debug && Section != o->section_end()) {
1826       Section->getName(Name);
1827     } else {
1828       Expected<StringRef> NameOrErr = Symbol.getName();
1829       if (!NameOrErr)
1830         report_error(ArchiveName, o->getFileName(), NameOrErr.takeError(),
1831                      ArchitectureName);
1832       Name = *NameOrErr;
1833     }
1834 
1835     bool Global = Flags & SymbolRef::SF_Global;
1836     bool Weak = Flags & SymbolRef::SF_Weak;
1837     bool Absolute = Flags & SymbolRef::SF_Absolute;
1838     bool Common = Flags & SymbolRef::SF_Common;
1839     bool Hidden = Flags & SymbolRef::SF_Hidden;
1840 
1841     char GlobLoc = ' ';
1842     if (Type != SymbolRef::ST_Unknown)
1843       GlobLoc = Global ? 'g' : 'l';
1844     char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
1845                  ? 'd' : ' ';
1846     char FileFunc = ' ';
1847     if (Type == SymbolRef::ST_File)
1848       FileFunc = 'f';
1849     else if (Type == SymbolRef::ST_Function)
1850       FileFunc = 'F';
1851 
1852     const char *Fmt = o->getBytesInAddress() > 4 ? "%016" PRIx64 :
1853                                                    "%08" PRIx64;
1854 
1855     outs() << format(Fmt, Address) << " "
1856            << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' '
1857            << (Weak ? 'w' : ' ') // Weak?
1858            << ' ' // Constructor. Not supported yet.
1859            << ' ' // Warning. Not supported yet.
1860            << ' ' // Indirect reference to another symbol.
1861            << Debug // Debugging (d) or dynamic (D) symbol.
1862            << FileFunc // Name of function (F), file (f) or object (O).
1863            << ' ';
1864     if (Absolute) {
1865       outs() << "*ABS*";
1866     } else if (Common) {
1867       outs() << "*COM*";
1868     } else if (Section == o->section_end()) {
1869       outs() << "*UND*";
1870     } else {
1871       if (const MachOObjectFile *MachO =
1872           dyn_cast<const MachOObjectFile>(o)) {
1873         DataRefImpl DR = Section->getRawDataRefImpl();
1874         StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1875         outs() << SegmentName << ",";
1876       }
1877       StringRef SectionName;
1878       error(Section->getName(SectionName));
1879       outs() << SectionName;
1880     }
1881 
1882     outs() << '\t';
1883     if (Common || isa<ELFObjectFileBase>(o)) {
1884       uint64_t Val =
1885           Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
1886       outs() << format("\t %08" PRIx64 " ", Val);
1887     }
1888 
1889     if (Hidden) {
1890       outs() << ".hidden ";
1891     }
1892     outs() << Name
1893            << '\n';
1894   }
1895 }
1896 
1897 static void PrintUnwindInfo(const ObjectFile *o) {
1898   outs() << "Unwind info:\n\n";
1899 
1900   if (const COFFObjectFile *coff = dyn_cast<COFFObjectFile>(o)) {
1901     printCOFFUnwindInfo(coff);
1902   } else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1903     printMachOUnwindInfo(MachO);
1904   else {
1905     // TODO: Extract DWARF dump tool to objdump.
1906     errs() << "This operation is only currently supported "
1907               "for COFF and MachO object files.\n";
1908     return;
1909   }
1910 }
1911 
1912 void llvm::printExportsTrie(const ObjectFile *o) {
1913   outs() << "Exports trie:\n";
1914   if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1915     printMachOExportsTrie(MachO);
1916   else {
1917     errs() << "This operation is only currently supported "
1918               "for Mach-O executable files.\n";
1919     return;
1920   }
1921 }
1922 
1923 void llvm::printRebaseTable(ObjectFile *o) {
1924   outs() << "Rebase table:\n";
1925   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1926     printMachORebaseTable(MachO);
1927   else {
1928     errs() << "This operation is only currently supported "
1929               "for Mach-O executable files.\n";
1930     return;
1931   }
1932 }
1933 
1934 void llvm::printBindTable(ObjectFile *o) {
1935   outs() << "Bind table:\n";
1936   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1937     printMachOBindTable(MachO);
1938   else {
1939     errs() << "This operation is only currently supported "
1940               "for Mach-O executable files.\n";
1941     return;
1942   }
1943 }
1944 
1945 void llvm::printLazyBindTable(ObjectFile *o) {
1946   outs() << "Lazy bind table:\n";
1947   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1948     printMachOLazyBindTable(MachO);
1949   else {
1950     errs() << "This operation is only currently supported "
1951               "for Mach-O executable files.\n";
1952     return;
1953   }
1954 }
1955 
1956 void llvm::printWeakBindTable(ObjectFile *o) {
1957   outs() << "Weak bind table:\n";
1958   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1959     printMachOWeakBindTable(MachO);
1960   else {
1961     errs() << "This operation is only currently supported "
1962               "for Mach-O executable files.\n";
1963     return;
1964   }
1965 }
1966 
1967 /// Dump the raw contents of the __clangast section so the output can be piped
1968 /// into llvm-bcanalyzer.
1969 void llvm::printRawClangAST(const ObjectFile *Obj) {
1970   if (outs().is_displayed()) {
1971     errs() << "The -raw-clang-ast option will dump the raw binary contents of "
1972               "the clang ast section.\n"
1973               "Please redirect the output to a file or another program such as "
1974               "llvm-bcanalyzer.\n";
1975     return;
1976   }
1977 
1978   StringRef ClangASTSectionName("__clangast");
1979   if (isa<COFFObjectFile>(Obj)) {
1980     ClangASTSectionName = "clangast";
1981   }
1982 
1983   Optional<object::SectionRef> ClangASTSection;
1984   for (auto Sec : ToolSectionFilter(*Obj)) {
1985     StringRef Name;
1986     Sec.getName(Name);
1987     if (Name == ClangASTSectionName) {
1988       ClangASTSection = Sec;
1989       break;
1990     }
1991   }
1992   if (!ClangASTSection)
1993     return;
1994 
1995   StringRef ClangASTContents;
1996   error(ClangASTSection.getValue().getContents(ClangASTContents));
1997   outs().write(ClangASTContents.data(), ClangASTContents.size());
1998 }
1999 
2000 static void printFaultMaps(const ObjectFile *Obj) {
2001   const char *FaultMapSectionName = nullptr;
2002 
2003   if (isa<ELFObjectFileBase>(Obj)) {
2004     FaultMapSectionName = ".llvm_faultmaps";
2005   } else if (isa<MachOObjectFile>(Obj)) {
2006     FaultMapSectionName = "__llvm_faultmaps";
2007   } else {
2008     errs() << "This operation is only currently supported "
2009               "for ELF and Mach-O executable files.\n";
2010     return;
2011   }
2012 
2013   Optional<object::SectionRef> FaultMapSection;
2014 
2015   for (auto Sec : ToolSectionFilter(*Obj)) {
2016     StringRef Name;
2017     Sec.getName(Name);
2018     if (Name == FaultMapSectionName) {
2019       FaultMapSection = Sec;
2020       break;
2021     }
2022   }
2023 
2024   outs() << "FaultMap table:\n";
2025 
2026   if (!FaultMapSection.hasValue()) {
2027     outs() << "<not found>\n";
2028     return;
2029   }
2030 
2031   StringRef FaultMapContents;
2032   error(FaultMapSection.getValue().getContents(FaultMapContents));
2033 
2034   FaultMapParser FMP(FaultMapContents.bytes_begin(),
2035                      FaultMapContents.bytes_end());
2036 
2037   outs() << FMP;
2038 }
2039 
2040 static void printPrivateFileHeaders(const ObjectFile *o, bool onlyFirst) {
2041   if (o->isELF())
2042     return printELFFileHeader(o);
2043   if (o->isCOFF())
2044     return printCOFFFileHeader(o);
2045   if (o->isWasm())
2046     return printWasmFileHeader(o);
2047   if (o->isMachO()) {
2048     printMachOFileHeader(o);
2049     if (!onlyFirst)
2050       printMachOLoadCommands(o);
2051     return;
2052   }
2053   report_error(o->getFileName(), "Invalid/Unsupported object file format");
2054 }
2055 
2056 static void DumpObject(ObjectFile *o, const Archive *a = nullptr) {
2057   StringRef ArchiveName = a != nullptr ? a->getFileName() : "";
2058   // Avoid other output when using a raw option.
2059   if (!RawClangAST) {
2060     outs() << '\n';
2061     if (a)
2062       outs() << a->getFileName() << "(" << o->getFileName() << ")";
2063     else
2064       outs() << o->getFileName();
2065     outs() << ":\tfile format " << o->getFileFormatName() << "\n\n";
2066   }
2067 
2068   if (Disassemble)
2069     DisassembleObject(o, Relocations);
2070   if (Relocations && !Disassemble)
2071     PrintRelocations(o);
2072   if (SectionHeaders)
2073     PrintSectionHeaders(o);
2074   if (SectionContents)
2075     PrintSectionContents(o);
2076   if (SymbolTable)
2077     PrintSymbolTable(o, ArchiveName);
2078   if (UnwindInfo)
2079     PrintUnwindInfo(o);
2080   if (PrivateHeaders || FirstPrivateHeader)
2081     printPrivateFileHeaders(o, FirstPrivateHeader);
2082   if (ExportsTrie)
2083     printExportsTrie(o);
2084   if (Rebase)
2085     printRebaseTable(o);
2086   if (Bind)
2087     printBindTable(o);
2088   if (LazyBind)
2089     printLazyBindTable(o);
2090   if (WeakBind)
2091     printWeakBindTable(o);
2092   if (RawClangAST)
2093     printRawClangAST(o);
2094   if (PrintFaultMaps)
2095     printFaultMaps(o);
2096   if (DwarfDumpType != DIDT_Null) {
2097     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*o);
2098     // Dump the complete DWARF structure.
2099     DIDumpOptions DumpOpts;
2100     DumpOpts.DumpType = DwarfDumpType;
2101     DICtx->dump(outs(), DumpOpts);
2102   }
2103 }
2104 
2105 static void DumpObject(const COFFImportFile *I, const Archive *A) {
2106   StringRef ArchiveName = A ? A->getFileName() : "";
2107 
2108   // Avoid other output when using a raw option.
2109   if (!RawClangAST)
2110     outs() << '\n'
2111            << ArchiveName << "(" << I->getFileName() << ")"
2112            << ":\tfile format COFF-import-file"
2113            << "\n\n";
2114 
2115   if (SymbolTable)
2116     printCOFFSymbolTable(I);
2117 }
2118 
2119 /// Dump each object file in \a a;
2120 static void DumpArchive(const Archive *a) {
2121   Error Err = Error::success();
2122   for (auto &C : a->children(Err)) {
2123     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2124     if (!ChildOrErr) {
2125       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2126         report_error(a->getFileName(), C, std::move(E));
2127       continue;
2128     }
2129     if (ObjectFile *o = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2130       DumpObject(o, a);
2131     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2132       DumpObject(I, a);
2133     else
2134       report_error(a->getFileName(), object_error::invalid_file_type);
2135   }
2136   if (Err)
2137     report_error(a->getFileName(), std::move(Err));
2138 }
2139 
2140 /// Open file and figure out how to dump it.
2141 static void DumpInput(StringRef file) {
2142 
2143   // If we are using the Mach-O specific object file parser, then let it parse
2144   // the file and process the command line options.  So the -arch flags can
2145   // be used to select specific slices, etc.
2146   if (MachOOpt) {
2147     ParseInputMachO(file);
2148     return;
2149   }
2150 
2151   // Attempt to open the binary.
2152   Expected<OwningBinary<Binary>> BinaryOrErr = createBinary(file);
2153   if (!BinaryOrErr)
2154     report_error(file, BinaryOrErr.takeError());
2155   Binary &Binary = *BinaryOrErr.get().getBinary();
2156 
2157   if (Archive *a = dyn_cast<Archive>(&Binary))
2158     DumpArchive(a);
2159   else if (ObjectFile *o = dyn_cast<ObjectFile>(&Binary))
2160     DumpObject(o);
2161   else
2162     report_error(file, object_error::invalid_file_type);
2163 }
2164 
2165 int main(int argc, char **argv) {
2166   InitLLVM X(argc, argv);
2167 
2168   // Initialize targets and assembly printers/parsers.
2169   llvm::InitializeAllTargetInfos();
2170   llvm::InitializeAllTargetMCs();
2171   llvm::InitializeAllDisassemblers();
2172 
2173   // Register the target printer for --version.
2174   cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);
2175 
2176   cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n");
2177   TripleName = Triple::normalize(TripleName);
2178 
2179   ToolName = argv[0];
2180 
2181   // Defaults to a.out if no filenames specified.
2182   if (InputFilenames.size() == 0)
2183     InputFilenames.push_back("a.out");
2184 
2185   if (DisassembleAll || PrintSource || PrintLines)
2186     Disassemble = true;
2187   if (!Disassemble
2188       && !Relocations
2189       && !SectionHeaders
2190       && !SectionContents
2191       && !SymbolTable
2192       && !UnwindInfo
2193       && !PrivateHeaders
2194       && !FirstPrivateHeader
2195       && !ExportsTrie
2196       && !Rebase
2197       && !Bind
2198       && !LazyBind
2199       && !WeakBind
2200       && !RawClangAST
2201       && !(UniversalHeaders && MachOOpt)
2202       && !(ArchiveHeaders && MachOOpt)
2203       && !(IndirectSymbols && MachOOpt)
2204       && !(DataInCode && MachOOpt)
2205       && !(LinkOptHints && MachOOpt)
2206       && !(InfoPlist && MachOOpt)
2207       && !(DylibsUsed && MachOOpt)
2208       && !(DylibId && MachOOpt)
2209       && !(ObjcMetaData && MachOOpt)
2210       && !(FilterSections.size() != 0 && MachOOpt)
2211       && !PrintFaultMaps
2212       && DwarfDumpType == DIDT_Null) {
2213     cl::PrintHelpMessage();
2214     return 2;
2215   }
2216 
2217   DisasmFuncsSet.insert(DisassembleFunctions.begin(),
2218                         DisassembleFunctions.end());
2219 
2220   llvm::for_each(InputFilenames, DumpInput);
2221 
2222   return EXIT_SUCCESS;
2223 }
2224