xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision abe0fa43523502c549ff9394d28f9f29f5be0a3d)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that works like binutils "objdump", that is, it
10 // dumps out a plethora of information about an object file depending on the
11 // flags.
12 //
13 // The flags and output of this program should be near identical to those of
14 // binutils objdump.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm-objdump.h"
19 #include "COFFDump.h"
20 #include "ELFDump.h"
21 #include "MachODump.h"
22 #include "ObjdumpOptID.h"
23 #include "SourcePrinter.h"
24 #include "WasmDump.h"
25 #include "XCOFFDump.h"
26 #include "llvm/ADT/IndexedMap.h"
27 #include "llvm/ADT/Optional.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/ADT/StringSet.h"
33 #include "llvm/ADT/Triple.h"
34 #include "llvm/ADT/Twine.h"
35 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
36 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
37 #include "llvm/Demangle/Demangle.h"
38 #include "llvm/MC/MCAsmInfo.h"
39 #include "llvm/MC/MCContext.h"
40 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
41 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
42 #include "llvm/MC/MCInst.h"
43 #include "llvm/MC/MCInstPrinter.h"
44 #include "llvm/MC/MCInstrAnalysis.h"
45 #include "llvm/MC/MCInstrInfo.h"
46 #include "llvm/MC/MCObjectFileInfo.h"
47 #include "llvm/MC/MCRegisterInfo.h"
48 #include "llvm/MC/MCSubtargetInfo.h"
49 #include "llvm/MC/MCTargetOptions.h"
50 #include "llvm/Object/Archive.h"
51 #include "llvm/Object/COFF.h"
52 #include "llvm/Object/COFFImportFile.h"
53 #include "llvm/Object/ELFObjectFile.h"
54 #include "llvm/Object/FaultMapParser.h"
55 #include "llvm/Object/MachO.h"
56 #include "llvm/Object/MachOUniversal.h"
57 #include "llvm/Object/ObjectFile.h"
58 #include "llvm/Object/Wasm.h"
59 #include "llvm/Option/Arg.h"
60 #include "llvm/Option/ArgList.h"
61 #include "llvm/Option/Option.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/Errc.h"
65 #include "llvm/Support/FileSystem.h"
66 #include "llvm/Support/Format.h"
67 #include "llvm/Support/FormatVariadic.h"
68 #include "llvm/Support/GraphWriter.h"
69 #include "llvm/Support/Host.h"
70 #include "llvm/Support/InitLLVM.h"
71 #include "llvm/Support/MemoryBuffer.h"
72 #include "llvm/Support/SourceMgr.h"
73 #include "llvm/Support/StringSaver.h"
74 #include "llvm/Support/TargetRegistry.h"
75 #include "llvm/Support/TargetSelect.h"
76 #include "llvm/Support/WithColor.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include <algorithm>
79 #include <cctype>
80 #include <cstring>
81 #include <system_error>
82 #include <unordered_map>
83 #include <utility>
84 
85 using namespace llvm;
86 using namespace llvm::object;
87 using namespace llvm::objdump;
88 using namespace llvm::opt;
89 
90 namespace {
91 
92 class CommonOptTable : public opt::OptTable {
93 public:
94   CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage,
95                  const char *Description)
96       : OptTable(OptionInfos), Usage(Usage), Description(Description) {
97     setGroupedShortOptions(true);
98   }
99 
100   void printHelp(StringRef Argv0, bool ShowHidden = false) const {
101     Argv0 = sys::path::filename(Argv0);
102     opt::OptTable::printHelp(outs(), (Argv0 + Usage).str().c_str(), Description,
103                              ShowHidden, ShowHidden);
104     // TODO Replace this with OptTable API once it adds extrahelp support.
105     outs() << "\nPass @FILE as argument to read options from FILE.\n";
106   }
107 
108 private:
109   const char *Usage;
110   const char *Description;
111 };
112 
113 // ObjdumpOptID is in ObjdumpOptID.h
114 
115 #define PREFIX(NAME, VALUE) const char *const OBJDUMP_##NAME[] = VALUE;
116 #include "ObjdumpOpts.inc"
117 #undef PREFIX
118 
119 static constexpr opt::OptTable::Info ObjdumpInfoTable[] = {
120 #define OBJDUMP_nullptr nullptr
121 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
122                HELPTEXT, METAVAR, VALUES)                                      \
123   {OBJDUMP_##PREFIX, NAME,         HELPTEXT,                                   \
124    METAVAR,          OBJDUMP_##ID, opt::Option::KIND##Class,                   \
125    PARAM,            FLAGS,        OBJDUMP_##GROUP,                            \
126    OBJDUMP_##ALIAS,  ALIASARGS,    VALUES},
127 #include "ObjdumpOpts.inc"
128 #undef OPTION
129 #undef OBJDUMP_nullptr
130 };
131 
132 class ObjdumpOptTable : public CommonOptTable {
133 public:
134   ObjdumpOptTable()
135       : CommonOptTable(ObjdumpInfoTable, " [options] <input object files>",
136                        "llvm object file dumper") {}
137 };
138 
139 enum OtoolOptID {
140   OTOOL_INVALID = 0, // This is not an option ID.
141 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
142                HELPTEXT, METAVAR, VALUES)                                      \
143   OTOOL_##ID,
144 #include "OtoolOpts.inc"
145 #undef OPTION
146 };
147 
148 #define PREFIX(NAME, VALUE) const char *const OTOOL_##NAME[] = VALUE;
149 #include "OtoolOpts.inc"
150 #undef PREFIX
151 
152 static constexpr opt::OptTable::Info OtoolInfoTable[] = {
153 #define OTOOL_nullptr nullptr
154 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
155                HELPTEXT, METAVAR, VALUES)                                      \
156   {OTOOL_##PREFIX, NAME,       HELPTEXT,                                       \
157    METAVAR,        OTOOL_##ID, opt::Option::KIND##Class,                       \
158    PARAM,          FLAGS,      OTOOL_##GROUP,                                  \
159    OTOOL_##ALIAS,  ALIASARGS,  VALUES},
160 #include "OtoolOpts.inc"
161 #undef OPTION
162 #undef OTOOL_nullptr
163 };
164 
165 class OtoolOptTable : public CommonOptTable {
166 public:
167   OtoolOptTable()
168       : CommonOptTable(OtoolInfoTable, " [option...] [file...]",
169                        "Mach-O object file displaying tool") {}
170 };
171 
172 } // namespace
173 
174 #define DEBUG_TYPE "objdump"
175 
176 static uint64_t AdjustVMA;
177 static bool AllHeaders;
178 static std::string ArchName;
179 bool objdump::ArchiveHeaders;
180 bool objdump::Demangle;
181 bool objdump::Disassemble;
182 bool objdump::DisassembleAll;
183 bool objdump::SymbolDescription;
184 static std::vector<std::string> DisassembleSymbols;
185 static bool DisassembleZeroes;
186 static std::vector<std::string> DisassemblerOptions;
187 DIDumpType objdump::DwarfDumpType;
188 static bool DynamicRelocations;
189 static bool FaultMapSection;
190 static bool FileHeaders;
191 bool objdump::SectionContents;
192 static std::vector<std::string> InputFilenames;
193 bool objdump::PrintLines;
194 static bool MachOOpt;
195 std::string objdump::MCPU;
196 std::vector<std::string> objdump::MAttrs;
197 bool objdump::ShowRawInsn;
198 bool objdump::LeadingAddr;
199 static bool RawClangAST;
200 bool objdump::Relocations;
201 bool objdump::PrintImmHex;
202 bool objdump::PrivateHeaders;
203 std::vector<std::string> objdump::FilterSections;
204 bool objdump::SectionHeaders;
205 static bool ShowLMA;
206 bool objdump::PrintSource;
207 
208 static uint64_t StartAddress;
209 static bool HasStartAddressFlag;
210 static uint64_t StopAddress = UINT64_MAX;
211 static bool HasStopAddressFlag;
212 
213 bool objdump::SymbolTable;
214 static bool SymbolizeOperands;
215 static bool DynamicSymbolTable;
216 std::string objdump::TripleName;
217 bool objdump::UnwindInfo;
218 static bool Wide;
219 std::string objdump::Prefix;
220 uint32_t objdump::PrefixStrip;
221 
222 DebugVarsFormat objdump::DbgVariables = DVDisabled;
223 
224 int objdump::DbgIndent = 40;
225 
226 static StringSet<> DisasmSymbolSet;
227 StringSet<> objdump::FoundSectionSet;
228 static StringRef ToolName;
229 
230 namespace {
231 struct FilterResult {
232   // True if the section should not be skipped.
233   bool Keep;
234 
235   // True if the index counter should be incremented, even if the section should
236   // be skipped. For example, sections may be skipped if they are not included
237   // in the --section flag, but we still want those to count toward the section
238   // count.
239   bool IncrementIndex;
240 };
241 } // namespace
242 
243 static FilterResult checkSectionFilter(object::SectionRef S) {
244   if (FilterSections.empty())
245     return {/*Keep=*/true, /*IncrementIndex=*/true};
246 
247   Expected<StringRef> SecNameOrErr = S.getName();
248   if (!SecNameOrErr) {
249     consumeError(SecNameOrErr.takeError());
250     return {/*Keep=*/false, /*IncrementIndex=*/false};
251   }
252   StringRef SecName = *SecNameOrErr;
253 
254   // StringSet does not allow empty key so avoid adding sections with
255   // no name (such as the section with index 0) here.
256   if (!SecName.empty())
257     FoundSectionSet.insert(SecName);
258 
259   // Only show the section if it's in the FilterSections list, but always
260   // increment so the indexing is stable.
261   return {/*Keep=*/is_contained(FilterSections, SecName),
262           /*IncrementIndex=*/true};
263 }
264 
265 SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O,
266                                          uint64_t *Idx) {
267   // Start at UINT64_MAX so that the first index returned after an increment is
268   // zero (after the unsigned wrap).
269   if (Idx)
270     *Idx = UINT64_MAX;
271   return SectionFilter(
272       [Idx](object::SectionRef S) {
273         FilterResult Result = checkSectionFilter(S);
274         if (Idx != nullptr && Result.IncrementIndex)
275           *Idx += 1;
276         return Result.Keep;
277       },
278       O);
279 }
280 
281 std::string objdump::getFileNameForError(const object::Archive::Child &C,
282                                          unsigned Index) {
283   Expected<StringRef> NameOrErr = C.getName();
284   if (NameOrErr)
285     return std::string(NameOrErr.get());
286   // If we have an error getting the name then we print the index of the archive
287   // member. Since we are already in an error state, we just ignore this error.
288   consumeError(NameOrErr.takeError());
289   return "<file index: " + std::to_string(Index) + ">";
290 }
291 
292 void objdump::reportWarning(const Twine &Message, StringRef File) {
293   // Output order between errs() and outs() matters especially for archive
294   // files where the output is per member object.
295   outs().flush();
296   WithColor::warning(errs(), ToolName)
297       << "'" << File << "': " << Message << "\n";
298 }
299 
300 LLVM_ATTRIBUTE_NORETURN void objdump::reportError(StringRef File,
301                                                   const Twine &Message) {
302   outs().flush();
303   WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n";
304   exit(1);
305 }
306 
307 LLVM_ATTRIBUTE_NORETURN void objdump::reportError(Error E, StringRef FileName,
308                                                   StringRef ArchiveName,
309                                                   StringRef ArchitectureName) {
310   assert(E);
311   outs().flush();
312   WithColor::error(errs(), ToolName);
313   if (ArchiveName != "")
314     errs() << ArchiveName << "(" << FileName << ")";
315   else
316     errs() << "'" << FileName << "'";
317   if (!ArchitectureName.empty())
318     errs() << " (for architecture " << ArchitectureName << ")";
319   errs() << ": ";
320   logAllUnhandledErrors(std::move(E), errs());
321   exit(1);
322 }
323 
324 static void reportCmdLineWarning(const Twine &Message) {
325   WithColor::warning(errs(), ToolName) << Message << "\n";
326 }
327 
328 LLVM_ATTRIBUTE_NORETURN static void reportCmdLineError(const Twine &Message) {
329   WithColor::error(errs(), ToolName) << Message << "\n";
330   exit(1);
331 }
332 
333 static void warnOnNoMatchForSections() {
334   SetVector<StringRef> MissingSections;
335   for (StringRef S : FilterSections) {
336     if (FoundSectionSet.count(S))
337       return;
338     // User may specify a unnamed section. Don't warn for it.
339     if (!S.empty())
340       MissingSections.insert(S);
341   }
342 
343   // Warn only if no section in FilterSections is matched.
344   for (StringRef S : MissingSections)
345     reportCmdLineWarning("section '" + S +
346                          "' mentioned in a -j/--section option, but not "
347                          "found in any input file");
348 }
349 
350 static const Target *getTarget(const ObjectFile *Obj) {
351   // Figure out the target triple.
352   Triple TheTriple("unknown-unknown-unknown");
353   if (TripleName.empty()) {
354     TheTriple = Obj->makeTriple();
355   } else {
356     TheTriple.setTriple(Triple::normalize(TripleName));
357     auto Arch = Obj->getArch();
358     if (Arch == Triple::arm || Arch == Triple::armeb)
359       Obj->setARMSubArch(TheTriple);
360   }
361 
362   // Get the target specific parser.
363   std::string Error;
364   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
365                                                          Error);
366   if (!TheTarget)
367     reportError(Obj->getFileName(), "can't find target: " + Error);
368 
369   // Update the triple name and return the found target.
370   TripleName = TheTriple.getTriple();
371   return TheTarget;
372 }
373 
374 bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) {
375   return A.getOffset() < B.getOffset();
376 }
377 
378 static Error getRelocationValueString(const RelocationRef &Rel,
379                                       SmallVectorImpl<char> &Result) {
380   const ObjectFile *Obj = Rel.getObject();
381   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
382     return getELFRelocationValueString(ELF, Rel, Result);
383   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
384     return getCOFFRelocationValueString(COFF, Rel, Result);
385   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
386     return getWasmRelocationValueString(Wasm, Rel, Result);
387   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
388     return getMachORelocationValueString(MachO, Rel, Result);
389   if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj))
390     return getXCOFFRelocationValueString(XCOFF, Rel, Result);
391   llvm_unreachable("unknown object file format");
392 }
393 
394 /// Indicates whether this relocation should hidden when listing
395 /// relocations, usually because it is the trailing part of a multipart
396 /// relocation that will be printed as part of the leading relocation.
397 static bool getHidden(RelocationRef RelRef) {
398   auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
399   if (!MachO)
400     return false;
401 
402   unsigned Arch = MachO->getArch();
403   DataRefImpl Rel = RelRef.getRawDataRefImpl();
404   uint64_t Type = MachO->getRelocationType(Rel);
405 
406   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
407   // is always hidden.
408   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
409     return Type == MachO::GENERIC_RELOC_PAIR;
410 
411   if (Arch == Triple::x86_64) {
412     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
413     // an X86_64_RELOC_SUBTRACTOR.
414     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
415       DataRefImpl RelPrev = Rel;
416       RelPrev.d.a--;
417       uint64_t PrevType = MachO->getRelocationType(RelPrev);
418       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
419         return true;
420     }
421   }
422 
423   return false;
424 }
425 
426 namespace {
427 
428 /// Get the column at which we want to start printing the instruction
429 /// disassembly, taking into account anything which appears to the left of it.
430 unsigned getInstStartColumn(const MCSubtargetInfo &STI) {
431   return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24;
432 }
433 
434 static bool isAArch64Elf(const ObjectFile *Obj) {
435   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
436   return Elf && Elf->getEMachine() == ELF::EM_AARCH64;
437 }
438 
439 static bool isArmElf(const ObjectFile *Obj) {
440   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
441   return Elf && Elf->getEMachine() == ELF::EM_ARM;
442 }
443 
444 static bool hasMappingSymbols(const ObjectFile *Obj) {
445   return isArmElf(Obj) || isAArch64Elf(Obj);
446 }
447 
448 static void printRelocation(formatted_raw_ostream &OS, StringRef FileName,
449                             const RelocationRef &Rel, uint64_t Address,
450                             bool Is64Bits) {
451   StringRef Fmt = Is64Bits ? "\t\t%016" PRIx64 ":  " : "\t\t\t%08" PRIx64 ":  ";
452   SmallString<16> Name;
453   SmallString<32> Val;
454   Rel.getTypeName(Name);
455   if (Error E = getRelocationValueString(Rel, Val))
456     reportError(std::move(E), FileName);
457   OS << format(Fmt.data(), Address) << Name << "\t" << Val;
458 }
459 
460 class PrettyPrinter {
461 public:
462   virtual ~PrettyPrinter() = default;
463   virtual void
464   printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
465             object::SectionedAddress Address, formatted_raw_ostream &OS,
466             StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
467             StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
468             LiveVariablePrinter &LVP) {
469     if (SP && (PrintSource || PrintLines))
470       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
471     LVP.printBetweenInsts(OS, false);
472 
473     size_t Start = OS.tell();
474     if (LeadingAddr)
475       OS << format("%8" PRIx64 ":", Address.Address);
476     if (ShowRawInsn) {
477       OS << ' ';
478       dumpBytes(Bytes, OS);
479     }
480 
481     // The output of printInst starts with a tab. Print some spaces so that
482     // the tab has 1 column and advances to the target tab stop.
483     unsigned TabStop = getInstStartColumn(STI);
484     unsigned Column = OS.tell() - Start;
485     OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
486 
487     if (MI) {
488       // See MCInstPrinter::printInst. On targets where a PC relative immediate
489       // is relative to the next instruction and the length of a MCInst is
490       // difficult to measure (x86), this is the address of the next
491       // instruction.
492       uint64_t Addr =
493           Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0);
494       IP.printInst(MI, Addr, "", STI, OS);
495     } else
496       OS << "\t<unknown>";
497   }
498 };
499 PrettyPrinter PrettyPrinterInst;
500 
501 class HexagonPrettyPrinter : public PrettyPrinter {
502 public:
503   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
504                  formatted_raw_ostream &OS) {
505     uint32_t opcode =
506       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
507     if (LeadingAddr)
508       OS << format("%8" PRIx64 ":", Address);
509     if (ShowRawInsn) {
510       OS << "\t";
511       dumpBytes(Bytes.slice(0, 4), OS);
512       OS << format("\t%08" PRIx32, opcode);
513     }
514   }
515   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
516                  object::SectionedAddress Address, formatted_raw_ostream &OS,
517                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
518                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
519                  LiveVariablePrinter &LVP) override {
520     if (SP && (PrintSource || PrintLines))
521       SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
522     if (!MI) {
523       printLead(Bytes, Address.Address, OS);
524       OS << " <unknown>";
525       return;
526     }
527     std::string Buffer;
528     {
529       raw_string_ostream TempStream(Buffer);
530       IP.printInst(MI, Address.Address, "", STI, TempStream);
531     }
532     StringRef Contents(Buffer);
533     // Split off bundle attributes
534     auto PacketBundle = Contents.rsplit('\n');
535     // Split off first instruction from the rest
536     auto HeadTail = PacketBundle.first.split('\n');
537     auto Preamble = " { ";
538     auto Separator = "";
539 
540     // Hexagon's packets require relocations to be inline rather than
541     // clustered at the end of the packet.
542     std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
543     std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
544     auto PrintReloc = [&]() -> void {
545       while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
546         if (RelCur->getOffset() == Address.Address) {
547           printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false);
548           return;
549         }
550         ++RelCur;
551       }
552     };
553 
554     while (!HeadTail.first.empty()) {
555       OS << Separator;
556       Separator = "\n";
557       if (SP && (PrintSource || PrintLines))
558         SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
559       printLead(Bytes, Address.Address, OS);
560       OS << Preamble;
561       Preamble = "   ";
562       StringRef Inst;
563       auto Duplex = HeadTail.first.split('\v');
564       if (!Duplex.second.empty()) {
565         OS << Duplex.first;
566         OS << "; ";
567         Inst = Duplex.second;
568       }
569       else
570         Inst = HeadTail.first;
571       OS << Inst;
572       HeadTail = HeadTail.second.split('\n');
573       if (HeadTail.first.empty())
574         OS << " } " << PacketBundle.second;
575       PrintReloc();
576       Bytes = Bytes.slice(4);
577       Address.Address += 4;
578     }
579   }
580 };
581 HexagonPrettyPrinter HexagonPrettyPrinterInst;
582 
583 class AMDGCNPrettyPrinter : public PrettyPrinter {
584 public:
585   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
586                  object::SectionedAddress Address, formatted_raw_ostream &OS,
587                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
588                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
589                  LiveVariablePrinter &LVP) override {
590     if (SP && (PrintSource || PrintLines))
591       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
592 
593     if (MI) {
594       SmallString<40> InstStr;
595       raw_svector_ostream IS(InstStr);
596 
597       IP.printInst(MI, Address.Address, "", STI, IS);
598 
599       OS << left_justify(IS.str(), 60);
600     } else {
601       // an unrecognized encoding - this is probably data so represent it
602       // using the .long directive, or .byte directive if fewer than 4 bytes
603       // remaining
604       if (Bytes.size() >= 4) {
605         OS << format("\t.long 0x%08" PRIx32 " ",
606                      support::endian::read32<support::little>(Bytes.data()));
607         OS.indent(42);
608       } else {
609           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
610           for (unsigned int i = 1; i < Bytes.size(); i++)
611             OS << format(", 0x%02" PRIx8, Bytes[i]);
612           OS.indent(55 - (6 * Bytes.size()));
613       }
614     }
615 
616     OS << format("// %012" PRIX64 ":", Address.Address);
617     if (Bytes.size() >= 4) {
618       // D should be casted to uint32_t here as it is passed by format to
619       // snprintf as vararg.
620       for (uint32_t D : makeArrayRef(
621                reinterpret_cast<const support::little32_t *>(Bytes.data()),
622                Bytes.size() / 4))
623         OS << format(" %08" PRIX32, D);
624     } else {
625       for (unsigned char B : Bytes)
626         OS << format(" %02" PRIX8, B);
627     }
628 
629     if (!Annot.empty())
630       OS << " // " << Annot;
631   }
632 };
633 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
634 
635 class BPFPrettyPrinter : public PrettyPrinter {
636 public:
637   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
638                  object::SectionedAddress Address, formatted_raw_ostream &OS,
639                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
640                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
641                  LiveVariablePrinter &LVP) override {
642     if (SP && (PrintSource || PrintLines))
643       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
644     if (LeadingAddr)
645       OS << format("%8" PRId64 ":", Address.Address / 8);
646     if (ShowRawInsn) {
647       OS << "\t";
648       dumpBytes(Bytes, OS);
649     }
650     if (MI)
651       IP.printInst(MI, Address.Address, "", STI, OS);
652     else
653       OS << "\t<unknown>";
654   }
655 };
656 BPFPrettyPrinter BPFPrettyPrinterInst;
657 
658 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
659   switch(Triple.getArch()) {
660   default:
661     return PrettyPrinterInst;
662   case Triple::hexagon:
663     return HexagonPrettyPrinterInst;
664   case Triple::amdgcn:
665     return AMDGCNPrettyPrinterInst;
666   case Triple::bpfel:
667   case Triple::bpfeb:
668     return BPFPrettyPrinterInst;
669   }
670 }
671 }
672 
673 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
674   assert(Obj->isELF());
675   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
676     return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()),
677                          Obj->getFileName())
678         ->getType();
679   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
680     return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()),
681                          Obj->getFileName())
682         ->getType();
683   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
684     return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()),
685                          Obj->getFileName())
686         ->getType();
687   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
688     return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()),
689                          Obj->getFileName())
690         ->getType();
691   llvm_unreachable("Unsupported binary format");
692 }
693 
694 template <class ELFT> static void
695 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
696                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
697   for (auto Symbol : Obj->getDynamicSymbolIterators()) {
698     uint8_t SymbolType = Symbol.getELFType();
699     if (SymbolType == ELF::STT_SECTION)
700       continue;
701 
702     uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj->getFileName());
703     // ELFSymbolRef::getAddress() returns size instead of value for common
704     // symbols which is not desirable for disassembly output. Overriding.
705     if (SymbolType == ELF::STT_COMMON)
706       Address = unwrapOrError(Obj->getSymbol(Symbol.getRawDataRefImpl()),
707                               Obj->getFileName())
708                     ->st_value;
709 
710     StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName());
711     if (Name.empty())
712       continue;
713 
714     section_iterator SecI =
715         unwrapOrError(Symbol.getSection(), Obj->getFileName());
716     if (SecI == Obj->section_end())
717       continue;
718 
719     AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
720   }
721 }
722 
723 static void
724 addDynamicElfSymbols(const ObjectFile *Obj,
725                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
726   assert(Obj->isELF());
727   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
728     addDynamicElfSymbols(Elf32LEObj, AllSymbols);
729   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
730     addDynamicElfSymbols(Elf64LEObj, AllSymbols);
731   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
732     addDynamicElfSymbols(Elf32BEObj, AllSymbols);
733   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
734     addDynamicElfSymbols(Elf64BEObj, AllSymbols);
735   else
736     llvm_unreachable("Unsupported binary format");
737 }
738 
739 static void addPltEntries(const ObjectFile *Obj,
740                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
741                           StringSaver &Saver) {
742   Optional<SectionRef> Plt = None;
743   for (const SectionRef &Section : Obj->sections()) {
744     Expected<StringRef> SecNameOrErr = Section.getName();
745     if (!SecNameOrErr) {
746       consumeError(SecNameOrErr.takeError());
747       continue;
748     }
749     if (*SecNameOrErr == ".plt")
750       Plt = Section;
751   }
752   if (!Plt)
753     return;
754   if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) {
755     for (auto PltEntry : ElfObj->getPltAddresses()) {
756       if (PltEntry.first) {
757         SymbolRef Symbol(*PltEntry.first, ElfObj);
758         uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
759         if (Expected<StringRef> NameOrErr = Symbol.getName()) {
760           if (!NameOrErr->empty())
761             AllSymbols[*Plt].emplace_back(
762                 PltEntry.second, Saver.save((*NameOrErr + "@plt").str()),
763                 SymbolType);
764           continue;
765         } else {
766           // The warning has been reported in disassembleObject().
767           consumeError(NameOrErr.takeError());
768         }
769       }
770       reportWarning("PLT entry at 0x" + Twine::utohexstr(PltEntry.second) +
771                         " references an invalid symbol",
772                     Obj->getFileName());
773     }
774   }
775 }
776 
777 // Normally the disassembly output will skip blocks of zeroes. This function
778 // returns the number of zero bytes that can be skipped when dumping the
779 // disassembly of the instructions in Buf.
780 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
781   // Find the number of leading zeroes.
782   size_t N = 0;
783   while (N < Buf.size() && !Buf[N])
784     ++N;
785 
786   // We may want to skip blocks of zero bytes, but unless we see
787   // at least 8 of them in a row.
788   if (N < 8)
789     return 0;
790 
791   // We skip zeroes in multiples of 4 because do not want to truncate an
792   // instruction if it starts with a zero byte.
793   return N & ~0x3;
794 }
795 
796 // Returns a map from sections to their relocations.
797 static std::map<SectionRef, std::vector<RelocationRef>>
798 getRelocsMap(object::ObjectFile const &Obj) {
799   std::map<SectionRef, std::vector<RelocationRef>> Ret;
800   uint64_t I = (uint64_t)-1;
801   for (SectionRef Sec : Obj.sections()) {
802     ++I;
803     Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection();
804     if (!RelocatedOrErr)
805       reportError(Obj.getFileName(),
806                   "section (" + Twine(I) +
807                       "): failed to get a relocated section: " +
808                       toString(RelocatedOrErr.takeError()));
809 
810     section_iterator Relocated = *RelocatedOrErr;
811     if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep)
812       continue;
813     std::vector<RelocationRef> &V = Ret[*Relocated];
814     append_range(V, Sec.relocations());
815     // Sort relocations by address.
816     llvm::stable_sort(V, isRelocAddressLess);
817   }
818   return Ret;
819 }
820 
821 // Used for --adjust-vma to check if address should be adjusted by the
822 // specified value for a given section.
823 // For ELF we do not adjust non-allocatable sections like debug ones,
824 // because they are not loadable.
825 // TODO: implement for other file formats.
826 static bool shouldAdjustVA(const SectionRef &Section) {
827   const ObjectFile *Obj = Section.getObject();
828   if (Obj->isELF())
829     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
830   return false;
831 }
832 
833 
834 typedef std::pair<uint64_t, char> MappingSymbolPair;
835 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,
836                                  uint64_t Address) {
837   auto It =
838       partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) {
839         return Val.first <= Address;
840       });
841   // Return zero for any address before the first mapping symbol; this means
842   // we should use the default disassembly mode, depending on the target.
843   if (It == MappingSymbols.begin())
844     return '\x00';
845   return (It - 1)->second;
846 }
847 
848 static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index,
849                                uint64_t End, const ObjectFile *Obj,
850                                ArrayRef<uint8_t> Bytes,
851                                ArrayRef<MappingSymbolPair> MappingSymbols,
852                                raw_ostream &OS) {
853   support::endianness Endian =
854       Obj->isLittleEndian() ? support::little : support::big;
855   OS << format("%8" PRIx64 ":\t", SectionAddr + Index);
856   if (Index + 4 <= End) {
857     dumpBytes(Bytes.slice(Index, 4), OS);
858     OS << "\t.word\t"
859            << format_hex(support::endian::read32(Bytes.data() + Index, Endian),
860                          10);
861     return 4;
862   }
863   if (Index + 2 <= End) {
864     dumpBytes(Bytes.slice(Index, 2), OS);
865     OS << "\t\t.short\t"
866            << format_hex(support::endian::read16(Bytes.data() + Index, Endian),
867                          6);
868     return 2;
869   }
870   dumpBytes(Bytes.slice(Index, 1), OS);
871   OS << "\t\t.byte\t" << format_hex(Bytes[0], 4);
872   return 1;
873 }
874 
875 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
876                         ArrayRef<uint8_t> Bytes) {
877   // print out data up to 8 bytes at a time in hex and ascii
878   uint8_t AsciiData[9] = {'\0'};
879   uint8_t Byte;
880   int NumBytes = 0;
881 
882   for (; Index < End; ++Index) {
883     if (NumBytes == 0)
884       outs() << format("%8" PRIx64 ":", SectionAddr + Index);
885     Byte = Bytes.slice(Index)[0];
886     outs() << format(" %02x", Byte);
887     AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
888 
889     uint8_t IndentOffset = 0;
890     NumBytes++;
891     if (Index == End - 1 || NumBytes > 8) {
892       // Indent the space for less than 8 bytes data.
893       // 2 spaces for byte and one for space between bytes
894       IndentOffset = 3 * (8 - NumBytes);
895       for (int Excess = NumBytes; Excess < 8; Excess++)
896         AsciiData[Excess] = '\0';
897       NumBytes = 8;
898     }
899     if (NumBytes == 8) {
900       AsciiData[8] = '\0';
901       outs() << std::string(IndentOffset, ' ') << "         ";
902       outs() << reinterpret_cast<char *>(AsciiData);
903       outs() << '\n';
904       NumBytes = 0;
905     }
906   }
907 }
908 
909 SymbolInfoTy objdump::createSymbolInfo(const ObjectFile *Obj,
910                                        const SymbolRef &Symbol) {
911   const StringRef FileName = Obj->getFileName();
912   const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName);
913   const StringRef Name = unwrapOrError(Symbol.getName(), FileName);
914 
915   if (Obj->isXCOFF() && SymbolDescription) {
916     const auto *XCOFFObj = cast<XCOFFObjectFile>(Obj);
917     DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl();
918 
919     const uint32_t SymbolIndex = XCOFFObj->getSymbolIndex(SymbolDRI.p);
920     Optional<XCOFF::StorageMappingClass> Smc =
921         getXCOFFSymbolCsectSMC(XCOFFObj, Symbol);
922     return SymbolInfoTy(Addr, Name, Smc, SymbolIndex,
923                         isLabel(XCOFFObj, Symbol));
924   } else
925     return SymbolInfoTy(Addr, Name,
926                         Obj->isELF() ? getElfSymbolType(Obj, Symbol)
927                                      : (uint8_t)ELF::STT_NOTYPE);
928 }
929 
930 static SymbolInfoTy createDummySymbolInfo(const ObjectFile *Obj,
931                                           const uint64_t Addr, StringRef &Name,
932                                           uint8_t Type) {
933   if (Obj->isXCOFF() && SymbolDescription)
934     return SymbolInfoTy(Addr, Name, None, None, false);
935   else
936     return SymbolInfoTy(Addr, Name, Type);
937 }
938 
939 static void
940 collectLocalBranchTargets(ArrayRef<uint8_t> Bytes, const MCInstrAnalysis *MIA,
941                           MCDisassembler *DisAsm, MCInstPrinter *IP,
942                           const MCSubtargetInfo *STI, uint64_t SectionAddr,
943                           uint64_t Start, uint64_t End,
944                           std::unordered_map<uint64_t, std::string> &Labels) {
945   // So far only supports X86.
946   if (!STI->getTargetTriple().isX86())
947     return;
948 
949   Labels.clear();
950   unsigned LabelCount = 0;
951   Start += SectionAddr;
952   End += SectionAddr;
953   uint64_t Index = Start;
954   while (Index < End) {
955     // Disassemble a real instruction and record function-local branch labels.
956     MCInst Inst;
957     uint64_t Size;
958     bool Disassembled = DisAsm->getInstruction(
959         Inst, Size, Bytes.slice(Index - SectionAddr), Index, nulls());
960     if (Size == 0)
961       Size = 1;
962 
963     if (Disassembled && MIA) {
964       uint64_t Target;
965       bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target);
966       if (TargetKnown && (Target >= Start && Target < End) &&
967           !Labels.count(Target))
968         Labels[Target] = ("L" + Twine(LabelCount++)).str();
969     }
970 
971     Index += Size;
972   }
973 }
974 
975 // Create an MCSymbolizer for the target and add it to the MCDisassembler.
976 // This is currently only used on AMDGPU, and assumes the format of the
977 // void * argument passed to AMDGPU's createMCSymbolizer.
978 static void addSymbolizer(
979     MCContext &Ctx, const Target *Target, StringRef TripleName,
980     MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes,
981     SectionSymbolsTy &Symbols,
982     std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) {
983 
984   std::unique_ptr<MCRelocationInfo> RelInfo(
985       Target->createMCRelocationInfo(TripleName, Ctx));
986   if (!RelInfo)
987     return;
988   std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer(
989       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
990   MCSymbolizer *SymbolizerPtr = &*Symbolizer;
991   DisAsm->setSymbolizer(std::move(Symbolizer));
992 
993   if (!SymbolizeOperands)
994     return;
995 
996   // Synthesize labels referenced by branch instructions by
997   // disassembling, discarding the output, and collecting the referenced
998   // addresses from the symbolizer.
999   for (size_t Index = 0; Index != Bytes.size();) {
1000     MCInst Inst;
1001     uint64_t Size;
1002     DisAsm->getInstruction(Inst, Size, Bytes.slice(Index), SectionAddr + Index,
1003                            nulls());
1004     if (Size == 0)
1005       Size = 1;
1006     Index += Size;
1007   }
1008   ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses();
1009   // Copy and sort to remove duplicates.
1010   std::vector<uint64_t> LabelAddrs;
1011   LabelAddrs.insert(LabelAddrs.end(), LabelAddrsRef.begin(),
1012                     LabelAddrsRef.end());
1013   llvm::sort(LabelAddrs);
1014   LabelAddrs.resize(std::unique(LabelAddrs.begin(), LabelAddrs.end()) -
1015                     LabelAddrs.begin());
1016   // Add the labels.
1017   for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) {
1018     auto Name = std::make_unique<std::string>();
1019     *Name = (Twine("L") + Twine(LabelNum)).str();
1020     SynthesizedLabelNames.push_back(std::move(Name));
1021     Symbols.push_back(SymbolInfoTy(
1022         LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE));
1023   }
1024   llvm::stable_sort(Symbols);
1025   // Recreate the symbolizer with the new symbols list.
1026   RelInfo.reset(Target->createMCRelocationInfo(TripleName, Ctx));
1027   Symbolizer.reset(Target->createMCSymbolizer(
1028       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1029   DisAsm->setSymbolizer(std::move(Symbolizer));
1030 }
1031 
1032 static StringRef getSegmentName(const MachOObjectFile *MachO,
1033                                 const SectionRef &Section) {
1034   if (MachO) {
1035     DataRefImpl DR = Section.getRawDataRefImpl();
1036     StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1037     return SegmentName;
1038   }
1039   return "";
1040 }
1041 
1042 static void emitPostInstructionInfo(formatted_raw_ostream &FOS,
1043                                     const MCAsmInfo &MAI,
1044                                     const MCSubtargetInfo &STI,
1045                                     StringRef Comments,
1046                                     LiveVariablePrinter &LVP) {
1047   do {
1048     if (!Comments.empty()) {
1049       // Emit a line of comments.
1050       StringRef Comment;
1051       std::tie(Comment, Comments) = Comments.split('\n');
1052       // MAI.getCommentColumn() assumes that instructions are printed at the
1053       // position of 8, while getInstStartColumn() returns the actual position.
1054       unsigned CommentColumn =
1055           MAI.getCommentColumn() - 8 + getInstStartColumn(STI);
1056       FOS.PadToColumn(CommentColumn);
1057       FOS << MAI.getCommentString() << ' ' << Comment;
1058     }
1059     LVP.printAfterInst(FOS);
1060     FOS << '\n';
1061   } while (!Comments.empty());
1062   FOS.flush();
1063 }
1064 
1065 static void disassembleObject(const Target *TheTarget, const ObjectFile *Obj,
1066                               MCContext &Ctx, MCDisassembler *PrimaryDisAsm,
1067                               MCDisassembler *SecondaryDisAsm,
1068                               const MCInstrAnalysis *MIA, MCInstPrinter *IP,
1069                               const MCSubtargetInfo *PrimarySTI,
1070                               const MCSubtargetInfo *SecondarySTI,
1071                               PrettyPrinter &PIP,
1072                               SourcePrinter &SP, bool InlineRelocs) {
1073   const MCSubtargetInfo *STI = PrimarySTI;
1074   MCDisassembler *DisAsm = PrimaryDisAsm;
1075   bool PrimaryIsThumb = false;
1076   if (isArmElf(Obj))
1077     PrimaryIsThumb = STI->checkFeatures("+thumb-mode");
1078 
1079   std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
1080   if (InlineRelocs)
1081     RelocMap = getRelocsMap(*Obj);
1082   bool Is64Bits = Obj->getBytesInAddress() > 4;
1083 
1084   // Create a mapping from virtual address to symbol name.  This is used to
1085   // pretty print the symbols while disassembling.
1086   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1087   SectionSymbolsTy AbsoluteSymbols;
1088   const StringRef FileName = Obj->getFileName();
1089   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
1090   for (const SymbolRef &Symbol : Obj->symbols()) {
1091     Expected<StringRef> NameOrErr = Symbol.getName();
1092     if (!NameOrErr) {
1093       reportWarning(toString(NameOrErr.takeError()), FileName);
1094       continue;
1095     }
1096     if (NameOrErr->empty() && !(Obj->isXCOFF() && SymbolDescription))
1097       continue;
1098 
1099     if (Obj->isELF() && getElfSymbolType(Obj, Symbol) == ELF::STT_SECTION)
1100       continue;
1101 
1102     if (MachO) {
1103       // __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special
1104       // symbols that support MachO header introspection. They do not bind to
1105       // code locations and are irrelevant for disassembly.
1106       if (NameOrErr->startswith("__mh_") && NameOrErr->endswith("_header"))
1107         continue;
1108       // Don't ask a Mach-O STAB symbol for its section unless you know that
1109       // STAB symbol's section field refers to a valid section index. Otherwise
1110       // the symbol may error trying to load a section that does not exist.
1111       DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
1112       uint8_t NType = (MachO->is64Bit() ?
1113                        MachO->getSymbol64TableEntry(SymDRI).n_type:
1114                        MachO->getSymbolTableEntry(SymDRI).n_type);
1115       if (NType & MachO::N_STAB)
1116         continue;
1117     }
1118 
1119     section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1120     if (SecI != Obj->section_end())
1121       AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol));
1122     else
1123       AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol));
1124   }
1125 
1126   if (AllSymbols.empty() && Obj->isELF())
1127     addDynamicElfSymbols(Obj, AllSymbols);
1128 
1129   BumpPtrAllocator A;
1130   StringSaver Saver(A);
1131   addPltEntries(Obj, AllSymbols, Saver);
1132 
1133   // Create a mapping from virtual address to section. An empty section can
1134   // cause more than one section at the same address. Sort such sections to be
1135   // before same-addressed non-empty sections so that symbol lookups prefer the
1136   // non-empty section.
1137   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1138   for (SectionRef Sec : Obj->sections())
1139     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1140   llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) {
1141     if (LHS.first != RHS.first)
1142       return LHS.first < RHS.first;
1143     return LHS.second.getSize() < RHS.second.getSize();
1144   });
1145 
1146   // Linked executables (.exe and .dll files) typically don't include a real
1147   // symbol table but they might contain an export table.
1148   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
1149     for (const auto &ExportEntry : COFFObj->export_directories()) {
1150       StringRef Name;
1151       if (Error E = ExportEntry.getSymbolName(Name))
1152         reportError(std::move(E), Obj->getFileName());
1153       if (Name.empty())
1154         continue;
1155 
1156       uint32_t RVA;
1157       if (Error E = ExportEntry.getExportRVA(RVA))
1158         reportError(std::move(E), Obj->getFileName());
1159 
1160       uint64_t VA = COFFObj->getImageBase() + RVA;
1161       auto Sec = partition_point(
1162           SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) {
1163             return O.first <= VA;
1164           });
1165       if (Sec != SectionAddresses.begin()) {
1166         --Sec;
1167         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1168       } else
1169         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1170     }
1171   }
1172 
1173   // Sort all the symbols, this allows us to use a simple binary search to find
1174   // Multiple symbols can have the same address. Use a stable sort to stabilize
1175   // the output.
1176   StringSet<> FoundDisasmSymbolSet;
1177   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1178     llvm::stable_sort(SecSyms.second);
1179   llvm::stable_sort(AbsoluteSymbols);
1180 
1181   std::unique_ptr<DWARFContext> DICtx;
1182   LiveVariablePrinter LVP(*Ctx.getRegisterInfo(), *STI);
1183 
1184   if (DbgVariables != DVDisabled) {
1185     DICtx = DWARFContext::create(*Obj);
1186     for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units())
1187       LVP.addCompileUnit(CU->getUnitDIE(false));
1188   }
1189 
1190   LLVM_DEBUG(LVP.dump());
1191 
1192   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1193     if (FilterSections.empty() && !DisassembleAll &&
1194         (!Section.isText() || Section.isVirtual()))
1195       continue;
1196 
1197     uint64_t SectionAddr = Section.getAddress();
1198     uint64_t SectSize = Section.getSize();
1199     if (!SectSize)
1200       continue;
1201 
1202     // Get the list of all the symbols in this section.
1203     SectionSymbolsTy &Symbols = AllSymbols[Section];
1204     std::vector<MappingSymbolPair> MappingSymbols;
1205     if (hasMappingSymbols(Obj)) {
1206       for (const auto &Symb : Symbols) {
1207         uint64_t Address = Symb.Addr;
1208         StringRef Name = Symb.Name;
1209         if (Name.startswith("$d"))
1210           MappingSymbols.emplace_back(Address - SectionAddr, 'd');
1211         if (Name.startswith("$x"))
1212           MappingSymbols.emplace_back(Address - SectionAddr, 'x');
1213         if (Name.startswith("$a"))
1214           MappingSymbols.emplace_back(Address - SectionAddr, 'a');
1215         if (Name.startswith("$t"))
1216           MappingSymbols.emplace_back(Address - SectionAddr, 't');
1217       }
1218     }
1219 
1220     llvm::sort(MappingSymbols);
1221 
1222     ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(
1223         unwrapOrError(Section.getContents(), Obj->getFileName()));
1224 
1225     std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames;
1226     if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1227       // AMDGPU disassembler uses symbolizer for printing labels
1228       addSymbolizer(Ctx, TheTarget, TripleName, DisAsm, SectionAddr, Bytes,
1229                     Symbols, SynthesizedLabelNames);
1230     }
1231 
1232     StringRef SegmentName = getSegmentName(MachO, Section);
1233     StringRef SectionName = unwrapOrError(Section.getName(), Obj->getFileName());
1234     // If the section has no symbol at the start, just insert a dummy one.
1235     if (Symbols.empty() || Symbols[0].Addr != 0) {
1236       Symbols.insert(Symbols.begin(),
1237                      createDummySymbolInfo(Obj, SectionAddr, SectionName,
1238                                            Section.isText() ? ELF::STT_FUNC
1239                                                             : ELF::STT_OBJECT));
1240     }
1241 
1242     SmallString<40> Comments;
1243     raw_svector_ostream CommentStream(Comments);
1244 
1245     uint64_t VMAAdjustment = 0;
1246     if (shouldAdjustVA(Section))
1247       VMAAdjustment = AdjustVMA;
1248 
1249     uint64_t Size;
1250     uint64_t Index;
1251     bool PrintedSection = false;
1252     std::vector<RelocationRef> Rels = RelocMap[Section];
1253     std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1254     std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1255     // Disassemble symbol by symbol.
1256     for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) {
1257       std::string SymbolName = Symbols[SI].Name.str();
1258       if (Demangle)
1259         SymbolName = demangle(SymbolName);
1260 
1261       // Skip if --disassemble-symbols is not empty and the symbol is not in
1262       // the list.
1263       if (!DisasmSymbolSet.empty() && !DisasmSymbolSet.count(SymbolName))
1264         continue;
1265 
1266       uint64_t Start = Symbols[SI].Addr;
1267       if (Start < SectionAddr || StopAddress <= Start)
1268         continue;
1269       else
1270         FoundDisasmSymbolSet.insert(SymbolName);
1271 
1272       // The end is the section end, the beginning of the next symbol, or
1273       // --stop-address.
1274       uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress);
1275       if (SI + 1 < SE)
1276         End = std::min(End, Symbols[SI + 1].Addr);
1277       if (Start >= End || End <= StartAddress)
1278         continue;
1279       Start -= SectionAddr;
1280       End -= SectionAddr;
1281 
1282       if (!PrintedSection) {
1283         PrintedSection = true;
1284         outs() << "\nDisassembly of section ";
1285         if (!SegmentName.empty())
1286           outs() << SegmentName << ",";
1287         outs() << SectionName << ":\n";
1288       }
1289 
1290       outs() << '\n';
1291       if (LeadingAddr)
1292         outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",
1293                          SectionAddr + Start + VMAAdjustment);
1294       if (Obj->isXCOFF() && SymbolDescription) {
1295         outs() << getXCOFFSymbolDescription(Symbols[SI], SymbolName) << ":\n";
1296       } else
1297         outs() << '<' << SymbolName << ">:\n";
1298 
1299       // Don't print raw contents of a virtual section. A virtual section
1300       // doesn't have any contents in the file.
1301       if (Section.isVirtual()) {
1302         outs() << "...\n";
1303         continue;
1304       }
1305 
1306       auto Status = DisAsm->onSymbolStart(Symbols[SI], Size,
1307                                           Bytes.slice(Start, End - Start),
1308                                           SectionAddr + Start, CommentStream);
1309       // To have round trippable disassembly, we fall back to decoding the
1310       // remaining bytes as instructions.
1311       //
1312       // If there is a failure, we disassemble the failed region as bytes before
1313       // falling back. The target is expected to print nothing in this case.
1314       //
1315       // If there is Success or SoftFail i.e no 'real' failure, we go ahead by
1316       // Size bytes before falling back.
1317       // So if the entire symbol is 'eaten' by the target:
1318       //   Start += Size  // Now Start = End and we will never decode as
1319       //                  // instructions
1320       //
1321       // Right now, most targets return None i.e ignore to treat a symbol
1322       // separately. But WebAssembly decodes preludes for some symbols.
1323       //
1324       if (Status.hasValue()) {
1325         if (Status.getValue() == MCDisassembler::Fail) {
1326           outs() << "// Error in decoding " << SymbolName
1327                  << " : Decoding failed region as bytes.\n";
1328           for (uint64_t I = 0; I < Size; ++I) {
1329             outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true)
1330                    << "\n";
1331           }
1332         }
1333       } else {
1334         Size = 0;
1335       }
1336 
1337       Start += Size;
1338 
1339       Index = Start;
1340       if (SectionAddr < StartAddress)
1341         Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
1342 
1343       // If there is a data/common symbol inside an ELF text section and we are
1344       // only disassembling text (applicable all architectures), we are in a
1345       // situation where we must print the data and not disassemble it.
1346       if (Obj->isELF() && !DisassembleAll && Section.isText()) {
1347         uint8_t SymTy = Symbols[SI].Type;
1348         if (SymTy == ELF::STT_OBJECT || SymTy == ELF::STT_COMMON) {
1349           dumpELFData(SectionAddr, Index, End, Bytes);
1350           Index = End;
1351         }
1352       }
1353 
1354       bool CheckARMELFData = hasMappingSymbols(Obj) &&
1355                              Symbols[SI].Type != ELF::STT_OBJECT &&
1356                              !DisassembleAll;
1357       bool DumpARMELFData = false;
1358       formatted_raw_ostream FOS(outs());
1359 
1360       std::unordered_map<uint64_t, std::string> AllLabels;
1361       if (SymbolizeOperands)
1362         collectLocalBranchTargets(Bytes, MIA, DisAsm, IP, PrimarySTI,
1363                                   SectionAddr, Index, End, AllLabels);
1364 
1365       while (Index < End) {
1366         // ARM and AArch64 ELF binaries can interleave data and text in the
1367         // same section. We rely on the markers introduced to understand what
1368         // we need to dump. If the data marker is within a function, it is
1369         // denoted as a word/short etc.
1370         if (CheckARMELFData) {
1371           char Kind = getMappingSymbolKind(MappingSymbols, Index);
1372           DumpARMELFData = Kind == 'd';
1373           if (SecondarySTI) {
1374             if (Kind == 'a') {
1375               STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI;
1376               DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm;
1377             } else if (Kind == 't') {
1378               STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI;
1379               DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm;
1380             }
1381           }
1382         }
1383 
1384         if (DumpARMELFData) {
1385           Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
1386                                 MappingSymbols, FOS);
1387         } else {
1388           // When -z or --disassemble-zeroes are given we always dissasemble
1389           // them. Otherwise we might want to skip zero bytes we see.
1390           if (!DisassembleZeroes) {
1391             uint64_t MaxOffset = End - Index;
1392             // For --reloc: print zero blocks patched by relocations, so that
1393             // relocations can be shown in the dump.
1394             if (RelCur != RelEnd)
1395               MaxOffset = RelCur->getOffset() - Index;
1396 
1397             if (size_t N =
1398                     countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
1399               FOS << "\t\t..." << '\n';
1400               Index += N;
1401               continue;
1402             }
1403           }
1404 
1405           // Print local label if there's any.
1406           auto Iter = AllLabels.find(SectionAddr + Index);
1407           if (Iter != AllLabels.end())
1408             FOS << "<" << Iter->second << ">:\n";
1409 
1410           // Disassemble a real instruction or a data when disassemble all is
1411           // provided
1412           MCInst Inst;
1413           bool Disassembled =
1414               DisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
1415                                      SectionAddr + Index, CommentStream);
1416           if (Size == 0)
1417             Size = 1;
1418 
1419           LVP.update({Index, Section.getIndex()},
1420                      {Index + Size, Section.getIndex()}, Index + Size != End);
1421 
1422           IP->setCommentStream(CommentStream);
1423 
1424           PIP.printInst(
1425               *IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size),
1426               {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS,
1427               "", *STI, &SP, Obj->getFileName(), &Rels, LVP);
1428 
1429           IP->setCommentStream(llvm::nulls());
1430 
1431           // If disassembly has failed, avoid analysing invalid/incomplete
1432           // instruction information. Otherwise, try to resolve the target
1433           // address (jump target or memory operand address) and print it on the
1434           // right of the instruction.
1435           if (Disassembled && MIA) {
1436             uint64_t Target;
1437             bool PrintTarget =
1438                 MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target);
1439             if (!PrintTarget)
1440               if (Optional<uint64_t> MaybeTarget =
1441                       MIA->evaluateMemoryOperandAddress(
1442                           Inst, SectionAddr + Index, Size)) {
1443                 Target = *MaybeTarget;
1444                 PrintTarget = true;
1445                 // Do not print real address when symbolizing.
1446                 if (!SymbolizeOperands)
1447                   FOS << "  # " << Twine::utohexstr(Target);
1448               }
1449             if (PrintTarget) {
1450               // In a relocatable object, the target's section must reside in
1451               // the same section as the call instruction or it is accessed
1452               // through a relocation.
1453               //
1454               // In a non-relocatable object, the target may be in any section.
1455               // In that case, locate the section(s) containing the target
1456               // address and find the symbol in one of those, if possible.
1457               //
1458               // N.B. We don't walk the relocations in the relocatable case yet.
1459               std::vector<const SectionSymbolsTy *> TargetSectionSymbols;
1460               if (!Obj->isRelocatableObject()) {
1461                 auto It = llvm::partition_point(
1462                     SectionAddresses,
1463                     [=](const std::pair<uint64_t, SectionRef> &O) {
1464                       return O.first <= Target;
1465                     });
1466                 uint64_t TargetSecAddr = 0;
1467                 while (It != SectionAddresses.begin()) {
1468                   --It;
1469                   if (TargetSecAddr == 0)
1470                     TargetSecAddr = It->first;
1471                   if (It->first != TargetSecAddr)
1472                     break;
1473                   TargetSectionSymbols.push_back(&AllSymbols[It->second]);
1474                 }
1475               } else {
1476                 TargetSectionSymbols.push_back(&Symbols);
1477               }
1478               TargetSectionSymbols.push_back(&AbsoluteSymbols);
1479 
1480               // Find the last symbol in the first candidate section whose
1481               // offset is less than or equal to the target. If there are no
1482               // such symbols, try in the next section and so on, before finally
1483               // using the nearest preceding absolute symbol (if any), if there
1484               // are no other valid symbols.
1485               const SymbolInfoTy *TargetSym = nullptr;
1486               for (const SectionSymbolsTy *TargetSymbols :
1487                    TargetSectionSymbols) {
1488                 auto It = llvm::partition_point(
1489                     *TargetSymbols,
1490                     [=](const SymbolInfoTy &O) { return O.Addr <= Target; });
1491                 if (It != TargetSymbols->begin()) {
1492                   TargetSym = &*(It - 1);
1493                   break;
1494                 }
1495               }
1496 
1497               // Print the labels corresponding to the target if there's any.
1498               bool LabelAvailable = AllLabels.count(Target);
1499               if (TargetSym != nullptr) {
1500                 uint64_t TargetAddress = TargetSym->Addr;
1501                 uint64_t Disp = Target - TargetAddress;
1502                 std::string TargetName = TargetSym->Name.str();
1503                 if (Demangle)
1504                   TargetName = demangle(TargetName);
1505 
1506                 FOS << " <";
1507                 if (!Disp) {
1508                   // Always Print the binary symbol precisely corresponding to
1509                   // the target address.
1510                   FOS << TargetName;
1511                 } else if (!LabelAvailable) {
1512                   // Always Print the binary symbol plus an offset if there's no
1513                   // local label corresponding to the target address.
1514                   FOS << TargetName << "+0x" << Twine::utohexstr(Disp);
1515                 } else {
1516                   FOS << AllLabels[Target];
1517                 }
1518                 FOS << ">";
1519               } else if (LabelAvailable) {
1520                 FOS << " <" << AllLabels[Target] << ">";
1521               }
1522             }
1523           }
1524         }
1525 
1526         assert(Ctx.getAsmInfo());
1527         emitPostInstructionInfo(FOS, *Ctx.getAsmInfo(), *STI,
1528                                 CommentStream.str(), LVP);
1529         Comments.clear();
1530 
1531         // Hexagon does this in pretty printer
1532         if (Obj->getArch() != Triple::hexagon) {
1533           // Print relocation for instruction and data.
1534           while (RelCur != RelEnd) {
1535             uint64_t Offset = RelCur->getOffset();
1536             // If this relocation is hidden, skip it.
1537             if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) {
1538               ++RelCur;
1539               continue;
1540             }
1541 
1542             // Stop when RelCur's offset is past the disassembled
1543             // instruction/data. Note that it's possible the disassembled data
1544             // is not the complete data: we might see the relocation printed in
1545             // the middle of the data, but this matches the binutils objdump
1546             // output.
1547             if (Offset >= Index + Size)
1548               break;
1549 
1550             // When --adjust-vma is used, update the address printed.
1551             if (RelCur->getSymbol() != Obj->symbol_end()) {
1552               Expected<section_iterator> SymSI =
1553                   RelCur->getSymbol()->getSection();
1554               if (SymSI && *SymSI != Obj->section_end() &&
1555                   shouldAdjustVA(**SymSI))
1556                 Offset += AdjustVMA;
1557             }
1558 
1559             printRelocation(FOS, Obj->getFileName(), *RelCur,
1560                             SectionAddr + Offset, Is64Bits);
1561             LVP.printAfterOtherLine(FOS, true);
1562             ++RelCur;
1563           }
1564         }
1565 
1566         Index += Size;
1567       }
1568     }
1569   }
1570   StringSet<> MissingDisasmSymbolSet =
1571       set_difference(DisasmSymbolSet, FoundDisasmSymbolSet);
1572   for (StringRef Sym : MissingDisasmSymbolSet.keys())
1573     reportWarning("failed to disassemble missing symbol " + Sym, FileName);
1574 }
1575 
1576 static void disassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
1577   const Target *TheTarget = getTarget(Obj);
1578 
1579   // Package up features to be passed to target/subtarget
1580   SubtargetFeatures Features = Obj->getFeatures();
1581   if (!MAttrs.empty())
1582     for (unsigned I = 0; I != MAttrs.size(); ++I)
1583       Features.AddFeature(MAttrs[I]);
1584 
1585   std::unique_ptr<const MCRegisterInfo> MRI(
1586       TheTarget->createMCRegInfo(TripleName));
1587   if (!MRI)
1588     reportError(Obj->getFileName(),
1589                 "no register info for target " + TripleName);
1590 
1591   // Set up disassembler.
1592   MCTargetOptions MCOptions;
1593   std::unique_ptr<const MCAsmInfo> AsmInfo(
1594       TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions));
1595   if (!AsmInfo)
1596     reportError(Obj->getFileName(),
1597                 "no assembly info for target " + TripleName);
1598 
1599   if (MCPU.empty())
1600     MCPU = Obj->tryGetCPUName().getValueOr("").str();
1601 
1602   std::unique_ptr<const MCSubtargetInfo> STI(
1603       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1604   if (!STI)
1605     reportError(Obj->getFileName(),
1606                 "no subtarget info for target " + TripleName);
1607   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
1608   if (!MII)
1609     reportError(Obj->getFileName(),
1610                 "no instruction info for target " + TripleName);
1611   MCContext Ctx(Triple(TripleName), AsmInfo.get(), MRI.get(), STI.get());
1612   // FIXME: for now initialize MCObjectFileInfo with default values
1613   std::unique_ptr<MCObjectFileInfo> MOFI(
1614       TheTarget->createMCObjectFileInfo(Ctx, /*PIC=*/false));
1615   Ctx.setObjectFileInfo(MOFI.get());
1616 
1617   std::unique_ptr<MCDisassembler> DisAsm(
1618       TheTarget->createMCDisassembler(*STI, Ctx));
1619   if (!DisAsm)
1620     reportError(Obj->getFileName(), "no disassembler for target " + TripleName);
1621 
1622   // If we have an ARM object file, we need a second disassembler, because
1623   // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
1624   // We use mapping symbols to switch between the two assemblers, where
1625   // appropriate.
1626   std::unique_ptr<MCDisassembler> SecondaryDisAsm;
1627   std::unique_ptr<const MCSubtargetInfo> SecondarySTI;
1628   if (isArmElf(Obj) && !STI->checkFeatures("+mclass")) {
1629     if (STI->checkFeatures("+thumb-mode"))
1630       Features.AddFeature("-thumb-mode");
1631     else
1632       Features.AddFeature("+thumb-mode");
1633     SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU,
1634                                                         Features.getString()));
1635     SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx));
1636   }
1637 
1638   std::unique_ptr<const MCInstrAnalysis> MIA(
1639       TheTarget->createMCInstrAnalysis(MII.get()));
1640 
1641   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1642   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
1643       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
1644   if (!IP)
1645     reportError(Obj->getFileName(),
1646                 "no instruction printer for target " + TripleName);
1647   IP->setPrintImmHex(PrintImmHex);
1648   IP->setPrintBranchImmAsAddress(true);
1649   IP->setSymbolizeOperands(SymbolizeOperands);
1650   IP->setMCInstrAnalysis(MIA.get());
1651 
1652   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
1653   SourcePrinter SP(Obj, TheTarget->getName());
1654 
1655   for (StringRef Opt : DisassemblerOptions)
1656     if (!IP->applyTargetSpecificCLOption(Opt))
1657       reportError(Obj->getFileName(),
1658                   "Unrecognized disassembler option: " + Opt);
1659 
1660   disassembleObject(TheTarget, Obj, Ctx, DisAsm.get(), SecondaryDisAsm.get(),
1661                     MIA.get(), IP.get(), STI.get(), SecondarySTI.get(), PIP,
1662                     SP, InlineRelocs);
1663 }
1664 
1665 void objdump::printRelocations(const ObjectFile *Obj) {
1666   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
1667                                                  "%08" PRIx64;
1668   // Regular objdump doesn't print relocations in non-relocatable object
1669   // files.
1670   if (!Obj->isRelocatableObject())
1671     return;
1672 
1673   // Build a mapping from relocation target to a vector of relocation
1674   // sections. Usually, there is an only one relocation section for
1675   // each relocated section.
1676   MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec;
1677   uint64_t Ndx;
1678   for (const SectionRef &Section : ToolSectionFilter(*Obj, &Ndx)) {
1679     if (Section.relocation_begin() == Section.relocation_end())
1680       continue;
1681     Expected<section_iterator> SecOrErr = Section.getRelocatedSection();
1682     if (!SecOrErr)
1683       reportError(Obj->getFileName(),
1684                   "section (" + Twine(Ndx) +
1685                       "): unable to get a relocation target: " +
1686                       toString(SecOrErr.takeError()));
1687     SecToRelSec[**SecOrErr].push_back(Section);
1688   }
1689 
1690   for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) {
1691     StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName());
1692     outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n";
1693     uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8);
1694     uint32_t TypePadding = 24;
1695     outs() << left_justify("OFFSET", OffsetPadding) << " "
1696            << left_justify("TYPE", TypePadding) << " "
1697            << "VALUE\n";
1698 
1699     for (SectionRef Section : P.second) {
1700       for (const RelocationRef &Reloc : Section.relocations()) {
1701         uint64_t Address = Reloc.getOffset();
1702         SmallString<32> RelocName;
1703         SmallString<32> ValueStr;
1704         if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
1705           continue;
1706         Reloc.getTypeName(RelocName);
1707         if (Error E = getRelocationValueString(Reloc, ValueStr))
1708           reportError(std::move(E), Obj->getFileName());
1709 
1710         outs() << format(Fmt.data(), Address) << " "
1711                << left_justify(RelocName, TypePadding) << " " << ValueStr
1712                << "\n";
1713       }
1714     }
1715   }
1716 }
1717 
1718 void objdump::printDynamicRelocations(const ObjectFile *Obj) {
1719   // For the moment, this option is for ELF only
1720   if (!Obj->isELF())
1721     return;
1722 
1723   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
1724   if (!Elf || Elf->getEType() != ELF::ET_DYN) {
1725     reportError(Obj->getFileName(), "not a dynamic object");
1726     return;
1727   }
1728 
1729   std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
1730   if (DynRelSec.empty())
1731     return;
1732 
1733   outs() << "DYNAMIC RELOCATION RECORDS\n";
1734   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1735   for (const SectionRef &Section : DynRelSec)
1736     for (const RelocationRef &Reloc : Section.relocations()) {
1737       uint64_t Address = Reloc.getOffset();
1738       SmallString<32> RelocName;
1739       SmallString<32> ValueStr;
1740       Reloc.getTypeName(RelocName);
1741       if (Error E = getRelocationValueString(Reloc, ValueStr))
1742         reportError(std::move(E), Obj->getFileName());
1743       outs() << format(Fmt.data(), Address) << " " << RelocName << " "
1744              << ValueStr << "\n";
1745     }
1746 }
1747 
1748 // Returns true if we need to show LMA column when dumping section headers. We
1749 // show it only when the platform is ELF and either we have at least one section
1750 // whose VMA and LMA are different and/or when --show-lma flag is used.
1751 static bool shouldDisplayLMA(const ObjectFile *Obj) {
1752   if (!Obj->isELF())
1753     return false;
1754   for (const SectionRef &S : ToolSectionFilter(*Obj))
1755     if (S.getAddress() != getELFSectionLMA(S))
1756       return true;
1757   return ShowLMA;
1758 }
1759 
1760 static size_t getMaxSectionNameWidth(const ObjectFile *Obj) {
1761   // Default column width for names is 13 even if no names are that long.
1762   size_t MaxWidth = 13;
1763   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1764     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
1765     MaxWidth = std::max(MaxWidth, Name.size());
1766   }
1767   return MaxWidth;
1768 }
1769 
1770 void objdump::printSectionHeaders(const ObjectFile *Obj) {
1771   size_t NameWidth = getMaxSectionNameWidth(Obj);
1772   size_t AddressWidth = 2 * Obj->getBytesInAddress();
1773   bool HasLMAColumn = shouldDisplayLMA(Obj);
1774   outs() << "\nSections:\n";
1775   if (HasLMAColumn)
1776     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
1777            << left_justify("VMA", AddressWidth) << " "
1778            << left_justify("LMA", AddressWidth) << " Type\n";
1779   else
1780     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
1781            << left_justify("VMA", AddressWidth) << " Type\n";
1782 
1783   uint64_t Idx;
1784   for (const SectionRef &Section : ToolSectionFilter(*Obj, &Idx)) {
1785     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
1786     uint64_t VMA = Section.getAddress();
1787     if (shouldAdjustVA(Section))
1788       VMA += AdjustVMA;
1789 
1790     uint64_t Size = Section.getSize();
1791 
1792     std::string Type = Section.isText() ? "TEXT" : "";
1793     if (Section.isData())
1794       Type += Type.empty() ? "DATA" : ", DATA";
1795     if (Section.isBSS())
1796       Type += Type.empty() ? "BSS" : ", BSS";
1797     if (Section.isDebugSection())
1798       Type += Type.empty() ? "DEBUG" : ", DEBUG";
1799 
1800     if (HasLMAColumn)
1801       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
1802                        Name.str().c_str(), Size)
1803              << format_hex_no_prefix(VMA, AddressWidth) << " "
1804              << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth)
1805              << " " << Type << "\n";
1806     else
1807       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
1808                        Name.str().c_str(), Size)
1809              << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n";
1810   }
1811 }
1812 
1813 void objdump::printSectionContents(const ObjectFile *Obj) {
1814   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
1815 
1816   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1817     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
1818     uint64_t BaseAddr = Section.getAddress();
1819     uint64_t Size = Section.getSize();
1820     if (!Size)
1821       continue;
1822 
1823     outs() << "Contents of section ";
1824     StringRef SegmentName = getSegmentName(MachO, Section);
1825     if (!SegmentName.empty())
1826       outs() << SegmentName << ",";
1827     outs() << Name << ":\n";
1828     if (Section.isBSS()) {
1829       outs() << format("<skipping contents of bss section at [%04" PRIx64
1830                        ", %04" PRIx64 ")>\n",
1831                        BaseAddr, BaseAddr + Size);
1832       continue;
1833     }
1834 
1835     StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName());
1836 
1837     // Dump out the content as hex and printable ascii characters.
1838     for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
1839       outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
1840       // Dump line of hex.
1841       for (std::size_t I = 0; I < 16; ++I) {
1842         if (I != 0 && I % 4 == 0)
1843           outs() << ' ';
1844         if (Addr + I < End)
1845           outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
1846                  << hexdigit(Contents[Addr + I] & 0xF, true);
1847         else
1848           outs() << "  ";
1849       }
1850       // Print ascii.
1851       outs() << "  ";
1852       for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
1853         if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
1854           outs() << Contents[Addr + I];
1855         else
1856           outs() << ".";
1857       }
1858       outs() << "\n";
1859     }
1860   }
1861 }
1862 
1863 void objdump::printSymbolTable(const ObjectFile *O, StringRef ArchiveName,
1864                                StringRef ArchitectureName, bool DumpDynamic) {
1865   if (O->isCOFF() && !DumpDynamic) {
1866     outs() << "\nSYMBOL TABLE:\n";
1867     printCOFFSymbolTable(cast<const COFFObjectFile>(O));
1868     return;
1869   }
1870 
1871   const StringRef FileName = O->getFileName();
1872 
1873   if (!DumpDynamic) {
1874     outs() << "\nSYMBOL TABLE:\n";
1875     for (auto I = O->symbol_begin(); I != O->symbol_end(); ++I)
1876       printSymbol(O, *I, FileName, ArchiveName, ArchitectureName, DumpDynamic);
1877     return;
1878   }
1879 
1880   outs() << "\nDYNAMIC SYMBOL TABLE:\n";
1881   if (!O->isELF()) {
1882     reportWarning(
1883         "this operation is not currently supported for this file format",
1884         FileName);
1885     return;
1886   }
1887 
1888   const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(O);
1889   for (auto I = ELF->getDynamicSymbolIterators().begin();
1890        I != ELF->getDynamicSymbolIterators().end(); ++I)
1891     printSymbol(O, *I, FileName, ArchiveName, ArchitectureName, DumpDynamic);
1892 }
1893 
1894 void objdump::printSymbol(const ObjectFile *O, const SymbolRef &Symbol,
1895                           StringRef FileName, StringRef ArchiveName,
1896                           StringRef ArchitectureName, bool DumpDynamic) {
1897   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(O);
1898   uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName,
1899                                    ArchitectureName);
1900   if ((Address < StartAddress) || (Address > StopAddress))
1901     return;
1902   SymbolRef::Type Type =
1903       unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName);
1904   uint32_t Flags =
1905       unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName);
1906 
1907   // Don't ask a Mach-O STAB symbol for its section unless you know that
1908   // STAB symbol's section field refers to a valid section index. Otherwise
1909   // the symbol may error trying to load a section that does not exist.
1910   bool IsSTAB = false;
1911   if (MachO) {
1912     DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
1913     uint8_t NType =
1914         (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type
1915                           : MachO->getSymbolTableEntry(SymDRI).n_type);
1916     if (NType & MachO::N_STAB)
1917       IsSTAB = true;
1918   }
1919   section_iterator Section = IsSTAB
1920                                  ? O->section_end()
1921                                  : unwrapOrError(Symbol.getSection(), FileName,
1922                                                  ArchiveName, ArchitectureName);
1923 
1924   StringRef Name;
1925   if (Type == SymbolRef::ST_Debug && Section != O->section_end()) {
1926     if (Expected<StringRef> NameOrErr = Section->getName())
1927       Name = *NameOrErr;
1928     else
1929       consumeError(NameOrErr.takeError());
1930 
1931   } else {
1932     Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName,
1933                          ArchitectureName);
1934   }
1935 
1936   bool Global = Flags & SymbolRef::SF_Global;
1937   bool Weak = Flags & SymbolRef::SF_Weak;
1938   bool Absolute = Flags & SymbolRef::SF_Absolute;
1939   bool Common = Flags & SymbolRef::SF_Common;
1940   bool Hidden = Flags & SymbolRef::SF_Hidden;
1941 
1942   char GlobLoc = ' ';
1943   if ((Section != O->section_end() || Absolute) && !Weak)
1944     GlobLoc = Global ? 'g' : 'l';
1945   char IFunc = ' ';
1946   if (O->isELF()) {
1947     if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC)
1948       IFunc = 'i';
1949     if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE)
1950       GlobLoc = 'u';
1951   }
1952 
1953   char Debug = ' ';
1954   if (DumpDynamic)
1955     Debug = 'D';
1956   else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
1957     Debug = 'd';
1958 
1959   char FileFunc = ' ';
1960   if (Type == SymbolRef::ST_File)
1961     FileFunc = 'f';
1962   else if (Type == SymbolRef::ST_Function)
1963     FileFunc = 'F';
1964   else if (Type == SymbolRef::ST_Data)
1965     FileFunc = 'O';
1966 
1967   const char *Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1968 
1969   outs() << format(Fmt, Address) << " "
1970          << GlobLoc            // Local -> 'l', Global -> 'g', Neither -> ' '
1971          << (Weak ? 'w' : ' ') // Weak?
1972          << ' '                // Constructor. Not supported yet.
1973          << ' '                // Warning. Not supported yet.
1974          << IFunc              // Indirect reference to another symbol.
1975          << Debug              // Debugging (d) or dynamic (D) symbol.
1976          << FileFunc           // Name of function (F), file (f) or object (O).
1977          << ' ';
1978   if (Absolute) {
1979     outs() << "*ABS*";
1980   } else if (Common) {
1981     outs() << "*COM*";
1982   } else if (Section == O->section_end()) {
1983     outs() << "*UND*";
1984   } else {
1985     StringRef SegmentName = getSegmentName(MachO, *Section);
1986     if (!SegmentName.empty())
1987       outs() << SegmentName << ",";
1988     StringRef SectionName = unwrapOrError(Section->getName(), FileName);
1989     outs() << SectionName;
1990   }
1991 
1992   if (Common || O->isELF()) {
1993     uint64_t Val =
1994         Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
1995     outs() << '\t' << format(Fmt, Val);
1996   }
1997 
1998   if (O->isELF()) {
1999     uint8_t Other = ELFSymbolRef(Symbol).getOther();
2000     switch (Other) {
2001     case ELF::STV_DEFAULT:
2002       break;
2003     case ELF::STV_INTERNAL:
2004       outs() << " .internal";
2005       break;
2006     case ELF::STV_HIDDEN:
2007       outs() << " .hidden";
2008       break;
2009     case ELF::STV_PROTECTED:
2010       outs() << " .protected";
2011       break;
2012     default:
2013       outs() << format(" 0x%02x", Other);
2014       break;
2015     }
2016   } else if (Hidden) {
2017     outs() << " .hidden";
2018   }
2019 
2020   if (Demangle)
2021     outs() << ' ' << demangle(std::string(Name)) << '\n';
2022   else
2023     outs() << ' ' << Name << '\n';
2024 }
2025 
2026 static void printUnwindInfo(const ObjectFile *O) {
2027   outs() << "Unwind info:\n\n";
2028 
2029   if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
2030     printCOFFUnwindInfo(Coff);
2031   else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
2032     printMachOUnwindInfo(MachO);
2033   else
2034     // TODO: Extract DWARF dump tool to objdump.
2035     WithColor::error(errs(), ToolName)
2036         << "This operation is only currently supported "
2037            "for COFF and MachO object files.\n";
2038 }
2039 
2040 /// Dump the raw contents of the __clangast section so the output can be piped
2041 /// into llvm-bcanalyzer.
2042 static void printRawClangAST(const ObjectFile *Obj) {
2043   if (outs().is_displayed()) {
2044     WithColor::error(errs(), ToolName)
2045         << "The -raw-clang-ast option will dump the raw binary contents of "
2046            "the clang ast section.\n"
2047            "Please redirect the output to a file or another program such as "
2048            "llvm-bcanalyzer.\n";
2049     return;
2050   }
2051 
2052   StringRef ClangASTSectionName("__clangast");
2053   if (Obj->isCOFF()) {
2054     ClangASTSectionName = "clangast";
2055   }
2056 
2057   Optional<object::SectionRef> ClangASTSection;
2058   for (auto Sec : ToolSectionFilter(*Obj)) {
2059     StringRef Name;
2060     if (Expected<StringRef> NameOrErr = Sec.getName())
2061       Name = *NameOrErr;
2062     else
2063       consumeError(NameOrErr.takeError());
2064 
2065     if (Name == ClangASTSectionName) {
2066       ClangASTSection = Sec;
2067       break;
2068     }
2069   }
2070   if (!ClangASTSection)
2071     return;
2072 
2073   StringRef ClangASTContents = unwrapOrError(
2074       ClangASTSection.getValue().getContents(), Obj->getFileName());
2075   outs().write(ClangASTContents.data(), ClangASTContents.size());
2076 }
2077 
2078 static void printFaultMaps(const ObjectFile *Obj) {
2079   StringRef FaultMapSectionName;
2080 
2081   if (Obj->isELF()) {
2082     FaultMapSectionName = ".llvm_faultmaps";
2083   } else if (Obj->isMachO()) {
2084     FaultMapSectionName = "__llvm_faultmaps";
2085   } else {
2086     WithColor::error(errs(), ToolName)
2087         << "This operation is only currently supported "
2088            "for ELF and Mach-O executable files.\n";
2089     return;
2090   }
2091 
2092   Optional<object::SectionRef> FaultMapSection;
2093 
2094   for (auto Sec : ToolSectionFilter(*Obj)) {
2095     StringRef Name;
2096     if (Expected<StringRef> NameOrErr = Sec.getName())
2097       Name = *NameOrErr;
2098     else
2099       consumeError(NameOrErr.takeError());
2100 
2101     if (Name == FaultMapSectionName) {
2102       FaultMapSection = Sec;
2103       break;
2104     }
2105   }
2106 
2107   outs() << "FaultMap table:\n";
2108 
2109   if (!FaultMapSection.hasValue()) {
2110     outs() << "<not found>\n";
2111     return;
2112   }
2113 
2114   StringRef FaultMapContents =
2115       unwrapOrError(FaultMapSection.getValue().getContents(), Obj->getFileName());
2116   FaultMapParser FMP(FaultMapContents.bytes_begin(),
2117                      FaultMapContents.bytes_end());
2118 
2119   outs() << FMP;
2120 }
2121 
2122 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) {
2123   if (O->isELF()) {
2124     printELFFileHeader(O);
2125     printELFDynamicSection(O);
2126     printELFSymbolVersionInfo(O);
2127     return;
2128   }
2129   if (O->isCOFF())
2130     return printCOFFFileHeader(O);
2131   if (O->isWasm())
2132     return printWasmFileHeader(O);
2133   if (O->isMachO()) {
2134     printMachOFileHeader(O);
2135     if (!OnlyFirst)
2136       printMachOLoadCommands(O);
2137     return;
2138   }
2139   reportError(O->getFileName(), "Invalid/Unsupported object file format");
2140 }
2141 
2142 static void printFileHeaders(const ObjectFile *O) {
2143   if (!O->isELF() && !O->isCOFF())
2144     reportError(O->getFileName(), "Invalid/Unsupported object file format");
2145 
2146   Triple::ArchType AT = O->getArch();
2147   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
2148   uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
2149 
2150   StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2151   outs() << "start address: "
2152          << "0x" << format(Fmt.data(), Address) << "\n";
2153 }
2154 
2155 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
2156   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
2157   if (!ModeOrErr) {
2158     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
2159     consumeError(ModeOrErr.takeError());
2160     return;
2161   }
2162   sys::fs::perms Mode = ModeOrErr.get();
2163   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
2164   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
2165   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
2166   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
2167   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
2168   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
2169   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
2170   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
2171   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
2172 
2173   outs() << " ";
2174 
2175   outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
2176                    unwrapOrError(C.getGID(), Filename),
2177                    unwrapOrError(C.getRawSize(), Filename));
2178 
2179   StringRef RawLastModified = C.getRawLastModified();
2180   unsigned Seconds;
2181   if (RawLastModified.getAsInteger(10, Seconds))
2182     outs() << "(date: \"" << RawLastModified
2183            << "\" contains non-decimal chars) ";
2184   else {
2185     // Since ctime(3) returns a 26 character string of the form:
2186     // "Sun Sep 16 01:03:52 1973\n\0"
2187     // just print 24 characters.
2188     time_t t = Seconds;
2189     outs() << format("%.24s ", ctime(&t));
2190   }
2191 
2192   StringRef Name = "";
2193   Expected<StringRef> NameOrErr = C.getName();
2194   if (!NameOrErr) {
2195     consumeError(NameOrErr.takeError());
2196     Name = unwrapOrError(C.getRawName(), Filename);
2197   } else {
2198     Name = NameOrErr.get();
2199   }
2200   outs() << Name << "\n";
2201 }
2202 
2203 // For ELF only now.
2204 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) {
2205   if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) {
2206     if (Elf->getEType() != ELF::ET_REL)
2207       return true;
2208   }
2209   return false;
2210 }
2211 
2212 static void checkForInvalidStartStopAddress(ObjectFile *Obj,
2213                                             uint64_t Start, uint64_t Stop) {
2214   if (!shouldWarnForInvalidStartStopAddress(Obj))
2215     return;
2216 
2217   for (const SectionRef &Section : Obj->sections())
2218     if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) {
2219       uint64_t BaseAddr = Section.getAddress();
2220       uint64_t Size = Section.getSize();
2221       if ((Start < BaseAddr + Size) && Stop > BaseAddr)
2222         return;
2223     }
2224 
2225   if (!HasStartAddressFlag)
2226     reportWarning("no section has address less than 0x" +
2227                       Twine::utohexstr(Stop) + " specified by --stop-address",
2228                   Obj->getFileName());
2229   else if (!HasStopAddressFlag)
2230     reportWarning("no section has address greater than or equal to 0x" +
2231                       Twine::utohexstr(Start) + " specified by --start-address",
2232                   Obj->getFileName());
2233   else
2234     reportWarning("no section overlaps the range [0x" +
2235                       Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) +
2236                       ") specified by --start-address/--stop-address",
2237                   Obj->getFileName());
2238 }
2239 
2240 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
2241                        const Archive::Child *C = nullptr) {
2242   // Avoid other output when using a raw option.
2243   if (!RawClangAST) {
2244     outs() << '\n';
2245     if (A)
2246       outs() << A->getFileName() << "(" << O->getFileName() << ")";
2247     else
2248       outs() << O->getFileName();
2249     outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n";
2250   }
2251 
2252   if (HasStartAddressFlag || HasStopAddressFlag)
2253     checkForInvalidStartStopAddress(O, StartAddress, StopAddress);
2254 
2255   // Note: the order here matches GNU objdump for compatability.
2256   StringRef ArchiveName = A ? A->getFileName() : "";
2257   if (ArchiveHeaders && !MachOOpt && C)
2258     printArchiveChild(ArchiveName, *C);
2259   if (FileHeaders)
2260     printFileHeaders(O);
2261   if (PrivateHeaders || FirstPrivateHeader)
2262     printPrivateFileHeaders(O, FirstPrivateHeader);
2263   if (SectionHeaders)
2264     printSectionHeaders(O);
2265   if (SymbolTable)
2266     printSymbolTable(O, ArchiveName);
2267   if (DynamicSymbolTable)
2268     printSymbolTable(O, ArchiveName, /*ArchitectureName=*/"",
2269                      /*DumpDynamic=*/true);
2270   if (DwarfDumpType != DIDT_Null) {
2271     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
2272     // Dump the complete DWARF structure.
2273     DIDumpOptions DumpOpts;
2274     DumpOpts.DumpType = DwarfDumpType;
2275     DICtx->dump(outs(), DumpOpts);
2276   }
2277   if (Relocations && !Disassemble)
2278     printRelocations(O);
2279   if (DynamicRelocations)
2280     printDynamicRelocations(O);
2281   if (SectionContents)
2282     printSectionContents(O);
2283   if (Disassemble)
2284     disassembleObject(O, Relocations);
2285   if (UnwindInfo)
2286     printUnwindInfo(O);
2287 
2288   // Mach-O specific options:
2289   if (ExportsTrie)
2290     printExportsTrie(O);
2291   if (Rebase)
2292     printRebaseTable(O);
2293   if (Bind)
2294     printBindTable(O);
2295   if (LazyBind)
2296     printLazyBindTable(O);
2297   if (WeakBind)
2298     printWeakBindTable(O);
2299 
2300   // Other special sections:
2301   if (RawClangAST)
2302     printRawClangAST(O);
2303   if (FaultMapSection)
2304     printFaultMaps(O);
2305 }
2306 
2307 static void dumpObject(const COFFImportFile *I, const Archive *A,
2308                        const Archive::Child *C = nullptr) {
2309   StringRef ArchiveName = A ? A->getFileName() : "";
2310 
2311   // Avoid other output when using a raw option.
2312   if (!RawClangAST)
2313     outs() << '\n'
2314            << ArchiveName << "(" << I->getFileName() << ")"
2315            << ":\tfile format COFF-import-file"
2316            << "\n\n";
2317 
2318   if (ArchiveHeaders && !MachOOpt && C)
2319     printArchiveChild(ArchiveName, *C);
2320   if (SymbolTable)
2321     printCOFFSymbolTable(I);
2322 }
2323 
2324 /// Dump each object file in \a a;
2325 static void dumpArchive(const Archive *A) {
2326   Error Err = Error::success();
2327   unsigned I = -1;
2328   for (auto &C : A->children(Err)) {
2329     ++I;
2330     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2331     if (!ChildOrErr) {
2332       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2333         reportError(std::move(E), getFileNameForError(C, I), A->getFileName());
2334       continue;
2335     }
2336     if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2337       dumpObject(O, A, &C);
2338     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2339       dumpObject(I, A, &C);
2340     else
2341       reportError(errorCodeToError(object_error::invalid_file_type),
2342                   A->getFileName());
2343   }
2344   if (Err)
2345     reportError(std::move(Err), A->getFileName());
2346 }
2347 
2348 /// Open file and figure out how to dump it.
2349 static void dumpInput(StringRef file) {
2350   // If we are using the Mach-O specific object file parser, then let it parse
2351   // the file and process the command line options.  So the -arch flags can
2352   // be used to select specific slices, etc.
2353   if (MachOOpt) {
2354     parseInputMachO(file);
2355     return;
2356   }
2357 
2358   // Attempt to open the binary.
2359   OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
2360   Binary &Binary = *OBinary.getBinary();
2361 
2362   if (Archive *A = dyn_cast<Archive>(&Binary))
2363     dumpArchive(A);
2364   else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
2365     dumpObject(O);
2366   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2367     parseInputMachO(UB);
2368   else
2369     reportError(errorCodeToError(object_error::invalid_file_type), file);
2370 }
2371 
2372 template <typename T>
2373 static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID,
2374                         T &Value) {
2375   if (const opt::Arg *A = InputArgs.getLastArg(ID)) {
2376     StringRef V(A->getValue());
2377     if (!llvm::to_integer(V, Value, 0)) {
2378       reportCmdLineError(A->getSpelling() +
2379                          ": expected a non-negative integer, but got '" + V +
2380                          "'");
2381     }
2382   }
2383 }
2384 
2385 static std::vector<std::string>
2386 commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) {
2387   std::vector<std::string> Values;
2388   for (StringRef Value : InputArgs.getAllArgValues(ID)) {
2389     llvm::SmallVector<StringRef, 2> SplitValues;
2390     llvm::SplitString(Value, SplitValues, ",");
2391     for (StringRef SplitValue : SplitValues)
2392       Values.push_back(SplitValue.str());
2393   }
2394   return Values;
2395 }
2396 
2397 static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) {
2398   MachOOpt = true;
2399   FullLeadingAddr = true;
2400   PrintImmHex = true;
2401 
2402   ArchName = InputArgs.getLastArgValue(OTOOL_arch).str();
2403   LinkOptHints = InputArgs.hasArg(OTOOL_C);
2404   if (InputArgs.hasArg(OTOOL_d))
2405     FilterSections.push_back("__DATA,__data");
2406   DylibId = InputArgs.hasArg(OTOOL_D);
2407   UniversalHeaders = InputArgs.hasArg(OTOOL_f);
2408   DataInCode = InputArgs.hasArg(OTOOL_G);
2409   FirstPrivateHeader = InputArgs.hasArg(OTOOL_h);
2410   IndirectSymbols = InputArgs.hasArg(OTOOL_I);
2411   ShowRawInsn = InputArgs.hasArg(OTOOL_j);
2412   PrivateHeaders = InputArgs.hasArg(OTOOL_l);
2413   DylibsUsed = InputArgs.hasArg(OTOOL_L);
2414   MCPU = InputArgs.getLastArgValue(OTOOL_mcpu_EQ).str();
2415   ObjcMetaData = InputArgs.hasArg(OTOOL_o);
2416   DisSymName = InputArgs.getLastArgValue(OTOOL_p).str();
2417   InfoPlist = InputArgs.hasArg(OTOOL_P);
2418   Relocations = InputArgs.hasArg(OTOOL_r);
2419   if (const Arg *A = InputArgs.getLastArg(OTOOL_s)) {
2420     auto Filter = (A->getValue(0) + StringRef(",") + A->getValue(1)).str();
2421     FilterSections.push_back(Filter);
2422   }
2423   if (InputArgs.hasArg(OTOOL_t))
2424     FilterSections.push_back("__TEXT,__text");
2425   Verbose = InputArgs.hasArg(OTOOL_v) || InputArgs.hasArg(OTOOL_V) ||
2426             InputArgs.hasArg(OTOOL_o);
2427   SymbolicOperands = InputArgs.hasArg(OTOOL_V);
2428   if (InputArgs.hasArg(OTOOL_x))
2429     FilterSections.push_back(",__text");
2430   LeadingAddr = LeadingHeaders = !InputArgs.hasArg(OTOOL_X);
2431 
2432   InputFilenames = InputArgs.getAllArgValues(OTOOL_INPUT);
2433   if (InputFilenames.empty())
2434     reportCmdLineError("no input file");
2435 
2436   for (const Arg *A : InputArgs) {
2437     const Option &O = A->getOption();
2438     if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) {
2439       reportCmdLineWarning(O.getPrefixedName() +
2440                            " is obsolete and not implemented");
2441     }
2442   }
2443 }
2444 
2445 static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) {
2446   parseIntArg(InputArgs, OBJDUMP_adjust_vma_EQ, AdjustVMA);
2447   AllHeaders = InputArgs.hasArg(OBJDUMP_all_headers);
2448   ArchName = InputArgs.getLastArgValue(OBJDUMP_arch_name_EQ).str();
2449   ArchiveHeaders = InputArgs.hasArg(OBJDUMP_archive_headers);
2450   Demangle = InputArgs.hasArg(OBJDUMP_demangle);
2451   Disassemble = InputArgs.hasArg(OBJDUMP_disassemble);
2452   DisassembleAll = InputArgs.hasArg(OBJDUMP_disassemble_all);
2453   SymbolDescription = InputArgs.hasArg(OBJDUMP_symbol_description);
2454   DisassembleSymbols =
2455       commaSeparatedValues(InputArgs, OBJDUMP_disassemble_symbols_EQ);
2456   DisassembleZeroes = InputArgs.hasArg(OBJDUMP_disassemble_zeroes);
2457   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_dwarf_EQ)) {
2458     DwarfDumpType =
2459         StringSwitch<DIDumpType>(A->getValue()).Case("frames", DIDT_DebugFrame);
2460   }
2461   DynamicRelocations = InputArgs.hasArg(OBJDUMP_dynamic_reloc);
2462   FaultMapSection = InputArgs.hasArg(OBJDUMP_fault_map_section);
2463   FileHeaders = InputArgs.hasArg(OBJDUMP_file_headers);
2464   SectionContents = InputArgs.hasArg(OBJDUMP_full_contents);
2465   PrintLines = InputArgs.hasArg(OBJDUMP_line_numbers);
2466   InputFilenames = InputArgs.getAllArgValues(OBJDUMP_INPUT);
2467   MachOOpt = InputArgs.hasArg(OBJDUMP_macho);
2468   MCPU = InputArgs.getLastArgValue(OBJDUMP_mcpu_EQ).str();
2469   MAttrs = commaSeparatedValues(InputArgs, OBJDUMP_mattr_EQ);
2470   ShowRawInsn = !InputArgs.hasArg(OBJDUMP_no_show_raw_insn);
2471   LeadingAddr = !InputArgs.hasArg(OBJDUMP_no_leading_addr);
2472   RawClangAST = InputArgs.hasArg(OBJDUMP_raw_clang_ast);
2473   Relocations = InputArgs.hasArg(OBJDUMP_reloc);
2474   PrintImmHex =
2475       InputArgs.hasFlag(OBJDUMP_print_imm_hex, OBJDUMP_no_print_imm_hex, false);
2476   PrivateHeaders = InputArgs.hasArg(OBJDUMP_private_headers);
2477   FilterSections = InputArgs.getAllArgValues(OBJDUMP_section_EQ);
2478   SectionHeaders = InputArgs.hasArg(OBJDUMP_section_headers);
2479   ShowLMA = InputArgs.hasArg(OBJDUMP_show_lma);
2480   PrintSource = InputArgs.hasArg(OBJDUMP_source);
2481   parseIntArg(InputArgs, OBJDUMP_start_address_EQ, StartAddress);
2482   HasStartAddressFlag = InputArgs.hasArg(OBJDUMP_start_address_EQ);
2483   parseIntArg(InputArgs, OBJDUMP_stop_address_EQ, StopAddress);
2484   HasStopAddressFlag = InputArgs.hasArg(OBJDUMP_stop_address_EQ);
2485   SymbolTable = InputArgs.hasArg(OBJDUMP_syms);
2486   SymbolizeOperands = InputArgs.hasArg(OBJDUMP_symbolize_operands);
2487   DynamicSymbolTable = InputArgs.hasArg(OBJDUMP_dynamic_syms);
2488   TripleName = InputArgs.getLastArgValue(OBJDUMP_triple_EQ).str();
2489   UnwindInfo = InputArgs.hasArg(OBJDUMP_unwind_info);
2490   Wide = InputArgs.hasArg(OBJDUMP_wide);
2491   Prefix = InputArgs.getLastArgValue(OBJDUMP_prefix).str();
2492   parseIntArg(InputArgs, OBJDUMP_prefix_strip, PrefixStrip);
2493   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_debug_vars_EQ)) {
2494     DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue())
2495                        .Case("ascii", DVASCII)
2496                        .Case("unicode", DVUnicode);
2497   }
2498   parseIntArg(InputArgs, OBJDUMP_debug_vars_indent_EQ, DbgIndent);
2499 
2500   parseMachOOptions(InputArgs);
2501 
2502   // Parse -M (--disassembler-options) and deprecated
2503   // --x86-asm-syntax={att,intel}.
2504   //
2505   // Note, for x86, the asm dialect (AssemblerDialect) is initialized when the
2506   // MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is
2507   // called too late. For now we have to use the internal cl::opt option.
2508   const char *AsmSyntax = nullptr;
2509   for (const auto *A : InputArgs.filtered(OBJDUMP_disassembler_options_EQ,
2510                                           OBJDUMP_x86_asm_syntax_att,
2511                                           OBJDUMP_x86_asm_syntax_intel)) {
2512     switch (A->getOption().getID()) {
2513     case OBJDUMP_x86_asm_syntax_att:
2514       AsmSyntax = "--x86-asm-syntax=att";
2515       continue;
2516     case OBJDUMP_x86_asm_syntax_intel:
2517       AsmSyntax = "--x86-asm-syntax=intel";
2518       continue;
2519     }
2520 
2521     SmallVector<StringRef, 2> Values;
2522     llvm::SplitString(A->getValue(), Values, ",");
2523     for (StringRef V : Values) {
2524       if (V == "att")
2525         AsmSyntax = "--x86-asm-syntax=att";
2526       else if (V == "intel")
2527         AsmSyntax = "--x86-asm-syntax=intel";
2528       else
2529         DisassemblerOptions.push_back(V.str());
2530     }
2531   }
2532   if (AsmSyntax) {
2533     const char *Argv[] = {"llvm-objdump", AsmSyntax};
2534     llvm::cl::ParseCommandLineOptions(2, Argv);
2535   }
2536 
2537   // objdump defaults to a.out if no filenames specified.
2538   if (InputFilenames.empty())
2539     InputFilenames.push_back("a.out");
2540 }
2541 
2542 int main(int argc, char **argv) {
2543   using namespace llvm;
2544   InitLLVM X(argc, argv);
2545 
2546   ToolName = argv[0];
2547   std::unique_ptr<CommonOptTable> T;
2548   OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag;
2549 
2550   StringRef Stem = sys::path::stem(ToolName);
2551   auto Is = [=](StringRef Tool) {
2552     // We need to recognize the following filenames:
2553     //
2554     // llvm-objdump -> objdump
2555     // llvm-otool-10.exe -> otool
2556     // powerpc64-unknown-freebsd13-objdump -> objdump
2557     auto I = Stem.rfind_insensitive(Tool);
2558     return I != StringRef::npos &&
2559            (I + Tool.size() == Stem.size() || !isAlnum(Stem[I + Tool.size()]));
2560   };
2561   if (Is("otool")) {
2562     T = std::make_unique<OtoolOptTable>();
2563     Unknown = OTOOL_UNKNOWN;
2564     HelpFlag = OTOOL_help;
2565     HelpHiddenFlag = OTOOL_help_hidden;
2566     VersionFlag = OTOOL_version;
2567   } else {
2568     T = std::make_unique<ObjdumpOptTable>();
2569     Unknown = OBJDUMP_UNKNOWN;
2570     HelpFlag = OBJDUMP_help;
2571     HelpHiddenFlag = OBJDUMP_help_hidden;
2572     VersionFlag = OBJDUMP_version;
2573   }
2574 
2575   BumpPtrAllocator A;
2576   StringSaver Saver(A);
2577   opt::InputArgList InputArgs =
2578       T->parseArgs(argc, argv, Unknown, Saver,
2579                    [&](StringRef Msg) { reportCmdLineError(Msg); });
2580 
2581   if (InputArgs.size() == 0 || InputArgs.hasArg(HelpFlag)) {
2582     T->printHelp(ToolName);
2583     return 0;
2584   }
2585   if (InputArgs.hasArg(HelpHiddenFlag)) {
2586     T->printHelp(ToolName, /*show_hidden=*/true);
2587     return 0;
2588   }
2589 
2590   // Initialize targets and assembly printers/parsers.
2591   InitializeAllTargetInfos();
2592   InitializeAllTargetMCs();
2593   InitializeAllDisassemblers();
2594 
2595   if (InputArgs.hasArg(VersionFlag)) {
2596     cl::PrintVersionMessage();
2597     if (!Is("otool")) {
2598       outs() << '\n';
2599       TargetRegistry::printRegisteredTargetsForVersion(outs());
2600     }
2601     return 0;
2602   }
2603 
2604   if (Is("otool"))
2605     parseOtoolOptions(InputArgs);
2606   else
2607     parseObjdumpOptions(InputArgs);
2608 
2609   if (StartAddress >= StopAddress)
2610     reportCmdLineError("start address should be less than stop address");
2611 
2612   // Removes trailing separators from prefix.
2613   while (!Prefix.empty() && sys::path::is_separator(Prefix.back()))
2614     Prefix.pop_back();
2615 
2616   if (AllHeaders)
2617     ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
2618         SectionHeaders = SymbolTable = true;
2619 
2620   if (DisassembleAll || PrintSource || PrintLines ||
2621       !DisassembleSymbols.empty())
2622     Disassemble = true;
2623 
2624   if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null &&
2625       !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST &&
2626       !Relocations && !SectionHeaders && !SectionContents && !SymbolTable &&
2627       !DynamicSymbolTable && !UnwindInfo && !FaultMapSection &&
2628       !(MachOOpt &&
2629         (Bind || DataInCode || DylibId || DylibsUsed || ExportsTrie ||
2630          FirstPrivateHeader || FunctionStarts || IndirectSymbols || InfoPlist ||
2631          LazyBind || LinkOptHints || ObjcMetaData || Rebase || Rpaths ||
2632          UniversalHeaders || WeakBind || !FilterSections.empty()))) {
2633     T->printHelp(ToolName);
2634     return 2;
2635   }
2636 
2637   DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end());
2638 
2639   llvm::for_each(InputFilenames, dumpInput);
2640 
2641   warnOnNoMatchForSections();
2642 
2643   return EXIT_SUCCESS;
2644 }
2645