xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision d2af4d6f1b28ab3e680f852aa891bb193e4464b0)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This program is a utility that works like binutils "objdump", that is, it
11 // dumps out a plethora of information about an object file depending on the
12 // flags.
13 //
14 // The flags and output of this program should be near identical to those of
15 // binutils objdump.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm-objdump.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringSet.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/CodeGen/FaultMaps.h"
26 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
27 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCContext.h"
30 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
31 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
32 #include "llvm/MC/MCInst.h"
33 #include "llvm/MC/MCInstPrinter.h"
34 #include "llvm/MC/MCInstrAnalysis.h"
35 #include "llvm/MC/MCInstrInfo.h"
36 #include "llvm/MC/MCObjectFileInfo.h"
37 #include "llvm/MC/MCRegisterInfo.h"
38 #include "llvm/MC/MCSubtargetInfo.h"
39 #include "llvm/Object/Archive.h"
40 #include "llvm/Object/COFF.h"
41 #include "llvm/Object/COFFImportFile.h"
42 #include "llvm/Object/ELFObjectFile.h"
43 #include "llvm/Object/MachO.h"
44 #include "llvm/Object/ObjectFile.h"
45 #include "llvm/Object/Wasm.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/Errc.h"
50 #include "llvm/Support/FileSystem.h"
51 #include "llvm/Support/Format.h"
52 #include "llvm/Support/GraphWriter.h"
53 #include "llvm/Support/Host.h"
54 #include "llvm/Support/InitLLVM.h"
55 #include "llvm/Support/MemoryBuffer.h"
56 #include "llvm/Support/SourceMgr.h"
57 #include "llvm/Support/TargetRegistry.h"
58 #include "llvm/Support/TargetSelect.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <algorithm>
61 #include <cctype>
62 #include <cstring>
63 #include <system_error>
64 #include <unordered_map>
65 #include <utility>
66 
67 using namespace llvm;
68 using namespace object;
69 
70 cl::opt<bool>
71     llvm::AllHeaders("all-headers",
72                      cl::desc("Display all available header information"));
73 static cl::alias AllHeadersShort("x", cl::desc("Alias for --all-headers"),
74                                  cl::aliasopt(AllHeaders));
75 
76 static cl::list<std::string>
77 InputFilenames(cl::Positional, cl::desc("<input object files>"),cl::ZeroOrMore);
78 
79 cl::opt<bool>
80 llvm::Disassemble("disassemble",
81   cl::desc("Display assembler mnemonics for the machine instructions"));
82 static cl::alias
83 Disassembled("d", cl::desc("Alias for --disassemble"),
84              cl::aliasopt(Disassemble));
85 
86 cl::opt<bool>
87 llvm::DisassembleAll("disassemble-all",
88   cl::desc("Display assembler mnemonics for the machine instructions"));
89 static cl::alias
90 DisassembleAlld("D", cl::desc("Alias for --disassemble-all"),
91              cl::aliasopt(DisassembleAll));
92 
93 static cl::list<std::string>
94 DisassembleFunctions("df",
95                      cl::CommaSeparated,
96                      cl::desc("List of functions to disassemble"));
97 static StringSet<> DisasmFuncsSet;
98 
99 cl::opt<bool>
100 llvm::Relocations("r", cl::desc("Display the relocation entries in the file"));
101 
102 cl::opt<bool>
103 llvm::DynamicRelocations("dynamic-reloc",
104   cl::desc("Display the dynamic relocation entries in the file"));
105 static cl::alias
106 DynamicRelocationsd("R", cl::desc("Alias for --dynamic-reloc"),
107              cl::aliasopt(DynamicRelocations));
108 
109 cl::opt<bool>
110 llvm::SectionContents("s", cl::desc("Display the content of each section"));
111 
112 cl::opt<bool>
113 llvm::SymbolTable("t", cl::desc("Display the symbol table"));
114 
115 cl::opt<bool>
116 llvm::ExportsTrie("exports-trie", cl::desc("Display mach-o exported symbols"));
117 
118 cl::opt<bool>
119 llvm::Rebase("rebase", cl::desc("Display mach-o rebasing info"));
120 
121 cl::opt<bool>
122 llvm::Bind("bind", cl::desc("Display mach-o binding info"));
123 
124 cl::opt<bool>
125 llvm::LazyBind("lazy-bind", cl::desc("Display mach-o lazy binding info"));
126 
127 cl::opt<bool>
128 llvm::WeakBind("weak-bind", cl::desc("Display mach-o weak binding info"));
129 
130 cl::opt<bool>
131 llvm::RawClangAST("raw-clang-ast",
132     cl::desc("Dump the raw binary contents of the clang AST section"));
133 
134 static cl::opt<bool>
135 MachOOpt("macho", cl::desc("Use MachO specific object file parser"));
136 static cl::alias
137 MachOm("m", cl::desc("Alias for --macho"), cl::aliasopt(MachOOpt));
138 
139 cl::opt<std::string>
140 llvm::TripleName("triple", cl::desc("Target triple to disassemble for, "
141                                     "see -version for available targets"));
142 
143 cl::opt<std::string>
144 llvm::MCPU("mcpu",
145      cl::desc("Target a specific cpu type (-mcpu=help for details)"),
146      cl::value_desc("cpu-name"),
147      cl::init(""));
148 
149 cl::opt<std::string>
150 llvm::ArchName("arch-name", cl::desc("Target arch to disassemble for, "
151                                 "see -version for available targets"));
152 
153 cl::opt<bool>
154 llvm::SectionHeaders("section-headers", cl::desc("Display summaries of the "
155                                                  "headers for each section."));
156 static cl::alias
157 SectionHeadersShort("headers", cl::desc("Alias for --section-headers"),
158                     cl::aliasopt(SectionHeaders));
159 static cl::alias
160 SectionHeadersShorter("h", cl::desc("Alias for --section-headers"),
161                       cl::aliasopt(SectionHeaders));
162 
163 cl::list<std::string>
164 llvm::FilterSections("section", cl::desc("Operate on the specified sections only. "
165                                          "With -macho dump segment,section"));
166 cl::alias
167 static FilterSectionsj("j", cl::desc("Alias for --section"),
168                  cl::aliasopt(llvm::FilterSections));
169 
170 cl::list<std::string>
171 llvm::MAttrs("mattr",
172   cl::CommaSeparated,
173   cl::desc("Target specific attributes"),
174   cl::value_desc("a1,+a2,-a3,..."));
175 
176 cl::opt<bool>
177 llvm::NoShowRawInsn("no-show-raw-insn", cl::desc("When disassembling "
178                                                  "instructions, do not print "
179                                                  "the instruction bytes."));
180 cl::opt<bool>
181 llvm::NoLeadingAddr("no-leading-addr", cl::desc("Print no leading address"));
182 
183 cl::opt<bool>
184 llvm::UnwindInfo("unwind-info", cl::desc("Display unwind information"));
185 
186 static cl::alias
187 UnwindInfoShort("u", cl::desc("Alias for --unwind-info"),
188                 cl::aliasopt(UnwindInfo));
189 
190 cl::opt<bool>
191 llvm::PrivateHeaders("private-headers",
192                      cl::desc("Display format specific file headers"));
193 
194 cl::opt<bool>
195 llvm::FirstPrivateHeader("private-header",
196                          cl::desc("Display only the first format specific file "
197                                   "header"));
198 
199 static cl::alias
200 PrivateHeadersShort("p", cl::desc("Alias for --private-headers"),
201                     cl::aliasopt(PrivateHeaders));
202 
203 cl::opt<bool> llvm::FileHeaders(
204     "file-headers",
205     cl::desc("Display the contents of the overall file header"));
206 
207 static cl::alias FileHeadersShort("f", cl::desc("Alias for --file-headers"),
208                                   cl::aliasopt(FileHeaders));
209 
210 cl::opt<bool>
211     llvm::PrintImmHex("print-imm-hex",
212                       cl::desc("Use hex format for immediate values"));
213 
214 cl::opt<bool> PrintFaultMaps("fault-map-section",
215                              cl::desc("Display contents of faultmap section"));
216 
217 cl::opt<DIDumpType> llvm::DwarfDumpType(
218     "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"),
219     cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame")));
220 
221 cl::opt<bool> PrintSource(
222     "source",
223     cl::desc(
224         "Display source inlined with disassembly. Implies disassemble object"));
225 
226 cl::alias PrintSourceShort("S", cl::desc("Alias for -source"),
227                            cl::aliasopt(PrintSource));
228 
229 cl::opt<bool> PrintLines("line-numbers",
230                          cl::desc("Display source line numbers with "
231                                   "disassembly. Implies disassemble object"));
232 
233 cl::alias PrintLinesShort("l", cl::desc("Alias for -line-numbers"),
234                           cl::aliasopt(PrintLines));
235 
236 cl::opt<unsigned long long>
237     StartAddress("start-address", cl::desc("Disassemble beginning at address"),
238                  cl::value_desc("address"), cl::init(0));
239 cl::opt<unsigned long long>
240     StopAddress("stop-address", cl::desc("Stop disassembly at address"),
241                 cl::value_desc("address"), cl::init(UINT64_MAX));
242 static StringRef ToolName;
243 
244 typedef std::vector<std::tuple<uint64_t, StringRef, uint8_t>> SectionSymbolsTy;
245 
246 namespace {
247 typedef std::function<bool(llvm::object::SectionRef const &)> FilterPredicate;
248 
249 class SectionFilterIterator {
250 public:
251   SectionFilterIterator(FilterPredicate P,
252                         llvm::object::section_iterator const &I,
253                         llvm::object::section_iterator const &E)
254       : Predicate(std::move(P)), Iterator(I), End(E) {
255     ScanPredicate();
256   }
257   const llvm::object::SectionRef &operator*() const { return *Iterator; }
258   SectionFilterIterator &operator++() {
259     ++Iterator;
260     ScanPredicate();
261     return *this;
262   }
263   bool operator!=(SectionFilterIterator const &Other) const {
264     return Iterator != Other.Iterator;
265   }
266 
267 private:
268   void ScanPredicate() {
269     while (Iterator != End && !Predicate(*Iterator)) {
270       ++Iterator;
271     }
272   }
273   FilterPredicate Predicate;
274   llvm::object::section_iterator Iterator;
275   llvm::object::section_iterator End;
276 };
277 
278 class SectionFilter {
279 public:
280   SectionFilter(FilterPredicate P, llvm::object::ObjectFile const &O)
281       : Predicate(std::move(P)), Object(O) {}
282   SectionFilterIterator begin() {
283     return SectionFilterIterator(Predicate, Object.section_begin(),
284                                  Object.section_end());
285   }
286   SectionFilterIterator end() {
287     return SectionFilterIterator(Predicate, Object.section_end(),
288                                  Object.section_end());
289   }
290 
291 private:
292   FilterPredicate Predicate;
293   llvm::object::ObjectFile const &Object;
294 };
295 SectionFilter ToolSectionFilter(llvm::object::ObjectFile const &O) {
296   return SectionFilter(
297       [](llvm::object::SectionRef const &S) {
298         if (FilterSections.empty())
299           return true;
300         llvm::StringRef String;
301         std::error_code error = S.getName(String);
302         if (error)
303           return false;
304         return is_contained(FilterSections, String);
305       },
306       O);
307 }
308 }
309 
310 void llvm::error(std::error_code EC) {
311   if (!EC)
312     return;
313 
314   errs() << ToolName << ": error reading file: " << EC.message() << ".\n";
315   errs().flush();
316   exit(1);
317 }
318 
319 LLVM_ATTRIBUTE_NORETURN void llvm::error(Twine Message) {
320   errs() << ToolName << ": " << Message << ".\n";
321   errs().flush();
322   exit(1);
323 }
324 
325 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
326                                                 Twine Message) {
327   errs() << ToolName << ": '" << File << "': " << Message << ".\n";
328   exit(1);
329 }
330 
331 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
332                                                 std::error_code EC) {
333   assert(EC);
334   errs() << ToolName << ": '" << File << "': " << EC.message() << ".\n";
335   exit(1);
336 }
337 
338 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
339                                                 llvm::Error E) {
340   assert(E);
341   std::string Buf;
342   raw_string_ostream OS(Buf);
343   logAllUnhandledErrors(std::move(E), OS, "");
344   OS.flush();
345   errs() << ToolName << ": '" << File << "': " << Buf;
346   exit(1);
347 }
348 
349 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
350                                                 StringRef FileName,
351                                                 llvm::Error E,
352                                                 StringRef ArchitectureName) {
353   assert(E);
354   errs() << ToolName << ": ";
355   if (ArchiveName != "")
356     errs() << ArchiveName << "(" << FileName << ")";
357   else
358     errs() << "'" << FileName << "'";
359   if (!ArchitectureName.empty())
360     errs() << " (for architecture " << ArchitectureName << ")";
361   std::string Buf;
362   raw_string_ostream OS(Buf);
363   logAllUnhandledErrors(std::move(E), OS, "");
364   OS.flush();
365   errs() << ": " << Buf;
366   exit(1);
367 }
368 
369 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
370                                                 const object::Archive::Child &C,
371                                                 llvm::Error E,
372                                                 StringRef ArchitectureName) {
373   Expected<StringRef> NameOrErr = C.getName();
374   // TODO: if we have a error getting the name then it would be nice to print
375   // the index of which archive member this is and or its offset in the
376   // archive instead of "???" as the name.
377   if (!NameOrErr) {
378     consumeError(NameOrErr.takeError());
379     llvm::report_error(ArchiveName, "???", std::move(E), ArchitectureName);
380   } else
381     llvm::report_error(ArchiveName, NameOrErr.get(), std::move(E),
382                        ArchitectureName);
383 }
384 
385 static const Target *getTarget(const ObjectFile *Obj = nullptr) {
386   // Figure out the target triple.
387   llvm::Triple TheTriple("unknown-unknown-unknown");
388   if (TripleName.empty()) {
389     if (Obj) {
390       TheTriple = Obj->makeTriple();
391     }
392   } else {
393     TheTriple.setTriple(Triple::normalize(TripleName));
394 
395     // Use the triple, but also try to combine with ARM build attributes.
396     if (Obj) {
397       auto Arch = Obj->getArch();
398       if (Arch == Triple::arm || Arch == Triple::armeb) {
399         Obj->setARMSubArch(TheTriple);
400       }
401     }
402   }
403 
404   // Get the target specific parser.
405   std::string Error;
406   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
407                                                          Error);
408   if (!TheTarget) {
409     if (Obj)
410       report_error(Obj->getFileName(), "can't find target: " + Error);
411     else
412       error("can't find target: " + Error);
413   }
414 
415   // Update the triple name and return the found target.
416   TripleName = TheTriple.getTriple();
417   return TheTarget;
418 }
419 
420 bool llvm::RelocAddressLess(RelocationRef a, RelocationRef b) {
421   return a.getOffset() < b.getOffset();
422 }
423 
424 template <class ELFT>
425 static std::error_code getRelocationValueString(const ELFObjectFile<ELFT> *Obj,
426                                                 const RelocationRef &RelRef,
427                                                 SmallVectorImpl<char> &Result) {
428   DataRefImpl Rel = RelRef.getRawDataRefImpl();
429 
430   typedef typename ELFObjectFile<ELFT>::Elf_Sym Elf_Sym;
431   typedef typename ELFObjectFile<ELFT>::Elf_Shdr Elf_Shdr;
432   typedef typename ELFObjectFile<ELFT>::Elf_Rela Elf_Rela;
433 
434   const ELFFile<ELFT> &EF = *Obj->getELFFile();
435 
436   auto SecOrErr = EF.getSection(Rel.d.a);
437   if (!SecOrErr)
438     return errorToErrorCode(SecOrErr.takeError());
439   const Elf_Shdr *Sec = *SecOrErr;
440   auto SymTabOrErr = EF.getSection(Sec->sh_link);
441   if (!SymTabOrErr)
442     return errorToErrorCode(SymTabOrErr.takeError());
443   const Elf_Shdr *SymTab = *SymTabOrErr;
444   assert(SymTab->sh_type == ELF::SHT_SYMTAB ||
445          SymTab->sh_type == ELF::SHT_DYNSYM);
446   auto StrTabSec = EF.getSection(SymTab->sh_link);
447   if (!StrTabSec)
448     return errorToErrorCode(StrTabSec.takeError());
449   auto StrTabOrErr = EF.getStringTable(*StrTabSec);
450   if (!StrTabOrErr)
451     return errorToErrorCode(StrTabOrErr.takeError());
452   StringRef StrTab = *StrTabOrErr;
453   int64_t addend = 0;
454   // If there is no Symbol associated with the relocation, we set the undef
455   // boolean value to 'true'. This will prevent us from calling functions that
456   // requires the relocation to be associated with a symbol.
457   bool undef = false;
458   switch (Sec->sh_type) {
459   default:
460     return object_error::parse_failed;
461   case ELF::SHT_REL: {
462     // TODO: Read implicit addend from section data.
463     break;
464   }
465   case ELF::SHT_RELA: {
466     const Elf_Rela *ERela = Obj->getRela(Rel);
467     addend = ERela->r_addend;
468     undef = ERela->getSymbol(false) == 0;
469     break;
470   }
471   }
472   StringRef Target;
473   if (!undef) {
474     symbol_iterator SI = RelRef.getSymbol();
475     const Elf_Sym *symb = Obj->getSymbol(SI->getRawDataRefImpl());
476     if (symb->getType() == ELF::STT_SECTION) {
477       Expected<section_iterator> SymSI = SI->getSection();
478       if (!SymSI)
479         return errorToErrorCode(SymSI.takeError());
480       const Elf_Shdr *SymSec = Obj->getSection((*SymSI)->getRawDataRefImpl());
481       auto SecName = EF.getSectionName(SymSec);
482       if (!SecName)
483         return errorToErrorCode(SecName.takeError());
484       Target = *SecName;
485     } else {
486       Expected<StringRef> SymName = symb->getName(StrTab);
487       if (!SymName)
488         return errorToErrorCode(SymName.takeError());
489       Target = *SymName;
490     }
491   } else
492     Target = "*ABS*";
493 
494   // Default scheme is to print Target, as well as "+ <addend>" for nonzero
495   // addend. Should be acceptable for all normal purposes.
496   std::string fmtbuf;
497   raw_string_ostream fmt(fmtbuf);
498   fmt << Target;
499   if (addend != 0)
500     fmt << (addend < 0 ? "" : "+") << addend;
501   fmt.flush();
502   Result.append(fmtbuf.begin(), fmtbuf.end());
503   return std::error_code();
504 }
505 
506 static std::error_code getRelocationValueString(const ELFObjectFileBase *Obj,
507                                                 const RelocationRef &Rel,
508                                                 SmallVectorImpl<char> &Result) {
509   if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj))
510     return getRelocationValueString(ELF32LE, Rel, Result);
511   if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj))
512     return getRelocationValueString(ELF64LE, Rel, Result);
513   if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj))
514     return getRelocationValueString(ELF32BE, Rel, Result);
515   auto *ELF64BE = cast<ELF64BEObjectFile>(Obj);
516   return getRelocationValueString(ELF64BE, Rel, Result);
517 }
518 
519 static std::error_code getRelocationValueString(const COFFObjectFile *Obj,
520                                                 const RelocationRef &Rel,
521                                                 SmallVectorImpl<char> &Result) {
522   symbol_iterator SymI = Rel.getSymbol();
523   Expected<StringRef> SymNameOrErr = SymI->getName();
524   if (!SymNameOrErr)
525     return errorToErrorCode(SymNameOrErr.takeError());
526   StringRef SymName = *SymNameOrErr;
527   Result.append(SymName.begin(), SymName.end());
528   return std::error_code();
529 }
530 
531 static void printRelocationTargetName(const MachOObjectFile *O,
532                                       const MachO::any_relocation_info &RE,
533                                       raw_string_ostream &fmt) {
534   bool IsScattered = O->isRelocationScattered(RE);
535 
536   // Target of a scattered relocation is an address.  In the interest of
537   // generating pretty output, scan through the symbol table looking for a
538   // symbol that aligns with that address.  If we find one, print it.
539   // Otherwise, we just print the hex address of the target.
540   if (IsScattered) {
541     uint32_t Val = O->getPlainRelocationSymbolNum(RE);
542 
543     for (const SymbolRef &Symbol : O->symbols()) {
544       std::error_code ec;
545       Expected<uint64_t> Addr = Symbol.getAddress();
546       if (!Addr)
547         report_error(O->getFileName(), Addr.takeError());
548       if (*Addr != Val)
549         continue;
550       Expected<StringRef> Name = Symbol.getName();
551       if (!Name)
552         report_error(O->getFileName(), Name.takeError());
553       fmt << *Name;
554       return;
555     }
556 
557     // If we couldn't find a symbol that this relocation refers to, try
558     // to find a section beginning instead.
559     for (const SectionRef &Section : ToolSectionFilter(*O)) {
560       std::error_code ec;
561 
562       StringRef Name;
563       uint64_t Addr = Section.getAddress();
564       if (Addr != Val)
565         continue;
566       if ((ec = Section.getName(Name)))
567         report_error(O->getFileName(), ec);
568       fmt << Name;
569       return;
570     }
571 
572     fmt << format("0x%x", Val);
573     return;
574   }
575 
576   StringRef S;
577   bool isExtern = O->getPlainRelocationExternal(RE);
578   uint64_t Val = O->getPlainRelocationSymbolNum(RE);
579 
580   if (O->getAnyRelocationType(RE) == MachO::ARM64_RELOC_ADDEND) {
581     fmt << format("0x%0" PRIx64, Val);
582     return;
583   } else if (isExtern) {
584     symbol_iterator SI = O->symbol_begin();
585     advance(SI, Val);
586     Expected<StringRef> SOrErr = SI->getName();
587     if (!SOrErr)
588       report_error(O->getFileName(), SOrErr.takeError());
589     S = *SOrErr;
590   } else {
591     section_iterator SI = O->section_begin();
592     // Adjust for the fact that sections are 1-indexed.
593     if (Val == 0) {
594       fmt << "0 (?,?)";
595       return;
596     }
597     uint32_t i = Val - 1;
598     while (i != 0 && SI != O->section_end()) {
599       i--;
600       advance(SI, 1);
601     }
602     if (SI == O->section_end())
603       fmt << Val << " (?,?)";
604     else
605       SI->getName(S);
606   }
607 
608   fmt << S;
609 }
610 
611 static std::error_code getRelocationValueString(const WasmObjectFile *Obj,
612                                                 const RelocationRef &RelRef,
613                                                 SmallVectorImpl<char> &Result) {
614   const wasm::WasmRelocation& Rel = Obj->getWasmRelocation(RelRef);
615   symbol_iterator SI = RelRef.getSymbol();
616   std::string fmtbuf;
617   raw_string_ostream fmt(fmtbuf);
618   if (SI == Obj->symbol_end()) {
619     // Not all wasm relocations have symbols associated with them.
620     // In particular R_WEBASSEMBLY_TYPE_INDEX_LEB.
621     fmt << Rel.Index;
622   } else {
623     Expected<StringRef> SymNameOrErr = SI->getName();
624     if (!SymNameOrErr)
625       return errorToErrorCode(SymNameOrErr.takeError());
626     StringRef SymName = *SymNameOrErr;
627     Result.append(SymName.begin(), SymName.end());
628   }
629   fmt << (Rel.Addend < 0 ? "" : "+") << Rel.Addend;
630   fmt.flush();
631   Result.append(fmtbuf.begin(), fmtbuf.end());
632   return std::error_code();
633 }
634 
635 static std::error_code getRelocationValueString(const MachOObjectFile *Obj,
636                                                 const RelocationRef &RelRef,
637                                                 SmallVectorImpl<char> &Result) {
638   DataRefImpl Rel = RelRef.getRawDataRefImpl();
639   MachO::any_relocation_info RE = Obj->getRelocation(Rel);
640 
641   unsigned Arch = Obj->getArch();
642 
643   std::string fmtbuf;
644   raw_string_ostream fmt(fmtbuf);
645   unsigned Type = Obj->getAnyRelocationType(RE);
646   bool IsPCRel = Obj->getAnyRelocationPCRel(RE);
647 
648   // Determine any addends that should be displayed with the relocation.
649   // These require decoding the relocation type, which is triple-specific.
650 
651   // X86_64 has entirely custom relocation types.
652   if (Arch == Triple::x86_64) {
653     bool isPCRel = Obj->getAnyRelocationPCRel(RE);
654 
655     switch (Type) {
656     case MachO::X86_64_RELOC_GOT_LOAD:
657     case MachO::X86_64_RELOC_GOT: {
658       printRelocationTargetName(Obj, RE, fmt);
659       fmt << "@GOT";
660       if (isPCRel)
661         fmt << "PCREL";
662       break;
663     }
664     case MachO::X86_64_RELOC_SUBTRACTOR: {
665       DataRefImpl RelNext = Rel;
666       Obj->moveRelocationNext(RelNext);
667       MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
668 
669       // X86_64_RELOC_SUBTRACTOR must be followed by a relocation of type
670       // X86_64_RELOC_UNSIGNED.
671       // NOTE: Scattered relocations don't exist on x86_64.
672       unsigned RType = Obj->getAnyRelocationType(RENext);
673       if (RType != MachO::X86_64_RELOC_UNSIGNED)
674         report_error(Obj->getFileName(), "Expected X86_64_RELOC_UNSIGNED after "
675                      "X86_64_RELOC_SUBTRACTOR.");
676 
677       // The X86_64_RELOC_UNSIGNED contains the minuend symbol;
678       // X86_64_RELOC_SUBTRACTOR contains the subtrahend.
679       printRelocationTargetName(Obj, RENext, fmt);
680       fmt << "-";
681       printRelocationTargetName(Obj, RE, fmt);
682       break;
683     }
684     case MachO::X86_64_RELOC_TLV:
685       printRelocationTargetName(Obj, RE, fmt);
686       fmt << "@TLV";
687       if (isPCRel)
688         fmt << "P";
689       break;
690     case MachO::X86_64_RELOC_SIGNED_1:
691       printRelocationTargetName(Obj, RE, fmt);
692       fmt << "-1";
693       break;
694     case MachO::X86_64_RELOC_SIGNED_2:
695       printRelocationTargetName(Obj, RE, fmt);
696       fmt << "-2";
697       break;
698     case MachO::X86_64_RELOC_SIGNED_4:
699       printRelocationTargetName(Obj, RE, fmt);
700       fmt << "-4";
701       break;
702     default:
703       printRelocationTargetName(Obj, RE, fmt);
704       break;
705     }
706     // X86 and ARM share some relocation types in common.
707   } else if (Arch == Triple::x86 || Arch == Triple::arm ||
708              Arch == Triple::ppc) {
709     // Generic relocation types...
710     switch (Type) {
711     case MachO::GENERIC_RELOC_PAIR: // prints no info
712       return std::error_code();
713     case MachO::GENERIC_RELOC_SECTDIFF: {
714       DataRefImpl RelNext = Rel;
715       Obj->moveRelocationNext(RelNext);
716       MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
717 
718       // X86 sect diff's must be followed by a relocation of type
719       // GENERIC_RELOC_PAIR.
720       unsigned RType = Obj->getAnyRelocationType(RENext);
721 
722       if (RType != MachO::GENERIC_RELOC_PAIR)
723         report_error(Obj->getFileName(), "Expected GENERIC_RELOC_PAIR after "
724                      "GENERIC_RELOC_SECTDIFF.");
725 
726       printRelocationTargetName(Obj, RE, fmt);
727       fmt << "-";
728       printRelocationTargetName(Obj, RENext, fmt);
729       break;
730     }
731     }
732 
733     if (Arch == Triple::x86 || Arch == Triple::ppc) {
734       switch (Type) {
735       case MachO::GENERIC_RELOC_LOCAL_SECTDIFF: {
736         DataRefImpl RelNext = Rel;
737         Obj->moveRelocationNext(RelNext);
738         MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
739 
740         // X86 sect diff's must be followed by a relocation of type
741         // GENERIC_RELOC_PAIR.
742         unsigned RType = Obj->getAnyRelocationType(RENext);
743         if (RType != MachO::GENERIC_RELOC_PAIR)
744           report_error(Obj->getFileName(), "Expected GENERIC_RELOC_PAIR after "
745                        "GENERIC_RELOC_LOCAL_SECTDIFF.");
746 
747         printRelocationTargetName(Obj, RE, fmt);
748         fmt << "-";
749         printRelocationTargetName(Obj, RENext, fmt);
750         break;
751       }
752       case MachO::GENERIC_RELOC_TLV: {
753         printRelocationTargetName(Obj, RE, fmt);
754         fmt << "@TLV";
755         if (IsPCRel)
756           fmt << "P";
757         break;
758       }
759       default:
760         printRelocationTargetName(Obj, RE, fmt);
761       }
762     } else { // ARM-specific relocations
763       switch (Type) {
764       case MachO::ARM_RELOC_HALF:
765       case MachO::ARM_RELOC_HALF_SECTDIFF: {
766         // Half relocations steal a bit from the length field to encode
767         // whether this is an upper16 or a lower16 relocation.
768         bool isUpper = (Obj->getAnyRelocationLength(RE) & 0x1) == 1;
769 
770         if (isUpper)
771           fmt << ":upper16:(";
772         else
773           fmt << ":lower16:(";
774         printRelocationTargetName(Obj, RE, fmt);
775 
776         DataRefImpl RelNext = Rel;
777         Obj->moveRelocationNext(RelNext);
778         MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
779 
780         // ARM half relocs must be followed by a relocation of type
781         // ARM_RELOC_PAIR.
782         unsigned RType = Obj->getAnyRelocationType(RENext);
783         if (RType != MachO::ARM_RELOC_PAIR)
784           report_error(Obj->getFileName(), "Expected ARM_RELOC_PAIR after "
785                        "ARM_RELOC_HALF");
786 
787         // NOTE: The half of the target virtual address is stashed in the
788         // address field of the secondary relocation, but we can't reverse
789         // engineer the constant offset from it without decoding the movw/movt
790         // instruction to find the other half in its immediate field.
791 
792         // ARM_RELOC_HALF_SECTDIFF encodes the second section in the
793         // symbol/section pointer of the follow-on relocation.
794         if (Type == MachO::ARM_RELOC_HALF_SECTDIFF) {
795           fmt << "-";
796           printRelocationTargetName(Obj, RENext, fmt);
797         }
798 
799         fmt << ")";
800         break;
801       }
802       default: { printRelocationTargetName(Obj, RE, fmt); }
803       }
804     }
805   } else
806     printRelocationTargetName(Obj, RE, fmt);
807 
808   fmt.flush();
809   Result.append(fmtbuf.begin(), fmtbuf.end());
810   return std::error_code();
811 }
812 
813 static std::error_code getRelocationValueString(const RelocationRef &Rel,
814                                                 SmallVectorImpl<char> &Result) {
815   const ObjectFile *Obj = Rel.getObject();
816   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
817     return getRelocationValueString(ELF, Rel, Result);
818   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
819     return getRelocationValueString(COFF, Rel, Result);
820   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
821     return getRelocationValueString(Wasm, Rel, Result);
822   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
823     return getRelocationValueString(MachO, Rel, Result);
824   llvm_unreachable("unknown object file format");
825 }
826 
827 /// Indicates whether this relocation should hidden when listing
828 /// relocations, usually because it is the trailing part of a multipart
829 /// relocation that will be printed as part of the leading relocation.
830 static bool getHidden(RelocationRef RelRef) {
831   const ObjectFile *Obj = RelRef.getObject();
832   auto *MachO = dyn_cast<MachOObjectFile>(Obj);
833   if (!MachO)
834     return false;
835 
836   unsigned Arch = MachO->getArch();
837   DataRefImpl Rel = RelRef.getRawDataRefImpl();
838   uint64_t Type = MachO->getRelocationType(Rel);
839 
840   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
841   // is always hidden.
842   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) {
843     if (Type == MachO::GENERIC_RELOC_PAIR)
844       return true;
845   } else if (Arch == Triple::x86_64) {
846     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
847     // an X86_64_RELOC_SUBTRACTOR.
848     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
849       DataRefImpl RelPrev = Rel;
850       RelPrev.d.a--;
851       uint64_t PrevType = MachO->getRelocationType(RelPrev);
852       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
853         return true;
854     }
855   }
856 
857   return false;
858 }
859 
860 namespace {
861 class SourcePrinter {
862 protected:
863   DILineInfo OldLineInfo;
864   const ObjectFile *Obj = nullptr;
865   std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
866   // File name to file contents of source
867   std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache;
868   // Mark the line endings of the cached source
869   std::unordered_map<std::string, std::vector<StringRef>> LineCache;
870 
871 private:
872   bool cacheSource(const DILineInfo& LineInfoFile);
873 
874 public:
875   SourcePrinter() = default;
876   SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch) : Obj(Obj) {
877     symbolize::LLVMSymbolizer::Options SymbolizerOpts(
878         DILineInfoSpecifier::FunctionNameKind::None, true, false, false,
879         DefaultArch);
880     Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts));
881   }
882   virtual ~SourcePrinter() = default;
883   virtual void printSourceLine(raw_ostream &OS, uint64_t Address,
884                                StringRef Delimiter = "; ");
885 };
886 
887 bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) {
888   std::unique_ptr<MemoryBuffer> Buffer;
889   if (LineInfo.Source) {
890     Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source);
891   } else {
892     auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName);
893     if (!BufferOrError)
894       return false;
895     Buffer = std::move(*BufferOrError);
896   }
897   // Chomp the file to get lines
898   size_t BufferSize = Buffer->getBufferSize();
899   const char *BufferStart = Buffer->getBufferStart();
900   for (const char *Start = BufferStart, *End = BufferStart;
901        End < BufferStart + BufferSize; End++)
902     if (*End == '\n' || End == BufferStart + BufferSize - 1 ||
903         (*End == '\r' && *(End + 1) == '\n')) {
904       LineCache[LineInfo.FileName].push_back(StringRef(Start, End - Start));
905       if (*End == '\r')
906         End++;
907       Start = End + 1;
908     }
909   SourceCache[LineInfo.FileName] = std::move(Buffer);
910   return true;
911 }
912 
913 void SourcePrinter::printSourceLine(raw_ostream &OS, uint64_t Address,
914                                     StringRef Delimiter) {
915   if (!Symbolizer)
916     return;
917   DILineInfo LineInfo = DILineInfo();
918   auto ExpectecLineInfo =
919       Symbolizer->symbolizeCode(Obj->getFileName(), Address);
920   if (!ExpectecLineInfo)
921     consumeError(ExpectecLineInfo.takeError());
922   else
923     LineInfo = *ExpectecLineInfo;
924 
925   if ((LineInfo.FileName == "<invalid>") || OldLineInfo.Line == LineInfo.Line ||
926       LineInfo.Line == 0)
927     return;
928 
929   if (PrintLines)
930     OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line << "\n";
931   if (PrintSource) {
932     if (SourceCache.find(LineInfo.FileName) == SourceCache.end())
933       if (!cacheSource(LineInfo))
934         return;
935     auto FileBuffer = SourceCache.find(LineInfo.FileName);
936     if (FileBuffer != SourceCache.end()) {
937       auto LineBuffer = LineCache.find(LineInfo.FileName);
938       if (LineBuffer != LineCache.end()) {
939         if (LineInfo.Line > LineBuffer->second.size())
940           return;
941         // Vector begins at 0, line numbers are non-zero
942         OS << Delimiter << LineBuffer->second[LineInfo.Line - 1].ltrim()
943            << "\n";
944       }
945     }
946   }
947   OldLineInfo = LineInfo;
948 }
949 
950 static bool isArmElf(const ObjectFile *Obj) {
951   return (Obj->isELF() &&
952           (Obj->getArch() == Triple::aarch64 ||
953            Obj->getArch() == Triple::aarch64_be ||
954            Obj->getArch() == Triple::arm || Obj->getArch() == Triple::armeb ||
955            Obj->getArch() == Triple::thumb ||
956            Obj->getArch() == Triple::thumbeb));
957 }
958 
959 class PrettyPrinter {
960 public:
961   virtual ~PrettyPrinter() = default;
962   virtual void printInst(MCInstPrinter &IP, const MCInst *MI,
963                          ArrayRef<uint8_t> Bytes, uint64_t Address,
964                          raw_ostream &OS, StringRef Annot,
965                          MCSubtargetInfo const &STI, SourcePrinter *SP,
966                          std::vector<RelocationRef> *Rels = nullptr) {
967     if (SP && (PrintSource || PrintLines))
968       SP->printSourceLine(OS, Address);
969     if (!NoLeadingAddr)
970       OS << format("%8" PRIx64 ":", Address);
971     if (!NoShowRawInsn) {
972       OS << "\t";
973       dumpBytes(Bytes, OS);
974     }
975     if (MI)
976       IP.printInst(MI, OS, "", STI);
977     else
978       OS << " <unknown>";
979   }
980 };
981 PrettyPrinter PrettyPrinterInst;
982 class HexagonPrettyPrinter : public PrettyPrinter {
983 public:
984   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
985                  raw_ostream &OS) {
986     uint32_t opcode =
987       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
988     if (!NoLeadingAddr)
989       OS << format("%8" PRIx64 ":", Address);
990     if (!NoShowRawInsn) {
991       OS << "\t";
992       dumpBytes(Bytes.slice(0, 4), OS);
993       OS << format("%08" PRIx32, opcode);
994     }
995   }
996   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
997                  uint64_t Address, raw_ostream &OS, StringRef Annot,
998                  MCSubtargetInfo const &STI, SourcePrinter *SP,
999                  std::vector<RelocationRef> *Rels) override {
1000     if (SP && (PrintSource || PrintLines))
1001       SP->printSourceLine(OS, Address, "");
1002     if (!MI) {
1003       printLead(Bytes, Address, OS);
1004       OS << " <unknown>";
1005       return;
1006     }
1007     std::string Buffer;
1008     {
1009       raw_string_ostream TempStream(Buffer);
1010       IP.printInst(MI, TempStream, "", STI);
1011     }
1012     StringRef Contents(Buffer);
1013     // Split off bundle attributes
1014     auto PacketBundle = Contents.rsplit('\n');
1015     // Split off first instruction from the rest
1016     auto HeadTail = PacketBundle.first.split('\n');
1017     auto Preamble = " { ";
1018     auto Separator = "";
1019     StringRef Fmt = "\t\t\t%08" PRIx64 ":  ";
1020     std::vector<RelocationRef>::const_iterator rel_cur = Rels->begin();
1021     std::vector<RelocationRef>::const_iterator rel_end = Rels->end();
1022 
1023     // Hexagon's packets require relocations to be inline rather than
1024     // clustered at the end of the packet.
1025     auto PrintReloc = [&]() -> void {
1026       while ((rel_cur != rel_end) && (rel_cur->getOffset() <= Address)) {
1027         if (rel_cur->getOffset() == Address) {
1028           SmallString<16> name;
1029           SmallString<32> val;
1030           rel_cur->getTypeName(name);
1031           error(getRelocationValueString(*rel_cur, val));
1032           OS << Separator << format(Fmt.data(), Address) << name << "\t" << val
1033                 << "\n";
1034           return;
1035         }
1036         rel_cur++;
1037       }
1038     };
1039 
1040     while(!HeadTail.first.empty()) {
1041       OS << Separator;
1042       Separator = "\n";
1043       if (SP && (PrintSource || PrintLines))
1044         SP->printSourceLine(OS, Address, "");
1045       printLead(Bytes, Address, OS);
1046       OS << Preamble;
1047       Preamble = "   ";
1048       StringRef Inst;
1049       auto Duplex = HeadTail.first.split('\v');
1050       if(!Duplex.second.empty()){
1051         OS << Duplex.first;
1052         OS << "; ";
1053         Inst = Duplex.second;
1054       }
1055       else
1056         Inst = HeadTail.first;
1057       OS << Inst;
1058       HeadTail = HeadTail.second.split('\n');
1059       if (HeadTail.first.empty())
1060         OS << " } " << PacketBundle.second;
1061       PrintReloc();
1062       Bytes = Bytes.slice(4);
1063       Address += 4;
1064     }
1065   }
1066 };
1067 HexagonPrettyPrinter HexagonPrettyPrinterInst;
1068 
1069 class AMDGCNPrettyPrinter : public PrettyPrinter {
1070 public:
1071   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
1072                  uint64_t Address, raw_ostream &OS, StringRef Annot,
1073                  MCSubtargetInfo const &STI, SourcePrinter *SP,
1074                  std::vector<RelocationRef> *Rels) override {
1075     if (SP && (PrintSource || PrintLines))
1076       SP->printSourceLine(OS, Address);
1077 
1078     typedef support::ulittle32_t U32;
1079 
1080     if (MI) {
1081       SmallString<40> InstStr;
1082       raw_svector_ostream IS(InstStr);
1083 
1084       IP.printInst(MI, IS, "", STI);
1085 
1086       OS << left_justify(IS.str(), 60);
1087     } else {
1088       // an unrecognized encoding - this is probably data so represent it
1089       // using the .long directive, or .byte directive if fewer than 4 bytes
1090       // remaining
1091       if (Bytes.size() >= 4) {
1092         OS << format("\t.long 0x%08" PRIx32 " ",
1093                      static_cast<uint32_t>(*reinterpret_cast<const U32*>(Bytes.data())));
1094         OS.indent(42);
1095       } else {
1096           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
1097           for (unsigned int i = 1; i < Bytes.size(); i++)
1098             OS << format(", 0x%02" PRIx8, Bytes[i]);
1099           OS.indent(55 - (6 * Bytes.size()));
1100       }
1101     }
1102 
1103     OS << format("// %012" PRIX64 ": ", Address);
1104     if (Bytes.size() >=4) {
1105       for (auto D : makeArrayRef(reinterpret_cast<const U32*>(Bytes.data()),
1106                                  Bytes.size() / sizeof(U32)))
1107         // D should be explicitly casted to uint32_t here as it is passed
1108         // by format to snprintf as vararg.
1109         OS << format("%08" PRIX32 " ", static_cast<uint32_t>(D));
1110     } else {
1111       for (unsigned int i = 0; i < Bytes.size(); i++)
1112         OS << format("%02" PRIX8 " ", Bytes[i]);
1113     }
1114 
1115     if (!Annot.empty())
1116       OS << "// " << Annot;
1117   }
1118 };
1119 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
1120 
1121 class BPFPrettyPrinter : public PrettyPrinter {
1122 public:
1123   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
1124                  uint64_t Address, raw_ostream &OS, StringRef Annot,
1125                  MCSubtargetInfo const &STI, SourcePrinter *SP,
1126                  std::vector<RelocationRef> *Rels) override {
1127     if (SP && (PrintSource || PrintLines))
1128       SP->printSourceLine(OS, Address);
1129     if (!NoLeadingAddr)
1130       OS << format("%8" PRId64 ":", Address / 8);
1131     if (!NoShowRawInsn) {
1132       OS << "\t";
1133       dumpBytes(Bytes, OS);
1134     }
1135     if (MI)
1136       IP.printInst(MI, OS, "", STI);
1137     else
1138       OS << " <unknown>";
1139   }
1140 };
1141 BPFPrettyPrinter BPFPrettyPrinterInst;
1142 
1143 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
1144   switch(Triple.getArch()) {
1145   default:
1146     return PrettyPrinterInst;
1147   case Triple::hexagon:
1148     return HexagonPrettyPrinterInst;
1149   case Triple::amdgcn:
1150     return AMDGCNPrettyPrinterInst;
1151   case Triple::bpfel:
1152   case Triple::bpfeb:
1153     return BPFPrettyPrinterInst;
1154   }
1155 }
1156 }
1157 
1158 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
1159   assert(Obj->isELF());
1160   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
1161     return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1162   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
1163     return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1164   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
1165     return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1166   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
1167     return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1168   llvm_unreachable("Unsupported binary format");
1169 }
1170 
1171 template <class ELFT> static void
1172 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
1173                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1174   for (auto Symbol : Obj->getDynamicSymbolIterators()) {
1175     uint8_t SymbolType = Symbol.getELFType();
1176     if (SymbolType != ELF::STT_FUNC || Symbol.getSize() == 0)
1177       continue;
1178 
1179     Expected<uint64_t> AddressOrErr = Symbol.getAddress();
1180     if (!AddressOrErr)
1181       report_error(Obj->getFileName(), AddressOrErr.takeError());
1182     uint64_t Address = *AddressOrErr;
1183 
1184     Expected<StringRef> Name = Symbol.getName();
1185     if (!Name)
1186       report_error(Obj->getFileName(), Name.takeError());
1187     if (Name->empty())
1188       continue;
1189 
1190     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1191     if (!SectionOrErr)
1192       report_error(Obj->getFileName(), SectionOrErr.takeError());
1193     section_iterator SecI = *SectionOrErr;
1194     if (SecI == Obj->section_end())
1195       continue;
1196 
1197     AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType);
1198   }
1199 }
1200 
1201 static void
1202 addDynamicElfSymbols(const ObjectFile *Obj,
1203                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1204   assert(Obj->isELF());
1205   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
1206     addDynamicElfSymbols(Elf32LEObj, AllSymbols);
1207   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
1208     addDynamicElfSymbols(Elf64LEObj, AllSymbols);
1209   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
1210     addDynamicElfSymbols(Elf32BEObj, AllSymbols);
1211   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
1212     addDynamicElfSymbols(Elf64BEObj, AllSymbols);
1213   else
1214     llvm_unreachable("Unsupported binary format");
1215 }
1216 
1217 static void DisassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
1218   if (StartAddress > StopAddress)
1219     error("Start address should be less than stop address");
1220 
1221   const Target *TheTarget = getTarget(Obj);
1222 
1223   // Package up features to be passed to target/subtarget
1224   SubtargetFeatures Features = Obj->getFeatures();
1225   if (MAttrs.size()) {
1226     for (unsigned i = 0; i != MAttrs.size(); ++i)
1227       Features.AddFeature(MAttrs[i]);
1228   }
1229 
1230   std::unique_ptr<const MCRegisterInfo> MRI(
1231       TheTarget->createMCRegInfo(TripleName));
1232   if (!MRI)
1233     report_error(Obj->getFileName(), "no register info for target " +
1234                  TripleName);
1235 
1236   // Set up disassembler.
1237   std::unique_ptr<const MCAsmInfo> AsmInfo(
1238       TheTarget->createMCAsmInfo(*MRI, TripleName));
1239   if (!AsmInfo)
1240     report_error(Obj->getFileName(), "no assembly info for target " +
1241                  TripleName);
1242   std::unique_ptr<const MCSubtargetInfo> STI(
1243       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1244   if (!STI)
1245     report_error(Obj->getFileName(), "no subtarget info for target " +
1246                  TripleName);
1247   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
1248   if (!MII)
1249     report_error(Obj->getFileName(), "no instruction info for target " +
1250                  TripleName);
1251   MCObjectFileInfo MOFI;
1252   MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI);
1253   // FIXME: for now initialize MCObjectFileInfo with default values
1254   MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx);
1255 
1256   std::unique_ptr<MCDisassembler> DisAsm(
1257     TheTarget->createMCDisassembler(*STI, Ctx));
1258   if (!DisAsm)
1259     report_error(Obj->getFileName(), "no disassembler for target " +
1260                  TripleName);
1261 
1262   std::unique_ptr<const MCInstrAnalysis> MIA(
1263       TheTarget->createMCInstrAnalysis(MII.get()));
1264 
1265   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1266   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
1267       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
1268   if (!IP)
1269     report_error(Obj->getFileName(), "no instruction printer for target " +
1270                  TripleName);
1271   IP->setPrintImmHex(PrintImmHex);
1272   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
1273 
1274   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "\t\t%016" PRIx64 ":  " :
1275                                                  "\t\t\t%08" PRIx64 ":  ";
1276 
1277   SourcePrinter SP(Obj, TheTarget->getName());
1278 
1279   // Create a mapping, RelocSecs = SectionRelocMap[S], where sections
1280   // in RelocSecs contain the relocations for section S.
1281   std::error_code EC;
1282   std::map<SectionRef, SmallVector<SectionRef, 1>> SectionRelocMap;
1283   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1284     section_iterator Sec2 = Section.getRelocatedSection();
1285     if (Sec2 != Obj->section_end())
1286       SectionRelocMap[*Sec2].push_back(Section);
1287   }
1288 
1289   // Create a mapping from virtual address to symbol name.  This is used to
1290   // pretty print the symbols while disassembling.
1291   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1292   SectionSymbolsTy AbsoluteSymbols;
1293   for (const SymbolRef &Symbol : Obj->symbols()) {
1294     Expected<uint64_t> AddressOrErr = Symbol.getAddress();
1295     if (!AddressOrErr)
1296       report_error(Obj->getFileName(), AddressOrErr.takeError());
1297     uint64_t Address = *AddressOrErr;
1298 
1299     Expected<StringRef> Name = Symbol.getName();
1300     if (!Name)
1301       report_error(Obj->getFileName(), Name.takeError());
1302     if (Name->empty())
1303       continue;
1304 
1305     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1306     if (!SectionOrErr)
1307       report_error(Obj->getFileName(), SectionOrErr.takeError());
1308 
1309     uint8_t SymbolType = ELF::STT_NOTYPE;
1310     if (Obj->isELF())
1311       SymbolType = getElfSymbolType(Obj, Symbol);
1312 
1313     section_iterator SecI = *SectionOrErr;
1314     if (SecI != Obj->section_end())
1315       AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType);
1316     else
1317       AbsoluteSymbols.emplace_back(Address, *Name, SymbolType);
1318 
1319 
1320   }
1321   if (AllSymbols.empty() && Obj->isELF())
1322     addDynamicElfSymbols(Obj, AllSymbols);
1323 
1324   // Create a mapping from virtual address to section.
1325   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1326   for (SectionRef Sec : Obj->sections())
1327     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1328   array_pod_sort(SectionAddresses.begin(), SectionAddresses.end());
1329 
1330   // Linked executables (.exe and .dll files) typically don't include a real
1331   // symbol table but they might contain an export table.
1332   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
1333     for (const auto &ExportEntry : COFFObj->export_directories()) {
1334       StringRef Name;
1335       error(ExportEntry.getSymbolName(Name));
1336       if (Name.empty())
1337         continue;
1338       uint32_t RVA;
1339       error(ExportEntry.getExportRVA(RVA));
1340 
1341       uint64_t VA = COFFObj->getImageBase() + RVA;
1342       auto Sec = std::upper_bound(
1343           SectionAddresses.begin(), SectionAddresses.end(), VA,
1344           [](uint64_t LHS, const std::pair<uint64_t, SectionRef> &RHS) {
1345             return LHS < RHS.first;
1346           });
1347       if (Sec != SectionAddresses.begin())
1348         --Sec;
1349       else
1350         Sec = SectionAddresses.end();
1351 
1352       if (Sec != SectionAddresses.end())
1353         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1354       else
1355         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1356     }
1357   }
1358 
1359   // Sort all the symbols, this allows us to use a simple binary search to find
1360   // a symbol near an address.
1361   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1362     array_pod_sort(SecSyms.second.begin(), SecSyms.second.end());
1363   array_pod_sort(AbsoluteSymbols.begin(), AbsoluteSymbols.end());
1364 
1365   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1366     if (!DisassembleAll && (!Section.isText() || Section.isVirtual()))
1367       continue;
1368 
1369     uint64_t SectionAddr = Section.getAddress();
1370     uint64_t SectSize = Section.getSize();
1371     if (!SectSize)
1372       continue;
1373 
1374     // Get the list of all the symbols in this section.
1375     SectionSymbolsTy &Symbols = AllSymbols[Section];
1376     std::vector<uint64_t> DataMappingSymsAddr;
1377     std::vector<uint64_t> TextMappingSymsAddr;
1378     if (isArmElf(Obj)) {
1379       for (const auto &Symb : Symbols) {
1380         uint64_t Address = std::get<0>(Symb);
1381         StringRef Name = std::get<1>(Symb);
1382         if (Name.startswith("$d"))
1383           DataMappingSymsAddr.push_back(Address - SectionAddr);
1384         if (Name.startswith("$x"))
1385           TextMappingSymsAddr.push_back(Address - SectionAddr);
1386         if (Name.startswith("$a"))
1387           TextMappingSymsAddr.push_back(Address - SectionAddr);
1388         if (Name.startswith("$t"))
1389           TextMappingSymsAddr.push_back(Address - SectionAddr);
1390       }
1391     }
1392 
1393     llvm::sort(DataMappingSymsAddr.begin(), DataMappingSymsAddr.end());
1394     llvm::sort(TextMappingSymsAddr.begin(), TextMappingSymsAddr.end());
1395 
1396     if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1397       // AMDGPU disassembler uses symbolizer for printing labels
1398       std::unique_ptr<MCRelocationInfo> RelInfo(
1399         TheTarget->createMCRelocationInfo(TripleName, Ctx));
1400       if (RelInfo) {
1401         std::unique_ptr<MCSymbolizer> Symbolizer(
1402           TheTarget->createMCSymbolizer(
1403             TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1404         DisAsm->setSymbolizer(std::move(Symbolizer));
1405       }
1406     }
1407 
1408     // Make a list of all the relocations for this section.
1409     std::vector<RelocationRef> Rels;
1410     if (InlineRelocs) {
1411       for (const SectionRef &RelocSec : SectionRelocMap[Section]) {
1412         for (const RelocationRef &Reloc : RelocSec.relocations()) {
1413           Rels.push_back(Reloc);
1414         }
1415       }
1416     }
1417 
1418     // Sort relocations by address.
1419     llvm::sort(Rels.begin(), Rels.end(), RelocAddressLess);
1420 
1421     StringRef SegmentName = "";
1422     if (const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj)) {
1423       DataRefImpl DR = Section.getRawDataRefImpl();
1424       SegmentName = MachO->getSectionFinalSegmentName(DR);
1425     }
1426     StringRef SectionName;
1427     error(Section.getName(SectionName));
1428 
1429     // If the section has no symbol at the start, just insert a dummy one.
1430     if (Symbols.empty() || std::get<0>(Symbols[0]) != 0) {
1431       Symbols.insert(
1432           Symbols.begin(),
1433           std::make_tuple(SectionAddr, SectionName,
1434                           Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT));
1435     }
1436 
1437     SmallString<40> Comments;
1438     raw_svector_ostream CommentStream(Comments);
1439 
1440     StringRef BytesStr;
1441     error(Section.getContents(BytesStr));
1442     ArrayRef<uint8_t> Bytes(reinterpret_cast<const uint8_t *>(BytesStr.data()),
1443                             BytesStr.size());
1444 
1445     uint64_t Size;
1446     uint64_t Index;
1447     bool PrintedSection = false;
1448 
1449     std::vector<RelocationRef>::const_iterator rel_cur = Rels.begin();
1450     std::vector<RelocationRef>::const_iterator rel_end = Rels.end();
1451     // Disassemble symbol by symbol.
1452     for (unsigned si = 0, se = Symbols.size(); si != se; ++si) {
1453       uint64_t Start = std::get<0>(Symbols[si]) - SectionAddr;
1454       // The end is either the section end or the beginning of the next
1455       // symbol.
1456       uint64_t End =
1457           (si == se - 1) ? SectSize : std::get<0>(Symbols[si + 1]) - SectionAddr;
1458       // Don't try to disassemble beyond the end of section contents.
1459       if (End > SectSize)
1460         End = SectSize;
1461       // If this symbol has the same address as the next symbol, then skip it.
1462       if (Start >= End)
1463         continue;
1464 
1465       // Check if we need to skip symbol
1466       // Skip if the symbol's data is not between StartAddress and StopAddress
1467       if (End + SectionAddr < StartAddress ||
1468           Start + SectionAddr > StopAddress) {
1469         continue;
1470       }
1471 
1472       /// Skip if user requested specific symbols and this is not in the list
1473       if (!DisasmFuncsSet.empty() &&
1474           !DisasmFuncsSet.count(std::get<1>(Symbols[si])))
1475         continue;
1476 
1477       if (!PrintedSection) {
1478         PrintedSection = true;
1479         outs() << "Disassembly of section ";
1480         if (!SegmentName.empty())
1481           outs() << SegmentName << ",";
1482         outs() << SectionName << ':';
1483       }
1484 
1485       // Stop disassembly at the stop address specified
1486       if (End + SectionAddr > StopAddress)
1487         End = StopAddress - SectionAddr;
1488 
1489       if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1490         if (std::get<2>(Symbols[si]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1491           // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes)
1492           Start += 256;
1493         }
1494         if (si == se - 1 ||
1495             std::get<2>(Symbols[si + 1]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1496           // cut trailing zeroes at the end of kernel
1497           // cut up to 256 bytes
1498           const uint64_t EndAlign = 256;
1499           const auto Limit = End - (std::min)(EndAlign, End - Start);
1500           while (End > Limit &&
1501             *reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0)
1502             End -= 4;
1503         }
1504       }
1505 
1506       outs() << '\n' << std::get<1>(Symbols[si]) << ":\n";
1507 
1508       // Don't print raw contents of a virtual section. A virtual section
1509       // doesn't have any contents in the file.
1510       if (Section.isVirtual()) {
1511         outs() << "...\n";
1512         continue;
1513       }
1514 
1515 #ifndef NDEBUG
1516       raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
1517 #else
1518       raw_ostream &DebugOut = nulls();
1519 #endif
1520 
1521       for (Index = Start; Index < End; Index += Size) {
1522         MCInst Inst;
1523 
1524         if (Index + SectionAddr < StartAddress ||
1525             Index + SectionAddr > StopAddress) {
1526           // skip byte by byte till StartAddress is reached
1527           Size = 1;
1528           continue;
1529         }
1530         // AArch64 ELF binaries can interleave data and text in the
1531         // same section. We rely on the markers introduced to
1532         // understand what we need to dump. If the data marker is within a
1533         // function, it is denoted as a word/short etc
1534         if (isArmElf(Obj) && std::get<2>(Symbols[si]) != ELF::STT_OBJECT &&
1535             !DisassembleAll) {
1536           uint64_t Stride = 0;
1537 
1538           auto DAI = std::lower_bound(DataMappingSymsAddr.begin(),
1539                                       DataMappingSymsAddr.end(), Index);
1540           if (DAI != DataMappingSymsAddr.end() && *DAI == Index) {
1541             // Switch to data.
1542             while (Index < End) {
1543               outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1544               outs() << "\t";
1545               if (Index + 4 <= End) {
1546                 Stride = 4;
1547                 dumpBytes(Bytes.slice(Index, 4), outs());
1548                 outs() << "\t.word\t";
1549                 uint32_t Data = 0;
1550                 if (Obj->isLittleEndian()) {
1551                   const auto Word =
1552                       reinterpret_cast<const support::ulittle32_t *>(
1553                           Bytes.data() + Index);
1554                   Data = *Word;
1555                 } else {
1556                   const auto Word = reinterpret_cast<const support::ubig32_t *>(
1557                       Bytes.data() + Index);
1558                   Data = *Word;
1559                 }
1560                 outs() << "0x" << format("%08" PRIx32, Data);
1561               } else if (Index + 2 <= End) {
1562                 Stride = 2;
1563                 dumpBytes(Bytes.slice(Index, 2), outs());
1564                 outs() << "\t\t.short\t";
1565                 uint16_t Data = 0;
1566                 if (Obj->isLittleEndian()) {
1567                   const auto Short =
1568                       reinterpret_cast<const support::ulittle16_t *>(
1569                           Bytes.data() + Index);
1570                   Data = *Short;
1571                 } else {
1572                   const auto Short =
1573                       reinterpret_cast<const support::ubig16_t *>(Bytes.data() +
1574                                                                   Index);
1575                   Data = *Short;
1576                 }
1577                 outs() << "0x" << format("%04" PRIx16, Data);
1578               } else {
1579                 Stride = 1;
1580                 dumpBytes(Bytes.slice(Index, 1), outs());
1581                 outs() << "\t\t.byte\t";
1582                 outs() << "0x" << format("%02" PRIx8, Bytes.slice(Index, 1)[0]);
1583               }
1584               Index += Stride;
1585               outs() << "\n";
1586               auto TAI = std::lower_bound(TextMappingSymsAddr.begin(),
1587                                           TextMappingSymsAddr.end(), Index);
1588               if (TAI != TextMappingSymsAddr.end() && *TAI == Index)
1589                 break;
1590             }
1591           }
1592         }
1593 
1594         // If there is a data symbol inside an ELF text section and we are only
1595         // disassembling text (applicable all architectures),
1596         // we are in a situation where we must print the data and not
1597         // disassemble it.
1598         if (Obj->isELF() && std::get<2>(Symbols[si]) == ELF::STT_OBJECT &&
1599             !DisassembleAll && Section.isText()) {
1600           // print out data up to 8 bytes at a time in hex and ascii
1601           uint8_t AsciiData[9] = {'\0'};
1602           uint8_t Byte;
1603           int NumBytes = 0;
1604 
1605           for (Index = Start; Index < End; Index += 1) {
1606             if (((SectionAddr + Index) < StartAddress) ||
1607                 ((SectionAddr + Index) > StopAddress))
1608               continue;
1609             if (NumBytes == 0) {
1610               outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1611               outs() << "\t";
1612             }
1613             Byte = Bytes.slice(Index)[0];
1614             outs() << format(" %02x", Byte);
1615             AsciiData[NumBytes] = isprint(Byte) ? Byte : '.';
1616 
1617             uint8_t IndentOffset = 0;
1618             NumBytes++;
1619             if (Index == End - 1 || NumBytes > 8) {
1620               // Indent the space for less than 8 bytes data.
1621               // 2 spaces for byte and one for space between bytes
1622               IndentOffset = 3 * (8 - NumBytes);
1623               for (int Excess = 8 - NumBytes; Excess < 8; Excess++)
1624                 AsciiData[Excess] = '\0';
1625               NumBytes = 8;
1626             }
1627             if (NumBytes == 8) {
1628               AsciiData[8] = '\0';
1629               outs() << std::string(IndentOffset, ' ') << "         ";
1630               outs() << reinterpret_cast<char *>(AsciiData);
1631               outs() << '\n';
1632               NumBytes = 0;
1633             }
1634           }
1635         }
1636         if (Index >= End)
1637           break;
1638 
1639         // Disassemble a real instruction or a data when disassemble all is
1640         // provided
1641         bool Disassembled = DisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
1642                                                    SectionAddr + Index, DebugOut,
1643                                                    CommentStream);
1644         if (Size == 0)
1645           Size = 1;
1646 
1647         PIP.printInst(*IP, Disassembled ? &Inst : nullptr,
1648                       Bytes.slice(Index, Size), SectionAddr + Index, outs(), "",
1649                       *STI, &SP, &Rels);
1650         outs() << CommentStream.str();
1651         Comments.clear();
1652 
1653         // Try to resolve the target of a call, tail call, etc. to a specific
1654         // symbol.
1655         if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) ||
1656                     MIA->isConditionalBranch(Inst))) {
1657           uint64_t Target;
1658           if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) {
1659             // In a relocatable object, the target's section must reside in
1660             // the same section as the call instruction or it is accessed
1661             // through a relocation.
1662             //
1663             // In a non-relocatable object, the target may be in any section.
1664             //
1665             // N.B. We don't walk the relocations in the relocatable case yet.
1666             auto *TargetSectionSymbols = &Symbols;
1667             if (!Obj->isRelocatableObject()) {
1668               auto SectionAddress = std::upper_bound(
1669                   SectionAddresses.begin(), SectionAddresses.end(), Target,
1670                   [](uint64_t LHS,
1671                       const std::pair<uint64_t, SectionRef> &RHS) {
1672                     return LHS < RHS.first;
1673                   });
1674               if (SectionAddress != SectionAddresses.begin()) {
1675                 --SectionAddress;
1676                 TargetSectionSymbols = &AllSymbols[SectionAddress->second];
1677               } else {
1678                 TargetSectionSymbols = &AbsoluteSymbols;
1679               }
1680             }
1681 
1682             // Find the first symbol in the section whose offset is less than
1683             // or equal to the target. If there isn't a section that contains
1684             // the target, find the nearest preceding absolute symbol.
1685             auto TargetSym = std::upper_bound(
1686                 TargetSectionSymbols->begin(), TargetSectionSymbols->end(),
1687                 Target, [](uint64_t LHS,
1688                            const std::tuple<uint64_t, StringRef, uint8_t> &RHS) {
1689                   return LHS < std::get<0>(RHS);
1690                 });
1691             if (TargetSym == TargetSectionSymbols->begin()) {
1692               TargetSectionSymbols = &AbsoluteSymbols;
1693               TargetSym = std::upper_bound(
1694                   AbsoluteSymbols.begin(), AbsoluteSymbols.end(),
1695                   Target, [](uint64_t LHS,
1696                              const std::tuple<uint64_t, StringRef, uint8_t> &RHS) {
1697                             return LHS < std::get<0>(RHS);
1698                           });
1699             }
1700             if (TargetSym != TargetSectionSymbols->begin()) {
1701               --TargetSym;
1702               uint64_t TargetAddress = std::get<0>(*TargetSym);
1703               StringRef TargetName = std::get<1>(*TargetSym);
1704               outs() << " <" << TargetName;
1705               uint64_t Disp = Target - TargetAddress;
1706               if (Disp)
1707                 outs() << "+0x" << Twine::utohexstr(Disp);
1708               outs() << '>';
1709             }
1710           }
1711         }
1712         outs() << "\n";
1713 
1714         // Hexagon does this in pretty printer
1715         if (Obj->getArch() != Triple::hexagon)
1716           // Print relocation for instruction.
1717           while (rel_cur != rel_end) {
1718             bool hidden = getHidden(*rel_cur);
1719             uint64_t addr = rel_cur->getOffset();
1720             SmallString<16> name;
1721             SmallString<32> val;
1722 
1723             // If this relocation is hidden, skip it.
1724             if (hidden || ((SectionAddr + addr) < StartAddress)) {
1725               ++rel_cur;
1726               continue;
1727             }
1728 
1729             // Stop when rel_cur's address is past the current instruction.
1730             if (addr >= Index + Size) break;
1731             rel_cur->getTypeName(name);
1732             error(getRelocationValueString(*rel_cur, val));
1733             outs() << format(Fmt.data(), SectionAddr + addr) << name
1734                    << "\t" << val << "\n";
1735             ++rel_cur;
1736           }
1737       }
1738     }
1739   }
1740 }
1741 
1742 void llvm::PrintRelocations(const ObjectFile *Obj) {
1743   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
1744                                                  "%08" PRIx64;
1745   // Regular objdump doesn't print relocations in non-relocatable object
1746   // files.
1747   if (!Obj->isRelocatableObject())
1748     return;
1749 
1750   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1751     if (Section.relocation_begin() == Section.relocation_end())
1752       continue;
1753     StringRef secname;
1754     error(Section.getName(secname));
1755     outs() << "RELOCATION RECORDS FOR [" << secname << "]:\n";
1756     for (const RelocationRef &Reloc : Section.relocations()) {
1757       bool hidden = getHidden(Reloc);
1758       uint64_t address = Reloc.getOffset();
1759       SmallString<32> relocname;
1760       SmallString<32> valuestr;
1761       if (address < StartAddress || address > StopAddress || hidden)
1762         continue;
1763       Reloc.getTypeName(relocname);
1764       error(getRelocationValueString(Reloc, valuestr));
1765       outs() << format(Fmt.data(), address) << " " << relocname << " "
1766              << valuestr << "\n";
1767     }
1768     outs() << "\n";
1769   }
1770 }
1771 
1772 void llvm::PrintDynamicRelocations(const ObjectFile *Obj) {
1773 
1774   // For the moment, this option is for ELF only
1775   if (!Obj->isELF())
1776     return;
1777 
1778   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
1779 
1780   if (!Elf || Elf->getEType() != ELF::ET_DYN) {
1781     error("not a dynamic object");
1782     return;
1783   }
1784 
1785   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1786 
1787   std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
1788   if (DynRelSec.empty())
1789     return;
1790 
1791   outs() << "DYNAMIC RELOCATION RECORDS\n";
1792   for (const SectionRef &Section : DynRelSec) {
1793     if (Section.relocation_begin() == Section.relocation_end())
1794       continue;
1795     for (const RelocationRef &Reloc : Section.relocations()) {
1796       uint64_t address = Reloc.getOffset();
1797       SmallString<32> relocname;
1798       SmallString<32> valuestr;
1799       Reloc.getTypeName(relocname);
1800       error(getRelocationValueString(Reloc, valuestr));
1801       outs() << format(Fmt.data(), address) << " " << relocname << " "
1802              << valuestr << "\n";
1803     }
1804   }
1805 }
1806 
1807 void llvm::PrintSectionHeaders(const ObjectFile *Obj) {
1808   outs() << "Sections:\n"
1809             "Idx Name          Size      Address          Type\n";
1810   unsigned i = 0;
1811   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1812     StringRef Name;
1813     error(Section.getName(Name));
1814     uint64_t Address = Section.getAddress();
1815     uint64_t Size = Section.getSize();
1816     bool Text = Section.isText();
1817     bool Data = Section.isData();
1818     bool BSS = Section.isBSS();
1819     std::string Type = (std::string(Text ? "TEXT " : "") +
1820                         (Data ? "DATA " : "") + (BSS ? "BSS" : ""));
1821     outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %s\n", i,
1822                      Name.str().c_str(), Size, Address, Type.c_str());
1823     ++i;
1824   }
1825 }
1826 
1827 void llvm::PrintSectionContents(const ObjectFile *Obj) {
1828   std::error_code EC;
1829   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1830     StringRef Name;
1831     StringRef Contents;
1832     error(Section.getName(Name));
1833     uint64_t BaseAddr = Section.getAddress();
1834     uint64_t Size = Section.getSize();
1835     if (!Size)
1836       continue;
1837 
1838     outs() << "Contents of section " << Name << ":\n";
1839     if (Section.isBSS()) {
1840       outs() << format("<skipping contents of bss section at [%04" PRIx64
1841                        ", %04" PRIx64 ")>\n",
1842                        BaseAddr, BaseAddr + Size);
1843       continue;
1844     }
1845 
1846     error(Section.getContents(Contents));
1847 
1848     // Dump out the content as hex and printable ascii characters.
1849     for (std::size_t addr = 0, end = Contents.size(); addr < end; addr += 16) {
1850       outs() << format(" %04" PRIx64 " ", BaseAddr + addr);
1851       // Dump line of hex.
1852       for (std::size_t i = 0; i < 16; ++i) {
1853         if (i != 0 && i % 4 == 0)
1854           outs() << ' ';
1855         if (addr + i < end)
1856           outs() << hexdigit((Contents[addr + i] >> 4) & 0xF, true)
1857                  << hexdigit(Contents[addr + i] & 0xF, true);
1858         else
1859           outs() << "  ";
1860       }
1861       // Print ascii.
1862       outs() << "  ";
1863       for (std::size_t i = 0; i < 16 && addr + i < end; ++i) {
1864         if (std::isprint(static_cast<unsigned char>(Contents[addr + i]) & 0xFF))
1865           outs() << Contents[addr + i];
1866         else
1867           outs() << ".";
1868       }
1869       outs() << "\n";
1870     }
1871   }
1872 }
1873 
1874 void llvm::PrintSymbolTable(const ObjectFile *o, StringRef ArchiveName,
1875                             StringRef ArchitectureName) {
1876   outs() << "SYMBOL TABLE:\n";
1877 
1878   if (const COFFObjectFile *coff = dyn_cast<const COFFObjectFile>(o)) {
1879     printCOFFSymbolTable(coff);
1880     return;
1881   }
1882   for (const SymbolRef &Symbol : o->symbols()) {
1883     Expected<uint64_t> AddressOrError = Symbol.getAddress();
1884     if (!AddressOrError)
1885       report_error(ArchiveName, o->getFileName(), AddressOrError.takeError(),
1886                    ArchitectureName);
1887     uint64_t Address = *AddressOrError;
1888     if ((Address < StartAddress) || (Address > StopAddress))
1889       continue;
1890     Expected<SymbolRef::Type> TypeOrError = Symbol.getType();
1891     if (!TypeOrError)
1892       report_error(ArchiveName, o->getFileName(), TypeOrError.takeError(),
1893                    ArchitectureName);
1894     SymbolRef::Type Type = *TypeOrError;
1895     uint32_t Flags = Symbol.getFlags();
1896     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1897     if (!SectionOrErr)
1898       report_error(ArchiveName, o->getFileName(), SectionOrErr.takeError(),
1899                    ArchitectureName);
1900     section_iterator Section = *SectionOrErr;
1901     StringRef Name;
1902     if (Type == SymbolRef::ST_Debug && Section != o->section_end()) {
1903       Section->getName(Name);
1904     } else {
1905       Expected<StringRef> NameOrErr = Symbol.getName();
1906       if (!NameOrErr)
1907         report_error(ArchiveName, o->getFileName(), NameOrErr.takeError(),
1908                      ArchitectureName);
1909       Name = *NameOrErr;
1910     }
1911 
1912     bool Global = Flags & SymbolRef::SF_Global;
1913     bool Weak = Flags & SymbolRef::SF_Weak;
1914     bool Absolute = Flags & SymbolRef::SF_Absolute;
1915     bool Common = Flags & SymbolRef::SF_Common;
1916     bool Hidden = Flags & SymbolRef::SF_Hidden;
1917 
1918     char GlobLoc = ' ';
1919     if (Type != SymbolRef::ST_Unknown)
1920       GlobLoc = Global ? 'g' : 'l';
1921     char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
1922                  ? 'd' : ' ';
1923     char FileFunc = ' ';
1924     if (Type == SymbolRef::ST_File)
1925       FileFunc = 'f';
1926     else if (Type == SymbolRef::ST_Function)
1927       FileFunc = 'F';
1928 
1929     const char *Fmt = o->getBytesInAddress() > 4 ? "%016" PRIx64 :
1930                                                    "%08" PRIx64;
1931 
1932     outs() << format(Fmt, Address) << " "
1933            << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' '
1934            << (Weak ? 'w' : ' ') // Weak?
1935            << ' ' // Constructor. Not supported yet.
1936            << ' ' // Warning. Not supported yet.
1937            << ' ' // Indirect reference to another symbol.
1938            << Debug // Debugging (d) or dynamic (D) symbol.
1939            << FileFunc // Name of function (F), file (f) or object (O).
1940            << ' ';
1941     if (Absolute) {
1942       outs() << "*ABS*";
1943     } else if (Common) {
1944       outs() << "*COM*";
1945     } else if (Section == o->section_end()) {
1946       outs() << "*UND*";
1947     } else {
1948       if (const MachOObjectFile *MachO =
1949           dyn_cast<const MachOObjectFile>(o)) {
1950         DataRefImpl DR = Section->getRawDataRefImpl();
1951         StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1952         outs() << SegmentName << ",";
1953       }
1954       StringRef SectionName;
1955       error(Section->getName(SectionName));
1956       outs() << SectionName;
1957     }
1958 
1959     outs() << '\t';
1960     if (Common || isa<ELFObjectFileBase>(o)) {
1961       uint64_t Val =
1962           Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
1963       outs() << format("\t %08" PRIx64 " ", Val);
1964     }
1965 
1966     if (Hidden) {
1967       outs() << ".hidden ";
1968     }
1969     outs() << Name
1970            << '\n';
1971   }
1972 }
1973 
1974 static void PrintUnwindInfo(const ObjectFile *o) {
1975   outs() << "Unwind info:\n\n";
1976 
1977   if (const COFFObjectFile *coff = dyn_cast<COFFObjectFile>(o)) {
1978     printCOFFUnwindInfo(coff);
1979   } else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1980     printMachOUnwindInfo(MachO);
1981   else {
1982     // TODO: Extract DWARF dump tool to objdump.
1983     errs() << "This operation is only currently supported "
1984               "for COFF and MachO object files.\n";
1985     return;
1986   }
1987 }
1988 
1989 void llvm::printExportsTrie(const ObjectFile *o) {
1990   outs() << "Exports trie:\n";
1991   if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1992     printMachOExportsTrie(MachO);
1993   else {
1994     errs() << "This operation is only currently supported "
1995               "for Mach-O executable files.\n";
1996     return;
1997   }
1998 }
1999 
2000 void llvm::printRebaseTable(ObjectFile *o) {
2001   outs() << "Rebase table:\n";
2002   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2003     printMachORebaseTable(MachO);
2004   else {
2005     errs() << "This operation is only currently supported "
2006               "for Mach-O executable files.\n";
2007     return;
2008   }
2009 }
2010 
2011 void llvm::printBindTable(ObjectFile *o) {
2012   outs() << "Bind table:\n";
2013   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2014     printMachOBindTable(MachO);
2015   else {
2016     errs() << "This operation is only currently supported "
2017               "for Mach-O executable files.\n";
2018     return;
2019   }
2020 }
2021 
2022 void llvm::printLazyBindTable(ObjectFile *o) {
2023   outs() << "Lazy bind table:\n";
2024   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2025     printMachOLazyBindTable(MachO);
2026   else {
2027     errs() << "This operation is only currently supported "
2028               "for Mach-O executable files.\n";
2029     return;
2030   }
2031 }
2032 
2033 void llvm::printWeakBindTable(ObjectFile *o) {
2034   outs() << "Weak bind table:\n";
2035   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2036     printMachOWeakBindTable(MachO);
2037   else {
2038     errs() << "This operation is only currently supported "
2039               "for Mach-O executable files.\n";
2040     return;
2041   }
2042 }
2043 
2044 /// Dump the raw contents of the __clangast section so the output can be piped
2045 /// into llvm-bcanalyzer.
2046 void llvm::printRawClangAST(const ObjectFile *Obj) {
2047   if (outs().is_displayed()) {
2048     errs() << "The -raw-clang-ast option will dump the raw binary contents of "
2049               "the clang ast section.\n"
2050               "Please redirect the output to a file or another program such as "
2051               "llvm-bcanalyzer.\n";
2052     return;
2053   }
2054 
2055   StringRef ClangASTSectionName("__clangast");
2056   if (isa<COFFObjectFile>(Obj)) {
2057     ClangASTSectionName = "clangast";
2058   }
2059 
2060   Optional<object::SectionRef> ClangASTSection;
2061   for (auto Sec : ToolSectionFilter(*Obj)) {
2062     StringRef Name;
2063     Sec.getName(Name);
2064     if (Name == ClangASTSectionName) {
2065       ClangASTSection = Sec;
2066       break;
2067     }
2068   }
2069   if (!ClangASTSection)
2070     return;
2071 
2072   StringRef ClangASTContents;
2073   error(ClangASTSection.getValue().getContents(ClangASTContents));
2074   outs().write(ClangASTContents.data(), ClangASTContents.size());
2075 }
2076 
2077 static void printFaultMaps(const ObjectFile *Obj) {
2078   const char *FaultMapSectionName = nullptr;
2079 
2080   if (isa<ELFObjectFileBase>(Obj)) {
2081     FaultMapSectionName = ".llvm_faultmaps";
2082   } else if (isa<MachOObjectFile>(Obj)) {
2083     FaultMapSectionName = "__llvm_faultmaps";
2084   } else {
2085     errs() << "This operation is only currently supported "
2086               "for ELF and Mach-O executable files.\n";
2087     return;
2088   }
2089 
2090   Optional<object::SectionRef> FaultMapSection;
2091 
2092   for (auto Sec : ToolSectionFilter(*Obj)) {
2093     StringRef Name;
2094     Sec.getName(Name);
2095     if (Name == FaultMapSectionName) {
2096       FaultMapSection = Sec;
2097       break;
2098     }
2099   }
2100 
2101   outs() << "FaultMap table:\n";
2102 
2103   if (!FaultMapSection.hasValue()) {
2104     outs() << "<not found>\n";
2105     return;
2106   }
2107 
2108   StringRef FaultMapContents;
2109   error(FaultMapSection.getValue().getContents(FaultMapContents));
2110 
2111   FaultMapParser FMP(FaultMapContents.bytes_begin(),
2112                      FaultMapContents.bytes_end());
2113 
2114   outs() << FMP;
2115 }
2116 
2117 static void printPrivateFileHeaders(const ObjectFile *o, bool onlyFirst) {
2118   if (o->isELF())
2119     return printELFFileHeader(o);
2120   if (o->isCOFF())
2121     return printCOFFFileHeader(o);
2122   if (o->isWasm())
2123     return printWasmFileHeader(o);
2124   if (o->isMachO()) {
2125     printMachOFileHeader(o);
2126     if (!onlyFirst)
2127       printMachOLoadCommands(o);
2128     return;
2129   }
2130   report_error(o->getFileName(), "Invalid/Unsupported object file format");
2131 }
2132 
2133 static void printFileHeaders(const ObjectFile *o) {
2134   if (!o->isELF() && !o->isCOFF())
2135     report_error(o->getFileName(), "Invalid/Unsupported object file format");
2136 
2137   Triple::ArchType AT = o->getArch();
2138   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
2139   Expected<uint64_t> StartAddrOrErr = o->getStartAddress();
2140   if (!StartAddrOrErr)
2141     report_error(o->getFileName(), StartAddrOrErr.takeError());
2142   outs() << "start address: "
2143          << format("0x%0*x", o->getBytesInAddress(), StartAddrOrErr.get())
2144          << "\n";
2145 }
2146 
2147 static void DumpObject(ObjectFile *o, const Archive *a = nullptr) {
2148   StringRef ArchiveName = a != nullptr ? a->getFileName() : "";
2149   // Avoid other output when using a raw option.
2150   if (!RawClangAST) {
2151     outs() << '\n';
2152     if (a)
2153       outs() << a->getFileName() << "(" << o->getFileName() << ")";
2154     else
2155       outs() << o->getFileName();
2156     outs() << ":\tfile format " << o->getFileFormatName() << "\n\n";
2157   }
2158 
2159   if (Disassemble)
2160     DisassembleObject(o, Relocations);
2161   if (Relocations && !Disassemble)
2162     PrintRelocations(o);
2163   if (DynamicRelocations)
2164     PrintDynamicRelocations(o);
2165   if (SectionHeaders)
2166     PrintSectionHeaders(o);
2167   if (SectionContents)
2168     PrintSectionContents(o);
2169   if (SymbolTable)
2170     PrintSymbolTable(o, ArchiveName);
2171   if (UnwindInfo)
2172     PrintUnwindInfo(o);
2173   if (PrivateHeaders || FirstPrivateHeader)
2174     printPrivateFileHeaders(o, FirstPrivateHeader);
2175   if (FileHeaders)
2176     printFileHeaders(o);
2177   if (ExportsTrie)
2178     printExportsTrie(o);
2179   if (Rebase)
2180     printRebaseTable(o);
2181   if (Bind)
2182     printBindTable(o);
2183   if (LazyBind)
2184     printLazyBindTable(o);
2185   if (WeakBind)
2186     printWeakBindTable(o);
2187   if (RawClangAST)
2188     printRawClangAST(o);
2189   if (PrintFaultMaps)
2190     printFaultMaps(o);
2191   if (DwarfDumpType != DIDT_Null) {
2192     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*o);
2193     // Dump the complete DWARF structure.
2194     DIDumpOptions DumpOpts;
2195     DumpOpts.DumpType = DwarfDumpType;
2196     DICtx->dump(outs(), DumpOpts);
2197   }
2198 }
2199 
2200 static void DumpObject(const COFFImportFile *I, const Archive *A) {
2201   StringRef ArchiveName = A ? A->getFileName() : "";
2202 
2203   // Avoid other output when using a raw option.
2204   if (!RawClangAST)
2205     outs() << '\n'
2206            << ArchiveName << "(" << I->getFileName() << ")"
2207            << ":\tfile format COFF-import-file"
2208            << "\n\n";
2209 
2210   if (SymbolTable)
2211     printCOFFSymbolTable(I);
2212 }
2213 
2214 /// Dump each object file in \a a;
2215 static void DumpArchive(const Archive *a) {
2216   Error Err = Error::success();
2217   for (auto &C : a->children(Err)) {
2218     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2219     if (!ChildOrErr) {
2220       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2221         report_error(a->getFileName(), C, std::move(E));
2222       continue;
2223     }
2224     if (ObjectFile *o = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2225       DumpObject(o, a);
2226     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2227       DumpObject(I, a);
2228     else
2229       report_error(a->getFileName(), object_error::invalid_file_type);
2230   }
2231   if (Err)
2232     report_error(a->getFileName(), std::move(Err));
2233 }
2234 
2235 /// Open file and figure out how to dump it.
2236 static void DumpInput(StringRef file) {
2237 
2238   // If we are using the Mach-O specific object file parser, then let it parse
2239   // the file and process the command line options.  So the -arch flags can
2240   // be used to select specific slices, etc.
2241   if (MachOOpt) {
2242     ParseInputMachO(file);
2243     return;
2244   }
2245 
2246   // Attempt to open the binary.
2247   Expected<OwningBinary<Binary>> BinaryOrErr = createBinary(file);
2248   if (!BinaryOrErr)
2249     report_error(file, BinaryOrErr.takeError());
2250   Binary &Binary = *BinaryOrErr.get().getBinary();
2251 
2252   if (Archive *a = dyn_cast<Archive>(&Binary))
2253     DumpArchive(a);
2254   else if (ObjectFile *o = dyn_cast<ObjectFile>(&Binary))
2255     DumpObject(o);
2256   else
2257     report_error(file, object_error::invalid_file_type);
2258 }
2259 
2260 int main(int argc, char **argv) {
2261   InitLLVM X(argc, argv);
2262 
2263   // Initialize targets and assembly printers/parsers.
2264   llvm::InitializeAllTargetInfos();
2265   llvm::InitializeAllTargetMCs();
2266   llvm::InitializeAllDisassemblers();
2267 
2268   // Register the target printer for --version.
2269   cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);
2270 
2271   cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n");
2272   TripleName = Triple::normalize(TripleName);
2273 
2274   ToolName = argv[0];
2275 
2276   // Defaults to a.out if no filenames specified.
2277   if (InputFilenames.size() == 0)
2278     InputFilenames.push_back("a.out");
2279 
2280   if (AllHeaders)
2281     PrivateHeaders = Relocations = SectionHeaders = SymbolTable = true;
2282 
2283   if (DisassembleAll || PrintSource || PrintLines)
2284     Disassemble = true;
2285   if (!Disassemble
2286       && !Relocations
2287       && !DynamicRelocations
2288       && !SectionHeaders
2289       && !SectionContents
2290       && !SymbolTable
2291       && !UnwindInfo
2292       && !PrivateHeaders
2293       && !FileHeaders
2294       && !FirstPrivateHeader
2295       && !ExportsTrie
2296       && !Rebase
2297       && !Bind
2298       && !LazyBind
2299       && !WeakBind
2300       && !RawClangAST
2301       && !(UniversalHeaders && MachOOpt)
2302       && !(ArchiveHeaders && MachOOpt)
2303       && !(IndirectSymbols && MachOOpt)
2304       && !(DataInCode && MachOOpt)
2305       && !(LinkOptHints && MachOOpt)
2306       && !(InfoPlist && MachOOpt)
2307       && !(DylibsUsed && MachOOpt)
2308       && !(DylibId && MachOOpt)
2309       && !(ObjcMetaData && MachOOpt)
2310       && !(FilterSections.size() != 0 && MachOOpt)
2311       && !PrintFaultMaps
2312       && DwarfDumpType == DIDT_Null) {
2313     cl::PrintHelpMessage();
2314     return 2;
2315   }
2316 
2317   DisasmFuncsSet.insert(DisassembleFunctions.begin(),
2318                         DisassembleFunctions.end());
2319 
2320   llvm::for_each(InputFilenames, DumpInput);
2321 
2322   return EXIT_SUCCESS;
2323 }
2324