xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision 85a5360b964ceac19d45a4433305c987ea3c5580)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that works like binutils "objdump", that is, it
10 // dumps out a plethora of information about an object file depending on the
11 // flags.
12 //
13 // The flags and output of this program should be near identical to those of
14 // binutils objdump.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm-objdump.h"
19 #include "COFFDump.h"
20 #include "ELFDump.h"
21 #include "MachODump.h"
22 #include "ObjdumpOptID.h"
23 #include "WasmDump.h"
24 #include "XCOFFDump.h"
25 #include "llvm/ADT/IndexedMap.h"
26 #include "llvm/ADT/Optional.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/SetOperations.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/ADT/StringSet.h"
32 #include "llvm/ADT/Triple.h"
33 #include "llvm/ADT/Twine.h"
34 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
35 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
36 #include "llvm/Demangle/Demangle.h"
37 #include "llvm/MC/MCAsmInfo.h"
38 #include "llvm/MC/MCContext.h"
39 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
40 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
41 #include "llvm/MC/MCInst.h"
42 #include "llvm/MC/MCInstPrinter.h"
43 #include "llvm/MC/MCInstrAnalysis.h"
44 #include "llvm/MC/MCInstrInfo.h"
45 #include "llvm/MC/MCObjectFileInfo.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include "llvm/MC/MCSubtargetInfo.h"
48 #include "llvm/MC/MCTargetOptions.h"
49 #include "llvm/Object/Archive.h"
50 #include "llvm/Object/COFF.h"
51 #include "llvm/Object/COFFImportFile.h"
52 #include "llvm/Object/ELFObjectFile.h"
53 #include "llvm/Object/FaultMapParser.h"
54 #include "llvm/Object/MachO.h"
55 #include "llvm/Object/MachOUniversal.h"
56 #include "llvm/Object/ObjectFile.h"
57 #include "llvm/Object/Wasm.h"
58 #include "llvm/Option/Arg.h"
59 #include "llvm/Option/ArgList.h"
60 #include "llvm/Option/Option.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/Errc.h"
64 #include "llvm/Support/FileSystem.h"
65 #include "llvm/Support/Format.h"
66 #include "llvm/Support/FormatVariadic.h"
67 #include "llvm/Support/GraphWriter.h"
68 #include "llvm/Support/Host.h"
69 #include "llvm/Support/InitLLVM.h"
70 #include "llvm/Support/MemoryBuffer.h"
71 #include "llvm/Support/SourceMgr.h"
72 #include "llvm/Support/StringSaver.h"
73 #include "llvm/Support/TargetRegistry.h"
74 #include "llvm/Support/TargetSelect.h"
75 #include "llvm/Support/WithColor.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include <algorithm>
78 #include <cctype>
79 #include <cstring>
80 #include <system_error>
81 #include <unordered_map>
82 #include <utility>
83 
84 using namespace llvm;
85 using namespace llvm::object;
86 using namespace llvm::objdump;
87 using namespace llvm::opt;
88 
89 namespace {
90 
91 class CommonOptTable : public opt::OptTable {
92 public:
93   CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage,
94                  const char *Description)
95       : OptTable(OptionInfos), Usage(Usage), Description(Description) {
96     setGroupedShortOptions(true);
97   }
98 
99   void printHelp(StringRef Argv0, bool ShowHidden = false) const {
100     Argv0 = sys::path::filename(Argv0);
101     PrintHelp(outs(), (Argv0 + Usage).str().c_str(), Description, ShowHidden,
102               ShowHidden);
103     // TODO Replace this with OptTable API once it adds extrahelp support.
104     outs() << "\nPass @FILE as argument to read options from FILE.\n";
105   }
106 
107 private:
108   const char *Usage;
109   const char *Description;
110 };
111 
112 // ObjdumpOptID is in ObjdumpOptID.h
113 
114 #define PREFIX(NAME, VALUE) const char *const OBJDUMP_##NAME[] = VALUE;
115 #include "ObjdumpOpts.inc"
116 #undef PREFIX
117 
118 static constexpr opt::OptTable::Info ObjdumpInfoTable[] = {
119 #define OBJDUMP_nullptr nullptr
120 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
121                HELPTEXT, METAVAR, VALUES)                                      \
122   {OBJDUMP_##PREFIX, NAME,         HELPTEXT,                                   \
123    METAVAR,          OBJDUMP_##ID, opt::Option::KIND##Class,                   \
124    PARAM,            FLAGS,        OBJDUMP_##GROUP,                            \
125    OBJDUMP_##ALIAS,  ALIASARGS,    VALUES},
126 #include "ObjdumpOpts.inc"
127 #undef OPTION
128 #undef OBJDUMP_nullptr
129 };
130 
131 class ObjdumpOptTable : public CommonOptTable {
132 public:
133   ObjdumpOptTable()
134       : CommonOptTable(ObjdumpInfoTable, " [options] <input object files>",
135                        "llvm object file dumper") {}
136 };
137 
138 enum OtoolOptID {
139   OTOOL_INVALID = 0, // This is not an option ID.
140 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
141                HELPTEXT, METAVAR, VALUES)                                      \
142   OTOOL_##ID,
143 #include "OtoolOpts.inc"
144 #undef OPTION
145 };
146 
147 #define PREFIX(NAME, VALUE) const char *const OTOOL_##NAME[] = VALUE;
148 #include "OtoolOpts.inc"
149 #undef PREFIX
150 
151 static constexpr opt::OptTable::Info OtoolInfoTable[] = {
152 #define OTOOL_nullptr nullptr
153 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
154                HELPTEXT, METAVAR, VALUES)                                      \
155   {OTOOL_##PREFIX, NAME,       HELPTEXT,                                       \
156    METAVAR,        OTOOL_##ID, opt::Option::KIND##Class,                       \
157    PARAM,          FLAGS,      OTOOL_##GROUP,                                  \
158    OTOOL_##ALIAS,  ALIASARGS,  VALUES},
159 #include "OtoolOpts.inc"
160 #undef OPTION
161 #undef OTOOL_nullptr
162 };
163 
164 class OtoolOptTable : public CommonOptTable {
165 public:
166   OtoolOptTable()
167       : CommonOptTable(OtoolInfoTable, " [option...] [file...]",
168                        "Mach-O object file displaying tool") {}
169 };
170 
171 } // namespace
172 
173 #define DEBUG_TYPE "objdump"
174 
175 static uint64_t AdjustVMA;
176 static bool AllHeaders;
177 static std::string ArchName;
178 bool objdump::ArchiveHeaders;
179 bool objdump::Demangle;
180 bool objdump::Disassemble;
181 bool objdump::DisassembleAll;
182 bool objdump::SymbolDescription;
183 static std::vector<std::string> DisassembleSymbols;
184 static bool DisassembleZeroes;
185 static std::vector<std::string> DisassemblerOptions;
186 DIDumpType objdump::DwarfDumpType;
187 static bool DynamicRelocations;
188 static bool FaultMapSection;
189 static bool FileHeaders;
190 bool objdump::SectionContents;
191 static std::vector<std::string> InputFilenames;
192 static bool PrintLines;
193 static bool MachOOpt;
194 std::string objdump::MCPU;
195 std::vector<std::string> objdump::MAttrs;
196 bool objdump::ShowRawInsn;
197 bool objdump::LeadingAddr;
198 static bool RawClangAST;
199 bool objdump::Relocations;
200 bool objdump::PrintImmHex;
201 bool objdump::PrivateHeaders;
202 std::vector<std::string> objdump::FilterSections;
203 bool objdump::SectionHeaders;
204 static bool ShowLMA;
205 static bool PrintSource;
206 
207 static uint64_t StartAddress;
208 static bool HasStartAddressFlag;
209 static uint64_t StopAddress = UINT64_MAX;
210 static bool HasStopAddressFlag;
211 
212 bool objdump::SymbolTable;
213 static bool SymbolizeOperands;
214 static bool DynamicSymbolTable;
215 std::string objdump::TripleName;
216 bool objdump::UnwindInfo;
217 static bool Wide;
218 std::string objdump::Prefix;
219 uint32_t objdump::PrefixStrip;
220 
221 enum DebugVarsFormat {
222   DVDisabled,
223   DVUnicode,
224   DVASCII,
225 };
226 static DebugVarsFormat DbgVariables = DVDisabled;
227 
228 static int DbgIndent = 40;
229 
230 static StringSet<> DisasmSymbolSet;
231 StringSet<> objdump::FoundSectionSet;
232 static StringRef ToolName;
233 
234 namespace {
235 struct FilterResult {
236   // True if the section should not be skipped.
237   bool Keep;
238 
239   // True if the index counter should be incremented, even if the section should
240   // be skipped. For example, sections may be skipped if they are not included
241   // in the --section flag, but we still want those to count toward the section
242   // count.
243   bool IncrementIndex;
244 };
245 } // namespace
246 
247 static FilterResult checkSectionFilter(object::SectionRef S) {
248   if (FilterSections.empty())
249     return {/*Keep=*/true, /*IncrementIndex=*/true};
250 
251   Expected<StringRef> SecNameOrErr = S.getName();
252   if (!SecNameOrErr) {
253     consumeError(SecNameOrErr.takeError());
254     return {/*Keep=*/false, /*IncrementIndex=*/false};
255   }
256   StringRef SecName = *SecNameOrErr;
257 
258   // StringSet does not allow empty key so avoid adding sections with
259   // no name (such as the section with index 0) here.
260   if (!SecName.empty())
261     FoundSectionSet.insert(SecName);
262 
263   // Only show the section if it's in the FilterSections list, but always
264   // increment so the indexing is stable.
265   return {/*Keep=*/is_contained(FilterSections, SecName),
266           /*IncrementIndex=*/true};
267 }
268 
269 SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O,
270                                          uint64_t *Idx) {
271   // Start at UINT64_MAX so that the first index returned after an increment is
272   // zero (after the unsigned wrap).
273   if (Idx)
274     *Idx = UINT64_MAX;
275   return SectionFilter(
276       [Idx](object::SectionRef S) {
277         FilterResult Result = checkSectionFilter(S);
278         if (Idx != nullptr && Result.IncrementIndex)
279           *Idx += 1;
280         return Result.Keep;
281       },
282       O);
283 }
284 
285 std::string objdump::getFileNameForError(const object::Archive::Child &C,
286                                          unsigned Index) {
287   Expected<StringRef> NameOrErr = C.getName();
288   if (NameOrErr)
289     return std::string(NameOrErr.get());
290   // If we have an error getting the name then we print the index of the archive
291   // member. Since we are already in an error state, we just ignore this error.
292   consumeError(NameOrErr.takeError());
293   return "<file index: " + std::to_string(Index) + ">";
294 }
295 
296 void objdump::reportWarning(const Twine &Message, StringRef File) {
297   // Output order between errs() and outs() matters especially for archive
298   // files where the output is per member object.
299   outs().flush();
300   WithColor::warning(errs(), ToolName)
301       << "'" << File << "': " << Message << "\n";
302 }
303 
304 LLVM_ATTRIBUTE_NORETURN void objdump::reportError(StringRef File,
305                                                   const Twine &Message) {
306   outs().flush();
307   WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n";
308   exit(1);
309 }
310 
311 LLVM_ATTRIBUTE_NORETURN void objdump::reportError(Error E, StringRef FileName,
312                                                   StringRef ArchiveName,
313                                                   StringRef ArchitectureName) {
314   assert(E);
315   outs().flush();
316   WithColor::error(errs(), ToolName);
317   if (ArchiveName != "")
318     errs() << ArchiveName << "(" << FileName << ")";
319   else
320     errs() << "'" << FileName << "'";
321   if (!ArchitectureName.empty())
322     errs() << " (for architecture " << ArchitectureName << ")";
323   errs() << ": ";
324   logAllUnhandledErrors(std::move(E), errs());
325   exit(1);
326 }
327 
328 static void reportCmdLineWarning(const Twine &Message) {
329   WithColor::warning(errs(), ToolName) << Message << "\n";
330 }
331 
332 LLVM_ATTRIBUTE_NORETURN static void reportCmdLineError(const Twine &Message) {
333   WithColor::error(errs(), ToolName) << Message << "\n";
334   exit(1);
335 }
336 
337 static void warnOnNoMatchForSections() {
338   SetVector<StringRef> MissingSections;
339   for (StringRef S : FilterSections) {
340     if (FoundSectionSet.count(S))
341       return;
342     // User may specify a unnamed section. Don't warn for it.
343     if (!S.empty())
344       MissingSections.insert(S);
345   }
346 
347   // Warn only if no section in FilterSections is matched.
348   for (StringRef S : MissingSections)
349     reportCmdLineWarning("section '" + S +
350                          "' mentioned in a -j/--section option, but not "
351                          "found in any input file");
352 }
353 
354 static const Target *getTarget(const ObjectFile *Obj) {
355   // Figure out the target triple.
356   Triple TheTriple("unknown-unknown-unknown");
357   if (TripleName.empty()) {
358     TheTriple = Obj->makeTriple();
359   } else {
360     TheTriple.setTriple(Triple::normalize(TripleName));
361     auto Arch = Obj->getArch();
362     if (Arch == Triple::arm || Arch == Triple::armeb)
363       Obj->setARMSubArch(TheTriple);
364   }
365 
366   // Get the target specific parser.
367   std::string Error;
368   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
369                                                          Error);
370   if (!TheTarget)
371     reportError(Obj->getFileName(), "can't find target: " + Error);
372 
373   // Update the triple name and return the found target.
374   TripleName = TheTriple.getTriple();
375   return TheTarget;
376 }
377 
378 bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) {
379   return A.getOffset() < B.getOffset();
380 }
381 
382 static Error getRelocationValueString(const RelocationRef &Rel,
383                                       SmallVectorImpl<char> &Result) {
384   const ObjectFile *Obj = Rel.getObject();
385   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
386     return getELFRelocationValueString(ELF, Rel, Result);
387   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
388     return getCOFFRelocationValueString(COFF, Rel, Result);
389   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
390     return getWasmRelocationValueString(Wasm, Rel, Result);
391   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
392     return getMachORelocationValueString(MachO, Rel, Result);
393   if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj))
394     return getXCOFFRelocationValueString(XCOFF, Rel, Result);
395   llvm_unreachable("unknown object file format");
396 }
397 
398 /// Indicates whether this relocation should hidden when listing
399 /// relocations, usually because it is the trailing part of a multipart
400 /// relocation that will be printed as part of the leading relocation.
401 static bool getHidden(RelocationRef RelRef) {
402   auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
403   if (!MachO)
404     return false;
405 
406   unsigned Arch = MachO->getArch();
407   DataRefImpl Rel = RelRef.getRawDataRefImpl();
408   uint64_t Type = MachO->getRelocationType(Rel);
409 
410   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
411   // is always hidden.
412   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
413     return Type == MachO::GENERIC_RELOC_PAIR;
414 
415   if (Arch == Triple::x86_64) {
416     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
417     // an X86_64_RELOC_SUBTRACTOR.
418     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
419       DataRefImpl RelPrev = Rel;
420       RelPrev.d.a--;
421       uint64_t PrevType = MachO->getRelocationType(RelPrev);
422       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
423         return true;
424     }
425   }
426 
427   return false;
428 }
429 
430 namespace {
431 
432 /// Get the column at which we want to start printing the instruction
433 /// disassembly, taking into account anything which appears to the left of it.
434 unsigned getInstStartColumn(const MCSubtargetInfo &STI) {
435   return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24;
436 }
437 
438 /// Stores a single expression representing the location of a source-level
439 /// variable, along with the PC range for which that expression is valid.
440 struct LiveVariable {
441   DWARFLocationExpression LocExpr;
442   const char *VarName;
443   DWARFUnit *Unit;
444   const DWARFDie FuncDie;
445 
446   LiveVariable(const DWARFLocationExpression &LocExpr, const char *VarName,
447                DWARFUnit *Unit, const DWARFDie FuncDie)
448       : LocExpr(LocExpr), VarName(VarName), Unit(Unit), FuncDie(FuncDie) {}
449 
450   bool liveAtAddress(object::SectionedAddress Addr) {
451     if (LocExpr.Range == None)
452       return false;
453     return LocExpr.Range->SectionIndex == Addr.SectionIndex &&
454            LocExpr.Range->LowPC <= Addr.Address &&
455            LocExpr.Range->HighPC > Addr.Address;
456   }
457 
458   void print(raw_ostream &OS, const MCRegisterInfo &MRI) const {
459     DataExtractor Data({LocExpr.Expr.data(), LocExpr.Expr.size()},
460                        Unit->getContext().isLittleEndian(), 0);
461     DWARFExpression Expression(Data, Unit->getAddressByteSize());
462     Expression.printCompact(OS, MRI);
463   }
464 };
465 
466 /// Helper class for printing source variable locations alongside disassembly.
467 class LiveVariablePrinter {
468   // Information we want to track about one column in which we are printing a
469   // variable live range.
470   struct Column {
471     unsigned VarIdx = NullVarIdx;
472     bool LiveIn = false;
473     bool LiveOut = false;
474     bool MustDrawLabel  = false;
475 
476     bool isActive() const { return VarIdx != NullVarIdx; }
477 
478     static constexpr unsigned NullVarIdx = std::numeric_limits<unsigned>::max();
479   };
480 
481   // All live variables we know about in the object/image file.
482   std::vector<LiveVariable> LiveVariables;
483 
484   // The columns we are currently drawing.
485   IndexedMap<Column> ActiveCols;
486 
487   const MCRegisterInfo &MRI;
488   const MCSubtargetInfo &STI;
489 
490   void addVariable(DWARFDie FuncDie, DWARFDie VarDie) {
491     uint64_t FuncLowPC, FuncHighPC, SectionIndex;
492     FuncDie.getLowAndHighPC(FuncLowPC, FuncHighPC, SectionIndex);
493     const char *VarName = VarDie.getName(DINameKind::ShortName);
494     DWARFUnit *U = VarDie.getDwarfUnit();
495 
496     Expected<DWARFLocationExpressionsVector> Locs =
497         VarDie.getLocations(dwarf::DW_AT_location);
498     if (!Locs) {
499       // If the variable doesn't have any locations, just ignore it. We don't
500       // report an error or warning here as that could be noisy on optimised
501       // code.
502       consumeError(Locs.takeError());
503       return;
504     }
505 
506     for (const DWARFLocationExpression &LocExpr : *Locs) {
507       if (LocExpr.Range) {
508         LiveVariables.emplace_back(LocExpr, VarName, U, FuncDie);
509       } else {
510         // If the LocExpr does not have an associated range, it is valid for
511         // the whole of the function.
512         // TODO: technically it is not valid for any range covered by another
513         // LocExpr, does that happen in reality?
514         DWARFLocationExpression WholeFuncExpr{
515             DWARFAddressRange(FuncLowPC, FuncHighPC, SectionIndex),
516             LocExpr.Expr};
517         LiveVariables.emplace_back(WholeFuncExpr, VarName, U, FuncDie);
518       }
519     }
520   }
521 
522   void addFunction(DWARFDie D) {
523     for (const DWARFDie &Child : D.children()) {
524       if (Child.getTag() == dwarf::DW_TAG_variable ||
525           Child.getTag() == dwarf::DW_TAG_formal_parameter)
526         addVariable(D, Child);
527       else
528         addFunction(Child);
529     }
530   }
531 
532   // Get the column number (in characters) at which the first live variable
533   // line should be printed.
534   unsigned getIndentLevel() const {
535     return DbgIndent + getInstStartColumn(STI);
536   }
537 
538   // Indent to the first live-range column to the right of the currently
539   // printed line, and return the index of that column.
540   // TODO: formatted_raw_ostream uses "column" to mean a number of characters
541   // since the last \n, and we use it to mean the number of slots in which we
542   // put live variable lines. Pick a less overloaded word.
543   unsigned moveToFirstVarColumn(formatted_raw_ostream &OS) {
544     // Logical column number: column zero is the first column we print in, each
545     // logical column is 2 physical columns wide.
546     unsigned FirstUnprintedLogicalColumn =
547         std::max((int)(OS.getColumn() - getIndentLevel() + 1) / 2, 0);
548     // Physical column number: the actual column number in characters, with
549     // zero being the left-most side of the screen.
550     unsigned FirstUnprintedPhysicalColumn =
551         getIndentLevel() + FirstUnprintedLogicalColumn * 2;
552 
553     if (FirstUnprintedPhysicalColumn > OS.getColumn())
554       OS.PadToColumn(FirstUnprintedPhysicalColumn);
555 
556     return FirstUnprintedLogicalColumn;
557   }
558 
559   unsigned findFreeColumn() {
560     for (unsigned ColIdx = 0; ColIdx < ActiveCols.size(); ++ColIdx)
561       if (!ActiveCols[ColIdx].isActive())
562         return ColIdx;
563 
564     size_t OldSize = ActiveCols.size();
565     ActiveCols.grow(std::max<size_t>(OldSize * 2, 1));
566     return OldSize;
567   }
568 
569 public:
570   LiveVariablePrinter(const MCRegisterInfo &MRI, const MCSubtargetInfo &STI)
571       : LiveVariables(), ActiveCols(Column()), MRI(MRI), STI(STI) {}
572 
573   void dump() const {
574     for (const LiveVariable &LV : LiveVariables) {
575       dbgs() << LV.VarName << " @ " << LV.LocExpr.Range << ": ";
576       LV.print(dbgs(), MRI);
577       dbgs() << "\n";
578     }
579   }
580 
581   void addCompileUnit(DWARFDie D) {
582     if (D.getTag() == dwarf::DW_TAG_subprogram)
583       addFunction(D);
584     else
585       for (const DWARFDie &Child : D.children())
586         addFunction(Child);
587   }
588 
589   /// Update to match the state of the instruction between ThisAddr and
590   /// NextAddr. In the common case, any live range active at ThisAddr is
591   /// live-in to the instruction, and any live range active at NextAddr is
592   /// live-out of the instruction. If IncludeDefinedVars is false, then live
593   /// ranges starting at NextAddr will be ignored.
594   void update(object::SectionedAddress ThisAddr,
595               object::SectionedAddress NextAddr, bool IncludeDefinedVars) {
596     // First, check variables which have already been assigned a column, so
597     // that we don't change their order.
598     SmallSet<unsigned, 8> CheckedVarIdxs;
599     for (unsigned ColIdx = 0, End = ActiveCols.size(); ColIdx < End; ++ColIdx) {
600       if (!ActiveCols[ColIdx].isActive())
601         continue;
602       CheckedVarIdxs.insert(ActiveCols[ColIdx].VarIdx);
603       LiveVariable &LV = LiveVariables[ActiveCols[ColIdx].VarIdx];
604       ActiveCols[ColIdx].LiveIn = LV.liveAtAddress(ThisAddr);
605       ActiveCols[ColIdx].LiveOut = LV.liveAtAddress(NextAddr);
606       LLVM_DEBUG(dbgs() << "pass 1, " << ThisAddr.Address << "-"
607                         << NextAddr.Address << ", " << LV.VarName << ", Col "
608                         << ColIdx << ": LiveIn=" << ActiveCols[ColIdx].LiveIn
609                         << ", LiveOut=" << ActiveCols[ColIdx].LiveOut << "\n");
610 
611       if (!ActiveCols[ColIdx].LiveIn && !ActiveCols[ColIdx].LiveOut)
612         ActiveCols[ColIdx].VarIdx = Column::NullVarIdx;
613     }
614 
615     // Next, look for variables which don't already have a column, but which
616     // are now live.
617     if (IncludeDefinedVars) {
618       for (unsigned VarIdx = 0, End = LiveVariables.size(); VarIdx < End;
619            ++VarIdx) {
620         if (CheckedVarIdxs.count(VarIdx))
621           continue;
622         LiveVariable &LV = LiveVariables[VarIdx];
623         bool LiveIn = LV.liveAtAddress(ThisAddr);
624         bool LiveOut = LV.liveAtAddress(NextAddr);
625         if (!LiveIn && !LiveOut)
626           continue;
627 
628         unsigned ColIdx = findFreeColumn();
629         LLVM_DEBUG(dbgs() << "pass 2, " << ThisAddr.Address << "-"
630                           << NextAddr.Address << ", " << LV.VarName << ", Col "
631                           << ColIdx << ": LiveIn=" << LiveIn
632                           << ", LiveOut=" << LiveOut << "\n");
633         ActiveCols[ColIdx].VarIdx = VarIdx;
634         ActiveCols[ColIdx].LiveIn = LiveIn;
635         ActiveCols[ColIdx].LiveOut = LiveOut;
636         ActiveCols[ColIdx].MustDrawLabel = true;
637       }
638     }
639   }
640 
641   enum class LineChar {
642     RangeStart,
643     RangeMid,
644     RangeEnd,
645     LabelVert,
646     LabelCornerNew,
647     LabelCornerActive,
648     LabelHoriz,
649   };
650   const char *getLineChar(LineChar C) const {
651     bool IsASCII = DbgVariables == DVASCII;
652     switch (C) {
653     case LineChar::RangeStart:
654       return IsASCII ? "^" : (const char *)u8"\u2548";
655     case LineChar::RangeMid:
656       return IsASCII ? "|" : (const char *)u8"\u2503";
657     case LineChar::RangeEnd:
658       return IsASCII ? "v" : (const char *)u8"\u253b";
659     case LineChar::LabelVert:
660       return IsASCII ? "|" : (const char *)u8"\u2502";
661     case LineChar::LabelCornerNew:
662       return IsASCII ? "/" : (const char *)u8"\u250c";
663     case LineChar::LabelCornerActive:
664       return IsASCII ? "|" : (const char *)u8"\u2520";
665     case LineChar::LabelHoriz:
666       return IsASCII ? "-" : (const char *)u8"\u2500";
667     }
668     llvm_unreachable("Unhandled LineChar enum");
669   }
670 
671   /// Print live ranges to the right of an existing line. This assumes the
672   /// line is not an instruction, so doesn't start or end any live ranges, so
673   /// we only need to print active ranges or empty columns. If AfterInst is
674   /// true, this is being printed after the last instruction fed to update(),
675   /// otherwise this is being printed before it.
676   void printAfterOtherLine(formatted_raw_ostream &OS, bool AfterInst) {
677     if (ActiveCols.size()) {
678       unsigned FirstUnprintedColumn = moveToFirstVarColumn(OS);
679       for (size_t ColIdx = FirstUnprintedColumn, End = ActiveCols.size();
680            ColIdx < End; ++ColIdx) {
681         if (ActiveCols[ColIdx].isActive()) {
682           if ((AfterInst && ActiveCols[ColIdx].LiveOut) ||
683               (!AfterInst && ActiveCols[ColIdx].LiveIn))
684             OS << getLineChar(LineChar::RangeMid);
685           else if (!AfterInst && ActiveCols[ColIdx].LiveOut)
686             OS << getLineChar(LineChar::LabelVert);
687           else
688             OS << " ";
689         }
690         OS << " ";
691       }
692     }
693     OS << "\n";
694   }
695 
696   /// Print any live variable range info needed to the right of a
697   /// non-instruction line of disassembly. This is where we print the variable
698   /// names and expressions, with thin line-drawing characters connecting them
699   /// to the live range which starts at the next instruction. If MustPrint is
700   /// true, we have to print at least one line (with the continuation of any
701   /// already-active live ranges) because something has already been printed
702   /// earlier on this line.
703   void printBetweenInsts(formatted_raw_ostream &OS, bool MustPrint) {
704     bool PrintedSomething = false;
705     for (unsigned ColIdx = 0, End = ActiveCols.size(); ColIdx < End; ++ColIdx) {
706       if (ActiveCols[ColIdx].isActive() && ActiveCols[ColIdx].MustDrawLabel) {
707         // First we need to print the live range markers for any active
708         // columns to the left of this one.
709         OS.PadToColumn(getIndentLevel());
710         for (unsigned ColIdx2 = 0; ColIdx2 < ColIdx; ++ColIdx2) {
711           if (ActiveCols[ColIdx2].isActive()) {
712             if (ActiveCols[ColIdx2].MustDrawLabel &&
713                            !ActiveCols[ColIdx2].LiveIn)
714               OS << getLineChar(LineChar::LabelVert) << " ";
715             else
716               OS << getLineChar(LineChar::RangeMid) << " ";
717           } else
718             OS << "  ";
719         }
720 
721         // Then print the variable name and location of the new live range,
722         // with box drawing characters joining it to the live range line.
723         OS << getLineChar(ActiveCols[ColIdx].LiveIn
724                               ? LineChar::LabelCornerActive
725                               : LineChar::LabelCornerNew)
726            << getLineChar(LineChar::LabelHoriz) << " ";
727         WithColor(OS, raw_ostream::GREEN)
728             << LiveVariables[ActiveCols[ColIdx].VarIdx].VarName;
729         OS << " = ";
730         {
731           WithColor ExprColor(OS, raw_ostream::CYAN);
732           LiveVariables[ActiveCols[ColIdx].VarIdx].print(OS, MRI);
733         }
734 
735         // If there are any columns to the right of the expression we just
736         // printed, then continue their live range lines.
737         unsigned FirstUnprintedColumn = moveToFirstVarColumn(OS);
738         for (unsigned ColIdx2 = FirstUnprintedColumn, End = ActiveCols.size();
739              ColIdx2 < End; ++ColIdx2) {
740           if (ActiveCols[ColIdx2].isActive() && ActiveCols[ColIdx2].LiveIn)
741             OS << getLineChar(LineChar::RangeMid) << " ";
742           else
743             OS << "  ";
744         }
745 
746         OS << "\n";
747         PrintedSomething = true;
748       }
749     }
750 
751     for (unsigned ColIdx = 0, End = ActiveCols.size(); ColIdx < End; ++ColIdx)
752       if (ActiveCols[ColIdx].isActive())
753         ActiveCols[ColIdx].MustDrawLabel = false;
754 
755     // If we must print something (because we printed a line/column number),
756     // but don't have any new variables to print, then print a line which
757     // just continues any existing live ranges.
758     if (MustPrint && !PrintedSomething)
759       printAfterOtherLine(OS, false);
760   }
761 
762   /// Print the live variable ranges to the right of a disassembled instruction.
763   void printAfterInst(formatted_raw_ostream &OS) {
764     if (!ActiveCols.size())
765       return;
766     unsigned FirstUnprintedColumn = moveToFirstVarColumn(OS);
767     for (unsigned ColIdx = FirstUnprintedColumn, End = ActiveCols.size();
768          ColIdx < End; ++ColIdx) {
769       if (!ActiveCols[ColIdx].isActive())
770         OS << "  ";
771       else if (ActiveCols[ColIdx].LiveIn && ActiveCols[ColIdx].LiveOut)
772         OS << getLineChar(LineChar::RangeMid) << " ";
773       else if (ActiveCols[ColIdx].LiveOut)
774         OS << getLineChar(LineChar::RangeStart) << " ";
775       else if (ActiveCols[ColIdx].LiveIn)
776         OS << getLineChar(LineChar::RangeEnd) << " ";
777       else
778         llvm_unreachable("var must be live in or out!");
779     }
780   }
781 };
782 
783 class SourcePrinter {
784 protected:
785   DILineInfo OldLineInfo;
786   const ObjectFile *Obj = nullptr;
787   std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
788   // File name to file contents of source.
789   std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache;
790   // Mark the line endings of the cached source.
791   std::unordered_map<std::string, std::vector<StringRef>> LineCache;
792   // Keep track of missing sources.
793   StringSet<> MissingSources;
794   // Only emit 'invalid debug info' warning once.
795   bool WarnedInvalidDebugInfo = false;
796 
797 private:
798   bool cacheSource(const DILineInfo& LineInfoFile);
799 
800   void printLines(formatted_raw_ostream &OS, const DILineInfo &LineInfo,
801                   StringRef Delimiter, LiveVariablePrinter &LVP);
802 
803   void printSources(formatted_raw_ostream &OS, const DILineInfo &LineInfo,
804                     StringRef ObjectFilename, StringRef Delimiter,
805                     LiveVariablePrinter &LVP);
806 
807 public:
808   SourcePrinter() = default;
809   SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch) : Obj(Obj) {
810     symbolize::LLVMSymbolizer::Options SymbolizerOpts;
811     SymbolizerOpts.PrintFunctions =
812         DILineInfoSpecifier::FunctionNameKind::LinkageName;
813     SymbolizerOpts.Demangle = Demangle;
814     SymbolizerOpts.DefaultArch = std::string(DefaultArch);
815     Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts));
816   }
817   virtual ~SourcePrinter() = default;
818   virtual void printSourceLine(formatted_raw_ostream &OS,
819                                object::SectionedAddress Address,
820                                StringRef ObjectFilename,
821                                LiveVariablePrinter &LVP,
822                                StringRef Delimiter = "; ");
823 };
824 
825 bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) {
826   std::unique_ptr<MemoryBuffer> Buffer;
827   if (LineInfo.Source) {
828     Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source);
829   } else {
830     auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName);
831     if (!BufferOrError) {
832       if (MissingSources.insert(LineInfo.FileName).second)
833         reportWarning("failed to find source " + LineInfo.FileName,
834                       Obj->getFileName());
835       return false;
836     }
837     Buffer = std::move(*BufferOrError);
838   }
839   // Chomp the file to get lines
840   const char *BufferStart = Buffer->getBufferStart(),
841              *BufferEnd = Buffer->getBufferEnd();
842   std::vector<StringRef> &Lines = LineCache[LineInfo.FileName];
843   const char *Start = BufferStart;
844   for (const char *I = BufferStart; I != BufferEnd; ++I)
845     if (*I == '\n') {
846       Lines.emplace_back(Start, I - Start - (BufferStart < I && I[-1] == '\r'));
847       Start = I + 1;
848     }
849   if (Start < BufferEnd)
850     Lines.emplace_back(Start, BufferEnd - Start);
851   SourceCache[LineInfo.FileName] = std::move(Buffer);
852   return true;
853 }
854 
855 void SourcePrinter::printSourceLine(formatted_raw_ostream &OS,
856                                     object::SectionedAddress Address,
857                                     StringRef ObjectFilename,
858                                     LiveVariablePrinter &LVP,
859                                     StringRef Delimiter) {
860   if (!Symbolizer)
861     return;
862 
863   DILineInfo LineInfo = DILineInfo();
864   Expected<DILineInfo> ExpectedLineInfo =
865       Symbolizer->symbolizeCode(*Obj, Address);
866   std::string ErrorMessage;
867   if (ExpectedLineInfo) {
868     LineInfo = *ExpectedLineInfo;
869   } else if (!WarnedInvalidDebugInfo) {
870     WarnedInvalidDebugInfo = true;
871     // TODO Untested.
872     reportWarning("failed to parse debug information: " +
873                       toString(ExpectedLineInfo.takeError()),
874                   ObjectFilename);
875   }
876 
877   if (!Prefix.empty() && sys::path::is_absolute_gnu(LineInfo.FileName)) {
878     // FileName has at least one character since is_absolute_gnu is false for
879     // an empty string.
880     assert(!LineInfo.FileName.empty());
881     if (PrefixStrip > 0) {
882       uint32_t Level = 0;
883       auto StrippedNameStart = LineInfo.FileName.begin();
884 
885       // Path.h iterator skips extra separators. Therefore it cannot be used
886       // here to keep compatibility with GNU Objdump.
887       for (auto Pos = StrippedNameStart + 1, End = LineInfo.FileName.end();
888            Pos != End && Level < PrefixStrip; ++Pos) {
889         if (sys::path::is_separator(*Pos)) {
890           StrippedNameStart = Pos;
891           ++Level;
892         }
893       }
894 
895       LineInfo.FileName =
896           std::string(StrippedNameStart, LineInfo.FileName.end());
897     }
898 
899     SmallString<128> FilePath;
900     sys::path::append(FilePath, Prefix, LineInfo.FileName);
901 
902     LineInfo.FileName = std::string(FilePath);
903   }
904 
905   if (PrintLines)
906     printLines(OS, LineInfo, Delimiter, LVP);
907   if (PrintSource)
908     printSources(OS, LineInfo, ObjectFilename, Delimiter, LVP);
909   OldLineInfo = LineInfo;
910 }
911 
912 void SourcePrinter::printLines(formatted_raw_ostream &OS,
913                                const DILineInfo &LineInfo, StringRef Delimiter,
914                                LiveVariablePrinter &LVP) {
915   bool PrintFunctionName = LineInfo.FunctionName != DILineInfo::BadString &&
916                            LineInfo.FunctionName != OldLineInfo.FunctionName;
917   if (PrintFunctionName) {
918     OS << Delimiter << LineInfo.FunctionName;
919     // If demangling is successful, FunctionName will end with "()". Print it
920     // only if demangling did not run or was unsuccessful.
921     if (!StringRef(LineInfo.FunctionName).endswith("()"))
922       OS << "()";
923     OS << ":\n";
924   }
925   if (LineInfo.FileName != DILineInfo::BadString && LineInfo.Line != 0 &&
926       (OldLineInfo.Line != LineInfo.Line ||
927        OldLineInfo.FileName != LineInfo.FileName || PrintFunctionName)) {
928     OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line;
929     LVP.printBetweenInsts(OS, true);
930   }
931 }
932 
933 void SourcePrinter::printSources(formatted_raw_ostream &OS,
934                                  const DILineInfo &LineInfo,
935                                  StringRef ObjectFilename, StringRef Delimiter,
936                                  LiveVariablePrinter &LVP) {
937   if (LineInfo.FileName == DILineInfo::BadString || LineInfo.Line == 0 ||
938       (OldLineInfo.Line == LineInfo.Line &&
939        OldLineInfo.FileName == LineInfo.FileName))
940     return;
941 
942   if (SourceCache.find(LineInfo.FileName) == SourceCache.end())
943     if (!cacheSource(LineInfo))
944       return;
945   auto LineBuffer = LineCache.find(LineInfo.FileName);
946   if (LineBuffer != LineCache.end()) {
947     if (LineInfo.Line > LineBuffer->second.size()) {
948       reportWarning(
949           formatv(
950               "debug info line number {0} exceeds the number of lines in {1}",
951               LineInfo.Line, LineInfo.FileName),
952           ObjectFilename);
953       return;
954     }
955     // Vector begins at 0, line numbers are non-zero
956     OS << Delimiter << LineBuffer->second[LineInfo.Line - 1];
957     LVP.printBetweenInsts(OS, true);
958   }
959 }
960 
961 static bool isAArch64Elf(const ObjectFile *Obj) {
962   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
963   return Elf && Elf->getEMachine() == ELF::EM_AARCH64;
964 }
965 
966 static bool isArmElf(const ObjectFile *Obj) {
967   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
968   return Elf && Elf->getEMachine() == ELF::EM_ARM;
969 }
970 
971 static bool hasMappingSymbols(const ObjectFile *Obj) {
972   return isArmElf(Obj) || isAArch64Elf(Obj);
973 }
974 
975 static void printRelocation(formatted_raw_ostream &OS, StringRef FileName,
976                             const RelocationRef &Rel, uint64_t Address,
977                             bool Is64Bits) {
978   StringRef Fmt = Is64Bits ? "\t\t%016" PRIx64 ":  " : "\t\t\t%08" PRIx64 ":  ";
979   SmallString<16> Name;
980   SmallString<32> Val;
981   Rel.getTypeName(Name);
982   if (Error E = getRelocationValueString(Rel, Val))
983     reportError(std::move(E), FileName);
984   OS << format(Fmt.data(), Address) << Name << "\t" << Val;
985 }
986 
987 class PrettyPrinter {
988 public:
989   virtual ~PrettyPrinter() = default;
990   virtual void
991   printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
992             object::SectionedAddress Address, formatted_raw_ostream &OS,
993             StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
994             StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
995             LiveVariablePrinter &LVP) {
996     if (SP && (PrintSource || PrintLines))
997       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
998     LVP.printBetweenInsts(OS, false);
999 
1000     size_t Start = OS.tell();
1001     if (LeadingAddr)
1002       OS << format("%8" PRIx64 ":", Address.Address);
1003     if (ShowRawInsn) {
1004       OS << ' ';
1005       dumpBytes(Bytes, OS);
1006     }
1007 
1008     // The output of printInst starts with a tab. Print some spaces so that
1009     // the tab has 1 column and advances to the target tab stop.
1010     unsigned TabStop = getInstStartColumn(STI);
1011     unsigned Column = OS.tell() - Start;
1012     OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
1013 
1014     if (MI) {
1015       // See MCInstPrinter::printInst. On targets where a PC relative immediate
1016       // is relative to the next instruction and the length of a MCInst is
1017       // difficult to measure (x86), this is the address of the next
1018       // instruction.
1019       uint64_t Addr =
1020           Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0);
1021       IP.printInst(MI, Addr, "", STI, OS);
1022     } else
1023       OS << "\t<unknown>";
1024   }
1025 };
1026 PrettyPrinter PrettyPrinterInst;
1027 
1028 class HexagonPrettyPrinter : public PrettyPrinter {
1029 public:
1030   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
1031                  formatted_raw_ostream &OS) {
1032     uint32_t opcode =
1033       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
1034     if (LeadingAddr)
1035       OS << format("%8" PRIx64 ":", Address);
1036     if (ShowRawInsn) {
1037       OS << "\t";
1038       dumpBytes(Bytes.slice(0, 4), OS);
1039       OS << format("\t%08" PRIx32, opcode);
1040     }
1041   }
1042   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
1043                  object::SectionedAddress Address, formatted_raw_ostream &OS,
1044                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
1045                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
1046                  LiveVariablePrinter &LVP) override {
1047     if (SP && (PrintSource || PrintLines))
1048       SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
1049     if (!MI) {
1050       printLead(Bytes, Address.Address, OS);
1051       OS << " <unknown>";
1052       return;
1053     }
1054     std::string Buffer;
1055     {
1056       raw_string_ostream TempStream(Buffer);
1057       IP.printInst(MI, Address.Address, "", STI, TempStream);
1058     }
1059     StringRef Contents(Buffer);
1060     // Split off bundle attributes
1061     auto PacketBundle = Contents.rsplit('\n');
1062     // Split off first instruction from the rest
1063     auto HeadTail = PacketBundle.first.split('\n');
1064     auto Preamble = " { ";
1065     auto Separator = "";
1066 
1067     // Hexagon's packets require relocations to be inline rather than
1068     // clustered at the end of the packet.
1069     std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
1070     std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
1071     auto PrintReloc = [&]() -> void {
1072       while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
1073         if (RelCur->getOffset() == Address.Address) {
1074           printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false);
1075           return;
1076         }
1077         ++RelCur;
1078       }
1079     };
1080 
1081     while (!HeadTail.first.empty()) {
1082       OS << Separator;
1083       Separator = "\n";
1084       if (SP && (PrintSource || PrintLines))
1085         SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
1086       printLead(Bytes, Address.Address, OS);
1087       OS << Preamble;
1088       Preamble = "   ";
1089       StringRef Inst;
1090       auto Duplex = HeadTail.first.split('\v');
1091       if (!Duplex.second.empty()) {
1092         OS << Duplex.first;
1093         OS << "; ";
1094         Inst = Duplex.second;
1095       }
1096       else
1097         Inst = HeadTail.first;
1098       OS << Inst;
1099       HeadTail = HeadTail.second.split('\n');
1100       if (HeadTail.first.empty())
1101         OS << " } " << PacketBundle.second;
1102       PrintReloc();
1103       Bytes = Bytes.slice(4);
1104       Address.Address += 4;
1105     }
1106   }
1107 };
1108 HexagonPrettyPrinter HexagonPrettyPrinterInst;
1109 
1110 class AMDGCNPrettyPrinter : public PrettyPrinter {
1111 public:
1112   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
1113                  object::SectionedAddress Address, formatted_raw_ostream &OS,
1114                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
1115                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
1116                  LiveVariablePrinter &LVP) override {
1117     if (SP && (PrintSource || PrintLines))
1118       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
1119 
1120     if (MI) {
1121       SmallString<40> InstStr;
1122       raw_svector_ostream IS(InstStr);
1123 
1124       IP.printInst(MI, Address.Address, "", STI, IS);
1125 
1126       OS << left_justify(IS.str(), 60);
1127     } else {
1128       // an unrecognized encoding - this is probably data so represent it
1129       // using the .long directive, or .byte directive if fewer than 4 bytes
1130       // remaining
1131       if (Bytes.size() >= 4) {
1132         OS << format("\t.long 0x%08" PRIx32 " ",
1133                      support::endian::read32<support::little>(Bytes.data()));
1134         OS.indent(42);
1135       } else {
1136           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
1137           for (unsigned int i = 1; i < Bytes.size(); i++)
1138             OS << format(", 0x%02" PRIx8, Bytes[i]);
1139           OS.indent(55 - (6 * Bytes.size()));
1140       }
1141     }
1142 
1143     OS << format("// %012" PRIX64 ":", Address.Address);
1144     if (Bytes.size() >= 4) {
1145       // D should be casted to uint32_t here as it is passed by format to
1146       // snprintf as vararg.
1147       for (uint32_t D : makeArrayRef(
1148                reinterpret_cast<const support::little32_t *>(Bytes.data()),
1149                Bytes.size() / 4))
1150         OS << format(" %08" PRIX32, D);
1151     } else {
1152       for (unsigned char B : Bytes)
1153         OS << format(" %02" PRIX8, B);
1154     }
1155 
1156     if (!Annot.empty())
1157       OS << " // " << Annot;
1158   }
1159 };
1160 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
1161 
1162 class BPFPrettyPrinter : public PrettyPrinter {
1163 public:
1164   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
1165                  object::SectionedAddress Address, formatted_raw_ostream &OS,
1166                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
1167                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
1168                  LiveVariablePrinter &LVP) override {
1169     if (SP && (PrintSource || PrintLines))
1170       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
1171     if (LeadingAddr)
1172       OS << format("%8" PRId64 ":", Address.Address / 8);
1173     if (ShowRawInsn) {
1174       OS << "\t";
1175       dumpBytes(Bytes, OS);
1176     }
1177     if (MI)
1178       IP.printInst(MI, Address.Address, "", STI, OS);
1179     else
1180       OS << "\t<unknown>";
1181   }
1182 };
1183 BPFPrettyPrinter BPFPrettyPrinterInst;
1184 
1185 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
1186   switch(Triple.getArch()) {
1187   default:
1188     return PrettyPrinterInst;
1189   case Triple::hexagon:
1190     return HexagonPrettyPrinterInst;
1191   case Triple::amdgcn:
1192     return AMDGCNPrettyPrinterInst;
1193   case Triple::bpfel:
1194   case Triple::bpfeb:
1195     return BPFPrettyPrinterInst;
1196   }
1197 }
1198 }
1199 
1200 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
1201   assert(Obj->isELF());
1202   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
1203     return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()),
1204                          Obj->getFileName())
1205         ->getType();
1206   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
1207     return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()),
1208                          Obj->getFileName())
1209         ->getType();
1210   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
1211     return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()),
1212                          Obj->getFileName())
1213         ->getType();
1214   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
1215     return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()),
1216                          Obj->getFileName())
1217         ->getType();
1218   llvm_unreachable("Unsupported binary format");
1219 }
1220 
1221 template <class ELFT> static void
1222 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
1223                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1224   for (auto Symbol : Obj->getDynamicSymbolIterators()) {
1225     uint8_t SymbolType = Symbol.getELFType();
1226     if (SymbolType == ELF::STT_SECTION)
1227       continue;
1228 
1229     uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj->getFileName());
1230     // ELFSymbolRef::getAddress() returns size instead of value for common
1231     // symbols which is not desirable for disassembly output. Overriding.
1232     if (SymbolType == ELF::STT_COMMON)
1233       Address = unwrapOrError(Obj->getSymbol(Symbol.getRawDataRefImpl()),
1234                               Obj->getFileName())
1235                     ->st_value;
1236 
1237     StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName());
1238     if (Name.empty())
1239       continue;
1240 
1241     section_iterator SecI =
1242         unwrapOrError(Symbol.getSection(), Obj->getFileName());
1243     if (SecI == Obj->section_end())
1244       continue;
1245 
1246     AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
1247   }
1248 }
1249 
1250 static void
1251 addDynamicElfSymbols(const ObjectFile *Obj,
1252                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1253   assert(Obj->isELF());
1254   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
1255     addDynamicElfSymbols(Elf32LEObj, AllSymbols);
1256   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
1257     addDynamicElfSymbols(Elf64LEObj, AllSymbols);
1258   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
1259     addDynamicElfSymbols(Elf32BEObj, AllSymbols);
1260   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
1261     addDynamicElfSymbols(Elf64BEObj, AllSymbols);
1262   else
1263     llvm_unreachable("Unsupported binary format");
1264 }
1265 
1266 static void addPltEntries(const ObjectFile *Obj,
1267                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
1268                           StringSaver &Saver) {
1269   Optional<SectionRef> Plt = None;
1270   for (const SectionRef &Section : Obj->sections()) {
1271     Expected<StringRef> SecNameOrErr = Section.getName();
1272     if (!SecNameOrErr) {
1273       consumeError(SecNameOrErr.takeError());
1274       continue;
1275     }
1276     if (*SecNameOrErr == ".plt")
1277       Plt = Section;
1278   }
1279   if (!Plt)
1280     return;
1281   if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) {
1282     for (auto PltEntry : ElfObj->getPltAddresses()) {
1283       if (PltEntry.first) {
1284         SymbolRef Symbol(*PltEntry.first, ElfObj);
1285         uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
1286         if (Expected<StringRef> NameOrErr = Symbol.getName()) {
1287           if (!NameOrErr->empty())
1288             AllSymbols[*Plt].emplace_back(
1289                 PltEntry.second, Saver.save((*NameOrErr + "@plt").str()),
1290                 SymbolType);
1291           continue;
1292         } else {
1293           // The warning has been reported in disassembleObject().
1294           consumeError(NameOrErr.takeError());
1295         }
1296       }
1297       reportWarning("PLT entry at 0x" + Twine::utohexstr(PltEntry.second) +
1298                         " references an invalid symbol",
1299                     Obj->getFileName());
1300     }
1301   }
1302 }
1303 
1304 // Normally the disassembly output will skip blocks of zeroes. This function
1305 // returns the number of zero bytes that can be skipped when dumping the
1306 // disassembly of the instructions in Buf.
1307 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
1308   // Find the number of leading zeroes.
1309   size_t N = 0;
1310   while (N < Buf.size() && !Buf[N])
1311     ++N;
1312 
1313   // We may want to skip blocks of zero bytes, but unless we see
1314   // at least 8 of them in a row.
1315   if (N < 8)
1316     return 0;
1317 
1318   // We skip zeroes in multiples of 4 because do not want to truncate an
1319   // instruction if it starts with a zero byte.
1320   return N & ~0x3;
1321 }
1322 
1323 // Returns a map from sections to their relocations.
1324 static std::map<SectionRef, std::vector<RelocationRef>>
1325 getRelocsMap(object::ObjectFile const &Obj) {
1326   std::map<SectionRef, std::vector<RelocationRef>> Ret;
1327   uint64_t I = (uint64_t)-1;
1328   for (SectionRef Sec : Obj.sections()) {
1329     ++I;
1330     Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection();
1331     if (!RelocatedOrErr)
1332       reportError(Obj.getFileName(),
1333                   "section (" + Twine(I) +
1334                       "): failed to get a relocated section: " +
1335                       toString(RelocatedOrErr.takeError()));
1336 
1337     section_iterator Relocated = *RelocatedOrErr;
1338     if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep)
1339       continue;
1340     std::vector<RelocationRef> &V = Ret[*Relocated];
1341     append_range(V, Sec.relocations());
1342     // Sort relocations by address.
1343     llvm::stable_sort(V, isRelocAddressLess);
1344   }
1345   return Ret;
1346 }
1347 
1348 // Used for --adjust-vma to check if address should be adjusted by the
1349 // specified value for a given section.
1350 // For ELF we do not adjust non-allocatable sections like debug ones,
1351 // because they are not loadable.
1352 // TODO: implement for other file formats.
1353 static bool shouldAdjustVA(const SectionRef &Section) {
1354   const ObjectFile *Obj = Section.getObject();
1355   if (Obj->isELF())
1356     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
1357   return false;
1358 }
1359 
1360 
1361 typedef std::pair<uint64_t, char> MappingSymbolPair;
1362 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,
1363                                  uint64_t Address) {
1364   auto It =
1365       partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) {
1366         return Val.first <= Address;
1367       });
1368   // Return zero for any address before the first mapping symbol; this means
1369   // we should use the default disassembly mode, depending on the target.
1370   if (It == MappingSymbols.begin())
1371     return '\x00';
1372   return (It - 1)->second;
1373 }
1374 
1375 static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index,
1376                                uint64_t End, const ObjectFile *Obj,
1377                                ArrayRef<uint8_t> Bytes,
1378                                ArrayRef<MappingSymbolPair> MappingSymbols,
1379                                raw_ostream &OS) {
1380   support::endianness Endian =
1381       Obj->isLittleEndian() ? support::little : support::big;
1382   OS << format("%8" PRIx64 ":\t", SectionAddr + Index);
1383   if (Index + 4 <= End) {
1384     dumpBytes(Bytes.slice(Index, 4), OS);
1385     OS << "\t.word\t"
1386            << format_hex(support::endian::read32(Bytes.data() + Index, Endian),
1387                          10);
1388     return 4;
1389   }
1390   if (Index + 2 <= End) {
1391     dumpBytes(Bytes.slice(Index, 2), OS);
1392     OS << "\t\t.short\t"
1393            << format_hex(support::endian::read16(Bytes.data() + Index, Endian),
1394                          6);
1395     return 2;
1396   }
1397   dumpBytes(Bytes.slice(Index, 1), OS);
1398   OS << "\t\t.byte\t" << format_hex(Bytes[0], 4);
1399   return 1;
1400 }
1401 
1402 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
1403                         ArrayRef<uint8_t> Bytes) {
1404   // print out data up to 8 bytes at a time in hex and ascii
1405   uint8_t AsciiData[9] = {'\0'};
1406   uint8_t Byte;
1407   int NumBytes = 0;
1408 
1409   for (; Index < End; ++Index) {
1410     if (NumBytes == 0)
1411       outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1412     Byte = Bytes.slice(Index)[0];
1413     outs() << format(" %02x", Byte);
1414     AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
1415 
1416     uint8_t IndentOffset = 0;
1417     NumBytes++;
1418     if (Index == End - 1 || NumBytes > 8) {
1419       // Indent the space for less than 8 bytes data.
1420       // 2 spaces for byte and one for space between bytes
1421       IndentOffset = 3 * (8 - NumBytes);
1422       for (int Excess = NumBytes; Excess < 8; Excess++)
1423         AsciiData[Excess] = '\0';
1424       NumBytes = 8;
1425     }
1426     if (NumBytes == 8) {
1427       AsciiData[8] = '\0';
1428       outs() << std::string(IndentOffset, ' ') << "         ";
1429       outs() << reinterpret_cast<char *>(AsciiData);
1430       outs() << '\n';
1431       NumBytes = 0;
1432     }
1433   }
1434 }
1435 
1436 SymbolInfoTy objdump::createSymbolInfo(const ObjectFile *Obj,
1437                                        const SymbolRef &Symbol) {
1438   const StringRef FileName = Obj->getFileName();
1439   const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName);
1440   const StringRef Name = unwrapOrError(Symbol.getName(), FileName);
1441 
1442   if (Obj->isXCOFF() && SymbolDescription) {
1443     const auto *XCOFFObj = cast<XCOFFObjectFile>(Obj);
1444     DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl();
1445 
1446     const uint32_t SymbolIndex = XCOFFObj->getSymbolIndex(SymbolDRI.p);
1447     Optional<XCOFF::StorageMappingClass> Smc =
1448         getXCOFFSymbolCsectSMC(XCOFFObj, Symbol);
1449     return SymbolInfoTy(Addr, Name, Smc, SymbolIndex,
1450                         isLabel(XCOFFObj, Symbol));
1451   } else
1452     return SymbolInfoTy(Addr, Name,
1453                         Obj->isELF() ? getElfSymbolType(Obj, Symbol)
1454                                      : (uint8_t)ELF::STT_NOTYPE);
1455 }
1456 
1457 static SymbolInfoTy createDummySymbolInfo(const ObjectFile *Obj,
1458                                           const uint64_t Addr, StringRef &Name,
1459                                           uint8_t Type) {
1460   if (Obj->isXCOFF() && SymbolDescription)
1461     return SymbolInfoTy(Addr, Name, None, None, false);
1462   else
1463     return SymbolInfoTy(Addr, Name, Type);
1464 }
1465 
1466 static void
1467 collectLocalBranchTargets(ArrayRef<uint8_t> Bytes, const MCInstrAnalysis *MIA,
1468                           MCDisassembler *DisAsm, MCInstPrinter *IP,
1469                           const MCSubtargetInfo *STI, uint64_t SectionAddr,
1470                           uint64_t Start, uint64_t End,
1471                           std::unordered_map<uint64_t, std::string> &Labels) {
1472   // So far only supports X86.
1473   if (!STI->getTargetTriple().isX86())
1474     return;
1475 
1476   Labels.clear();
1477   unsigned LabelCount = 0;
1478   Start += SectionAddr;
1479   End += SectionAddr;
1480   uint64_t Index = Start;
1481   while (Index < End) {
1482     // Disassemble a real instruction and record function-local branch labels.
1483     MCInst Inst;
1484     uint64_t Size;
1485     bool Disassembled = DisAsm->getInstruction(
1486         Inst, Size, Bytes.slice(Index - SectionAddr), Index, nulls());
1487     if (Size == 0)
1488       Size = 1;
1489 
1490     if (Disassembled && MIA) {
1491       uint64_t Target;
1492       bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target);
1493       if (TargetKnown && (Target >= Start && Target < End) &&
1494           !Labels.count(Target))
1495         Labels[Target] = ("L" + Twine(LabelCount++)).str();
1496     }
1497 
1498     Index += Size;
1499   }
1500 }
1501 
1502 static StringRef getSegmentName(const MachOObjectFile *MachO,
1503                                 const SectionRef &Section) {
1504   if (MachO) {
1505     DataRefImpl DR = Section.getRawDataRefImpl();
1506     StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1507     return SegmentName;
1508   }
1509   return "";
1510 }
1511 
1512 static void disassembleObject(const Target *TheTarget, const ObjectFile *Obj,
1513                               MCContext &Ctx, MCDisassembler *PrimaryDisAsm,
1514                               MCDisassembler *SecondaryDisAsm,
1515                               const MCInstrAnalysis *MIA, MCInstPrinter *IP,
1516                               const MCSubtargetInfo *PrimarySTI,
1517                               const MCSubtargetInfo *SecondarySTI,
1518                               PrettyPrinter &PIP,
1519                               SourcePrinter &SP, bool InlineRelocs) {
1520   const MCSubtargetInfo *STI = PrimarySTI;
1521   MCDisassembler *DisAsm = PrimaryDisAsm;
1522   bool PrimaryIsThumb = false;
1523   if (isArmElf(Obj))
1524     PrimaryIsThumb = STI->checkFeatures("+thumb-mode");
1525 
1526   std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
1527   if (InlineRelocs)
1528     RelocMap = getRelocsMap(*Obj);
1529   bool Is64Bits = Obj->getBytesInAddress() > 4;
1530 
1531   // Create a mapping from virtual address to symbol name.  This is used to
1532   // pretty print the symbols while disassembling.
1533   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1534   SectionSymbolsTy AbsoluteSymbols;
1535   const StringRef FileName = Obj->getFileName();
1536   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
1537   for (const SymbolRef &Symbol : Obj->symbols()) {
1538     Expected<StringRef> NameOrErr = Symbol.getName();
1539     if (!NameOrErr) {
1540       reportWarning(toString(NameOrErr.takeError()), FileName);
1541       continue;
1542     }
1543     if (NameOrErr->empty() && !(Obj->isXCOFF() && SymbolDescription))
1544       continue;
1545 
1546     if (Obj->isELF() && getElfSymbolType(Obj, Symbol) == ELF::STT_SECTION)
1547       continue;
1548 
1549     // Don't ask a Mach-O STAB symbol for its section unless you know that
1550     // STAB symbol's section field refers to a valid section index. Otherwise
1551     // the symbol may error trying to load a section that does not exist.
1552     if (MachO) {
1553       DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
1554       uint8_t NType = (MachO->is64Bit() ?
1555                        MachO->getSymbol64TableEntry(SymDRI).n_type:
1556                        MachO->getSymbolTableEntry(SymDRI).n_type);
1557       if (NType & MachO::N_STAB)
1558         continue;
1559     }
1560 
1561     section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1562     if (SecI != Obj->section_end())
1563       AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol));
1564     else
1565       AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol));
1566   }
1567 
1568   if (AllSymbols.empty() && Obj->isELF())
1569     addDynamicElfSymbols(Obj, AllSymbols);
1570 
1571   BumpPtrAllocator A;
1572   StringSaver Saver(A);
1573   addPltEntries(Obj, AllSymbols, Saver);
1574 
1575   // Create a mapping from virtual address to section. An empty section can
1576   // cause more than one section at the same address. Sort such sections to be
1577   // before same-addressed non-empty sections so that symbol lookups prefer the
1578   // non-empty section.
1579   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1580   for (SectionRef Sec : Obj->sections())
1581     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1582   llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) {
1583     if (LHS.first != RHS.first)
1584       return LHS.first < RHS.first;
1585     return LHS.second.getSize() < RHS.second.getSize();
1586   });
1587 
1588   // Linked executables (.exe and .dll files) typically don't include a real
1589   // symbol table but they might contain an export table.
1590   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
1591     for (const auto &ExportEntry : COFFObj->export_directories()) {
1592       StringRef Name;
1593       if (Error E = ExportEntry.getSymbolName(Name))
1594         reportError(std::move(E), Obj->getFileName());
1595       if (Name.empty())
1596         continue;
1597 
1598       uint32_t RVA;
1599       if (Error E = ExportEntry.getExportRVA(RVA))
1600         reportError(std::move(E), Obj->getFileName());
1601 
1602       uint64_t VA = COFFObj->getImageBase() + RVA;
1603       auto Sec = partition_point(
1604           SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) {
1605             return O.first <= VA;
1606           });
1607       if (Sec != SectionAddresses.begin()) {
1608         --Sec;
1609         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1610       } else
1611         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1612     }
1613   }
1614 
1615   // Sort all the symbols, this allows us to use a simple binary search to find
1616   // Multiple symbols can have the same address. Use a stable sort to stabilize
1617   // the output.
1618   StringSet<> FoundDisasmSymbolSet;
1619   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1620     llvm::stable_sort(SecSyms.second);
1621   llvm::stable_sort(AbsoluteSymbols);
1622 
1623   std::unique_ptr<DWARFContext> DICtx;
1624   LiveVariablePrinter LVP(*Ctx.getRegisterInfo(), *STI);
1625 
1626   if (DbgVariables != DVDisabled) {
1627     DICtx = DWARFContext::create(*Obj);
1628     for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units())
1629       LVP.addCompileUnit(CU->getUnitDIE(false));
1630   }
1631 
1632   LLVM_DEBUG(LVP.dump());
1633 
1634   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1635     if (FilterSections.empty() && !DisassembleAll &&
1636         (!Section.isText() || Section.isVirtual()))
1637       continue;
1638 
1639     uint64_t SectionAddr = Section.getAddress();
1640     uint64_t SectSize = Section.getSize();
1641     if (!SectSize)
1642       continue;
1643 
1644     // Get the list of all the symbols in this section.
1645     SectionSymbolsTy &Symbols = AllSymbols[Section];
1646     std::vector<MappingSymbolPair> MappingSymbols;
1647     if (hasMappingSymbols(Obj)) {
1648       for (const auto &Symb : Symbols) {
1649         uint64_t Address = Symb.Addr;
1650         StringRef Name = Symb.Name;
1651         if (Name.startswith("$d"))
1652           MappingSymbols.emplace_back(Address - SectionAddr, 'd');
1653         if (Name.startswith("$x"))
1654           MappingSymbols.emplace_back(Address - SectionAddr, 'x');
1655         if (Name.startswith("$a"))
1656           MappingSymbols.emplace_back(Address - SectionAddr, 'a');
1657         if (Name.startswith("$t"))
1658           MappingSymbols.emplace_back(Address - SectionAddr, 't');
1659       }
1660     }
1661 
1662     llvm::sort(MappingSymbols);
1663 
1664     if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1665       // AMDGPU disassembler uses symbolizer for printing labels
1666       std::unique_ptr<MCRelocationInfo> RelInfo(
1667         TheTarget->createMCRelocationInfo(TripleName, Ctx));
1668       if (RelInfo) {
1669         std::unique_ptr<MCSymbolizer> Symbolizer(
1670           TheTarget->createMCSymbolizer(
1671             TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1672         DisAsm->setSymbolizer(std::move(Symbolizer));
1673       }
1674     }
1675 
1676     StringRef SegmentName = getSegmentName(MachO, Section);
1677     StringRef SectionName = unwrapOrError(Section.getName(), Obj->getFileName());
1678     // If the section has no symbol at the start, just insert a dummy one.
1679     if (Symbols.empty() || Symbols[0].Addr != 0) {
1680       Symbols.insert(Symbols.begin(),
1681                      createDummySymbolInfo(Obj, SectionAddr, SectionName,
1682                                            Section.isText() ? ELF::STT_FUNC
1683                                                             : ELF::STT_OBJECT));
1684     }
1685 
1686     SmallString<40> Comments;
1687     raw_svector_ostream CommentStream(Comments);
1688 
1689     ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(
1690         unwrapOrError(Section.getContents(), Obj->getFileName()));
1691 
1692     uint64_t VMAAdjustment = 0;
1693     if (shouldAdjustVA(Section))
1694       VMAAdjustment = AdjustVMA;
1695 
1696     uint64_t Size;
1697     uint64_t Index;
1698     bool PrintedSection = false;
1699     std::vector<RelocationRef> Rels = RelocMap[Section];
1700     std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1701     std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1702     // Disassemble symbol by symbol.
1703     for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) {
1704       std::string SymbolName = Symbols[SI].Name.str();
1705       if (Demangle)
1706         SymbolName = demangle(SymbolName);
1707 
1708       // Skip if --disassemble-symbols is not empty and the symbol is not in
1709       // the list.
1710       if (!DisasmSymbolSet.empty() && !DisasmSymbolSet.count(SymbolName))
1711         continue;
1712 
1713       uint64_t Start = Symbols[SI].Addr;
1714       if (Start < SectionAddr || StopAddress <= Start)
1715         continue;
1716       else
1717         FoundDisasmSymbolSet.insert(SymbolName);
1718 
1719       // The end is the section end, the beginning of the next symbol, or
1720       // --stop-address.
1721       uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress);
1722       if (SI + 1 < SE)
1723         End = std::min(End, Symbols[SI + 1].Addr);
1724       if (Start >= End || End <= StartAddress)
1725         continue;
1726       Start -= SectionAddr;
1727       End -= SectionAddr;
1728 
1729       if (!PrintedSection) {
1730         PrintedSection = true;
1731         outs() << "\nDisassembly of section ";
1732         if (!SegmentName.empty())
1733           outs() << SegmentName << ",";
1734         outs() << SectionName << ":\n";
1735       }
1736 
1737       outs() << '\n';
1738       if (LeadingAddr)
1739         outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",
1740                          SectionAddr + Start + VMAAdjustment);
1741       if (Obj->isXCOFF() && SymbolDescription) {
1742         outs() << getXCOFFSymbolDescription(Symbols[SI], SymbolName) << ":\n";
1743       } else
1744         outs() << '<' << SymbolName << ">:\n";
1745 
1746       // Don't print raw contents of a virtual section. A virtual section
1747       // doesn't have any contents in the file.
1748       if (Section.isVirtual()) {
1749         outs() << "...\n";
1750         continue;
1751       }
1752 
1753       auto Status = DisAsm->onSymbolStart(Symbols[SI], Size,
1754                                           Bytes.slice(Start, End - Start),
1755                                           SectionAddr + Start, CommentStream);
1756       // To have round trippable disassembly, we fall back to decoding the
1757       // remaining bytes as instructions.
1758       //
1759       // If there is a failure, we disassemble the failed region as bytes before
1760       // falling back. The target is expected to print nothing in this case.
1761       //
1762       // If there is Success or SoftFail i.e no 'real' failure, we go ahead by
1763       // Size bytes before falling back.
1764       // So if the entire symbol is 'eaten' by the target:
1765       //   Start += Size  // Now Start = End and we will never decode as
1766       //                  // instructions
1767       //
1768       // Right now, most targets return None i.e ignore to treat a symbol
1769       // separately. But WebAssembly decodes preludes for some symbols.
1770       //
1771       if (Status.hasValue()) {
1772         if (Status.getValue() == MCDisassembler::Fail) {
1773           outs() << "// Error in decoding " << SymbolName
1774                  << " : Decoding failed region as bytes.\n";
1775           for (uint64_t I = 0; I < Size; ++I) {
1776             outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true)
1777                    << "\n";
1778           }
1779         }
1780       } else {
1781         Size = 0;
1782       }
1783 
1784       Start += Size;
1785 
1786       Index = Start;
1787       if (SectionAddr < StartAddress)
1788         Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
1789 
1790       // If there is a data/common symbol inside an ELF text section and we are
1791       // only disassembling text (applicable all architectures), we are in a
1792       // situation where we must print the data and not disassemble it.
1793       if (Obj->isELF() && !DisassembleAll && Section.isText()) {
1794         uint8_t SymTy = Symbols[SI].Type;
1795         if (SymTy == ELF::STT_OBJECT || SymTy == ELF::STT_COMMON) {
1796           dumpELFData(SectionAddr, Index, End, Bytes);
1797           Index = End;
1798         }
1799       }
1800 
1801       bool CheckARMELFData = hasMappingSymbols(Obj) &&
1802                              Symbols[SI].Type != ELF::STT_OBJECT &&
1803                              !DisassembleAll;
1804       bool DumpARMELFData = false;
1805       formatted_raw_ostream FOS(outs());
1806 
1807       std::unordered_map<uint64_t, std::string> AllLabels;
1808       if (SymbolizeOperands)
1809         collectLocalBranchTargets(Bytes, MIA, DisAsm, IP, PrimarySTI,
1810                                   SectionAddr, Index, End, AllLabels);
1811 
1812       while (Index < End) {
1813         // ARM and AArch64 ELF binaries can interleave data and text in the
1814         // same section. We rely on the markers introduced to understand what
1815         // we need to dump. If the data marker is within a function, it is
1816         // denoted as a word/short etc.
1817         if (CheckARMELFData) {
1818           char Kind = getMappingSymbolKind(MappingSymbols, Index);
1819           DumpARMELFData = Kind == 'd';
1820           if (SecondarySTI) {
1821             if (Kind == 'a') {
1822               STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI;
1823               DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm;
1824             } else if (Kind == 't') {
1825               STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI;
1826               DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm;
1827             }
1828           }
1829         }
1830 
1831         if (DumpARMELFData) {
1832           Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
1833                                 MappingSymbols, FOS);
1834         } else {
1835           // When -z or --disassemble-zeroes are given we always dissasemble
1836           // them. Otherwise we might want to skip zero bytes we see.
1837           if (!DisassembleZeroes) {
1838             uint64_t MaxOffset = End - Index;
1839             // For --reloc: print zero blocks patched by relocations, so that
1840             // relocations can be shown in the dump.
1841             if (RelCur != RelEnd)
1842               MaxOffset = RelCur->getOffset() - Index;
1843 
1844             if (size_t N =
1845                     countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
1846               FOS << "\t\t..." << '\n';
1847               Index += N;
1848               continue;
1849             }
1850           }
1851 
1852           // Print local label if there's any.
1853           auto Iter = AllLabels.find(SectionAddr + Index);
1854           if (Iter != AllLabels.end())
1855             FOS << "<" << Iter->second << ">:\n";
1856 
1857           // Disassemble a real instruction or a data when disassemble all is
1858           // provided
1859           MCInst Inst;
1860           bool Disassembled =
1861               DisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
1862                                      SectionAddr + Index, CommentStream);
1863           if (Size == 0)
1864             Size = 1;
1865 
1866           LVP.update({Index, Section.getIndex()},
1867                      {Index + Size, Section.getIndex()}, Index + Size != End);
1868 
1869           PIP.printInst(
1870               *IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size),
1871               {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS,
1872               "", *STI, &SP, Obj->getFileName(), &Rels, LVP);
1873           FOS << CommentStream.str();
1874           Comments.clear();
1875 
1876           // If disassembly has failed, avoid analysing invalid/incomplete
1877           // instruction information. Otherwise, try to resolve the target
1878           // address (jump target or memory operand address) and print it on the
1879           // right of the instruction.
1880           if (Disassembled && MIA) {
1881             uint64_t Target;
1882             bool PrintTarget =
1883                 MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target);
1884             if (!PrintTarget)
1885               if (Optional<uint64_t> MaybeTarget =
1886                       MIA->evaluateMemoryOperandAddress(
1887                           Inst, SectionAddr + Index, Size)) {
1888                 Target = *MaybeTarget;
1889                 PrintTarget = true;
1890                 // Do not print real address when symbolizing.
1891                 if (!SymbolizeOperands)
1892                   FOS << "  # " << Twine::utohexstr(Target);
1893               }
1894             if (PrintTarget) {
1895               // In a relocatable object, the target's section must reside in
1896               // the same section as the call instruction or it is accessed
1897               // through a relocation.
1898               //
1899               // In a non-relocatable object, the target may be in any section.
1900               // In that case, locate the section(s) containing the target
1901               // address and find the symbol in one of those, if possible.
1902               //
1903               // N.B. We don't walk the relocations in the relocatable case yet.
1904               std::vector<const SectionSymbolsTy *> TargetSectionSymbols;
1905               if (!Obj->isRelocatableObject()) {
1906                 auto It = llvm::partition_point(
1907                     SectionAddresses,
1908                     [=](const std::pair<uint64_t, SectionRef> &O) {
1909                       return O.first <= Target;
1910                     });
1911                 uint64_t TargetSecAddr = 0;
1912                 while (It != SectionAddresses.begin()) {
1913                   --It;
1914                   if (TargetSecAddr == 0)
1915                     TargetSecAddr = It->first;
1916                   if (It->first != TargetSecAddr)
1917                     break;
1918                   TargetSectionSymbols.push_back(&AllSymbols[It->second]);
1919                 }
1920               } else {
1921                 TargetSectionSymbols.push_back(&Symbols);
1922               }
1923               TargetSectionSymbols.push_back(&AbsoluteSymbols);
1924 
1925               // Find the last symbol in the first candidate section whose
1926               // offset is less than or equal to the target. If there are no
1927               // such symbols, try in the next section and so on, before finally
1928               // using the nearest preceding absolute symbol (if any), if there
1929               // are no other valid symbols.
1930               const SymbolInfoTy *TargetSym = nullptr;
1931               for (const SectionSymbolsTy *TargetSymbols :
1932                    TargetSectionSymbols) {
1933                 auto It = llvm::partition_point(
1934                     *TargetSymbols,
1935                     [=](const SymbolInfoTy &O) { return O.Addr <= Target; });
1936                 if (It != TargetSymbols->begin()) {
1937                   TargetSym = &*(It - 1);
1938                   break;
1939                 }
1940               }
1941 
1942               // Print the labels corresponding to the target if there's any.
1943               bool LabelAvailable = AllLabels.count(Target);
1944               if (TargetSym != nullptr) {
1945                 uint64_t TargetAddress = TargetSym->Addr;
1946                 uint64_t Disp = Target - TargetAddress;
1947                 std::string TargetName = TargetSym->Name.str();
1948                 if (Demangle)
1949                   TargetName = demangle(TargetName);
1950 
1951                 FOS << " <";
1952                 if (!Disp) {
1953                   // Always Print the binary symbol precisely corresponding to
1954                   // the target address.
1955                   FOS << TargetName;
1956                 } else if (!LabelAvailable) {
1957                   // Always Print the binary symbol plus an offset if there's no
1958                   // local label corresponding to the target address.
1959                   FOS << TargetName << "+0x" << Twine::utohexstr(Disp);
1960                 } else {
1961                   FOS << AllLabels[Target];
1962                 }
1963                 FOS << ">";
1964               } else if (LabelAvailable) {
1965                 FOS << " <" << AllLabels[Target] << ">";
1966               }
1967             }
1968           }
1969         }
1970 
1971         LVP.printAfterInst(FOS);
1972         FOS << "\n";
1973 
1974         // Hexagon does this in pretty printer
1975         if (Obj->getArch() != Triple::hexagon) {
1976           // Print relocation for instruction and data.
1977           while (RelCur != RelEnd) {
1978             uint64_t Offset = RelCur->getOffset();
1979             // If this relocation is hidden, skip it.
1980             if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) {
1981               ++RelCur;
1982               continue;
1983             }
1984 
1985             // Stop when RelCur's offset is past the disassembled
1986             // instruction/data. Note that it's possible the disassembled data
1987             // is not the complete data: we might see the relocation printed in
1988             // the middle of the data, but this matches the binutils objdump
1989             // output.
1990             if (Offset >= Index + Size)
1991               break;
1992 
1993             // When --adjust-vma is used, update the address printed.
1994             if (RelCur->getSymbol() != Obj->symbol_end()) {
1995               Expected<section_iterator> SymSI =
1996                   RelCur->getSymbol()->getSection();
1997               if (SymSI && *SymSI != Obj->section_end() &&
1998                   shouldAdjustVA(**SymSI))
1999                 Offset += AdjustVMA;
2000             }
2001 
2002             printRelocation(FOS, Obj->getFileName(), *RelCur,
2003                             SectionAddr + Offset, Is64Bits);
2004             LVP.printAfterOtherLine(FOS, true);
2005             ++RelCur;
2006           }
2007         }
2008 
2009         Index += Size;
2010       }
2011     }
2012   }
2013   StringSet<> MissingDisasmSymbolSet =
2014       set_difference(DisasmSymbolSet, FoundDisasmSymbolSet);
2015   for (StringRef Sym : MissingDisasmSymbolSet.keys())
2016     reportWarning("failed to disassemble missing symbol " + Sym, FileName);
2017 }
2018 
2019 static void disassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
2020   const Target *TheTarget = getTarget(Obj);
2021 
2022   // Package up features to be passed to target/subtarget
2023   SubtargetFeatures Features = Obj->getFeatures();
2024   if (!MAttrs.empty())
2025     for (unsigned I = 0; I != MAttrs.size(); ++I)
2026       Features.AddFeature(MAttrs[I]);
2027 
2028   std::unique_ptr<const MCRegisterInfo> MRI(
2029       TheTarget->createMCRegInfo(TripleName));
2030   if (!MRI)
2031     reportError(Obj->getFileName(),
2032                 "no register info for target " + TripleName);
2033 
2034   // Set up disassembler.
2035   MCTargetOptions MCOptions;
2036   std::unique_ptr<const MCAsmInfo> AsmInfo(
2037       TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions));
2038   if (!AsmInfo)
2039     reportError(Obj->getFileName(),
2040                 "no assembly info for target " + TripleName);
2041 
2042   if (MCPU.empty())
2043     MCPU = Obj->tryGetCPUName().getValueOr("").str();
2044 
2045   std::unique_ptr<const MCSubtargetInfo> STI(
2046       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
2047   if (!STI)
2048     reportError(Obj->getFileName(),
2049                 "no subtarget info for target " + TripleName);
2050   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
2051   if (!MII)
2052     reportError(Obj->getFileName(),
2053                 "no instruction info for target " + TripleName);
2054   MCObjectFileInfo MOFI;
2055   MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI);
2056   // FIXME: for now initialize MCObjectFileInfo with default values
2057   MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx);
2058 
2059   std::unique_ptr<MCDisassembler> DisAsm(
2060       TheTarget->createMCDisassembler(*STI, Ctx));
2061   if (!DisAsm)
2062     reportError(Obj->getFileName(), "no disassembler for target " + TripleName);
2063 
2064   // If we have an ARM object file, we need a second disassembler, because
2065   // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
2066   // We use mapping symbols to switch between the two assemblers, where
2067   // appropriate.
2068   std::unique_ptr<MCDisassembler> SecondaryDisAsm;
2069   std::unique_ptr<const MCSubtargetInfo> SecondarySTI;
2070   if (isArmElf(Obj) && !STI->checkFeatures("+mclass")) {
2071     if (STI->checkFeatures("+thumb-mode"))
2072       Features.AddFeature("-thumb-mode");
2073     else
2074       Features.AddFeature("+thumb-mode");
2075     SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU,
2076                                                         Features.getString()));
2077     SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx));
2078   }
2079 
2080   std::unique_ptr<const MCInstrAnalysis> MIA(
2081       TheTarget->createMCInstrAnalysis(MII.get()));
2082 
2083   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
2084   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
2085       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
2086   if (!IP)
2087     reportError(Obj->getFileName(),
2088                 "no instruction printer for target " + TripleName);
2089   IP->setPrintImmHex(PrintImmHex);
2090   IP->setPrintBranchImmAsAddress(true);
2091   IP->setSymbolizeOperands(SymbolizeOperands);
2092   IP->setMCInstrAnalysis(MIA.get());
2093 
2094   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
2095   SourcePrinter SP(Obj, TheTarget->getName());
2096 
2097   for (StringRef Opt : DisassemblerOptions)
2098     if (!IP->applyTargetSpecificCLOption(Opt))
2099       reportError(Obj->getFileName(),
2100                   "Unrecognized disassembler option: " + Opt);
2101 
2102   disassembleObject(TheTarget, Obj, Ctx, DisAsm.get(), SecondaryDisAsm.get(),
2103                     MIA.get(), IP.get(), STI.get(), SecondarySTI.get(), PIP,
2104                     SP, InlineRelocs);
2105 }
2106 
2107 void objdump::printRelocations(const ObjectFile *Obj) {
2108   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
2109                                                  "%08" PRIx64;
2110   // Regular objdump doesn't print relocations in non-relocatable object
2111   // files.
2112   if (!Obj->isRelocatableObject())
2113     return;
2114 
2115   // Build a mapping from relocation target to a vector of relocation
2116   // sections. Usually, there is an only one relocation section for
2117   // each relocated section.
2118   MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec;
2119   uint64_t Ndx;
2120   for (const SectionRef &Section : ToolSectionFilter(*Obj, &Ndx)) {
2121     if (Section.relocation_begin() == Section.relocation_end())
2122       continue;
2123     Expected<section_iterator> SecOrErr = Section.getRelocatedSection();
2124     if (!SecOrErr)
2125       reportError(Obj->getFileName(),
2126                   "section (" + Twine(Ndx) +
2127                       "): unable to get a relocation target: " +
2128                       toString(SecOrErr.takeError()));
2129     SecToRelSec[**SecOrErr].push_back(Section);
2130   }
2131 
2132   for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) {
2133     StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName());
2134     outs() << "RELOCATION RECORDS FOR [" << SecName << "]:\n";
2135     uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8);
2136     uint32_t TypePadding = 24;
2137     outs() << left_justify("OFFSET", OffsetPadding) << " "
2138            << left_justify("TYPE", TypePadding) << " "
2139            << "VALUE\n";
2140 
2141     for (SectionRef Section : P.second) {
2142       for (const RelocationRef &Reloc : Section.relocations()) {
2143         uint64_t Address = Reloc.getOffset();
2144         SmallString<32> RelocName;
2145         SmallString<32> ValueStr;
2146         if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
2147           continue;
2148         Reloc.getTypeName(RelocName);
2149         if (Error E = getRelocationValueString(Reloc, ValueStr))
2150           reportError(std::move(E), Obj->getFileName());
2151 
2152         outs() << format(Fmt.data(), Address) << " "
2153                << left_justify(RelocName, TypePadding) << " " << ValueStr
2154                << "\n";
2155       }
2156     }
2157     outs() << "\n";
2158   }
2159 }
2160 
2161 void objdump::printDynamicRelocations(const ObjectFile *Obj) {
2162   // For the moment, this option is for ELF only
2163   if (!Obj->isELF())
2164     return;
2165 
2166   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
2167   if (!Elf || Elf->getEType() != ELF::ET_DYN) {
2168     reportError(Obj->getFileName(), "not a dynamic object");
2169     return;
2170   }
2171 
2172   std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
2173   if (DynRelSec.empty())
2174     return;
2175 
2176   outs() << "DYNAMIC RELOCATION RECORDS\n";
2177   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2178   for (const SectionRef &Section : DynRelSec)
2179     for (const RelocationRef &Reloc : Section.relocations()) {
2180       uint64_t Address = Reloc.getOffset();
2181       SmallString<32> RelocName;
2182       SmallString<32> ValueStr;
2183       Reloc.getTypeName(RelocName);
2184       if (Error E = getRelocationValueString(Reloc, ValueStr))
2185         reportError(std::move(E), Obj->getFileName());
2186       outs() << format(Fmt.data(), Address) << " " << RelocName << " "
2187              << ValueStr << "\n";
2188     }
2189 }
2190 
2191 // Returns true if we need to show LMA column when dumping section headers. We
2192 // show it only when the platform is ELF and either we have at least one section
2193 // whose VMA and LMA are different and/or when --show-lma flag is used.
2194 static bool shouldDisplayLMA(const ObjectFile *Obj) {
2195   if (!Obj->isELF())
2196     return false;
2197   for (const SectionRef &S : ToolSectionFilter(*Obj))
2198     if (S.getAddress() != getELFSectionLMA(S))
2199       return true;
2200   return ShowLMA;
2201 }
2202 
2203 static size_t getMaxSectionNameWidth(const ObjectFile *Obj) {
2204   // Default column width for names is 13 even if no names are that long.
2205   size_t MaxWidth = 13;
2206   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
2207     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
2208     MaxWidth = std::max(MaxWidth, Name.size());
2209   }
2210   return MaxWidth;
2211 }
2212 
2213 void objdump::printSectionHeaders(const ObjectFile *Obj) {
2214   size_t NameWidth = getMaxSectionNameWidth(Obj);
2215   size_t AddressWidth = 2 * Obj->getBytesInAddress();
2216   bool HasLMAColumn = shouldDisplayLMA(Obj);
2217   if (HasLMAColumn)
2218     outs() << "Sections:\n"
2219               "Idx "
2220            << left_justify("Name", NameWidth) << " Size     "
2221            << left_justify("VMA", AddressWidth) << " "
2222            << left_justify("LMA", AddressWidth) << " Type\n";
2223   else
2224     outs() << "Sections:\n"
2225               "Idx "
2226            << left_justify("Name", NameWidth) << " Size     "
2227            << left_justify("VMA", AddressWidth) << " Type\n";
2228 
2229   uint64_t Idx;
2230   for (const SectionRef &Section : ToolSectionFilter(*Obj, &Idx)) {
2231     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
2232     uint64_t VMA = Section.getAddress();
2233     if (shouldAdjustVA(Section))
2234       VMA += AdjustVMA;
2235 
2236     uint64_t Size = Section.getSize();
2237 
2238     std::string Type = Section.isText() ? "TEXT" : "";
2239     if (Section.isData())
2240       Type += Type.empty() ? "DATA" : " DATA";
2241     if (Section.isBSS())
2242       Type += Type.empty() ? "BSS" : " BSS";
2243 
2244     if (HasLMAColumn)
2245       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
2246                        Name.str().c_str(), Size)
2247              << format_hex_no_prefix(VMA, AddressWidth) << " "
2248              << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth)
2249              << " " << Type << "\n";
2250     else
2251       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
2252                        Name.str().c_str(), Size)
2253              << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n";
2254   }
2255   outs() << "\n";
2256 }
2257 
2258 void objdump::printSectionContents(const ObjectFile *Obj) {
2259   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
2260 
2261   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
2262     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
2263     uint64_t BaseAddr = Section.getAddress();
2264     uint64_t Size = Section.getSize();
2265     if (!Size)
2266       continue;
2267 
2268     outs() << "Contents of section ";
2269     StringRef SegmentName = getSegmentName(MachO, Section);
2270     if (!SegmentName.empty())
2271       outs() << SegmentName << ",";
2272     outs() << Name << ":\n";
2273     if (Section.isBSS()) {
2274       outs() << format("<skipping contents of bss section at [%04" PRIx64
2275                        ", %04" PRIx64 ")>\n",
2276                        BaseAddr, BaseAddr + Size);
2277       continue;
2278     }
2279 
2280     StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName());
2281 
2282     // Dump out the content as hex and printable ascii characters.
2283     for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
2284       outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
2285       // Dump line of hex.
2286       for (std::size_t I = 0; I < 16; ++I) {
2287         if (I != 0 && I % 4 == 0)
2288           outs() << ' ';
2289         if (Addr + I < End)
2290           outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
2291                  << hexdigit(Contents[Addr + I] & 0xF, true);
2292         else
2293           outs() << "  ";
2294       }
2295       // Print ascii.
2296       outs() << "  ";
2297       for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
2298         if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
2299           outs() << Contents[Addr + I];
2300         else
2301           outs() << ".";
2302       }
2303       outs() << "\n";
2304     }
2305   }
2306 }
2307 
2308 void objdump::printSymbolTable(const ObjectFile *O, StringRef ArchiveName,
2309                                StringRef ArchitectureName, bool DumpDynamic) {
2310   if (O->isCOFF() && !DumpDynamic) {
2311     outs() << "SYMBOL TABLE:\n";
2312     printCOFFSymbolTable(cast<const COFFObjectFile>(O));
2313     return;
2314   }
2315 
2316   const StringRef FileName = O->getFileName();
2317 
2318   if (!DumpDynamic) {
2319     outs() << "SYMBOL TABLE:\n";
2320     for (auto I = O->symbol_begin(); I != O->symbol_end(); ++I)
2321       printSymbol(O, *I, FileName, ArchiveName, ArchitectureName, DumpDynamic);
2322     return;
2323   }
2324 
2325   outs() << "DYNAMIC SYMBOL TABLE:\n";
2326   if (!O->isELF()) {
2327     reportWarning(
2328         "this operation is not currently supported for this file format",
2329         FileName);
2330     return;
2331   }
2332 
2333   const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(O);
2334   for (auto I = ELF->getDynamicSymbolIterators().begin();
2335        I != ELF->getDynamicSymbolIterators().end(); ++I)
2336     printSymbol(O, *I, FileName, ArchiveName, ArchitectureName, DumpDynamic);
2337 }
2338 
2339 void objdump::printSymbol(const ObjectFile *O, const SymbolRef &Symbol,
2340                           StringRef FileName, StringRef ArchiveName,
2341                           StringRef ArchitectureName, bool DumpDynamic) {
2342   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(O);
2343   uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName,
2344                                    ArchitectureName);
2345   if ((Address < StartAddress) || (Address > StopAddress))
2346     return;
2347   SymbolRef::Type Type =
2348       unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName);
2349   uint32_t Flags =
2350       unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName);
2351 
2352   // Don't ask a Mach-O STAB symbol for its section unless you know that
2353   // STAB symbol's section field refers to a valid section index. Otherwise
2354   // the symbol may error trying to load a section that does not exist.
2355   bool IsSTAB = false;
2356   if (MachO) {
2357     DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
2358     uint8_t NType =
2359         (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type
2360                           : MachO->getSymbolTableEntry(SymDRI).n_type);
2361     if (NType & MachO::N_STAB)
2362       IsSTAB = true;
2363   }
2364   section_iterator Section = IsSTAB
2365                                  ? O->section_end()
2366                                  : unwrapOrError(Symbol.getSection(), FileName,
2367                                                  ArchiveName, ArchitectureName);
2368 
2369   StringRef Name;
2370   if (Type == SymbolRef::ST_Debug && Section != O->section_end()) {
2371     if (Expected<StringRef> NameOrErr = Section->getName())
2372       Name = *NameOrErr;
2373     else
2374       consumeError(NameOrErr.takeError());
2375 
2376   } else {
2377     Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName,
2378                          ArchitectureName);
2379   }
2380 
2381   bool Global = Flags & SymbolRef::SF_Global;
2382   bool Weak = Flags & SymbolRef::SF_Weak;
2383   bool Absolute = Flags & SymbolRef::SF_Absolute;
2384   bool Common = Flags & SymbolRef::SF_Common;
2385   bool Hidden = Flags & SymbolRef::SF_Hidden;
2386 
2387   char GlobLoc = ' ';
2388   if ((Section != O->section_end() || Absolute) && !Weak)
2389     GlobLoc = Global ? 'g' : 'l';
2390   char IFunc = ' ';
2391   if (O->isELF()) {
2392     if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC)
2393       IFunc = 'i';
2394     if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE)
2395       GlobLoc = 'u';
2396   }
2397 
2398   char Debug = ' ';
2399   if (DumpDynamic)
2400     Debug = 'D';
2401   else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
2402     Debug = 'd';
2403 
2404   char FileFunc = ' ';
2405   if (Type == SymbolRef::ST_File)
2406     FileFunc = 'f';
2407   else if (Type == SymbolRef::ST_Function)
2408     FileFunc = 'F';
2409   else if (Type == SymbolRef::ST_Data)
2410     FileFunc = 'O';
2411 
2412   const char *Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2413 
2414   outs() << format(Fmt, Address) << " "
2415          << GlobLoc            // Local -> 'l', Global -> 'g', Neither -> ' '
2416          << (Weak ? 'w' : ' ') // Weak?
2417          << ' '                // Constructor. Not supported yet.
2418          << ' '                // Warning. Not supported yet.
2419          << IFunc              // Indirect reference to another symbol.
2420          << Debug              // Debugging (d) or dynamic (D) symbol.
2421          << FileFunc           // Name of function (F), file (f) or object (O).
2422          << ' ';
2423   if (Absolute) {
2424     outs() << "*ABS*";
2425   } else if (Common) {
2426     outs() << "*COM*";
2427   } else if (Section == O->section_end()) {
2428     outs() << "*UND*";
2429   } else {
2430     StringRef SegmentName = getSegmentName(MachO, *Section);
2431     if (!SegmentName.empty())
2432       outs() << SegmentName << ",";
2433     StringRef SectionName = unwrapOrError(Section->getName(), FileName);
2434     outs() << SectionName;
2435   }
2436 
2437   if (Common || O->isELF()) {
2438     uint64_t Val =
2439         Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
2440     outs() << '\t' << format(Fmt, Val);
2441   }
2442 
2443   if (O->isELF()) {
2444     uint8_t Other = ELFSymbolRef(Symbol).getOther();
2445     switch (Other) {
2446     case ELF::STV_DEFAULT:
2447       break;
2448     case ELF::STV_INTERNAL:
2449       outs() << " .internal";
2450       break;
2451     case ELF::STV_HIDDEN:
2452       outs() << " .hidden";
2453       break;
2454     case ELF::STV_PROTECTED:
2455       outs() << " .protected";
2456       break;
2457     default:
2458       outs() << format(" 0x%02x", Other);
2459       break;
2460     }
2461   } else if (Hidden) {
2462     outs() << " .hidden";
2463   }
2464 
2465   if (Demangle)
2466     outs() << ' ' << demangle(std::string(Name)) << '\n';
2467   else
2468     outs() << ' ' << Name << '\n';
2469 }
2470 
2471 static void printUnwindInfo(const ObjectFile *O) {
2472   outs() << "Unwind info:\n\n";
2473 
2474   if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
2475     printCOFFUnwindInfo(Coff);
2476   else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
2477     printMachOUnwindInfo(MachO);
2478   else
2479     // TODO: Extract DWARF dump tool to objdump.
2480     WithColor::error(errs(), ToolName)
2481         << "This operation is only currently supported "
2482            "for COFF and MachO object files.\n";
2483 }
2484 
2485 /// Dump the raw contents of the __clangast section so the output can be piped
2486 /// into llvm-bcanalyzer.
2487 static void printRawClangAST(const ObjectFile *Obj) {
2488   if (outs().is_displayed()) {
2489     WithColor::error(errs(), ToolName)
2490         << "The -raw-clang-ast option will dump the raw binary contents of "
2491            "the clang ast section.\n"
2492            "Please redirect the output to a file or another program such as "
2493            "llvm-bcanalyzer.\n";
2494     return;
2495   }
2496 
2497   StringRef ClangASTSectionName("__clangast");
2498   if (Obj->isCOFF()) {
2499     ClangASTSectionName = "clangast";
2500   }
2501 
2502   Optional<object::SectionRef> ClangASTSection;
2503   for (auto Sec : ToolSectionFilter(*Obj)) {
2504     StringRef Name;
2505     if (Expected<StringRef> NameOrErr = Sec.getName())
2506       Name = *NameOrErr;
2507     else
2508       consumeError(NameOrErr.takeError());
2509 
2510     if (Name == ClangASTSectionName) {
2511       ClangASTSection = Sec;
2512       break;
2513     }
2514   }
2515   if (!ClangASTSection)
2516     return;
2517 
2518   StringRef ClangASTContents = unwrapOrError(
2519       ClangASTSection.getValue().getContents(), Obj->getFileName());
2520   outs().write(ClangASTContents.data(), ClangASTContents.size());
2521 }
2522 
2523 static void printFaultMaps(const ObjectFile *Obj) {
2524   StringRef FaultMapSectionName;
2525 
2526   if (Obj->isELF()) {
2527     FaultMapSectionName = ".llvm_faultmaps";
2528   } else if (Obj->isMachO()) {
2529     FaultMapSectionName = "__llvm_faultmaps";
2530   } else {
2531     WithColor::error(errs(), ToolName)
2532         << "This operation is only currently supported "
2533            "for ELF and Mach-O executable files.\n";
2534     return;
2535   }
2536 
2537   Optional<object::SectionRef> FaultMapSection;
2538 
2539   for (auto Sec : ToolSectionFilter(*Obj)) {
2540     StringRef Name;
2541     if (Expected<StringRef> NameOrErr = Sec.getName())
2542       Name = *NameOrErr;
2543     else
2544       consumeError(NameOrErr.takeError());
2545 
2546     if (Name == FaultMapSectionName) {
2547       FaultMapSection = Sec;
2548       break;
2549     }
2550   }
2551 
2552   outs() << "FaultMap table:\n";
2553 
2554   if (!FaultMapSection.hasValue()) {
2555     outs() << "<not found>\n";
2556     return;
2557   }
2558 
2559   StringRef FaultMapContents =
2560       unwrapOrError(FaultMapSection.getValue().getContents(), Obj->getFileName());
2561   FaultMapParser FMP(FaultMapContents.bytes_begin(),
2562                      FaultMapContents.bytes_end());
2563 
2564   outs() << FMP;
2565 }
2566 
2567 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) {
2568   if (O->isELF()) {
2569     printELFFileHeader(O);
2570     printELFDynamicSection(O);
2571     printELFSymbolVersionInfo(O);
2572     return;
2573   }
2574   if (O->isCOFF())
2575     return printCOFFFileHeader(O);
2576   if (O->isWasm())
2577     return printWasmFileHeader(O);
2578   if (O->isMachO()) {
2579     printMachOFileHeader(O);
2580     if (!OnlyFirst)
2581       printMachOLoadCommands(O);
2582     return;
2583   }
2584   reportError(O->getFileName(), "Invalid/Unsupported object file format");
2585 }
2586 
2587 static void printFileHeaders(const ObjectFile *O) {
2588   if (!O->isELF() && !O->isCOFF())
2589     reportError(O->getFileName(), "Invalid/Unsupported object file format");
2590 
2591   Triple::ArchType AT = O->getArch();
2592   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
2593   uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
2594 
2595   StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2596   outs() << "start address: "
2597          << "0x" << format(Fmt.data(), Address) << "\n\n";
2598 }
2599 
2600 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
2601   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
2602   if (!ModeOrErr) {
2603     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
2604     consumeError(ModeOrErr.takeError());
2605     return;
2606   }
2607   sys::fs::perms Mode = ModeOrErr.get();
2608   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
2609   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
2610   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
2611   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
2612   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
2613   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
2614   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
2615   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
2616   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
2617 
2618   outs() << " ";
2619 
2620   outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
2621                    unwrapOrError(C.getGID(), Filename),
2622                    unwrapOrError(C.getRawSize(), Filename));
2623 
2624   StringRef RawLastModified = C.getRawLastModified();
2625   unsigned Seconds;
2626   if (RawLastModified.getAsInteger(10, Seconds))
2627     outs() << "(date: \"" << RawLastModified
2628            << "\" contains non-decimal chars) ";
2629   else {
2630     // Since ctime(3) returns a 26 character string of the form:
2631     // "Sun Sep 16 01:03:52 1973\n\0"
2632     // just print 24 characters.
2633     time_t t = Seconds;
2634     outs() << format("%.24s ", ctime(&t));
2635   }
2636 
2637   StringRef Name = "";
2638   Expected<StringRef> NameOrErr = C.getName();
2639   if (!NameOrErr) {
2640     consumeError(NameOrErr.takeError());
2641     Name = unwrapOrError(C.getRawName(), Filename);
2642   } else {
2643     Name = NameOrErr.get();
2644   }
2645   outs() << Name << "\n";
2646 }
2647 
2648 // For ELF only now.
2649 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) {
2650   if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) {
2651     if (Elf->getEType() != ELF::ET_REL)
2652       return true;
2653   }
2654   return false;
2655 }
2656 
2657 static void checkForInvalidStartStopAddress(ObjectFile *Obj,
2658                                             uint64_t Start, uint64_t Stop) {
2659   if (!shouldWarnForInvalidStartStopAddress(Obj))
2660     return;
2661 
2662   for (const SectionRef &Section : Obj->sections())
2663     if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) {
2664       uint64_t BaseAddr = Section.getAddress();
2665       uint64_t Size = Section.getSize();
2666       if ((Start < BaseAddr + Size) && Stop > BaseAddr)
2667         return;
2668     }
2669 
2670   if (!HasStartAddressFlag)
2671     reportWarning("no section has address less than 0x" +
2672                       Twine::utohexstr(Stop) + " specified by --stop-address",
2673                   Obj->getFileName());
2674   else if (!HasStopAddressFlag)
2675     reportWarning("no section has address greater than or equal to 0x" +
2676                       Twine::utohexstr(Start) + " specified by --start-address",
2677                   Obj->getFileName());
2678   else
2679     reportWarning("no section overlaps the range [0x" +
2680                       Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) +
2681                       ") specified by --start-address/--stop-address",
2682                   Obj->getFileName());
2683 }
2684 
2685 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
2686                        const Archive::Child *C = nullptr) {
2687   // Avoid other output when using a raw option.
2688   if (!RawClangAST) {
2689     outs() << '\n';
2690     if (A)
2691       outs() << A->getFileName() << "(" << O->getFileName() << ")";
2692     else
2693       outs() << O->getFileName();
2694     outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n\n";
2695   }
2696 
2697   if (HasStartAddressFlag || HasStopAddressFlag)
2698     checkForInvalidStartStopAddress(O, StartAddress, StopAddress);
2699 
2700   // Note: the order here matches GNU objdump for compatability.
2701   StringRef ArchiveName = A ? A->getFileName() : "";
2702   if (ArchiveHeaders && !MachOOpt && C)
2703     printArchiveChild(ArchiveName, *C);
2704   if (FileHeaders)
2705     printFileHeaders(O);
2706   if (PrivateHeaders || FirstPrivateHeader)
2707     printPrivateFileHeaders(O, FirstPrivateHeader);
2708   if (SectionHeaders)
2709     printSectionHeaders(O);
2710   if (SymbolTable)
2711     printSymbolTable(O, ArchiveName);
2712   if (DynamicSymbolTable)
2713     printSymbolTable(O, ArchiveName, /*ArchitectureName=*/"",
2714                      /*DumpDynamic=*/true);
2715   if (DwarfDumpType != DIDT_Null) {
2716     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
2717     // Dump the complete DWARF structure.
2718     DIDumpOptions DumpOpts;
2719     DumpOpts.DumpType = DwarfDumpType;
2720     DICtx->dump(outs(), DumpOpts);
2721   }
2722   if (Relocations && !Disassemble)
2723     printRelocations(O);
2724   if (DynamicRelocations)
2725     printDynamicRelocations(O);
2726   if (SectionContents)
2727     printSectionContents(O);
2728   if (Disassemble)
2729     disassembleObject(O, Relocations);
2730   if (UnwindInfo)
2731     printUnwindInfo(O);
2732 
2733   // Mach-O specific options:
2734   if (ExportsTrie)
2735     printExportsTrie(O);
2736   if (Rebase)
2737     printRebaseTable(O);
2738   if (Bind)
2739     printBindTable(O);
2740   if (LazyBind)
2741     printLazyBindTable(O);
2742   if (WeakBind)
2743     printWeakBindTable(O);
2744 
2745   // Other special sections:
2746   if (RawClangAST)
2747     printRawClangAST(O);
2748   if (FaultMapSection)
2749     printFaultMaps(O);
2750 }
2751 
2752 static void dumpObject(const COFFImportFile *I, const Archive *A,
2753                        const Archive::Child *C = nullptr) {
2754   StringRef ArchiveName = A ? A->getFileName() : "";
2755 
2756   // Avoid other output when using a raw option.
2757   if (!RawClangAST)
2758     outs() << '\n'
2759            << ArchiveName << "(" << I->getFileName() << ")"
2760            << ":\tfile format COFF-import-file"
2761            << "\n\n";
2762 
2763   if (ArchiveHeaders && !MachOOpt && C)
2764     printArchiveChild(ArchiveName, *C);
2765   if (SymbolTable)
2766     printCOFFSymbolTable(I);
2767 }
2768 
2769 /// Dump each object file in \a a;
2770 static void dumpArchive(const Archive *A) {
2771   Error Err = Error::success();
2772   unsigned I = -1;
2773   for (auto &C : A->children(Err)) {
2774     ++I;
2775     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2776     if (!ChildOrErr) {
2777       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2778         reportError(std::move(E), getFileNameForError(C, I), A->getFileName());
2779       continue;
2780     }
2781     if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2782       dumpObject(O, A, &C);
2783     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2784       dumpObject(I, A, &C);
2785     else
2786       reportError(errorCodeToError(object_error::invalid_file_type),
2787                   A->getFileName());
2788   }
2789   if (Err)
2790     reportError(std::move(Err), A->getFileName());
2791 }
2792 
2793 /// Open file and figure out how to dump it.
2794 static void dumpInput(StringRef file) {
2795   // If we are using the Mach-O specific object file parser, then let it parse
2796   // the file and process the command line options.  So the -arch flags can
2797   // be used to select specific slices, etc.
2798   if (MachOOpt) {
2799     parseInputMachO(file);
2800     return;
2801   }
2802 
2803   // Attempt to open the binary.
2804   OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
2805   Binary &Binary = *OBinary.getBinary();
2806 
2807   if (Archive *A = dyn_cast<Archive>(&Binary))
2808     dumpArchive(A);
2809   else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
2810     dumpObject(O);
2811   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2812     parseInputMachO(UB);
2813   else
2814     reportError(errorCodeToError(object_error::invalid_file_type), file);
2815 }
2816 
2817 template <typename T>
2818 static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID,
2819                         T &Value) {
2820   if (const opt::Arg *A = InputArgs.getLastArg(ID)) {
2821     StringRef V(A->getValue());
2822     if (!llvm::to_integer(V, Value, 0)) {
2823       reportCmdLineError(A->getSpelling() +
2824                          ": expected a non-negative integer, but got '" + V +
2825                          "'");
2826     }
2827   }
2828 }
2829 
2830 static std::vector<std::string>
2831 commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) {
2832   std::vector<std::string> Values;
2833   for (StringRef Value : InputArgs.getAllArgValues(ID)) {
2834     llvm::SmallVector<StringRef, 2> SplitValues;
2835     llvm::SplitString(Value, SplitValues, ",");
2836     for (StringRef SplitValue : SplitValues)
2837       Values.push_back(SplitValue.str());
2838   }
2839   return Values;
2840 }
2841 
2842 static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) {
2843   MachOOpt = true;
2844   FullLeadingAddr = true;
2845   PrintImmHex = true;
2846 
2847   ArchName = InputArgs.getLastArgValue(OTOOL_arch).str();
2848   LinkOptHints = InputArgs.hasArg(OTOOL_C);
2849   if (InputArgs.hasArg(OTOOL_d))
2850     FilterSections.push_back("__DATA,__data");
2851   DylibId = InputArgs.hasArg(OTOOL_D);
2852   UniversalHeaders = InputArgs.hasArg(OTOOL_f);
2853   DataInCode = InputArgs.hasArg(OTOOL_G);
2854   FirstPrivateHeader = InputArgs.hasArg(OTOOL_h);
2855   IndirectSymbols = InputArgs.hasArg(OTOOL_I);
2856   ShowRawInsn = InputArgs.hasArg(OTOOL_j);
2857   PrivateHeaders = InputArgs.hasArg(OTOOL_l);
2858   DylibsUsed = InputArgs.hasArg(OTOOL_L);
2859   MCPU = InputArgs.getLastArgValue(OTOOL_mcpu_EQ).str();
2860   ObjcMetaData = InputArgs.hasArg(OTOOL_o);
2861   DisSymName = InputArgs.getLastArgValue(OTOOL_p).str();
2862   InfoPlist = InputArgs.hasArg(OTOOL_P);
2863   Relocations = InputArgs.hasArg(OTOOL_r);
2864   if (const Arg *A = InputArgs.getLastArg(OTOOL_s)) {
2865     auto Filter = (A->getValue(0) + StringRef(",") + A->getValue(1)).str();
2866     FilterSections.push_back(Filter);
2867   }
2868   if (InputArgs.hasArg(OTOOL_t))
2869     FilterSections.push_back("__TEXT,__text");
2870   Verbose = InputArgs.hasArg(OTOOL_v) || InputArgs.hasArg(OTOOL_V) ||
2871             InputArgs.hasArg(OTOOL_o);
2872   SymbolicOperands = InputArgs.hasArg(OTOOL_V);
2873   if (InputArgs.hasArg(OTOOL_x))
2874     FilterSections.push_back(",__text");
2875   LeadingAddr = LeadingHeaders = !InputArgs.hasArg(OTOOL_X);
2876 
2877   InputFilenames = InputArgs.getAllArgValues(OTOOL_INPUT);
2878   if (InputFilenames.empty())
2879     reportCmdLineError("no input file");
2880 
2881   for (const Arg *A : InputArgs) {
2882     const Option &O = A->getOption();
2883     if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) {
2884       reportCmdLineWarning(O.getPrefixedName() +
2885                            " is obsolete and not implemented");
2886     }
2887   }
2888 }
2889 
2890 static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) {
2891   parseIntArg(InputArgs, OBJDUMP_adjust_vma_EQ, AdjustVMA);
2892   AllHeaders = InputArgs.hasArg(OBJDUMP_all_headers);
2893   ArchName = InputArgs.getLastArgValue(OBJDUMP_arch_name_EQ).str();
2894   ArchiveHeaders = InputArgs.hasArg(OBJDUMP_archive_headers);
2895   Demangle = InputArgs.hasArg(OBJDUMP_demangle);
2896   Disassemble = InputArgs.hasArg(OBJDUMP_disassemble);
2897   DisassembleAll = InputArgs.hasArg(OBJDUMP_disassemble_all);
2898   SymbolDescription = InputArgs.hasArg(OBJDUMP_symbol_description);
2899   DisassembleSymbols =
2900       commaSeparatedValues(InputArgs, OBJDUMP_disassemble_symbols_EQ);
2901   DisassembleZeroes = InputArgs.hasArg(OBJDUMP_disassemble_zeroes);
2902   DisassemblerOptions =
2903       commaSeparatedValues(InputArgs, OBJDUMP_disassembler_options_EQ);
2904   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_dwarf_EQ)) {
2905     DwarfDumpType =
2906         StringSwitch<DIDumpType>(A->getValue()).Case("frames", DIDT_DebugFrame);
2907   }
2908   DynamicRelocations = InputArgs.hasArg(OBJDUMP_dynamic_reloc);
2909   FaultMapSection = InputArgs.hasArg(OBJDUMP_fault_map_section);
2910   FileHeaders = InputArgs.hasArg(OBJDUMP_file_headers);
2911   SectionContents = InputArgs.hasArg(OBJDUMP_full_contents);
2912   PrintLines = InputArgs.hasArg(OBJDUMP_line_numbers);
2913   InputFilenames = InputArgs.getAllArgValues(OBJDUMP_INPUT);
2914   MachOOpt = InputArgs.hasArg(OBJDUMP_macho);
2915   MCPU = InputArgs.getLastArgValue(OBJDUMP_mcpu_EQ).str();
2916   MAttrs = commaSeparatedValues(InputArgs, OBJDUMP_mattr_EQ);
2917   ShowRawInsn = !InputArgs.hasArg(OBJDUMP_no_show_raw_insn);
2918   LeadingAddr = !InputArgs.hasArg(OBJDUMP_no_leading_addr);
2919   RawClangAST = InputArgs.hasArg(OBJDUMP_raw_clang_ast);
2920   Relocations = InputArgs.hasArg(OBJDUMP_reloc);
2921   PrintImmHex =
2922       InputArgs.hasFlag(OBJDUMP_print_imm_hex, OBJDUMP_no_print_imm_hex, false);
2923   PrivateHeaders = InputArgs.hasArg(OBJDUMP_private_headers);
2924   FilterSections = InputArgs.getAllArgValues(OBJDUMP_section_EQ);
2925   SectionHeaders = InputArgs.hasArg(OBJDUMP_section_headers);
2926   ShowLMA = InputArgs.hasArg(OBJDUMP_show_lma);
2927   PrintSource = InputArgs.hasArg(OBJDUMP_source);
2928   parseIntArg(InputArgs, OBJDUMP_start_address_EQ, StartAddress);
2929   HasStartAddressFlag = InputArgs.hasArg(OBJDUMP_start_address_EQ);
2930   parseIntArg(InputArgs, OBJDUMP_stop_address_EQ, StopAddress);
2931   HasStopAddressFlag = InputArgs.hasArg(OBJDUMP_stop_address_EQ);
2932   SymbolTable = InputArgs.hasArg(OBJDUMP_syms);
2933   SymbolizeOperands = InputArgs.hasArg(OBJDUMP_symbolize_operands);
2934   DynamicSymbolTable = InputArgs.hasArg(OBJDUMP_dynamic_syms);
2935   TripleName = InputArgs.getLastArgValue(OBJDUMP_triple_EQ).str();
2936   UnwindInfo = InputArgs.hasArg(OBJDUMP_unwind_info);
2937   Wide = InputArgs.hasArg(OBJDUMP_wide);
2938   Prefix = InputArgs.getLastArgValue(OBJDUMP_prefix).str();
2939   parseIntArg(InputArgs, OBJDUMP_prefix_strip, PrefixStrip);
2940   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_debug_vars_EQ)) {
2941     DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue())
2942                        .Case("ascii", DVASCII)
2943                        .Case("unicode", DVUnicode);
2944   }
2945   parseIntArg(InputArgs, OBJDUMP_debug_vars_indent_EQ, DbgIndent);
2946 
2947   parseMachOOptions(InputArgs);
2948 
2949   // Handle options that get forwarded to cl::opt<>s in libraries.
2950   // FIXME: Depending on https://reviews.llvm.org/D84191#inline-946075 ,
2951   // hopefully remove this again.
2952   std::vector<const char *> LLVMArgs;
2953   LLVMArgs.push_back("llvm-objdump (LLVM option parsing)");
2954   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_x86_asm_syntax_att,
2955                                                OBJDUMP_x86_asm_syntax_intel)) {
2956     switch (A->getOption().getID()) {
2957     case OBJDUMP_x86_asm_syntax_att:
2958       LLVMArgs.push_back("--x86-asm-syntax=att");
2959       break;
2960     case OBJDUMP_x86_asm_syntax_intel:
2961       LLVMArgs.push_back("--x86-asm-syntax=intel");
2962       break;
2963     }
2964   }
2965   if (InputArgs.hasArg(OBJDUMP_mhvx))
2966     LLVMArgs.push_back("--mhvx");
2967   if (InputArgs.hasArg(OBJDUMP_mhvx_v66))
2968     LLVMArgs.push_back("--mhvx=v66");
2969   if (InputArgs.hasArg(OBJDUMP_mv60))
2970     LLVMArgs.push_back("--mv60");
2971   if (InputArgs.hasArg(OBJDUMP_mv65))
2972     LLVMArgs.push_back("--mv65");
2973   if (InputArgs.hasArg(OBJDUMP_mv66))
2974     LLVMArgs.push_back("--mv66");
2975   if (InputArgs.hasArg(OBJDUMP_mv67))
2976     LLVMArgs.push_back("--mv67");
2977   if (InputArgs.hasArg(OBJDUMP_mv67t))
2978     LLVMArgs.push_back("--mv67t");
2979   if (InputArgs.hasArg(OBJDUMP_riscv_no_aliases))
2980     LLVMArgs.push_back("--riscv-no-aliases");
2981   LLVMArgs.push_back(nullptr);
2982   llvm::cl::ParseCommandLineOptions(LLVMArgs.size() - 1, LLVMArgs.data());
2983 
2984   // objdump defaults to a.out if no filenames specified.
2985   if (InputFilenames.empty())
2986     InputFilenames.push_back("a.out");
2987 }
2988 
2989 int main(int argc, char **argv) {
2990   using namespace llvm;
2991   InitLLVM X(argc, argv);
2992 
2993   ToolName = argv[0];
2994   std::unique_ptr<CommonOptTable> T;
2995   OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag;
2996 
2997   StringRef Stem = sys::path::stem(ToolName);
2998   auto Is = [=](StringRef Tool) {
2999     // We need to recognize the following filenames:
3000     //
3001     // llvm-objdump -> objdump
3002     // llvm-otool-10.exe -> otool
3003     // powerpc64-unknown-freebsd13-objdump -> objdump
3004     auto I = Stem.rfind_lower(Tool);
3005     return I != StringRef::npos &&
3006            (I + Tool.size() == Stem.size() || !isAlnum(Stem[I + Tool.size()]));
3007   };
3008   if (Is("otool")) {
3009     T = std::make_unique<OtoolOptTable>();
3010     Unknown = OTOOL_UNKNOWN;
3011     HelpFlag = OTOOL_help;
3012     HelpHiddenFlag = OTOOL_help_hidden;
3013     VersionFlag = OTOOL_version;
3014   } else {
3015     T = std::make_unique<ObjdumpOptTable>();
3016     Unknown = OBJDUMP_UNKNOWN;
3017     HelpFlag = OBJDUMP_help;
3018     HelpHiddenFlag = OBJDUMP_help_hidden;
3019     VersionFlag = OBJDUMP_version;
3020   }
3021 
3022   BumpPtrAllocator A;
3023   StringSaver Saver(A);
3024   opt::InputArgList InputArgs =
3025       T->parseArgs(argc, argv, Unknown, Saver,
3026                    [&](StringRef Msg) { reportCmdLineError(Msg); });
3027 
3028   if (InputArgs.size() == 0 || InputArgs.hasArg(HelpFlag)) {
3029     T->printHelp(ToolName);
3030     return 0;
3031   }
3032   if (InputArgs.hasArg(HelpHiddenFlag)) {
3033     T->printHelp(ToolName, /*show_hidden=*/true);
3034     return 0;
3035   }
3036 
3037   // Initialize targets and assembly printers/parsers.
3038   InitializeAllTargetInfos();
3039   InitializeAllTargetMCs();
3040   InitializeAllDisassemblers();
3041 
3042   if (InputArgs.hasArg(VersionFlag)) {
3043     cl::PrintVersionMessage();
3044     if (!Is("otool")) {
3045       outs() << '\n';
3046       TargetRegistry::printRegisteredTargetsForVersion(outs());
3047     }
3048     return 0;
3049   }
3050 
3051   if (Is("otool"))
3052     parseOtoolOptions(InputArgs);
3053   else
3054     parseObjdumpOptions(InputArgs);
3055 
3056   if (StartAddress >= StopAddress)
3057     reportCmdLineError("start address should be less than stop address");
3058 
3059   // Removes trailing separators from prefix.
3060   while (!Prefix.empty() && sys::path::is_separator(Prefix.back()))
3061     Prefix.pop_back();
3062 
3063   if (AllHeaders)
3064     ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
3065         SectionHeaders = SymbolTable = true;
3066 
3067   if (DisassembleAll || PrintSource || PrintLines ||
3068       !DisassembleSymbols.empty())
3069     Disassemble = true;
3070 
3071   if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null &&
3072       !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST &&
3073       !Relocations && !SectionHeaders && !SectionContents && !SymbolTable &&
3074       !DynamicSymbolTable && !UnwindInfo && !FaultMapSection &&
3075       !(MachOOpt &&
3076         (Bind || DataInCode || DylibId || DylibsUsed || ExportsTrie ||
3077          FirstPrivateHeader || FunctionStarts || IndirectSymbols || InfoPlist ||
3078          LazyBind || LinkOptHints || ObjcMetaData || Rebase ||
3079          UniversalHeaders || WeakBind || !FilterSections.empty()))) {
3080     T->printHelp(ToolName);
3081     return 2;
3082   }
3083 
3084   DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end());
3085 
3086   llvm::for_each(InputFilenames, dumpInput);
3087 
3088   warnOnNoMatchForSections();
3089 
3090   return EXIT_SUCCESS;
3091 }
3092