xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision 804ff7f2933f2b0845da12c84c439a2e3d8b4e69)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that works like binutils "objdump", that is, it
10 // dumps out a plethora of information about an object file depending on the
11 // flags.
12 //
13 // The flags and output of this program should be near identical to those of
14 // binutils objdump.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm-objdump.h"
19 #include "COFFDump.h"
20 #include "ELFDump.h"
21 #include "MachODump.h"
22 #include "WasmDump.h"
23 #include "XCOFFDump.h"
24 #include "llvm/ADT/IndexedMap.h"
25 #include "llvm/ADT/Optional.h"
26 #include "llvm/ADT/SmallSet.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/SetOperations.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/ADT/StringSet.h"
31 #include "llvm/ADT/Triple.h"
32 #include "llvm/ADT/Twine.h"
33 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
34 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
35 #include "llvm/Demangle/Demangle.h"
36 #include "llvm/MC/MCAsmInfo.h"
37 #include "llvm/MC/MCContext.h"
38 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
39 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
40 #include "llvm/MC/MCInst.h"
41 #include "llvm/MC/MCInstPrinter.h"
42 #include "llvm/MC/MCInstrAnalysis.h"
43 #include "llvm/MC/MCInstrInfo.h"
44 #include "llvm/MC/MCObjectFileInfo.h"
45 #include "llvm/MC/MCRegisterInfo.h"
46 #include "llvm/MC/MCSubtargetInfo.h"
47 #include "llvm/MC/MCTargetOptions.h"
48 #include "llvm/Object/Archive.h"
49 #include "llvm/Object/COFF.h"
50 #include "llvm/Object/COFFImportFile.h"
51 #include "llvm/Object/ELFObjectFile.h"
52 #include "llvm/Object/FaultMapParser.h"
53 #include "llvm/Object/MachO.h"
54 #include "llvm/Object/MachOUniversal.h"
55 #include "llvm/Object/ObjectFile.h"
56 #include "llvm/Object/Wasm.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/Errc.h"
61 #include "llvm/Support/FileSystem.h"
62 #include "llvm/Support/Format.h"
63 #include "llvm/Support/FormatVariadic.h"
64 #include "llvm/Support/GraphWriter.h"
65 #include "llvm/Support/Host.h"
66 #include "llvm/Support/InitLLVM.h"
67 #include "llvm/Support/MemoryBuffer.h"
68 #include "llvm/Support/SourceMgr.h"
69 #include "llvm/Support/StringSaver.h"
70 #include "llvm/Support/TargetRegistry.h"
71 #include "llvm/Support/TargetSelect.h"
72 #include "llvm/Support/WithColor.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <algorithm>
75 #include <cctype>
76 #include <cstring>
77 #include <system_error>
78 #include <unordered_map>
79 #include <utility>
80 
81 using namespace llvm;
82 using namespace llvm::object;
83 using namespace llvm::objdump;
84 
85 #define DEBUG_TYPE "objdump"
86 
87 static cl::OptionCategory ObjdumpCat("llvm-objdump Options");
88 
89 static cl::opt<uint64_t> AdjustVMA(
90     "adjust-vma",
91     cl::desc("Increase the displayed address by the specified offset"),
92     cl::value_desc("offset"), cl::init(0), cl::cat(ObjdumpCat));
93 
94 static cl::opt<bool>
95     AllHeaders("all-headers",
96                cl::desc("Display all available header information"),
97                cl::cat(ObjdumpCat));
98 static cl::alias AllHeadersShort("x", cl::desc("Alias for --all-headers"),
99                                  cl::NotHidden, cl::Grouping,
100                                  cl::aliasopt(AllHeaders));
101 
102 static cl::opt<std::string>
103     ArchName("arch-name",
104              cl::desc("Target arch to disassemble for, "
105                       "see --version for available targets"),
106              cl::cat(ObjdumpCat));
107 
108 cl::opt<bool>
109     objdump::ArchiveHeaders("archive-headers",
110                             cl::desc("Display archive header information"),
111                             cl::cat(ObjdumpCat));
112 static cl::alias ArchiveHeadersShort("a",
113                                      cl::desc("Alias for --archive-headers"),
114                                      cl::NotHidden, cl::Grouping,
115                                      cl::aliasopt(ArchiveHeaders));
116 
117 cl::opt<bool> objdump::Demangle("demangle", cl::desc("Demangle symbols names"),
118                                 cl::init(false), cl::cat(ObjdumpCat));
119 static cl::alias DemangleShort("C", cl::desc("Alias for --demangle"),
120                                cl::NotHidden, cl::Grouping,
121                                cl::aliasopt(Demangle));
122 
123 cl::opt<bool> objdump::Disassemble(
124     "disassemble",
125     cl::desc("Display assembler mnemonics for the machine instructions"),
126     cl::cat(ObjdumpCat));
127 static cl::alias DisassembleShort("d", cl::desc("Alias for --disassemble"),
128                                   cl::NotHidden, cl::Grouping,
129                                   cl::aliasopt(Disassemble));
130 
131 cl::opt<bool> objdump::DisassembleAll(
132     "disassemble-all",
133     cl::desc("Display assembler mnemonics for the machine instructions"),
134     cl::cat(ObjdumpCat));
135 static cl::alias DisassembleAllShort("D",
136                                      cl::desc("Alias for --disassemble-all"),
137                                      cl::NotHidden, cl::Grouping,
138                                      cl::aliasopt(DisassembleAll));
139 
140 cl::opt<bool> objdump::SymbolDescription(
141     "symbol-description",
142     cl::desc("Add symbol description for disassembly. This "
143              "option is for XCOFF files only"),
144     cl::init(false), cl::cat(ObjdumpCat));
145 
146 static cl::list<std::string>
147     DisassembleSymbols("disassemble-symbols", cl::CommaSeparated,
148                        cl::desc("List of symbols to disassemble. "
149                                 "Accept demangled names when --demangle is "
150                                 "specified, otherwise accept mangled names"),
151                        cl::cat(ObjdumpCat));
152 
153 static cl::opt<bool> DisassembleZeroes(
154     "disassemble-zeroes",
155     cl::desc("Do not skip blocks of zeroes when disassembling"),
156     cl::cat(ObjdumpCat));
157 static cl::alias
158     DisassembleZeroesShort("z", cl::desc("Alias for --disassemble-zeroes"),
159                            cl::NotHidden, cl::Grouping,
160                            cl::aliasopt(DisassembleZeroes));
161 
162 static cl::list<std::string>
163     DisassemblerOptions("disassembler-options",
164                         cl::desc("Pass target specific disassembler options"),
165                         cl::value_desc("options"), cl::CommaSeparated,
166                         cl::cat(ObjdumpCat));
167 static cl::alias
168     DisassemblerOptionsShort("M", cl::desc("Alias for --disassembler-options"),
169                              cl::NotHidden, cl::Grouping, cl::Prefix,
170                              cl::CommaSeparated,
171                              cl::aliasopt(DisassemblerOptions));
172 
173 cl::opt<DIDumpType> objdump::DwarfDumpType(
174     "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"),
175     cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame")),
176     cl::cat(ObjdumpCat));
177 
178 static cl::opt<bool> DynamicRelocations(
179     "dynamic-reloc",
180     cl::desc("Display the dynamic relocation entries in the file"),
181     cl::cat(ObjdumpCat));
182 static cl::alias DynamicRelocationShort("R",
183                                         cl::desc("Alias for --dynamic-reloc"),
184                                         cl::NotHidden, cl::Grouping,
185                                         cl::aliasopt(DynamicRelocations));
186 
187 static cl::opt<bool>
188     FaultMapSection("fault-map-section",
189                     cl::desc("Display contents of faultmap section"),
190                     cl::cat(ObjdumpCat));
191 
192 static cl::opt<bool>
193     FileHeaders("file-headers",
194                 cl::desc("Display the contents of the overall file header"),
195                 cl::cat(ObjdumpCat));
196 static cl::alias FileHeadersShort("f", cl::desc("Alias for --file-headers"),
197                                   cl::NotHidden, cl::Grouping,
198                                   cl::aliasopt(FileHeaders));
199 
200 cl::opt<bool>
201     objdump::SectionContents("full-contents",
202                              cl::desc("Display the content of each section"),
203                              cl::cat(ObjdumpCat));
204 static cl::alias SectionContentsShort("s",
205                                       cl::desc("Alias for --full-contents"),
206                                       cl::NotHidden, cl::Grouping,
207                                       cl::aliasopt(SectionContents));
208 
209 static cl::list<std::string> InputFilenames(cl::Positional,
210                                             cl::desc("<input object files>"),
211                                             cl::ZeroOrMore,
212                                             cl::cat(ObjdumpCat));
213 
214 static cl::opt<bool>
215     PrintLines("line-numbers",
216                cl::desc("Display source line numbers with "
217                         "disassembly. Implies disassemble object"),
218                cl::cat(ObjdumpCat));
219 static cl::alias PrintLinesShort("l", cl::desc("Alias for --line-numbers"),
220                                  cl::NotHidden, cl::Grouping,
221                                  cl::aliasopt(PrintLines));
222 
223 static cl::opt<bool> MachOOpt("macho",
224                               cl::desc("Use MachO specific object file parser"),
225                               cl::cat(ObjdumpCat));
226 static cl::alias MachOm("m", cl::desc("Alias for --macho"), cl::NotHidden,
227                         cl::Grouping, cl::aliasopt(MachOOpt));
228 
229 cl::opt<std::string> objdump::MCPU(
230     "mcpu", cl::desc("Target a specific cpu type (--mcpu=help for details)"),
231     cl::value_desc("cpu-name"), cl::init(""), cl::cat(ObjdumpCat));
232 
233 cl::list<std::string> objdump::MAttrs(
234     "mattr", cl::CommaSeparated,
235     cl::desc("Target specific attributes (--mattr=help for details)"),
236     cl::value_desc("a1,+a2,-a3,..."), cl::cat(ObjdumpCat));
237 
238 cl::opt<bool> objdump::NoShowRawInsn(
239     "no-show-raw-insn",
240     cl::desc(
241         "When disassembling instructions, do not print the instruction bytes."),
242     cl::cat(ObjdumpCat));
243 
244 cl::opt<bool> objdump::NoLeadingAddr("no-leading-addr",
245                                      cl::desc("Print no leading address"),
246                                      cl::cat(ObjdumpCat));
247 
248 static cl::opt<bool> RawClangAST(
249     "raw-clang-ast",
250     cl::desc("Dump the raw binary contents of the clang AST section"),
251     cl::cat(ObjdumpCat));
252 
253 cl::opt<bool>
254     objdump::Relocations("reloc",
255                          cl::desc("Display the relocation entries in the file"),
256                          cl::cat(ObjdumpCat));
257 static cl::alias RelocationsShort("r", cl::desc("Alias for --reloc"),
258                                   cl::NotHidden, cl::Grouping,
259                                   cl::aliasopt(Relocations));
260 
261 cl::opt<bool>
262     objdump::PrintImmHex("print-imm-hex",
263                          cl::desc("Use hex format for immediate values"),
264                          cl::cat(ObjdumpCat));
265 
266 cl::opt<bool>
267     objdump::PrivateHeaders("private-headers",
268                             cl::desc("Display format specific file headers"),
269                             cl::cat(ObjdumpCat));
270 static cl::alias PrivateHeadersShort("p",
271                                      cl::desc("Alias for --private-headers"),
272                                      cl::NotHidden, cl::Grouping,
273                                      cl::aliasopt(PrivateHeaders));
274 
275 cl::list<std::string>
276     objdump::FilterSections("section",
277                             cl::desc("Operate on the specified sections only. "
278                                      "With --macho dump segment,section"),
279                             cl::cat(ObjdumpCat));
280 static cl::alias FilterSectionsj("j", cl::desc("Alias for --section"),
281                                  cl::NotHidden, cl::Grouping, cl::Prefix,
282                                  cl::aliasopt(FilterSections));
283 
284 cl::opt<bool> objdump::SectionHeaders(
285     "section-headers",
286     cl::desc("Display summaries of the headers for each section."),
287     cl::cat(ObjdumpCat));
288 static cl::alias SectionHeadersShort("headers",
289                                      cl::desc("Alias for --section-headers"),
290                                      cl::NotHidden,
291                                      cl::aliasopt(SectionHeaders));
292 static cl::alias SectionHeadersShorter("h",
293                                        cl::desc("Alias for --section-headers"),
294                                        cl::NotHidden, cl::Grouping,
295                                        cl::aliasopt(SectionHeaders));
296 
297 static cl::opt<bool>
298     ShowLMA("show-lma",
299             cl::desc("Display LMA column when dumping ELF section headers"),
300             cl::cat(ObjdumpCat));
301 
302 static cl::opt<bool> PrintSource(
303     "source",
304     cl::desc(
305         "Display source inlined with disassembly. Implies disassemble object"),
306     cl::cat(ObjdumpCat));
307 static cl::alias PrintSourceShort("S", cl::desc("Alias for --source"),
308                                   cl::NotHidden, cl::Grouping,
309                                   cl::aliasopt(PrintSource));
310 
311 static cl::opt<uint64_t>
312     StartAddress("start-address", cl::desc("Disassemble beginning at address"),
313                  cl::value_desc("address"), cl::init(0), cl::cat(ObjdumpCat));
314 static cl::opt<uint64_t> StopAddress("stop-address",
315                                      cl::desc("Stop disassembly at address"),
316                                      cl::value_desc("address"),
317                                      cl::init(UINT64_MAX), cl::cat(ObjdumpCat));
318 
319 cl::opt<bool> objdump::SymbolTable("syms", cl::desc("Display the symbol table"),
320                                    cl::cat(ObjdumpCat));
321 static cl::alias SymbolTableShort("t", cl::desc("Alias for --syms"),
322                                   cl::NotHidden, cl::Grouping,
323                                   cl::aliasopt(SymbolTable));
324 
325 static cl::opt<bool> SymbolizeOperands(
326     "symbolize-operands",
327     cl::desc("Symbolize instruction operands when disassembling"),
328     cl::cat(ObjdumpCat));
329 
330 static cl::opt<bool> DynamicSymbolTable(
331     "dynamic-syms",
332     cl::desc("Display the contents of the dynamic symbol table"),
333     cl::cat(ObjdumpCat));
334 static cl::alias DynamicSymbolTableShort("T",
335                                          cl::desc("Alias for --dynamic-syms"),
336                                          cl::NotHidden, cl::Grouping,
337                                          cl::aliasopt(DynamicSymbolTable));
338 
339 cl::opt<std::string>
340     objdump::TripleName("triple",
341                         cl::desc("Target triple to disassemble for, see "
342                                  "--version for available targets"),
343                         cl::cat(ObjdumpCat));
344 
345 cl::opt<bool> objdump::UnwindInfo("unwind-info",
346                                   cl::desc("Display unwind information"),
347                                   cl::cat(ObjdumpCat));
348 static cl::alias UnwindInfoShort("u", cl::desc("Alias for --unwind-info"),
349                                  cl::NotHidden, cl::Grouping,
350                                  cl::aliasopt(UnwindInfo));
351 
352 static cl::opt<bool>
353     Wide("wide", cl::desc("Ignored for compatibility with GNU objdump"),
354          cl::cat(ObjdumpCat));
355 static cl::alias WideShort("w", cl::Grouping, cl::aliasopt(Wide));
356 
357 cl::opt<std::string> objdump::Prefix("prefix",
358                                      cl::desc("Add prefix to absolute paths"),
359                                      cl::cat(ObjdumpCat));
360 
361 cl::opt<uint32_t>
362     objdump::PrefixStrip("prefix-strip",
363                          cl::desc("Strip out initial directories from absolute "
364                                   "paths. No effect without --prefix"),
365                          cl::init(0), cl::cat(ObjdumpCat));
366 
367 enum DebugVarsFormat {
368   DVDisabled,
369   DVUnicode,
370   DVASCII,
371 };
372 
373 static cl::opt<DebugVarsFormat> DbgVariables(
374     "debug-vars", cl::init(DVDisabled),
375     cl::desc("Print the locations (in registers or memory) of "
376              "source-level variables alongside disassembly"),
377     cl::ValueOptional,
378     cl::values(clEnumValN(DVUnicode, "", "unicode"),
379                clEnumValN(DVUnicode, "unicode", "unicode"),
380                clEnumValN(DVASCII, "ascii", "unicode")),
381     cl::cat(ObjdumpCat));
382 
383 static cl::opt<int>
384     DbgIndent("debug-vars-indent", cl::init(40),
385               cl::desc("Distance to indent the source-level variable display, "
386                        "relative to the start of the disassembly"),
387               cl::cat(ObjdumpCat));
388 
389 static cl::extrahelp
390     HelpResponse("\nPass @FILE as argument to read options from FILE.\n");
391 
392 static StringSet<> DisasmSymbolSet;
393 StringSet<> objdump::FoundSectionSet;
394 static StringRef ToolName;
395 
396 namespace {
397 struct FilterResult {
398   // True if the section should not be skipped.
399   bool Keep;
400 
401   // True if the index counter should be incremented, even if the section should
402   // be skipped. For example, sections may be skipped if they are not included
403   // in the --section flag, but we still want those to count toward the section
404   // count.
405   bool IncrementIndex;
406 };
407 } // namespace
408 
409 static FilterResult checkSectionFilter(object::SectionRef S) {
410   if (FilterSections.empty())
411     return {/*Keep=*/true, /*IncrementIndex=*/true};
412 
413   Expected<StringRef> SecNameOrErr = S.getName();
414   if (!SecNameOrErr) {
415     consumeError(SecNameOrErr.takeError());
416     return {/*Keep=*/false, /*IncrementIndex=*/false};
417   }
418   StringRef SecName = *SecNameOrErr;
419 
420   // StringSet does not allow empty key so avoid adding sections with
421   // no name (such as the section with index 0) here.
422   if (!SecName.empty())
423     FoundSectionSet.insert(SecName);
424 
425   // Only show the section if it's in the FilterSections list, but always
426   // increment so the indexing is stable.
427   return {/*Keep=*/is_contained(FilterSections, SecName),
428           /*IncrementIndex=*/true};
429 }
430 
431 SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O,
432                                          uint64_t *Idx) {
433   // Start at UINT64_MAX so that the first index returned after an increment is
434   // zero (after the unsigned wrap).
435   if (Idx)
436     *Idx = UINT64_MAX;
437   return SectionFilter(
438       [Idx](object::SectionRef S) {
439         FilterResult Result = checkSectionFilter(S);
440         if (Idx != nullptr && Result.IncrementIndex)
441           *Idx += 1;
442         return Result.Keep;
443       },
444       O);
445 }
446 
447 std::string objdump::getFileNameForError(const object::Archive::Child &C,
448                                          unsigned Index) {
449   Expected<StringRef> NameOrErr = C.getName();
450   if (NameOrErr)
451     return std::string(NameOrErr.get());
452   // If we have an error getting the name then we print the index of the archive
453   // member. Since we are already in an error state, we just ignore this error.
454   consumeError(NameOrErr.takeError());
455   return "<file index: " + std::to_string(Index) + ">";
456 }
457 
458 void objdump::reportWarning(const Twine &Message, StringRef File) {
459   // Output order between errs() and outs() matters especially for archive
460   // files where the output is per member object.
461   outs().flush();
462   WithColor::warning(errs(), ToolName)
463       << "'" << File << "': " << Message << "\n";
464 }
465 
466 LLVM_ATTRIBUTE_NORETURN void objdump::reportError(StringRef File,
467                                                   const Twine &Message) {
468   outs().flush();
469   WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n";
470   exit(1);
471 }
472 
473 LLVM_ATTRIBUTE_NORETURN void objdump::reportError(Error E, StringRef FileName,
474                                                   StringRef ArchiveName,
475                                                   StringRef ArchitectureName) {
476   assert(E);
477   outs().flush();
478   WithColor::error(errs(), ToolName);
479   if (ArchiveName != "")
480     errs() << ArchiveName << "(" << FileName << ")";
481   else
482     errs() << "'" << FileName << "'";
483   if (!ArchitectureName.empty())
484     errs() << " (for architecture " << ArchitectureName << ")";
485   errs() << ": ";
486   logAllUnhandledErrors(std::move(E), errs());
487   exit(1);
488 }
489 
490 static void reportCmdLineWarning(const Twine &Message) {
491   WithColor::warning(errs(), ToolName) << Message << "\n";
492 }
493 
494 LLVM_ATTRIBUTE_NORETURN static void reportCmdLineError(const Twine &Message) {
495   WithColor::error(errs(), ToolName) << Message << "\n";
496   exit(1);
497 }
498 
499 static void warnOnNoMatchForSections() {
500   SetVector<StringRef> MissingSections;
501   for (StringRef S : FilterSections) {
502     if (FoundSectionSet.count(S))
503       return;
504     // User may specify a unnamed section. Don't warn for it.
505     if (!S.empty())
506       MissingSections.insert(S);
507   }
508 
509   // Warn only if no section in FilterSections is matched.
510   for (StringRef S : MissingSections)
511     reportCmdLineWarning("section '" + S +
512                          "' mentioned in a -j/--section option, but not "
513                          "found in any input file");
514 }
515 
516 static const Target *getTarget(const ObjectFile *Obj) {
517   // Figure out the target triple.
518   Triple TheTriple("unknown-unknown-unknown");
519   if (TripleName.empty()) {
520     TheTriple = Obj->makeTriple();
521   } else {
522     TheTriple.setTriple(Triple::normalize(TripleName));
523     auto Arch = Obj->getArch();
524     if (Arch == Triple::arm || Arch == Triple::armeb)
525       Obj->setARMSubArch(TheTriple);
526   }
527 
528   // Get the target specific parser.
529   std::string Error;
530   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
531                                                          Error);
532   if (!TheTarget)
533     reportError(Obj->getFileName(), "can't find target: " + Error);
534 
535   // Update the triple name and return the found target.
536   TripleName = TheTriple.getTriple();
537   return TheTarget;
538 }
539 
540 bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) {
541   return A.getOffset() < B.getOffset();
542 }
543 
544 static Error getRelocationValueString(const RelocationRef &Rel,
545                                       SmallVectorImpl<char> &Result) {
546   const ObjectFile *Obj = Rel.getObject();
547   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
548     return getELFRelocationValueString(ELF, Rel, Result);
549   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
550     return getCOFFRelocationValueString(COFF, Rel, Result);
551   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
552     return getWasmRelocationValueString(Wasm, Rel, Result);
553   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
554     return getMachORelocationValueString(MachO, Rel, Result);
555   if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj))
556     return getXCOFFRelocationValueString(XCOFF, Rel, Result);
557   llvm_unreachable("unknown object file format");
558 }
559 
560 /// Indicates whether this relocation should hidden when listing
561 /// relocations, usually because it is the trailing part of a multipart
562 /// relocation that will be printed as part of the leading relocation.
563 static bool getHidden(RelocationRef RelRef) {
564   auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
565   if (!MachO)
566     return false;
567 
568   unsigned Arch = MachO->getArch();
569   DataRefImpl Rel = RelRef.getRawDataRefImpl();
570   uint64_t Type = MachO->getRelocationType(Rel);
571 
572   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
573   // is always hidden.
574   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
575     return Type == MachO::GENERIC_RELOC_PAIR;
576 
577   if (Arch == Triple::x86_64) {
578     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
579     // an X86_64_RELOC_SUBTRACTOR.
580     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
581       DataRefImpl RelPrev = Rel;
582       RelPrev.d.a--;
583       uint64_t PrevType = MachO->getRelocationType(RelPrev);
584       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
585         return true;
586     }
587   }
588 
589   return false;
590 }
591 
592 namespace {
593 
594 /// Get the column at which we want to start printing the instruction
595 /// disassembly, taking into account anything which appears to the left of it.
596 unsigned getInstStartColumn(const MCSubtargetInfo &STI) {
597   return NoShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24;
598 }
599 
600 /// Stores a single expression representing the location of a source-level
601 /// variable, along with the PC range for which that expression is valid.
602 struct LiveVariable {
603   DWARFLocationExpression LocExpr;
604   const char *VarName;
605   DWARFUnit *Unit;
606   const DWARFDie FuncDie;
607 
608   LiveVariable(const DWARFLocationExpression &LocExpr, const char *VarName,
609                DWARFUnit *Unit, const DWARFDie FuncDie)
610       : LocExpr(LocExpr), VarName(VarName), Unit(Unit), FuncDie(FuncDie) {}
611 
612   bool liveAtAddress(object::SectionedAddress Addr) {
613     if (LocExpr.Range == None)
614       return false;
615     return LocExpr.Range->SectionIndex == Addr.SectionIndex &&
616            LocExpr.Range->LowPC <= Addr.Address &&
617            LocExpr.Range->HighPC > Addr.Address;
618   }
619 
620   void print(raw_ostream &OS, const MCRegisterInfo &MRI) const {
621     DataExtractor Data({LocExpr.Expr.data(), LocExpr.Expr.size()},
622                        Unit->getContext().isLittleEndian(), 0);
623     DWARFExpression Expression(Data, Unit->getAddressByteSize());
624     Expression.printCompact(OS, MRI);
625   }
626 };
627 
628 /// Helper class for printing source variable locations alongside disassembly.
629 class LiveVariablePrinter {
630   // Information we want to track about one column in which we are printing a
631   // variable live range.
632   struct Column {
633     unsigned VarIdx = NullVarIdx;
634     bool LiveIn = false;
635     bool LiveOut = false;
636     bool MustDrawLabel  = false;
637 
638     bool isActive() const { return VarIdx != NullVarIdx; }
639 
640     static constexpr unsigned NullVarIdx = std::numeric_limits<unsigned>::max();
641   };
642 
643   // All live variables we know about in the object/image file.
644   std::vector<LiveVariable> LiveVariables;
645 
646   // The columns we are currently drawing.
647   IndexedMap<Column> ActiveCols;
648 
649   const MCRegisterInfo &MRI;
650   const MCSubtargetInfo &STI;
651 
652   void addVariable(DWARFDie FuncDie, DWARFDie VarDie) {
653     uint64_t FuncLowPC, FuncHighPC, SectionIndex;
654     FuncDie.getLowAndHighPC(FuncLowPC, FuncHighPC, SectionIndex);
655     const char *VarName = VarDie.getName(DINameKind::ShortName);
656     DWARFUnit *U = VarDie.getDwarfUnit();
657 
658     Expected<DWARFLocationExpressionsVector> Locs =
659         VarDie.getLocations(dwarf::DW_AT_location);
660     if (!Locs) {
661       // If the variable doesn't have any locations, just ignore it. We don't
662       // report an error or warning here as that could be noisy on optimised
663       // code.
664       consumeError(Locs.takeError());
665       return;
666     }
667 
668     for (const DWARFLocationExpression &LocExpr : *Locs) {
669       if (LocExpr.Range) {
670         LiveVariables.emplace_back(LocExpr, VarName, U, FuncDie);
671       } else {
672         // If the LocExpr does not have an associated range, it is valid for
673         // the whole of the function.
674         // TODO: technically it is not valid for any range covered by another
675         // LocExpr, does that happen in reality?
676         DWARFLocationExpression WholeFuncExpr{
677             DWARFAddressRange(FuncLowPC, FuncHighPC, SectionIndex),
678             LocExpr.Expr};
679         LiveVariables.emplace_back(WholeFuncExpr, VarName, U, FuncDie);
680       }
681     }
682   }
683 
684   void addFunction(DWARFDie D) {
685     for (const DWARFDie &Child : D.children()) {
686       if (Child.getTag() == dwarf::DW_TAG_variable ||
687           Child.getTag() == dwarf::DW_TAG_formal_parameter)
688         addVariable(D, Child);
689       else
690         addFunction(Child);
691     }
692   }
693 
694   // Get the column number (in characters) at which the first live variable
695   // line should be printed.
696   unsigned getIndentLevel() const {
697     return DbgIndent + getInstStartColumn(STI);
698   }
699 
700   // Indent to the first live-range column to the right of the currently
701   // printed line, and return the index of that column.
702   // TODO: formatted_raw_ostream uses "column" to mean a number of characters
703   // since the last \n, and we use it to mean the number of slots in which we
704   // put live variable lines. Pick a less overloaded word.
705   unsigned moveToFirstVarColumn(formatted_raw_ostream &OS) {
706     // Logical column number: column zero is the first column we print in, each
707     // logical column is 2 physical columns wide.
708     unsigned FirstUnprintedLogicalColumn =
709         std::max((int)(OS.getColumn() - getIndentLevel() + 1) / 2, 0);
710     // Physical column number: the actual column number in characters, with
711     // zero being the left-most side of the screen.
712     unsigned FirstUnprintedPhysicalColumn =
713         getIndentLevel() + FirstUnprintedLogicalColumn * 2;
714 
715     if (FirstUnprintedPhysicalColumn > OS.getColumn())
716       OS.PadToColumn(FirstUnprintedPhysicalColumn);
717 
718     return FirstUnprintedLogicalColumn;
719   }
720 
721   unsigned findFreeColumn() {
722     for (unsigned ColIdx = 0; ColIdx < ActiveCols.size(); ++ColIdx)
723       if (!ActiveCols[ColIdx].isActive())
724         return ColIdx;
725 
726     size_t OldSize = ActiveCols.size();
727     ActiveCols.grow(std::max<size_t>(OldSize * 2, 1));
728     return OldSize;
729   }
730 
731 public:
732   LiveVariablePrinter(const MCRegisterInfo &MRI, const MCSubtargetInfo &STI)
733       : LiveVariables(), ActiveCols(Column()), MRI(MRI), STI(STI) {}
734 
735   void dump() const {
736     for (const LiveVariable &LV : LiveVariables) {
737       dbgs() << LV.VarName << " @ " << LV.LocExpr.Range << ": ";
738       LV.print(dbgs(), MRI);
739       dbgs() << "\n";
740     }
741   }
742 
743   void addCompileUnit(DWARFDie D) {
744     if (D.getTag() == dwarf::DW_TAG_subprogram)
745       addFunction(D);
746     else
747       for (const DWARFDie &Child : D.children())
748         addFunction(Child);
749   }
750 
751   /// Update to match the state of the instruction between ThisAddr and
752   /// NextAddr. In the common case, any live range active at ThisAddr is
753   /// live-in to the instruction, and any live range active at NextAddr is
754   /// live-out of the instruction. If IncludeDefinedVars is false, then live
755   /// ranges starting at NextAddr will be ignored.
756   void update(object::SectionedAddress ThisAddr,
757               object::SectionedAddress NextAddr, bool IncludeDefinedVars) {
758     // First, check variables which have already been assigned a column, so
759     // that we don't change their order.
760     SmallSet<unsigned, 8> CheckedVarIdxs;
761     for (unsigned ColIdx = 0, End = ActiveCols.size(); ColIdx < End; ++ColIdx) {
762       if (!ActiveCols[ColIdx].isActive())
763         continue;
764       CheckedVarIdxs.insert(ActiveCols[ColIdx].VarIdx);
765       LiveVariable &LV = LiveVariables[ActiveCols[ColIdx].VarIdx];
766       ActiveCols[ColIdx].LiveIn = LV.liveAtAddress(ThisAddr);
767       ActiveCols[ColIdx].LiveOut = LV.liveAtAddress(NextAddr);
768       LLVM_DEBUG(dbgs() << "pass 1, " << ThisAddr.Address << "-"
769                         << NextAddr.Address << ", " << LV.VarName << ", Col "
770                         << ColIdx << ": LiveIn=" << ActiveCols[ColIdx].LiveIn
771                         << ", LiveOut=" << ActiveCols[ColIdx].LiveOut << "\n");
772 
773       if (!ActiveCols[ColIdx].LiveIn && !ActiveCols[ColIdx].LiveOut)
774         ActiveCols[ColIdx].VarIdx = Column::NullVarIdx;
775     }
776 
777     // Next, look for variables which don't already have a column, but which
778     // are now live.
779     if (IncludeDefinedVars) {
780       for (unsigned VarIdx = 0, End = LiveVariables.size(); VarIdx < End;
781            ++VarIdx) {
782         if (CheckedVarIdxs.count(VarIdx))
783           continue;
784         LiveVariable &LV = LiveVariables[VarIdx];
785         bool LiveIn = LV.liveAtAddress(ThisAddr);
786         bool LiveOut = LV.liveAtAddress(NextAddr);
787         if (!LiveIn && !LiveOut)
788           continue;
789 
790         unsigned ColIdx = findFreeColumn();
791         LLVM_DEBUG(dbgs() << "pass 2, " << ThisAddr.Address << "-"
792                           << NextAddr.Address << ", " << LV.VarName << ", Col "
793                           << ColIdx << ": LiveIn=" << LiveIn
794                           << ", LiveOut=" << LiveOut << "\n");
795         ActiveCols[ColIdx].VarIdx = VarIdx;
796         ActiveCols[ColIdx].LiveIn = LiveIn;
797         ActiveCols[ColIdx].LiveOut = LiveOut;
798         ActiveCols[ColIdx].MustDrawLabel = true;
799       }
800     }
801   }
802 
803   enum class LineChar {
804     RangeStart,
805     RangeMid,
806     RangeEnd,
807     LabelVert,
808     LabelCornerNew,
809     LabelCornerActive,
810     LabelHoriz,
811   };
812   const char *getLineChar(LineChar C) const {
813     bool IsASCII = DbgVariables == DVASCII;
814     switch (C) {
815     case LineChar::RangeStart:
816       return IsASCII ? "^" : (const char *)u8"\u2548";
817     case LineChar::RangeMid:
818       return IsASCII ? "|" : (const char *)u8"\u2503";
819     case LineChar::RangeEnd:
820       return IsASCII ? "v" : (const char *)u8"\u253b";
821     case LineChar::LabelVert:
822       return IsASCII ? "|" : (const char *)u8"\u2502";
823     case LineChar::LabelCornerNew:
824       return IsASCII ? "/" : (const char *)u8"\u250c";
825     case LineChar::LabelCornerActive:
826       return IsASCII ? "|" : (const char *)u8"\u2520";
827     case LineChar::LabelHoriz:
828       return IsASCII ? "-" : (const char *)u8"\u2500";
829     }
830     llvm_unreachable("Unhandled LineChar enum");
831   }
832 
833   /// Print live ranges to the right of an existing line. This assumes the
834   /// line is not an instruction, so doesn't start or end any live ranges, so
835   /// we only need to print active ranges or empty columns. If AfterInst is
836   /// true, this is being printed after the last instruction fed to update(),
837   /// otherwise this is being printed before it.
838   void printAfterOtherLine(formatted_raw_ostream &OS, bool AfterInst) {
839     if (ActiveCols.size()) {
840       unsigned FirstUnprintedColumn = moveToFirstVarColumn(OS);
841       for (size_t ColIdx = FirstUnprintedColumn, End = ActiveCols.size();
842            ColIdx < End; ++ColIdx) {
843         if (ActiveCols[ColIdx].isActive()) {
844           if ((AfterInst && ActiveCols[ColIdx].LiveOut) ||
845               (!AfterInst && ActiveCols[ColIdx].LiveIn))
846             OS << getLineChar(LineChar::RangeMid);
847           else if (!AfterInst && ActiveCols[ColIdx].LiveOut)
848             OS << getLineChar(LineChar::LabelVert);
849           else
850             OS << " ";
851         }
852         OS << " ";
853       }
854     }
855     OS << "\n";
856   }
857 
858   /// Print any live variable range info needed to the right of a
859   /// non-instruction line of disassembly. This is where we print the variable
860   /// names and expressions, with thin line-drawing characters connecting them
861   /// to the live range which starts at the next instruction. If MustPrint is
862   /// true, we have to print at least one line (with the continuation of any
863   /// already-active live ranges) because something has already been printed
864   /// earlier on this line.
865   void printBetweenInsts(formatted_raw_ostream &OS, bool MustPrint) {
866     bool PrintedSomething = false;
867     for (unsigned ColIdx = 0, End = ActiveCols.size(); ColIdx < End; ++ColIdx) {
868       if (ActiveCols[ColIdx].isActive() && ActiveCols[ColIdx].MustDrawLabel) {
869         // First we need to print the live range markers for any active
870         // columns to the left of this one.
871         OS.PadToColumn(getIndentLevel());
872         for (unsigned ColIdx2 = 0; ColIdx2 < ColIdx; ++ColIdx2) {
873           if (ActiveCols[ColIdx2].isActive()) {
874             if (ActiveCols[ColIdx2].MustDrawLabel &&
875                            !ActiveCols[ColIdx2].LiveIn)
876               OS << getLineChar(LineChar::LabelVert) << " ";
877             else
878               OS << getLineChar(LineChar::RangeMid) << " ";
879           } else
880             OS << "  ";
881         }
882 
883         // Then print the variable name and location of the new live range,
884         // with box drawing characters joining it to the live range line.
885         OS << getLineChar(ActiveCols[ColIdx].LiveIn
886                               ? LineChar::LabelCornerActive
887                               : LineChar::LabelCornerNew)
888            << getLineChar(LineChar::LabelHoriz) << " ";
889         WithColor(OS, raw_ostream::GREEN)
890             << LiveVariables[ActiveCols[ColIdx].VarIdx].VarName;
891         OS << " = ";
892         {
893           WithColor ExprColor(OS, raw_ostream::CYAN);
894           LiveVariables[ActiveCols[ColIdx].VarIdx].print(OS, MRI);
895         }
896 
897         // If there are any columns to the right of the expression we just
898         // printed, then continue their live range lines.
899         unsigned FirstUnprintedColumn = moveToFirstVarColumn(OS);
900         for (unsigned ColIdx2 = FirstUnprintedColumn, End = ActiveCols.size();
901              ColIdx2 < End; ++ColIdx2) {
902           if (ActiveCols[ColIdx2].isActive() && ActiveCols[ColIdx2].LiveIn)
903             OS << getLineChar(LineChar::RangeMid) << " ";
904           else
905             OS << "  ";
906         }
907 
908         OS << "\n";
909         PrintedSomething = true;
910       }
911     }
912 
913     for (unsigned ColIdx = 0, End = ActiveCols.size(); ColIdx < End; ++ColIdx)
914       if (ActiveCols[ColIdx].isActive())
915         ActiveCols[ColIdx].MustDrawLabel = false;
916 
917     // If we must print something (because we printed a line/column number),
918     // but don't have any new variables to print, then print a line which
919     // just continues any existing live ranges.
920     if (MustPrint && !PrintedSomething)
921       printAfterOtherLine(OS, false);
922   }
923 
924   /// Print the live variable ranges to the right of a disassembled instruction.
925   void printAfterInst(formatted_raw_ostream &OS) {
926     if (!ActiveCols.size())
927       return;
928     unsigned FirstUnprintedColumn = moveToFirstVarColumn(OS);
929     for (unsigned ColIdx = FirstUnprintedColumn, End = ActiveCols.size();
930          ColIdx < End; ++ColIdx) {
931       if (!ActiveCols[ColIdx].isActive())
932         OS << "  ";
933       else if (ActiveCols[ColIdx].LiveIn && ActiveCols[ColIdx].LiveOut)
934         OS << getLineChar(LineChar::RangeMid) << " ";
935       else if (ActiveCols[ColIdx].LiveOut)
936         OS << getLineChar(LineChar::RangeStart) << " ";
937       else if (ActiveCols[ColIdx].LiveIn)
938         OS << getLineChar(LineChar::RangeEnd) << " ";
939       else
940         llvm_unreachable("var must be live in or out!");
941     }
942   }
943 };
944 
945 class SourcePrinter {
946 protected:
947   DILineInfo OldLineInfo;
948   const ObjectFile *Obj = nullptr;
949   std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
950   // File name to file contents of source.
951   std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache;
952   // Mark the line endings of the cached source.
953   std::unordered_map<std::string, std::vector<StringRef>> LineCache;
954   // Keep track of missing sources.
955   StringSet<> MissingSources;
956   // Only emit 'invalid debug info' warning once.
957   bool WarnedInvalidDebugInfo = false;
958 
959 private:
960   bool cacheSource(const DILineInfo& LineInfoFile);
961 
962   void printLines(formatted_raw_ostream &OS, const DILineInfo &LineInfo,
963                   StringRef Delimiter, LiveVariablePrinter &LVP);
964 
965   void printSources(formatted_raw_ostream &OS, const DILineInfo &LineInfo,
966                     StringRef ObjectFilename, StringRef Delimiter,
967                     LiveVariablePrinter &LVP);
968 
969 public:
970   SourcePrinter() = default;
971   SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch) : Obj(Obj) {
972     symbolize::LLVMSymbolizer::Options SymbolizerOpts;
973     SymbolizerOpts.PrintFunctions =
974         DILineInfoSpecifier::FunctionNameKind::LinkageName;
975     SymbolizerOpts.Demangle = Demangle;
976     SymbolizerOpts.DefaultArch = std::string(DefaultArch);
977     Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts));
978   }
979   virtual ~SourcePrinter() = default;
980   virtual void printSourceLine(formatted_raw_ostream &OS,
981                                object::SectionedAddress Address,
982                                StringRef ObjectFilename,
983                                LiveVariablePrinter &LVP,
984                                StringRef Delimiter = "; ");
985 };
986 
987 bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) {
988   std::unique_ptr<MemoryBuffer> Buffer;
989   if (LineInfo.Source) {
990     Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source);
991   } else {
992     auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName);
993     if (!BufferOrError) {
994       if (MissingSources.insert(LineInfo.FileName).second)
995         reportWarning("failed to find source " + LineInfo.FileName,
996                       Obj->getFileName());
997       return false;
998     }
999     Buffer = std::move(*BufferOrError);
1000   }
1001   // Chomp the file to get lines
1002   const char *BufferStart = Buffer->getBufferStart(),
1003              *BufferEnd = Buffer->getBufferEnd();
1004   std::vector<StringRef> &Lines = LineCache[LineInfo.FileName];
1005   const char *Start = BufferStart;
1006   for (const char *I = BufferStart; I != BufferEnd; ++I)
1007     if (*I == '\n') {
1008       Lines.emplace_back(Start, I - Start - (BufferStart < I && I[-1] == '\r'));
1009       Start = I + 1;
1010     }
1011   if (Start < BufferEnd)
1012     Lines.emplace_back(Start, BufferEnd - Start);
1013   SourceCache[LineInfo.FileName] = std::move(Buffer);
1014   return true;
1015 }
1016 
1017 void SourcePrinter::printSourceLine(formatted_raw_ostream &OS,
1018                                     object::SectionedAddress Address,
1019                                     StringRef ObjectFilename,
1020                                     LiveVariablePrinter &LVP,
1021                                     StringRef Delimiter) {
1022   if (!Symbolizer)
1023     return;
1024 
1025   DILineInfo LineInfo = DILineInfo();
1026   Expected<DILineInfo> ExpectedLineInfo =
1027       Symbolizer->symbolizeCode(*Obj, Address);
1028   std::string ErrorMessage;
1029   if (ExpectedLineInfo) {
1030     LineInfo = *ExpectedLineInfo;
1031   } else if (!WarnedInvalidDebugInfo) {
1032     WarnedInvalidDebugInfo = true;
1033     // TODO Untested.
1034     reportWarning("failed to parse debug information: " +
1035                       toString(ExpectedLineInfo.takeError()),
1036                   ObjectFilename);
1037   }
1038 
1039   if (!Prefix.empty() && sys::path::is_absolute_gnu(LineInfo.FileName)) {
1040     // FileName has at least one character since is_absolute_gnu is false for
1041     // an empty string.
1042     assert(!LineInfo.FileName.empty());
1043     if (PrefixStrip > 0) {
1044       uint32_t Level = 0;
1045       auto StrippedNameStart = LineInfo.FileName.begin();
1046 
1047       // Path.h iterator skips extra separators. Therefore it cannot be used
1048       // here to keep compatibility with GNU Objdump.
1049       for (auto Pos = StrippedNameStart + 1, End = LineInfo.FileName.end();
1050            Pos != End && Level < PrefixStrip; ++Pos) {
1051         if (sys::path::is_separator(*Pos)) {
1052           StrippedNameStart = Pos;
1053           ++Level;
1054         }
1055       }
1056 
1057       LineInfo.FileName =
1058           std::string(StrippedNameStart, LineInfo.FileName.end());
1059     }
1060 
1061     SmallString<128> FilePath;
1062     sys::path::append(FilePath, Prefix, LineInfo.FileName);
1063 
1064     LineInfo.FileName = std::string(FilePath);
1065   }
1066 
1067   if (PrintLines)
1068     printLines(OS, LineInfo, Delimiter, LVP);
1069   if (PrintSource)
1070     printSources(OS, LineInfo, ObjectFilename, Delimiter, LVP);
1071   OldLineInfo = LineInfo;
1072 }
1073 
1074 void SourcePrinter::printLines(formatted_raw_ostream &OS,
1075                                const DILineInfo &LineInfo, StringRef Delimiter,
1076                                LiveVariablePrinter &LVP) {
1077   bool PrintFunctionName = LineInfo.FunctionName != DILineInfo::BadString &&
1078                            LineInfo.FunctionName != OldLineInfo.FunctionName;
1079   if (PrintFunctionName) {
1080     OS << Delimiter << LineInfo.FunctionName;
1081     // If demangling is successful, FunctionName will end with "()". Print it
1082     // only if demangling did not run or was unsuccessful.
1083     if (!StringRef(LineInfo.FunctionName).endswith("()"))
1084       OS << "()";
1085     OS << ":\n";
1086   }
1087   if (LineInfo.FileName != DILineInfo::BadString && LineInfo.Line != 0 &&
1088       (OldLineInfo.Line != LineInfo.Line ||
1089        OldLineInfo.FileName != LineInfo.FileName || PrintFunctionName)) {
1090     OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line;
1091     LVP.printBetweenInsts(OS, true);
1092   }
1093 }
1094 
1095 void SourcePrinter::printSources(formatted_raw_ostream &OS,
1096                                  const DILineInfo &LineInfo,
1097                                  StringRef ObjectFilename, StringRef Delimiter,
1098                                  LiveVariablePrinter &LVP) {
1099   if (LineInfo.FileName == DILineInfo::BadString || LineInfo.Line == 0 ||
1100       (OldLineInfo.Line == LineInfo.Line &&
1101        OldLineInfo.FileName == LineInfo.FileName))
1102     return;
1103 
1104   if (SourceCache.find(LineInfo.FileName) == SourceCache.end())
1105     if (!cacheSource(LineInfo))
1106       return;
1107   auto LineBuffer = LineCache.find(LineInfo.FileName);
1108   if (LineBuffer != LineCache.end()) {
1109     if (LineInfo.Line > LineBuffer->second.size()) {
1110       reportWarning(
1111           formatv(
1112               "debug info line number {0} exceeds the number of lines in {1}",
1113               LineInfo.Line, LineInfo.FileName),
1114           ObjectFilename);
1115       return;
1116     }
1117     // Vector begins at 0, line numbers are non-zero
1118     OS << Delimiter << LineBuffer->second[LineInfo.Line - 1];
1119     LVP.printBetweenInsts(OS, true);
1120   }
1121 }
1122 
1123 static bool isAArch64Elf(const ObjectFile *Obj) {
1124   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
1125   return Elf && Elf->getEMachine() == ELF::EM_AARCH64;
1126 }
1127 
1128 static bool isArmElf(const ObjectFile *Obj) {
1129   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
1130   return Elf && Elf->getEMachine() == ELF::EM_ARM;
1131 }
1132 
1133 static bool hasMappingSymbols(const ObjectFile *Obj) {
1134   return isArmElf(Obj) || isAArch64Elf(Obj);
1135 }
1136 
1137 static void printRelocation(formatted_raw_ostream &OS, StringRef FileName,
1138                             const RelocationRef &Rel, uint64_t Address,
1139                             bool Is64Bits) {
1140   StringRef Fmt = Is64Bits ? "\t\t%016" PRIx64 ":  " : "\t\t\t%08" PRIx64 ":  ";
1141   SmallString<16> Name;
1142   SmallString<32> Val;
1143   Rel.getTypeName(Name);
1144   if (Error E = getRelocationValueString(Rel, Val))
1145     reportError(std::move(E), FileName);
1146   OS << format(Fmt.data(), Address) << Name << "\t" << Val;
1147 }
1148 
1149 class PrettyPrinter {
1150 public:
1151   virtual ~PrettyPrinter() = default;
1152   virtual void
1153   printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
1154             object::SectionedAddress Address, formatted_raw_ostream &OS,
1155             StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
1156             StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
1157             LiveVariablePrinter &LVP) {
1158     if (SP && (PrintSource || PrintLines))
1159       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
1160     LVP.printBetweenInsts(OS, false);
1161 
1162     size_t Start = OS.tell();
1163     if (!NoLeadingAddr)
1164       OS << format("%8" PRIx64 ":", Address.Address);
1165     if (!NoShowRawInsn) {
1166       OS << ' ';
1167       dumpBytes(Bytes, OS);
1168     }
1169 
1170     // The output of printInst starts with a tab. Print some spaces so that
1171     // the tab has 1 column and advances to the target tab stop.
1172     unsigned TabStop = getInstStartColumn(STI);
1173     unsigned Column = OS.tell() - Start;
1174     OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
1175 
1176     if (MI) {
1177       // See MCInstPrinter::printInst. On targets where a PC relative immediate
1178       // is relative to the next instruction and the length of a MCInst is
1179       // difficult to measure (x86), this is the address of the next
1180       // instruction.
1181       uint64_t Addr =
1182           Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0);
1183       IP.printInst(MI, Addr, "", STI, OS);
1184     } else
1185       OS << "\t<unknown>";
1186   }
1187 };
1188 PrettyPrinter PrettyPrinterInst;
1189 
1190 class HexagonPrettyPrinter : public PrettyPrinter {
1191 public:
1192   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
1193                  formatted_raw_ostream &OS) {
1194     uint32_t opcode =
1195       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
1196     if (!NoLeadingAddr)
1197       OS << format("%8" PRIx64 ":", Address);
1198     if (!NoShowRawInsn) {
1199       OS << "\t";
1200       dumpBytes(Bytes.slice(0, 4), OS);
1201       OS << format("\t%08" PRIx32, opcode);
1202     }
1203   }
1204   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
1205                  object::SectionedAddress Address, formatted_raw_ostream &OS,
1206                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
1207                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
1208                  LiveVariablePrinter &LVP) override {
1209     if (SP && (PrintSource || PrintLines))
1210       SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
1211     if (!MI) {
1212       printLead(Bytes, Address.Address, OS);
1213       OS << " <unknown>";
1214       return;
1215     }
1216     std::string Buffer;
1217     {
1218       raw_string_ostream TempStream(Buffer);
1219       IP.printInst(MI, Address.Address, "", STI, TempStream);
1220     }
1221     StringRef Contents(Buffer);
1222     // Split off bundle attributes
1223     auto PacketBundle = Contents.rsplit('\n');
1224     // Split off first instruction from the rest
1225     auto HeadTail = PacketBundle.first.split('\n');
1226     auto Preamble = " { ";
1227     auto Separator = "";
1228 
1229     // Hexagon's packets require relocations to be inline rather than
1230     // clustered at the end of the packet.
1231     std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
1232     std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
1233     auto PrintReloc = [&]() -> void {
1234       while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
1235         if (RelCur->getOffset() == Address.Address) {
1236           printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false);
1237           return;
1238         }
1239         ++RelCur;
1240       }
1241     };
1242 
1243     while (!HeadTail.first.empty()) {
1244       OS << Separator;
1245       Separator = "\n";
1246       if (SP && (PrintSource || PrintLines))
1247         SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
1248       printLead(Bytes, Address.Address, OS);
1249       OS << Preamble;
1250       Preamble = "   ";
1251       StringRef Inst;
1252       auto Duplex = HeadTail.first.split('\v');
1253       if (!Duplex.second.empty()) {
1254         OS << Duplex.first;
1255         OS << "; ";
1256         Inst = Duplex.second;
1257       }
1258       else
1259         Inst = HeadTail.first;
1260       OS << Inst;
1261       HeadTail = HeadTail.second.split('\n');
1262       if (HeadTail.first.empty())
1263         OS << " } " << PacketBundle.second;
1264       PrintReloc();
1265       Bytes = Bytes.slice(4);
1266       Address.Address += 4;
1267     }
1268   }
1269 };
1270 HexagonPrettyPrinter HexagonPrettyPrinterInst;
1271 
1272 class AMDGCNPrettyPrinter : public PrettyPrinter {
1273 public:
1274   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
1275                  object::SectionedAddress Address, formatted_raw_ostream &OS,
1276                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
1277                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
1278                  LiveVariablePrinter &LVP) override {
1279     if (SP && (PrintSource || PrintLines))
1280       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
1281 
1282     if (MI) {
1283       SmallString<40> InstStr;
1284       raw_svector_ostream IS(InstStr);
1285 
1286       IP.printInst(MI, Address.Address, "", STI, IS);
1287 
1288       OS << left_justify(IS.str(), 60);
1289     } else {
1290       // an unrecognized encoding - this is probably data so represent it
1291       // using the .long directive, or .byte directive if fewer than 4 bytes
1292       // remaining
1293       if (Bytes.size() >= 4) {
1294         OS << format("\t.long 0x%08" PRIx32 " ",
1295                      support::endian::read32<support::little>(Bytes.data()));
1296         OS.indent(42);
1297       } else {
1298           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
1299           for (unsigned int i = 1; i < Bytes.size(); i++)
1300             OS << format(", 0x%02" PRIx8, Bytes[i]);
1301           OS.indent(55 - (6 * Bytes.size()));
1302       }
1303     }
1304 
1305     OS << format("// %012" PRIX64 ":", Address.Address);
1306     if (Bytes.size() >= 4) {
1307       // D should be casted to uint32_t here as it is passed by format to
1308       // snprintf as vararg.
1309       for (uint32_t D : makeArrayRef(
1310                reinterpret_cast<const support::little32_t *>(Bytes.data()),
1311                Bytes.size() / 4))
1312         OS << format(" %08" PRIX32, D);
1313     } else {
1314       for (unsigned char B : Bytes)
1315         OS << format(" %02" PRIX8, B);
1316     }
1317 
1318     if (!Annot.empty())
1319       OS << " // " << Annot;
1320   }
1321 };
1322 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
1323 
1324 class BPFPrettyPrinter : public PrettyPrinter {
1325 public:
1326   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
1327                  object::SectionedAddress Address, formatted_raw_ostream &OS,
1328                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
1329                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
1330                  LiveVariablePrinter &LVP) override {
1331     if (SP && (PrintSource || PrintLines))
1332       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
1333     if (!NoLeadingAddr)
1334       OS << format("%8" PRId64 ":", Address.Address / 8);
1335     if (!NoShowRawInsn) {
1336       OS << "\t";
1337       dumpBytes(Bytes, OS);
1338     }
1339     if (MI)
1340       IP.printInst(MI, Address.Address, "", STI, OS);
1341     else
1342       OS << "\t<unknown>";
1343   }
1344 };
1345 BPFPrettyPrinter BPFPrettyPrinterInst;
1346 
1347 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
1348   switch(Triple.getArch()) {
1349   default:
1350     return PrettyPrinterInst;
1351   case Triple::hexagon:
1352     return HexagonPrettyPrinterInst;
1353   case Triple::amdgcn:
1354     return AMDGCNPrettyPrinterInst;
1355   case Triple::bpfel:
1356   case Triple::bpfeb:
1357     return BPFPrettyPrinterInst;
1358   }
1359 }
1360 }
1361 
1362 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
1363   assert(Obj->isELF());
1364   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
1365     return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()),
1366                          Obj->getFileName())
1367         ->getType();
1368   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
1369     return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()),
1370                          Obj->getFileName())
1371         ->getType();
1372   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
1373     return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()),
1374                          Obj->getFileName())
1375         ->getType();
1376   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
1377     return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()),
1378                          Obj->getFileName())
1379         ->getType();
1380   llvm_unreachable("Unsupported binary format");
1381 }
1382 
1383 template <class ELFT> static void
1384 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
1385                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1386   for (auto Symbol : Obj->getDynamicSymbolIterators()) {
1387     uint8_t SymbolType = Symbol.getELFType();
1388     if (SymbolType == ELF::STT_SECTION)
1389       continue;
1390 
1391     uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj->getFileName());
1392     // ELFSymbolRef::getAddress() returns size instead of value for common
1393     // symbols which is not desirable for disassembly output. Overriding.
1394     if (SymbolType == ELF::STT_COMMON)
1395       Address = unwrapOrError(Obj->getSymbol(Symbol.getRawDataRefImpl()),
1396                               Obj->getFileName())
1397                     ->st_value;
1398 
1399     StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName());
1400     if (Name.empty())
1401       continue;
1402 
1403     section_iterator SecI =
1404         unwrapOrError(Symbol.getSection(), Obj->getFileName());
1405     if (SecI == Obj->section_end())
1406       continue;
1407 
1408     AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
1409   }
1410 }
1411 
1412 static void
1413 addDynamicElfSymbols(const ObjectFile *Obj,
1414                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1415   assert(Obj->isELF());
1416   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
1417     addDynamicElfSymbols(Elf32LEObj, AllSymbols);
1418   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
1419     addDynamicElfSymbols(Elf64LEObj, AllSymbols);
1420   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
1421     addDynamicElfSymbols(Elf32BEObj, AllSymbols);
1422   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
1423     addDynamicElfSymbols(Elf64BEObj, AllSymbols);
1424   else
1425     llvm_unreachable("Unsupported binary format");
1426 }
1427 
1428 static void addPltEntries(const ObjectFile *Obj,
1429                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
1430                           StringSaver &Saver) {
1431   Optional<SectionRef> Plt = None;
1432   for (const SectionRef &Section : Obj->sections()) {
1433     Expected<StringRef> SecNameOrErr = Section.getName();
1434     if (!SecNameOrErr) {
1435       consumeError(SecNameOrErr.takeError());
1436       continue;
1437     }
1438     if (*SecNameOrErr == ".plt")
1439       Plt = Section;
1440   }
1441   if (!Plt)
1442     return;
1443   if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) {
1444     for (auto PltEntry : ElfObj->getPltAddresses()) {
1445       if (PltEntry.first) {
1446         SymbolRef Symbol(*PltEntry.first, ElfObj);
1447         uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
1448         if (Expected<StringRef> NameOrErr = Symbol.getName()) {
1449           if (!NameOrErr->empty())
1450             AllSymbols[*Plt].emplace_back(
1451                 PltEntry.second, Saver.save((*NameOrErr + "@plt").str()),
1452                 SymbolType);
1453           continue;
1454         } else {
1455           // The warning has been reported in disassembleObject().
1456           consumeError(NameOrErr.takeError());
1457         }
1458       }
1459       reportWarning("PLT entry at 0x" + Twine::utohexstr(PltEntry.second) +
1460                         " references an invalid symbol",
1461                     Obj->getFileName());
1462     }
1463   }
1464 }
1465 
1466 // Normally the disassembly output will skip blocks of zeroes. This function
1467 // returns the number of zero bytes that can be skipped when dumping the
1468 // disassembly of the instructions in Buf.
1469 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
1470   // Find the number of leading zeroes.
1471   size_t N = 0;
1472   while (N < Buf.size() && !Buf[N])
1473     ++N;
1474 
1475   // We may want to skip blocks of zero bytes, but unless we see
1476   // at least 8 of them in a row.
1477   if (N < 8)
1478     return 0;
1479 
1480   // We skip zeroes in multiples of 4 because do not want to truncate an
1481   // instruction if it starts with a zero byte.
1482   return N & ~0x3;
1483 }
1484 
1485 // Returns a map from sections to their relocations.
1486 static std::map<SectionRef, std::vector<RelocationRef>>
1487 getRelocsMap(object::ObjectFile const &Obj) {
1488   std::map<SectionRef, std::vector<RelocationRef>> Ret;
1489   uint64_t I = (uint64_t)-1;
1490   for (SectionRef Sec : Obj.sections()) {
1491     ++I;
1492     Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection();
1493     if (!RelocatedOrErr)
1494       reportError(Obj.getFileName(),
1495                   "section (" + Twine(I) +
1496                       "): failed to get a relocated section: " +
1497                       toString(RelocatedOrErr.takeError()));
1498 
1499     section_iterator Relocated = *RelocatedOrErr;
1500     if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep)
1501       continue;
1502     std::vector<RelocationRef> &V = Ret[*Relocated];
1503     append_range(V, Sec.relocations());
1504     // Sort relocations by address.
1505     llvm::stable_sort(V, isRelocAddressLess);
1506   }
1507   return Ret;
1508 }
1509 
1510 // Used for --adjust-vma to check if address should be adjusted by the
1511 // specified value for a given section.
1512 // For ELF we do not adjust non-allocatable sections like debug ones,
1513 // because they are not loadable.
1514 // TODO: implement for other file formats.
1515 static bool shouldAdjustVA(const SectionRef &Section) {
1516   const ObjectFile *Obj = Section.getObject();
1517   if (Obj->isELF())
1518     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
1519   return false;
1520 }
1521 
1522 
1523 typedef std::pair<uint64_t, char> MappingSymbolPair;
1524 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,
1525                                  uint64_t Address) {
1526   auto It =
1527       partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) {
1528         return Val.first <= Address;
1529       });
1530   // Return zero for any address before the first mapping symbol; this means
1531   // we should use the default disassembly mode, depending on the target.
1532   if (It == MappingSymbols.begin())
1533     return '\x00';
1534   return (It - 1)->second;
1535 }
1536 
1537 static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index,
1538                                uint64_t End, const ObjectFile *Obj,
1539                                ArrayRef<uint8_t> Bytes,
1540                                ArrayRef<MappingSymbolPair> MappingSymbols,
1541                                raw_ostream &OS) {
1542   support::endianness Endian =
1543       Obj->isLittleEndian() ? support::little : support::big;
1544   OS << format("%8" PRIx64 ":\t", SectionAddr + Index);
1545   if (Index + 4 <= End) {
1546     dumpBytes(Bytes.slice(Index, 4), OS);
1547     OS << "\t.word\t"
1548            << format_hex(support::endian::read32(Bytes.data() + Index, Endian),
1549                          10);
1550     return 4;
1551   }
1552   if (Index + 2 <= End) {
1553     dumpBytes(Bytes.slice(Index, 2), OS);
1554     OS << "\t\t.short\t"
1555            << format_hex(support::endian::read16(Bytes.data() + Index, Endian),
1556                          6);
1557     return 2;
1558   }
1559   dumpBytes(Bytes.slice(Index, 1), OS);
1560   OS << "\t\t.byte\t" << format_hex(Bytes[0], 4);
1561   return 1;
1562 }
1563 
1564 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
1565                         ArrayRef<uint8_t> Bytes) {
1566   // print out data up to 8 bytes at a time in hex and ascii
1567   uint8_t AsciiData[9] = {'\0'};
1568   uint8_t Byte;
1569   int NumBytes = 0;
1570 
1571   for (; Index < End; ++Index) {
1572     if (NumBytes == 0)
1573       outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1574     Byte = Bytes.slice(Index)[0];
1575     outs() << format(" %02x", Byte);
1576     AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
1577 
1578     uint8_t IndentOffset = 0;
1579     NumBytes++;
1580     if (Index == End - 1 || NumBytes > 8) {
1581       // Indent the space for less than 8 bytes data.
1582       // 2 spaces for byte and one for space between bytes
1583       IndentOffset = 3 * (8 - NumBytes);
1584       for (int Excess = NumBytes; Excess < 8; Excess++)
1585         AsciiData[Excess] = '\0';
1586       NumBytes = 8;
1587     }
1588     if (NumBytes == 8) {
1589       AsciiData[8] = '\0';
1590       outs() << std::string(IndentOffset, ' ') << "         ";
1591       outs() << reinterpret_cast<char *>(AsciiData);
1592       outs() << '\n';
1593       NumBytes = 0;
1594     }
1595   }
1596 }
1597 
1598 SymbolInfoTy objdump::createSymbolInfo(const ObjectFile *Obj,
1599                                        const SymbolRef &Symbol) {
1600   const StringRef FileName = Obj->getFileName();
1601   const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName);
1602   const StringRef Name = unwrapOrError(Symbol.getName(), FileName);
1603 
1604   if (Obj->isXCOFF() && SymbolDescription) {
1605     const auto *XCOFFObj = cast<XCOFFObjectFile>(Obj);
1606     DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl();
1607 
1608     const uint32_t SymbolIndex = XCOFFObj->getSymbolIndex(SymbolDRI.p);
1609     Optional<XCOFF::StorageMappingClass> Smc =
1610         getXCOFFSymbolCsectSMC(XCOFFObj, Symbol);
1611     return SymbolInfoTy(Addr, Name, Smc, SymbolIndex,
1612                         isLabel(XCOFFObj, Symbol));
1613   } else
1614     return SymbolInfoTy(Addr, Name,
1615                         Obj->isELF() ? getElfSymbolType(Obj, Symbol)
1616                                      : (uint8_t)ELF::STT_NOTYPE);
1617 }
1618 
1619 static SymbolInfoTy createDummySymbolInfo(const ObjectFile *Obj,
1620                                           const uint64_t Addr, StringRef &Name,
1621                                           uint8_t Type) {
1622   if (Obj->isXCOFF() && SymbolDescription)
1623     return SymbolInfoTy(Addr, Name, None, None, false);
1624   else
1625     return SymbolInfoTy(Addr, Name, Type);
1626 }
1627 
1628 static void
1629 collectLocalBranchTargets(ArrayRef<uint8_t> Bytes, const MCInstrAnalysis *MIA,
1630                           MCDisassembler *DisAsm, MCInstPrinter *IP,
1631                           const MCSubtargetInfo *STI, uint64_t SectionAddr,
1632                           uint64_t Start, uint64_t End,
1633                           std::unordered_map<uint64_t, std::string> &Labels) {
1634   // So far only supports X86.
1635   if (!STI->getTargetTriple().isX86())
1636     return;
1637 
1638   Labels.clear();
1639   unsigned LabelCount = 0;
1640   Start += SectionAddr;
1641   End += SectionAddr;
1642   uint64_t Index = Start;
1643   while (Index < End) {
1644     // Disassemble a real instruction and record function-local branch labels.
1645     MCInst Inst;
1646     uint64_t Size;
1647     bool Disassembled = DisAsm->getInstruction(
1648         Inst, Size, Bytes.slice(Index - SectionAddr), Index, nulls());
1649     if (Size == 0)
1650       Size = 1;
1651 
1652     if (Disassembled && MIA) {
1653       uint64_t Target;
1654       bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target);
1655       if (TargetKnown && (Target >= Start && Target < End) &&
1656           !Labels.count(Target))
1657         Labels[Target] = ("L" + Twine(LabelCount++)).str();
1658     }
1659 
1660     Index += Size;
1661   }
1662 }
1663 
1664 static StringRef getSegmentName(const MachOObjectFile *MachO,
1665                                 const SectionRef &Section) {
1666   if (MachO) {
1667     DataRefImpl DR = Section.getRawDataRefImpl();
1668     StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1669     return SegmentName;
1670   }
1671   return "";
1672 }
1673 
1674 static void disassembleObject(const Target *TheTarget, const ObjectFile *Obj,
1675                               MCContext &Ctx, MCDisassembler *PrimaryDisAsm,
1676                               MCDisassembler *SecondaryDisAsm,
1677                               const MCInstrAnalysis *MIA, MCInstPrinter *IP,
1678                               const MCSubtargetInfo *PrimarySTI,
1679                               const MCSubtargetInfo *SecondarySTI,
1680                               PrettyPrinter &PIP,
1681                               SourcePrinter &SP, bool InlineRelocs) {
1682   const MCSubtargetInfo *STI = PrimarySTI;
1683   MCDisassembler *DisAsm = PrimaryDisAsm;
1684   bool PrimaryIsThumb = false;
1685   if (isArmElf(Obj))
1686     PrimaryIsThumb = STI->checkFeatures("+thumb-mode");
1687 
1688   std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
1689   if (InlineRelocs)
1690     RelocMap = getRelocsMap(*Obj);
1691   bool Is64Bits = Obj->getBytesInAddress() > 4;
1692 
1693   // Create a mapping from virtual address to symbol name.  This is used to
1694   // pretty print the symbols while disassembling.
1695   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1696   SectionSymbolsTy AbsoluteSymbols;
1697   const StringRef FileName = Obj->getFileName();
1698   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
1699   for (const SymbolRef &Symbol : Obj->symbols()) {
1700     Expected<StringRef> NameOrErr = Symbol.getName();
1701     if (!NameOrErr) {
1702       reportWarning(toString(NameOrErr.takeError()), FileName);
1703       continue;
1704     }
1705     if (NameOrErr->empty() && !(Obj->isXCOFF() && SymbolDescription))
1706       continue;
1707 
1708     if (Obj->isELF() && getElfSymbolType(Obj, Symbol) == ELF::STT_SECTION)
1709       continue;
1710 
1711     // Don't ask a Mach-O STAB symbol for its section unless you know that
1712     // STAB symbol's section field refers to a valid section index. Otherwise
1713     // the symbol may error trying to load a section that does not exist.
1714     if (MachO) {
1715       DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
1716       uint8_t NType = (MachO->is64Bit() ?
1717                        MachO->getSymbol64TableEntry(SymDRI).n_type:
1718                        MachO->getSymbolTableEntry(SymDRI).n_type);
1719       if (NType & MachO::N_STAB)
1720         continue;
1721     }
1722 
1723     section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1724     if (SecI != Obj->section_end())
1725       AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol));
1726     else
1727       AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol));
1728   }
1729 
1730   if (AllSymbols.empty() && Obj->isELF())
1731     addDynamicElfSymbols(Obj, AllSymbols);
1732 
1733   BumpPtrAllocator A;
1734   StringSaver Saver(A);
1735   addPltEntries(Obj, AllSymbols, Saver);
1736 
1737   // Create a mapping from virtual address to section. An empty section can
1738   // cause more than one section at the same address. Sort such sections to be
1739   // before same-addressed non-empty sections so that symbol lookups prefer the
1740   // non-empty section.
1741   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1742   for (SectionRef Sec : Obj->sections())
1743     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1744   llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) {
1745     if (LHS.first != RHS.first)
1746       return LHS.first < RHS.first;
1747     return LHS.second.getSize() < RHS.second.getSize();
1748   });
1749 
1750   // Linked executables (.exe and .dll files) typically don't include a real
1751   // symbol table but they might contain an export table.
1752   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
1753     for (const auto &ExportEntry : COFFObj->export_directories()) {
1754       StringRef Name;
1755       if (Error E = ExportEntry.getSymbolName(Name))
1756         reportError(std::move(E), Obj->getFileName());
1757       if (Name.empty())
1758         continue;
1759 
1760       uint32_t RVA;
1761       if (Error E = ExportEntry.getExportRVA(RVA))
1762         reportError(std::move(E), Obj->getFileName());
1763 
1764       uint64_t VA = COFFObj->getImageBase() + RVA;
1765       auto Sec = partition_point(
1766           SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) {
1767             return O.first <= VA;
1768           });
1769       if (Sec != SectionAddresses.begin()) {
1770         --Sec;
1771         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1772       } else
1773         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1774     }
1775   }
1776 
1777   // Sort all the symbols, this allows us to use a simple binary search to find
1778   // Multiple symbols can have the same address. Use a stable sort to stabilize
1779   // the output.
1780   StringSet<> FoundDisasmSymbolSet;
1781   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1782     llvm::stable_sort(SecSyms.second);
1783   llvm::stable_sort(AbsoluteSymbols);
1784 
1785   std::unique_ptr<DWARFContext> DICtx;
1786   LiveVariablePrinter LVP(*Ctx.getRegisterInfo(), *STI);
1787 
1788   if (DbgVariables != DVDisabled) {
1789     DICtx = DWARFContext::create(*Obj);
1790     for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units())
1791       LVP.addCompileUnit(CU->getUnitDIE(false));
1792   }
1793 
1794   LLVM_DEBUG(LVP.dump());
1795 
1796   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1797     if (FilterSections.empty() && !DisassembleAll &&
1798         (!Section.isText() || Section.isVirtual()))
1799       continue;
1800 
1801     uint64_t SectionAddr = Section.getAddress();
1802     uint64_t SectSize = Section.getSize();
1803     if (!SectSize)
1804       continue;
1805 
1806     // Get the list of all the symbols in this section.
1807     SectionSymbolsTy &Symbols = AllSymbols[Section];
1808     std::vector<MappingSymbolPair> MappingSymbols;
1809     if (hasMappingSymbols(Obj)) {
1810       for (const auto &Symb : Symbols) {
1811         uint64_t Address = Symb.Addr;
1812         StringRef Name = Symb.Name;
1813         if (Name.startswith("$d"))
1814           MappingSymbols.emplace_back(Address - SectionAddr, 'd');
1815         if (Name.startswith("$x"))
1816           MappingSymbols.emplace_back(Address - SectionAddr, 'x');
1817         if (Name.startswith("$a"))
1818           MappingSymbols.emplace_back(Address - SectionAddr, 'a');
1819         if (Name.startswith("$t"))
1820           MappingSymbols.emplace_back(Address - SectionAddr, 't');
1821       }
1822     }
1823 
1824     llvm::sort(MappingSymbols);
1825 
1826     if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1827       // AMDGPU disassembler uses symbolizer for printing labels
1828       std::unique_ptr<MCRelocationInfo> RelInfo(
1829         TheTarget->createMCRelocationInfo(TripleName, Ctx));
1830       if (RelInfo) {
1831         std::unique_ptr<MCSymbolizer> Symbolizer(
1832           TheTarget->createMCSymbolizer(
1833             TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1834         DisAsm->setSymbolizer(std::move(Symbolizer));
1835       }
1836     }
1837 
1838     StringRef SegmentName = getSegmentName(MachO, Section);
1839     StringRef SectionName = unwrapOrError(Section.getName(), Obj->getFileName());
1840     // If the section has no symbol at the start, just insert a dummy one.
1841     if (Symbols.empty() || Symbols[0].Addr != 0) {
1842       Symbols.insert(Symbols.begin(),
1843                      createDummySymbolInfo(Obj, SectionAddr, SectionName,
1844                                            Section.isText() ? ELF::STT_FUNC
1845                                                             : ELF::STT_OBJECT));
1846     }
1847 
1848     SmallString<40> Comments;
1849     raw_svector_ostream CommentStream(Comments);
1850 
1851     ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(
1852         unwrapOrError(Section.getContents(), Obj->getFileName()));
1853 
1854     uint64_t VMAAdjustment = 0;
1855     if (shouldAdjustVA(Section))
1856       VMAAdjustment = AdjustVMA;
1857 
1858     uint64_t Size;
1859     uint64_t Index;
1860     bool PrintedSection = false;
1861     std::vector<RelocationRef> Rels = RelocMap[Section];
1862     std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1863     std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1864     // Disassemble symbol by symbol.
1865     for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) {
1866       std::string SymbolName = Symbols[SI].Name.str();
1867       if (Demangle)
1868         SymbolName = demangle(SymbolName);
1869 
1870       // Skip if --disassemble-symbols is not empty and the symbol is not in
1871       // the list.
1872       if (!DisasmSymbolSet.empty() && !DisasmSymbolSet.count(SymbolName))
1873         continue;
1874 
1875       uint64_t Start = Symbols[SI].Addr;
1876       if (Start < SectionAddr || StopAddress <= Start)
1877         continue;
1878       else
1879         FoundDisasmSymbolSet.insert(SymbolName);
1880 
1881       // The end is the section end, the beginning of the next symbol, or
1882       // --stop-address.
1883       uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress);
1884       if (SI + 1 < SE)
1885         End = std::min(End, Symbols[SI + 1].Addr);
1886       if (Start >= End || End <= StartAddress)
1887         continue;
1888       Start -= SectionAddr;
1889       End -= SectionAddr;
1890 
1891       if (!PrintedSection) {
1892         PrintedSection = true;
1893         outs() << "\nDisassembly of section ";
1894         if (!SegmentName.empty())
1895           outs() << SegmentName << ",";
1896         outs() << SectionName << ":\n";
1897       }
1898 
1899       outs() << '\n';
1900       if (!NoLeadingAddr)
1901         outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",
1902                          SectionAddr + Start + VMAAdjustment);
1903       if (Obj->isXCOFF() && SymbolDescription) {
1904         outs() << getXCOFFSymbolDescription(Symbols[SI], SymbolName) << ":\n";
1905       } else
1906         outs() << '<' << SymbolName << ">:\n";
1907 
1908       // Don't print raw contents of a virtual section. A virtual section
1909       // doesn't have any contents in the file.
1910       if (Section.isVirtual()) {
1911         outs() << "...\n";
1912         continue;
1913       }
1914 
1915       auto Status = DisAsm->onSymbolStart(Symbols[SI], Size,
1916                                           Bytes.slice(Start, End - Start),
1917                                           SectionAddr + Start, CommentStream);
1918       // To have round trippable disassembly, we fall back to decoding the
1919       // remaining bytes as instructions.
1920       //
1921       // If there is a failure, we disassemble the failed region as bytes before
1922       // falling back. The target is expected to print nothing in this case.
1923       //
1924       // If there is Success or SoftFail i.e no 'real' failure, we go ahead by
1925       // Size bytes before falling back.
1926       // So if the entire symbol is 'eaten' by the target:
1927       //   Start += Size  // Now Start = End and we will never decode as
1928       //                  // instructions
1929       //
1930       // Right now, most targets return None i.e ignore to treat a symbol
1931       // separately. But WebAssembly decodes preludes for some symbols.
1932       //
1933       if (Status.hasValue()) {
1934         if (Status.getValue() == MCDisassembler::Fail) {
1935           outs() << "// Error in decoding " << SymbolName
1936                  << " : Decoding failed region as bytes.\n";
1937           for (uint64_t I = 0; I < Size; ++I) {
1938             outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true)
1939                    << "\n";
1940           }
1941         }
1942       } else {
1943         Size = 0;
1944       }
1945 
1946       Start += Size;
1947 
1948       Index = Start;
1949       if (SectionAddr < StartAddress)
1950         Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
1951 
1952       // If there is a data/common symbol inside an ELF text section and we are
1953       // only disassembling text (applicable all architectures), we are in a
1954       // situation where we must print the data and not disassemble it.
1955       if (Obj->isELF() && !DisassembleAll && Section.isText()) {
1956         uint8_t SymTy = Symbols[SI].Type;
1957         if (SymTy == ELF::STT_OBJECT || SymTy == ELF::STT_COMMON) {
1958           dumpELFData(SectionAddr, Index, End, Bytes);
1959           Index = End;
1960         }
1961       }
1962 
1963       bool CheckARMELFData = hasMappingSymbols(Obj) &&
1964                              Symbols[SI].Type != ELF::STT_OBJECT &&
1965                              !DisassembleAll;
1966       bool DumpARMELFData = false;
1967       formatted_raw_ostream FOS(outs());
1968 
1969       std::unordered_map<uint64_t, std::string> AllLabels;
1970       if (SymbolizeOperands)
1971         collectLocalBranchTargets(Bytes, MIA, DisAsm, IP, PrimarySTI,
1972                                   SectionAddr, Index, End, AllLabels);
1973 
1974       while (Index < End) {
1975         // ARM and AArch64 ELF binaries can interleave data and text in the
1976         // same section. We rely on the markers introduced to understand what
1977         // we need to dump. If the data marker is within a function, it is
1978         // denoted as a word/short etc.
1979         if (CheckARMELFData) {
1980           char Kind = getMappingSymbolKind(MappingSymbols, Index);
1981           DumpARMELFData = Kind == 'd';
1982           if (SecondarySTI) {
1983             if (Kind == 'a') {
1984               STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI;
1985               DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm;
1986             } else if (Kind == 't') {
1987               STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI;
1988               DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm;
1989             }
1990           }
1991         }
1992 
1993         if (DumpARMELFData) {
1994           Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
1995                                 MappingSymbols, FOS);
1996         } else {
1997           // When -z or --disassemble-zeroes are given we always dissasemble
1998           // them. Otherwise we might want to skip zero bytes we see.
1999           if (!DisassembleZeroes) {
2000             uint64_t MaxOffset = End - Index;
2001             // For --reloc: print zero blocks patched by relocations, so that
2002             // relocations can be shown in the dump.
2003             if (RelCur != RelEnd)
2004               MaxOffset = RelCur->getOffset() - Index;
2005 
2006             if (size_t N =
2007                     countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
2008               FOS << "\t\t..." << '\n';
2009               Index += N;
2010               continue;
2011             }
2012           }
2013 
2014           // Print local label if there's any.
2015           auto Iter = AllLabels.find(SectionAddr + Index);
2016           if (Iter != AllLabels.end())
2017             FOS << "<" << Iter->second << ">:\n";
2018 
2019           // Disassemble a real instruction or a data when disassemble all is
2020           // provided
2021           MCInst Inst;
2022           bool Disassembled =
2023               DisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
2024                                      SectionAddr + Index, CommentStream);
2025           if (Size == 0)
2026             Size = 1;
2027 
2028           LVP.update({Index, Section.getIndex()},
2029                      {Index + Size, Section.getIndex()}, Index + Size != End);
2030 
2031           PIP.printInst(
2032               *IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size),
2033               {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS,
2034               "", *STI, &SP, Obj->getFileName(), &Rels, LVP);
2035           FOS << CommentStream.str();
2036           Comments.clear();
2037 
2038           // If disassembly has failed, avoid analysing invalid/incomplete
2039           // instruction information. Otherwise, try to resolve the target
2040           // address (jump target or memory operand address) and print it on the
2041           // right of the instruction.
2042           if (Disassembled && MIA) {
2043             uint64_t Target;
2044             bool PrintTarget =
2045                 MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target);
2046             if (!PrintTarget)
2047               if (Optional<uint64_t> MaybeTarget =
2048                       MIA->evaluateMemoryOperandAddress(
2049                           Inst, SectionAddr + Index, Size)) {
2050                 Target = *MaybeTarget;
2051                 PrintTarget = true;
2052                 // Do not print real address when symbolizing.
2053                 if (!SymbolizeOperands)
2054                   FOS << "  # " << Twine::utohexstr(Target);
2055               }
2056             if (PrintTarget) {
2057               // In a relocatable object, the target's section must reside in
2058               // the same section as the call instruction or it is accessed
2059               // through a relocation.
2060               //
2061               // In a non-relocatable object, the target may be in any section.
2062               // In that case, locate the section(s) containing the target
2063               // address and find the symbol in one of those, if possible.
2064               //
2065               // N.B. We don't walk the relocations in the relocatable case yet.
2066               std::vector<const SectionSymbolsTy *> TargetSectionSymbols;
2067               if (!Obj->isRelocatableObject()) {
2068                 auto It = llvm::partition_point(
2069                     SectionAddresses,
2070                     [=](const std::pair<uint64_t, SectionRef> &O) {
2071                       return O.first <= Target;
2072                     });
2073                 uint64_t TargetSecAddr = 0;
2074                 while (It != SectionAddresses.begin()) {
2075                   --It;
2076                   if (TargetSecAddr == 0)
2077                     TargetSecAddr = It->first;
2078                   if (It->first != TargetSecAddr)
2079                     break;
2080                   TargetSectionSymbols.push_back(&AllSymbols[It->second]);
2081                 }
2082               } else {
2083                 TargetSectionSymbols.push_back(&Symbols);
2084               }
2085               TargetSectionSymbols.push_back(&AbsoluteSymbols);
2086 
2087               // Find the last symbol in the first candidate section whose
2088               // offset is less than or equal to the target. If there are no
2089               // such symbols, try in the next section and so on, before finally
2090               // using the nearest preceding absolute symbol (if any), if there
2091               // are no other valid symbols.
2092               const SymbolInfoTy *TargetSym = nullptr;
2093               for (const SectionSymbolsTy *TargetSymbols :
2094                    TargetSectionSymbols) {
2095                 auto It = llvm::partition_point(
2096                     *TargetSymbols,
2097                     [=](const SymbolInfoTy &O) { return O.Addr <= Target; });
2098                 if (It != TargetSymbols->begin()) {
2099                   TargetSym = &*(It - 1);
2100                   break;
2101                 }
2102               }
2103 
2104               // Print the labels corresponding to the target if there's any.
2105               bool LabelAvailable = AllLabels.count(Target);
2106               if (TargetSym != nullptr) {
2107                 uint64_t TargetAddress = TargetSym->Addr;
2108                 uint64_t Disp = Target - TargetAddress;
2109                 std::string TargetName = TargetSym->Name.str();
2110                 if (Demangle)
2111                   TargetName = demangle(TargetName);
2112 
2113                 FOS << " <";
2114                 if (!Disp) {
2115                   // Always Print the binary symbol precisely corresponding to
2116                   // the target address.
2117                   FOS << TargetName;
2118                 } else if (!LabelAvailable) {
2119                   // Always Print the binary symbol plus an offset if there's no
2120                   // local label corresponding to the target address.
2121                   FOS << TargetName << "+0x" << Twine::utohexstr(Disp);
2122                 } else {
2123                   FOS << AllLabels[Target];
2124                 }
2125                 FOS << ">";
2126               } else if (LabelAvailable) {
2127                 FOS << " <" << AllLabels[Target] << ">";
2128               }
2129             }
2130           }
2131         }
2132 
2133         LVP.printAfterInst(FOS);
2134         FOS << "\n";
2135 
2136         // Hexagon does this in pretty printer
2137         if (Obj->getArch() != Triple::hexagon) {
2138           // Print relocation for instruction and data.
2139           while (RelCur != RelEnd) {
2140             uint64_t Offset = RelCur->getOffset();
2141             // If this relocation is hidden, skip it.
2142             if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) {
2143               ++RelCur;
2144               continue;
2145             }
2146 
2147             // Stop when RelCur's offset is past the disassembled
2148             // instruction/data. Note that it's possible the disassembled data
2149             // is not the complete data: we might see the relocation printed in
2150             // the middle of the data, but this matches the binutils objdump
2151             // output.
2152             if (Offset >= Index + Size)
2153               break;
2154 
2155             // When --adjust-vma is used, update the address printed.
2156             if (RelCur->getSymbol() != Obj->symbol_end()) {
2157               Expected<section_iterator> SymSI =
2158                   RelCur->getSymbol()->getSection();
2159               if (SymSI && *SymSI != Obj->section_end() &&
2160                   shouldAdjustVA(**SymSI))
2161                 Offset += AdjustVMA;
2162             }
2163 
2164             printRelocation(FOS, Obj->getFileName(), *RelCur,
2165                             SectionAddr + Offset, Is64Bits);
2166             LVP.printAfterOtherLine(FOS, true);
2167             ++RelCur;
2168           }
2169         }
2170 
2171         Index += Size;
2172       }
2173     }
2174   }
2175   StringSet<> MissingDisasmSymbolSet =
2176       set_difference(DisasmSymbolSet, FoundDisasmSymbolSet);
2177   for (StringRef Sym : MissingDisasmSymbolSet.keys())
2178     reportWarning("failed to disassemble missing symbol " + Sym, FileName);
2179 }
2180 
2181 static void disassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
2182   const Target *TheTarget = getTarget(Obj);
2183 
2184   // Package up features to be passed to target/subtarget
2185   SubtargetFeatures Features = Obj->getFeatures();
2186   if (!MAttrs.empty())
2187     for (unsigned I = 0; I != MAttrs.size(); ++I)
2188       Features.AddFeature(MAttrs[I]);
2189 
2190   std::unique_ptr<const MCRegisterInfo> MRI(
2191       TheTarget->createMCRegInfo(TripleName));
2192   if (!MRI)
2193     reportError(Obj->getFileName(),
2194                 "no register info for target " + TripleName);
2195 
2196   // Set up disassembler.
2197   MCTargetOptions MCOptions;
2198   std::unique_ptr<const MCAsmInfo> AsmInfo(
2199       TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions));
2200   if (!AsmInfo)
2201     reportError(Obj->getFileName(),
2202                 "no assembly info for target " + TripleName);
2203 
2204   if (MCPU.empty())
2205     MCPU = Obj->tryGetCPUName().getValueOr("").str();
2206 
2207   std::unique_ptr<const MCSubtargetInfo> STI(
2208       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
2209   if (!STI)
2210     reportError(Obj->getFileName(),
2211                 "no subtarget info for target " + TripleName);
2212   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
2213   if (!MII)
2214     reportError(Obj->getFileName(),
2215                 "no instruction info for target " + TripleName);
2216   MCObjectFileInfo MOFI;
2217   MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI);
2218   // FIXME: for now initialize MCObjectFileInfo with default values
2219   MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx);
2220 
2221   std::unique_ptr<MCDisassembler> DisAsm(
2222       TheTarget->createMCDisassembler(*STI, Ctx));
2223   if (!DisAsm)
2224     reportError(Obj->getFileName(), "no disassembler for target " + TripleName);
2225 
2226   // If we have an ARM object file, we need a second disassembler, because
2227   // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
2228   // We use mapping symbols to switch between the two assemblers, where
2229   // appropriate.
2230   std::unique_ptr<MCDisassembler> SecondaryDisAsm;
2231   std::unique_ptr<const MCSubtargetInfo> SecondarySTI;
2232   if (isArmElf(Obj) && !STI->checkFeatures("+mclass")) {
2233     if (STI->checkFeatures("+thumb-mode"))
2234       Features.AddFeature("-thumb-mode");
2235     else
2236       Features.AddFeature("+thumb-mode");
2237     SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU,
2238                                                         Features.getString()));
2239     SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx));
2240   }
2241 
2242   std::unique_ptr<const MCInstrAnalysis> MIA(
2243       TheTarget->createMCInstrAnalysis(MII.get()));
2244 
2245   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
2246   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
2247       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
2248   if (!IP)
2249     reportError(Obj->getFileName(),
2250                 "no instruction printer for target " + TripleName);
2251   IP->setPrintImmHex(PrintImmHex);
2252   IP->setPrintBranchImmAsAddress(true);
2253   IP->setSymbolizeOperands(SymbolizeOperands);
2254   IP->setMCInstrAnalysis(MIA.get());
2255 
2256   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
2257   SourcePrinter SP(Obj, TheTarget->getName());
2258 
2259   for (StringRef Opt : DisassemblerOptions)
2260     if (!IP->applyTargetSpecificCLOption(Opt))
2261       reportError(Obj->getFileName(),
2262                   "Unrecognized disassembler option: " + Opt);
2263 
2264   disassembleObject(TheTarget, Obj, Ctx, DisAsm.get(), SecondaryDisAsm.get(),
2265                     MIA.get(), IP.get(), STI.get(), SecondarySTI.get(), PIP,
2266                     SP, InlineRelocs);
2267 }
2268 
2269 void objdump::printRelocations(const ObjectFile *Obj) {
2270   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
2271                                                  "%08" PRIx64;
2272   // Regular objdump doesn't print relocations in non-relocatable object
2273   // files.
2274   if (!Obj->isRelocatableObject())
2275     return;
2276 
2277   // Build a mapping from relocation target to a vector of relocation
2278   // sections. Usually, there is an only one relocation section for
2279   // each relocated section.
2280   MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec;
2281   uint64_t Ndx;
2282   for (const SectionRef &Section : ToolSectionFilter(*Obj, &Ndx)) {
2283     if (Section.relocation_begin() == Section.relocation_end())
2284       continue;
2285     Expected<section_iterator> SecOrErr = Section.getRelocatedSection();
2286     if (!SecOrErr)
2287       reportError(Obj->getFileName(),
2288                   "section (" + Twine(Ndx) +
2289                       "): unable to get a relocation target: " +
2290                       toString(SecOrErr.takeError()));
2291     SecToRelSec[**SecOrErr].push_back(Section);
2292   }
2293 
2294   for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) {
2295     StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName());
2296     outs() << "RELOCATION RECORDS FOR [" << SecName << "]:\n";
2297     uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8);
2298     uint32_t TypePadding = 24;
2299     outs() << left_justify("OFFSET", OffsetPadding) << " "
2300            << left_justify("TYPE", TypePadding) << " "
2301            << "VALUE\n";
2302 
2303     for (SectionRef Section : P.second) {
2304       for (const RelocationRef &Reloc : Section.relocations()) {
2305         uint64_t Address = Reloc.getOffset();
2306         SmallString<32> RelocName;
2307         SmallString<32> ValueStr;
2308         if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
2309           continue;
2310         Reloc.getTypeName(RelocName);
2311         if (Error E = getRelocationValueString(Reloc, ValueStr))
2312           reportError(std::move(E), Obj->getFileName());
2313 
2314         outs() << format(Fmt.data(), Address) << " "
2315                << left_justify(RelocName, TypePadding) << " " << ValueStr
2316                << "\n";
2317       }
2318     }
2319     outs() << "\n";
2320   }
2321 }
2322 
2323 void objdump::printDynamicRelocations(const ObjectFile *Obj) {
2324   // For the moment, this option is for ELF only
2325   if (!Obj->isELF())
2326     return;
2327 
2328   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
2329   if (!Elf || Elf->getEType() != ELF::ET_DYN) {
2330     reportError(Obj->getFileName(), "not a dynamic object");
2331     return;
2332   }
2333 
2334   std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
2335   if (DynRelSec.empty())
2336     return;
2337 
2338   outs() << "DYNAMIC RELOCATION RECORDS\n";
2339   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2340   for (const SectionRef &Section : DynRelSec)
2341     for (const RelocationRef &Reloc : Section.relocations()) {
2342       uint64_t Address = Reloc.getOffset();
2343       SmallString<32> RelocName;
2344       SmallString<32> ValueStr;
2345       Reloc.getTypeName(RelocName);
2346       if (Error E = getRelocationValueString(Reloc, ValueStr))
2347         reportError(std::move(E), Obj->getFileName());
2348       outs() << format(Fmt.data(), Address) << " " << RelocName << " "
2349              << ValueStr << "\n";
2350     }
2351 }
2352 
2353 // Returns true if we need to show LMA column when dumping section headers. We
2354 // show it only when the platform is ELF and either we have at least one section
2355 // whose VMA and LMA are different and/or when --show-lma flag is used.
2356 static bool shouldDisplayLMA(const ObjectFile *Obj) {
2357   if (!Obj->isELF())
2358     return false;
2359   for (const SectionRef &S : ToolSectionFilter(*Obj))
2360     if (S.getAddress() != getELFSectionLMA(S))
2361       return true;
2362   return ShowLMA;
2363 }
2364 
2365 static size_t getMaxSectionNameWidth(const ObjectFile *Obj) {
2366   // Default column width for names is 13 even if no names are that long.
2367   size_t MaxWidth = 13;
2368   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
2369     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
2370     MaxWidth = std::max(MaxWidth, Name.size());
2371   }
2372   return MaxWidth;
2373 }
2374 
2375 void objdump::printSectionHeaders(const ObjectFile *Obj) {
2376   size_t NameWidth = getMaxSectionNameWidth(Obj);
2377   size_t AddressWidth = 2 * Obj->getBytesInAddress();
2378   bool HasLMAColumn = shouldDisplayLMA(Obj);
2379   if (HasLMAColumn)
2380     outs() << "Sections:\n"
2381               "Idx "
2382            << left_justify("Name", NameWidth) << " Size     "
2383            << left_justify("VMA", AddressWidth) << " "
2384            << left_justify("LMA", AddressWidth) << " Type\n";
2385   else
2386     outs() << "Sections:\n"
2387               "Idx "
2388            << left_justify("Name", NameWidth) << " Size     "
2389            << left_justify("VMA", AddressWidth) << " Type\n";
2390 
2391   uint64_t Idx;
2392   for (const SectionRef &Section : ToolSectionFilter(*Obj, &Idx)) {
2393     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
2394     uint64_t VMA = Section.getAddress();
2395     if (shouldAdjustVA(Section))
2396       VMA += AdjustVMA;
2397 
2398     uint64_t Size = Section.getSize();
2399 
2400     std::string Type = Section.isText() ? "TEXT" : "";
2401     if (Section.isData())
2402       Type += Type.empty() ? "DATA" : " DATA";
2403     if (Section.isBSS())
2404       Type += Type.empty() ? "BSS" : " BSS";
2405 
2406     if (HasLMAColumn)
2407       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
2408                        Name.str().c_str(), Size)
2409              << format_hex_no_prefix(VMA, AddressWidth) << " "
2410              << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth)
2411              << " " << Type << "\n";
2412     else
2413       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
2414                        Name.str().c_str(), Size)
2415              << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n";
2416   }
2417   outs() << "\n";
2418 }
2419 
2420 void objdump::printSectionContents(const ObjectFile *Obj) {
2421   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
2422 
2423   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
2424     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
2425     uint64_t BaseAddr = Section.getAddress();
2426     uint64_t Size = Section.getSize();
2427     if (!Size)
2428       continue;
2429 
2430     outs() << "Contents of section ";
2431     StringRef SegmentName = getSegmentName(MachO, Section);
2432     if (!SegmentName.empty())
2433       outs() << SegmentName << ",";
2434     outs() << Name << ":\n";
2435     if (Section.isBSS()) {
2436       outs() << format("<skipping contents of bss section at [%04" PRIx64
2437                        ", %04" PRIx64 ")>\n",
2438                        BaseAddr, BaseAddr + Size);
2439       continue;
2440     }
2441 
2442     StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName());
2443 
2444     // Dump out the content as hex and printable ascii characters.
2445     for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
2446       outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
2447       // Dump line of hex.
2448       for (std::size_t I = 0; I < 16; ++I) {
2449         if (I != 0 && I % 4 == 0)
2450           outs() << ' ';
2451         if (Addr + I < End)
2452           outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
2453                  << hexdigit(Contents[Addr + I] & 0xF, true);
2454         else
2455           outs() << "  ";
2456       }
2457       // Print ascii.
2458       outs() << "  ";
2459       for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
2460         if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
2461           outs() << Contents[Addr + I];
2462         else
2463           outs() << ".";
2464       }
2465       outs() << "\n";
2466     }
2467   }
2468 }
2469 
2470 void objdump::printSymbolTable(const ObjectFile *O, StringRef ArchiveName,
2471                                StringRef ArchitectureName, bool DumpDynamic) {
2472   if (O->isCOFF() && !DumpDynamic) {
2473     outs() << "SYMBOL TABLE:\n";
2474     printCOFFSymbolTable(cast<const COFFObjectFile>(O));
2475     return;
2476   }
2477 
2478   const StringRef FileName = O->getFileName();
2479 
2480   if (!DumpDynamic) {
2481     outs() << "SYMBOL TABLE:\n";
2482     for (auto I = O->symbol_begin(); I != O->symbol_end(); ++I)
2483       printSymbol(O, *I, FileName, ArchiveName, ArchitectureName, DumpDynamic);
2484     return;
2485   }
2486 
2487   outs() << "DYNAMIC SYMBOL TABLE:\n";
2488   if (!O->isELF()) {
2489     reportWarning(
2490         "this operation is not currently supported for this file format",
2491         FileName);
2492     return;
2493   }
2494 
2495   const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(O);
2496   for (auto I = ELF->getDynamicSymbolIterators().begin();
2497        I != ELF->getDynamicSymbolIterators().end(); ++I)
2498     printSymbol(O, *I, FileName, ArchiveName, ArchitectureName, DumpDynamic);
2499 }
2500 
2501 void objdump::printSymbol(const ObjectFile *O, const SymbolRef &Symbol,
2502                           StringRef FileName, StringRef ArchiveName,
2503                           StringRef ArchitectureName, bool DumpDynamic) {
2504   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(O);
2505   uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName,
2506                                    ArchitectureName);
2507   if ((Address < StartAddress) || (Address > StopAddress))
2508     return;
2509   SymbolRef::Type Type =
2510       unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName);
2511   uint32_t Flags =
2512       unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName);
2513 
2514   // Don't ask a Mach-O STAB symbol for its section unless you know that
2515   // STAB symbol's section field refers to a valid section index. Otherwise
2516   // the symbol may error trying to load a section that does not exist.
2517   bool IsSTAB = false;
2518   if (MachO) {
2519     DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
2520     uint8_t NType =
2521         (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type
2522                           : MachO->getSymbolTableEntry(SymDRI).n_type);
2523     if (NType & MachO::N_STAB)
2524       IsSTAB = true;
2525   }
2526   section_iterator Section = IsSTAB
2527                                  ? O->section_end()
2528                                  : unwrapOrError(Symbol.getSection(), FileName,
2529                                                  ArchiveName, ArchitectureName);
2530 
2531   StringRef Name;
2532   if (Type == SymbolRef::ST_Debug && Section != O->section_end()) {
2533     if (Expected<StringRef> NameOrErr = Section->getName())
2534       Name = *NameOrErr;
2535     else
2536       consumeError(NameOrErr.takeError());
2537 
2538   } else {
2539     Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName,
2540                          ArchitectureName);
2541   }
2542 
2543   bool Global = Flags & SymbolRef::SF_Global;
2544   bool Weak = Flags & SymbolRef::SF_Weak;
2545   bool Absolute = Flags & SymbolRef::SF_Absolute;
2546   bool Common = Flags & SymbolRef::SF_Common;
2547   bool Hidden = Flags & SymbolRef::SF_Hidden;
2548 
2549   char GlobLoc = ' ';
2550   if ((Section != O->section_end() || Absolute) && !Weak)
2551     GlobLoc = Global ? 'g' : 'l';
2552   char IFunc = ' ';
2553   if (O->isELF()) {
2554     if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC)
2555       IFunc = 'i';
2556     if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE)
2557       GlobLoc = 'u';
2558   }
2559 
2560   char Debug = ' ';
2561   if (DumpDynamic)
2562     Debug = 'D';
2563   else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
2564     Debug = 'd';
2565 
2566   char FileFunc = ' ';
2567   if (Type == SymbolRef::ST_File)
2568     FileFunc = 'f';
2569   else if (Type == SymbolRef::ST_Function)
2570     FileFunc = 'F';
2571   else if (Type == SymbolRef::ST_Data)
2572     FileFunc = 'O';
2573 
2574   const char *Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2575 
2576   outs() << format(Fmt, Address) << " "
2577          << GlobLoc            // Local -> 'l', Global -> 'g', Neither -> ' '
2578          << (Weak ? 'w' : ' ') // Weak?
2579          << ' '                // Constructor. Not supported yet.
2580          << ' '                // Warning. Not supported yet.
2581          << IFunc              // Indirect reference to another symbol.
2582          << Debug              // Debugging (d) or dynamic (D) symbol.
2583          << FileFunc           // Name of function (F), file (f) or object (O).
2584          << ' ';
2585   if (Absolute) {
2586     outs() << "*ABS*";
2587   } else if (Common) {
2588     outs() << "*COM*";
2589   } else if (Section == O->section_end()) {
2590     outs() << "*UND*";
2591   } else {
2592     StringRef SegmentName = getSegmentName(MachO, *Section);
2593     if (!SegmentName.empty())
2594       outs() << SegmentName << ",";
2595     StringRef SectionName = unwrapOrError(Section->getName(), FileName);
2596     outs() << SectionName;
2597   }
2598 
2599   if (Common || O->isELF()) {
2600     uint64_t Val =
2601         Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
2602     outs() << '\t' << format(Fmt, Val);
2603   }
2604 
2605   if (O->isELF()) {
2606     uint8_t Other = ELFSymbolRef(Symbol).getOther();
2607     switch (Other) {
2608     case ELF::STV_DEFAULT:
2609       break;
2610     case ELF::STV_INTERNAL:
2611       outs() << " .internal";
2612       break;
2613     case ELF::STV_HIDDEN:
2614       outs() << " .hidden";
2615       break;
2616     case ELF::STV_PROTECTED:
2617       outs() << " .protected";
2618       break;
2619     default:
2620       outs() << format(" 0x%02x", Other);
2621       break;
2622     }
2623   } else if (Hidden) {
2624     outs() << " .hidden";
2625   }
2626 
2627   if (Demangle)
2628     outs() << ' ' << demangle(std::string(Name)) << '\n';
2629   else
2630     outs() << ' ' << Name << '\n';
2631 }
2632 
2633 static void printUnwindInfo(const ObjectFile *O) {
2634   outs() << "Unwind info:\n\n";
2635 
2636   if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
2637     printCOFFUnwindInfo(Coff);
2638   else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
2639     printMachOUnwindInfo(MachO);
2640   else
2641     // TODO: Extract DWARF dump tool to objdump.
2642     WithColor::error(errs(), ToolName)
2643         << "This operation is only currently supported "
2644            "for COFF and MachO object files.\n";
2645 }
2646 
2647 /// Dump the raw contents of the __clangast section so the output can be piped
2648 /// into llvm-bcanalyzer.
2649 static void printRawClangAST(const ObjectFile *Obj) {
2650   if (outs().is_displayed()) {
2651     WithColor::error(errs(), ToolName)
2652         << "The -raw-clang-ast option will dump the raw binary contents of "
2653            "the clang ast section.\n"
2654            "Please redirect the output to a file or another program such as "
2655            "llvm-bcanalyzer.\n";
2656     return;
2657   }
2658 
2659   StringRef ClangASTSectionName("__clangast");
2660   if (Obj->isCOFF()) {
2661     ClangASTSectionName = "clangast";
2662   }
2663 
2664   Optional<object::SectionRef> ClangASTSection;
2665   for (auto Sec : ToolSectionFilter(*Obj)) {
2666     StringRef Name;
2667     if (Expected<StringRef> NameOrErr = Sec.getName())
2668       Name = *NameOrErr;
2669     else
2670       consumeError(NameOrErr.takeError());
2671 
2672     if (Name == ClangASTSectionName) {
2673       ClangASTSection = Sec;
2674       break;
2675     }
2676   }
2677   if (!ClangASTSection)
2678     return;
2679 
2680   StringRef ClangASTContents = unwrapOrError(
2681       ClangASTSection.getValue().getContents(), Obj->getFileName());
2682   outs().write(ClangASTContents.data(), ClangASTContents.size());
2683 }
2684 
2685 static void printFaultMaps(const ObjectFile *Obj) {
2686   StringRef FaultMapSectionName;
2687 
2688   if (Obj->isELF()) {
2689     FaultMapSectionName = ".llvm_faultmaps";
2690   } else if (Obj->isMachO()) {
2691     FaultMapSectionName = "__llvm_faultmaps";
2692   } else {
2693     WithColor::error(errs(), ToolName)
2694         << "This operation is only currently supported "
2695            "for ELF and Mach-O executable files.\n";
2696     return;
2697   }
2698 
2699   Optional<object::SectionRef> FaultMapSection;
2700 
2701   for (auto Sec : ToolSectionFilter(*Obj)) {
2702     StringRef Name;
2703     if (Expected<StringRef> NameOrErr = Sec.getName())
2704       Name = *NameOrErr;
2705     else
2706       consumeError(NameOrErr.takeError());
2707 
2708     if (Name == FaultMapSectionName) {
2709       FaultMapSection = Sec;
2710       break;
2711     }
2712   }
2713 
2714   outs() << "FaultMap table:\n";
2715 
2716   if (!FaultMapSection.hasValue()) {
2717     outs() << "<not found>\n";
2718     return;
2719   }
2720 
2721   StringRef FaultMapContents =
2722       unwrapOrError(FaultMapSection.getValue().getContents(), Obj->getFileName());
2723   FaultMapParser FMP(FaultMapContents.bytes_begin(),
2724                      FaultMapContents.bytes_end());
2725 
2726   outs() << FMP;
2727 }
2728 
2729 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) {
2730   if (O->isELF()) {
2731     printELFFileHeader(O);
2732     printELFDynamicSection(O);
2733     printELFSymbolVersionInfo(O);
2734     return;
2735   }
2736   if (O->isCOFF())
2737     return printCOFFFileHeader(O);
2738   if (O->isWasm())
2739     return printWasmFileHeader(O);
2740   if (O->isMachO()) {
2741     printMachOFileHeader(O);
2742     if (!OnlyFirst)
2743       printMachOLoadCommands(O);
2744     return;
2745   }
2746   reportError(O->getFileName(), "Invalid/Unsupported object file format");
2747 }
2748 
2749 static void printFileHeaders(const ObjectFile *O) {
2750   if (!O->isELF() && !O->isCOFF())
2751     reportError(O->getFileName(), "Invalid/Unsupported object file format");
2752 
2753   Triple::ArchType AT = O->getArch();
2754   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
2755   uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
2756 
2757   StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2758   outs() << "start address: "
2759          << "0x" << format(Fmt.data(), Address) << "\n\n";
2760 }
2761 
2762 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
2763   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
2764   if (!ModeOrErr) {
2765     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
2766     consumeError(ModeOrErr.takeError());
2767     return;
2768   }
2769   sys::fs::perms Mode = ModeOrErr.get();
2770   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
2771   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
2772   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
2773   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
2774   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
2775   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
2776   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
2777   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
2778   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
2779 
2780   outs() << " ";
2781 
2782   outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
2783                    unwrapOrError(C.getGID(), Filename),
2784                    unwrapOrError(C.getRawSize(), Filename));
2785 
2786   StringRef RawLastModified = C.getRawLastModified();
2787   unsigned Seconds;
2788   if (RawLastModified.getAsInteger(10, Seconds))
2789     outs() << "(date: \"" << RawLastModified
2790            << "\" contains non-decimal chars) ";
2791   else {
2792     // Since ctime(3) returns a 26 character string of the form:
2793     // "Sun Sep 16 01:03:52 1973\n\0"
2794     // just print 24 characters.
2795     time_t t = Seconds;
2796     outs() << format("%.24s ", ctime(&t));
2797   }
2798 
2799   StringRef Name = "";
2800   Expected<StringRef> NameOrErr = C.getName();
2801   if (!NameOrErr) {
2802     consumeError(NameOrErr.takeError());
2803     Name = unwrapOrError(C.getRawName(), Filename);
2804   } else {
2805     Name = NameOrErr.get();
2806   }
2807   outs() << Name << "\n";
2808 }
2809 
2810 // For ELF only now.
2811 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) {
2812   if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) {
2813     if (Elf->getEType() != ELF::ET_REL)
2814       return true;
2815   }
2816   return false;
2817 }
2818 
2819 static void checkForInvalidStartStopAddress(ObjectFile *Obj,
2820                                             uint64_t Start, uint64_t Stop) {
2821   if (!shouldWarnForInvalidStartStopAddress(Obj))
2822     return;
2823 
2824   for (const SectionRef &Section : Obj->sections())
2825     if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) {
2826       uint64_t BaseAddr = Section.getAddress();
2827       uint64_t Size = Section.getSize();
2828       if ((Start < BaseAddr + Size) && Stop > BaseAddr)
2829         return;
2830     }
2831 
2832   if (StartAddress.getNumOccurrences() == 0)
2833     reportWarning("no section has address less than 0x" +
2834                       Twine::utohexstr(Stop) + " specified by --stop-address",
2835                   Obj->getFileName());
2836   else if (StopAddress.getNumOccurrences() == 0)
2837     reportWarning("no section has address greater than or equal to 0x" +
2838                       Twine::utohexstr(Start) + " specified by --start-address",
2839                   Obj->getFileName());
2840   else
2841     reportWarning("no section overlaps the range [0x" +
2842                       Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) +
2843                       ") specified by --start-address/--stop-address",
2844                   Obj->getFileName());
2845 }
2846 
2847 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
2848                        const Archive::Child *C = nullptr) {
2849   // Avoid other output when using a raw option.
2850   if (!RawClangAST) {
2851     outs() << '\n';
2852     if (A)
2853       outs() << A->getFileName() << "(" << O->getFileName() << ")";
2854     else
2855       outs() << O->getFileName();
2856     outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n\n";
2857   }
2858 
2859   if (StartAddress.getNumOccurrences() || StopAddress.getNumOccurrences())
2860     checkForInvalidStartStopAddress(O, StartAddress, StopAddress);
2861 
2862   // Note: the order here matches GNU objdump for compatability.
2863   StringRef ArchiveName = A ? A->getFileName() : "";
2864   if (ArchiveHeaders && !MachOOpt && C)
2865     printArchiveChild(ArchiveName, *C);
2866   if (FileHeaders)
2867     printFileHeaders(O);
2868   if (PrivateHeaders || FirstPrivateHeader)
2869     printPrivateFileHeaders(O, FirstPrivateHeader);
2870   if (SectionHeaders)
2871     printSectionHeaders(O);
2872   if (SymbolTable)
2873     printSymbolTable(O, ArchiveName);
2874   if (DynamicSymbolTable)
2875     printSymbolTable(O, ArchiveName, /*ArchitectureName=*/"",
2876                      /*DumpDynamic=*/true);
2877   if (DwarfDumpType != DIDT_Null) {
2878     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
2879     // Dump the complete DWARF structure.
2880     DIDumpOptions DumpOpts;
2881     DumpOpts.DumpType = DwarfDumpType;
2882     DICtx->dump(outs(), DumpOpts);
2883   }
2884   if (Relocations && !Disassemble)
2885     printRelocations(O);
2886   if (DynamicRelocations)
2887     printDynamicRelocations(O);
2888   if (SectionContents)
2889     printSectionContents(O);
2890   if (Disassemble)
2891     disassembleObject(O, Relocations);
2892   if (UnwindInfo)
2893     printUnwindInfo(O);
2894 
2895   // Mach-O specific options:
2896   if (ExportsTrie)
2897     printExportsTrie(O);
2898   if (Rebase)
2899     printRebaseTable(O);
2900   if (Bind)
2901     printBindTable(O);
2902   if (LazyBind)
2903     printLazyBindTable(O);
2904   if (WeakBind)
2905     printWeakBindTable(O);
2906 
2907   // Other special sections:
2908   if (RawClangAST)
2909     printRawClangAST(O);
2910   if (FaultMapSection)
2911     printFaultMaps(O);
2912 }
2913 
2914 static void dumpObject(const COFFImportFile *I, const Archive *A,
2915                        const Archive::Child *C = nullptr) {
2916   StringRef ArchiveName = A ? A->getFileName() : "";
2917 
2918   // Avoid other output when using a raw option.
2919   if (!RawClangAST)
2920     outs() << '\n'
2921            << ArchiveName << "(" << I->getFileName() << ")"
2922            << ":\tfile format COFF-import-file"
2923            << "\n\n";
2924 
2925   if (ArchiveHeaders && !MachOOpt && C)
2926     printArchiveChild(ArchiveName, *C);
2927   if (SymbolTable)
2928     printCOFFSymbolTable(I);
2929 }
2930 
2931 /// Dump each object file in \a a;
2932 static void dumpArchive(const Archive *A) {
2933   Error Err = Error::success();
2934   unsigned I = -1;
2935   for (auto &C : A->children(Err)) {
2936     ++I;
2937     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2938     if (!ChildOrErr) {
2939       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2940         reportError(std::move(E), getFileNameForError(C, I), A->getFileName());
2941       continue;
2942     }
2943     if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2944       dumpObject(O, A, &C);
2945     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2946       dumpObject(I, A, &C);
2947     else
2948       reportError(errorCodeToError(object_error::invalid_file_type),
2949                   A->getFileName());
2950   }
2951   if (Err)
2952     reportError(std::move(Err), A->getFileName());
2953 }
2954 
2955 /// Open file and figure out how to dump it.
2956 static void dumpInput(StringRef file) {
2957   // If we are using the Mach-O specific object file parser, then let it parse
2958   // the file and process the command line options.  So the -arch flags can
2959   // be used to select specific slices, etc.
2960   if (MachOOpt) {
2961     parseInputMachO(file);
2962     return;
2963   }
2964 
2965   // Attempt to open the binary.
2966   OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
2967   Binary &Binary = *OBinary.getBinary();
2968 
2969   if (Archive *A = dyn_cast<Archive>(&Binary))
2970     dumpArchive(A);
2971   else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
2972     dumpObject(O);
2973   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2974     parseInputMachO(UB);
2975   else
2976     reportError(errorCodeToError(object_error::invalid_file_type), file);
2977 }
2978 
2979 int main(int argc, char **argv) {
2980   using namespace llvm;
2981   InitLLVM X(argc, argv);
2982   const cl::OptionCategory *OptionFilters[] = {&ObjdumpCat, &MachOCat};
2983   cl::HideUnrelatedOptions(OptionFilters);
2984 
2985   // Initialize targets and assembly printers/parsers.
2986   InitializeAllTargetInfos();
2987   InitializeAllTargetMCs();
2988   InitializeAllDisassemblers();
2989 
2990   // Register the target printer for --version.
2991   cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);
2992 
2993   cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n", nullptr,
2994                               /*EnvVar=*/nullptr,
2995                               /*LongOptionsUseDoubleDash=*/true);
2996 
2997   if (StartAddress >= StopAddress)
2998     reportCmdLineError("start address should be less than stop address");
2999 
3000   ToolName = argv[0];
3001 
3002   // Defaults to a.out if no filenames specified.
3003   if (InputFilenames.empty())
3004     InputFilenames.push_back("a.out");
3005 
3006   // Removes trailing separators from prefix.
3007   while (!Prefix.empty() && sys::path::is_separator(Prefix.back()))
3008     Prefix.pop_back();
3009 
3010   if (AllHeaders)
3011     ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
3012         SectionHeaders = SymbolTable = true;
3013 
3014   if (DisassembleAll || PrintSource || PrintLines ||
3015       !DisassembleSymbols.empty())
3016     Disassemble = true;
3017 
3018   if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null &&
3019       !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST &&
3020       !Relocations && !SectionHeaders && !SectionContents && !SymbolTable &&
3021       !DynamicSymbolTable && !UnwindInfo && !FaultMapSection &&
3022       !(MachOOpt &&
3023         (Bind || DataInCode || DylibId || DylibsUsed || ExportsTrie ||
3024          FirstPrivateHeader || FunctionStarts || IndirectSymbols || InfoPlist ||
3025          LazyBind || LinkOptHints || ObjcMetaData || Rebase ||
3026          UniversalHeaders || WeakBind || !FilterSections.empty()))) {
3027     cl::PrintHelpMessage();
3028     return 2;
3029   }
3030 
3031   DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end());
3032 
3033   llvm::for_each(InputFilenames, dumpInput);
3034 
3035   warnOnNoMatchForSections();
3036 
3037   return EXIT_SUCCESS;
3038 }
3039