xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision 5f2f84a68a2eb715c818365bbac233dc62af4120)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that works like binutils "objdump", that is, it
10 // dumps out a plethora of information about an object file depending on the
11 // flags.
12 //
13 // The flags and output of this program should be near identical to those of
14 // binutils objdump.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm-objdump.h"
19 #include "COFFDump.h"
20 #include "ELFDump.h"
21 #include "MachODump.h"
22 #include "WasmDump.h"
23 #include "XCOFFDump.h"
24 #include "llvm/ADT/IndexedMap.h"
25 #include "llvm/ADT/Optional.h"
26 #include "llvm/ADT/SmallSet.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/SetOperations.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/ADT/StringSet.h"
31 #include "llvm/ADT/Triple.h"
32 #include "llvm/ADT/Twine.h"
33 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
34 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
35 #include "llvm/Demangle/Demangle.h"
36 #include "llvm/MC/MCAsmInfo.h"
37 #include "llvm/MC/MCContext.h"
38 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
39 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
40 #include "llvm/MC/MCInst.h"
41 #include "llvm/MC/MCInstPrinter.h"
42 #include "llvm/MC/MCInstrAnalysis.h"
43 #include "llvm/MC/MCInstrInfo.h"
44 #include "llvm/MC/MCObjectFileInfo.h"
45 #include "llvm/MC/MCRegisterInfo.h"
46 #include "llvm/MC/MCSubtargetInfo.h"
47 #include "llvm/MC/MCTargetOptions.h"
48 #include "llvm/Object/Archive.h"
49 #include "llvm/Object/COFF.h"
50 #include "llvm/Object/COFFImportFile.h"
51 #include "llvm/Object/ELFObjectFile.h"
52 #include "llvm/Object/FaultMapParser.h"
53 #include "llvm/Object/MachO.h"
54 #include "llvm/Object/MachOUniversal.h"
55 #include "llvm/Object/ObjectFile.h"
56 #include "llvm/Object/Wasm.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/Errc.h"
61 #include "llvm/Support/FileSystem.h"
62 #include "llvm/Support/Format.h"
63 #include "llvm/Support/FormatVariadic.h"
64 #include "llvm/Support/GraphWriter.h"
65 #include "llvm/Support/Host.h"
66 #include "llvm/Support/InitLLVM.h"
67 #include "llvm/Support/MemoryBuffer.h"
68 #include "llvm/Support/SourceMgr.h"
69 #include "llvm/Support/StringSaver.h"
70 #include "llvm/Support/TargetRegistry.h"
71 #include "llvm/Support/TargetSelect.h"
72 #include "llvm/Support/WithColor.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <algorithm>
75 #include <cctype>
76 #include <cstring>
77 #include <system_error>
78 #include <unordered_map>
79 #include <utility>
80 
81 using namespace llvm;
82 using namespace llvm::object;
83 using namespace llvm::objdump;
84 
85 #define DEBUG_TYPE "objdump"
86 
87 static cl::OptionCategory ObjdumpCat("llvm-objdump Options");
88 
89 static cl::opt<uint64_t> AdjustVMA(
90     "adjust-vma",
91     cl::desc("Increase the displayed address by the specified offset"),
92     cl::value_desc("offset"), cl::init(0), cl::cat(ObjdumpCat));
93 
94 static cl::opt<bool>
95     AllHeaders("all-headers",
96                cl::desc("Display all available header information"),
97                cl::cat(ObjdumpCat));
98 static cl::alias AllHeadersShort("x", cl::desc("Alias for --all-headers"),
99                                  cl::NotHidden, cl::Grouping,
100                                  cl::aliasopt(AllHeaders));
101 
102 static cl::opt<std::string>
103     ArchName("arch-name",
104              cl::desc("Target arch to disassemble for, "
105                       "see --version for available targets"),
106              cl::cat(ObjdumpCat));
107 
108 cl::opt<bool>
109     objdump::ArchiveHeaders("archive-headers",
110                             cl::desc("Display archive header information"),
111                             cl::cat(ObjdumpCat));
112 static cl::alias ArchiveHeadersShort("a",
113                                      cl::desc("Alias for --archive-headers"),
114                                      cl::NotHidden, cl::Grouping,
115                                      cl::aliasopt(ArchiveHeaders));
116 
117 cl::opt<bool> objdump::Demangle("demangle", cl::desc("Demangle symbols names"),
118                                 cl::init(false), cl::cat(ObjdumpCat));
119 static cl::alias DemangleShort("C", cl::desc("Alias for --demangle"),
120                                cl::NotHidden, cl::Grouping,
121                                cl::aliasopt(Demangle));
122 
123 cl::opt<bool> objdump::Disassemble(
124     "disassemble",
125     cl::desc("Display assembler mnemonics for the machine instructions"),
126     cl::cat(ObjdumpCat));
127 static cl::alias DisassembleShort("d", cl::desc("Alias for --disassemble"),
128                                   cl::NotHidden, cl::Grouping,
129                                   cl::aliasopt(Disassemble));
130 
131 cl::opt<bool> objdump::DisassembleAll(
132     "disassemble-all",
133     cl::desc("Display assembler mnemonics for the machine instructions"),
134     cl::cat(ObjdumpCat));
135 static cl::alias DisassembleAllShort("D",
136                                      cl::desc("Alias for --disassemble-all"),
137                                      cl::NotHidden, cl::Grouping,
138                                      cl::aliasopt(DisassembleAll));
139 
140 cl::opt<bool> objdump::SymbolDescription(
141     "symbol-description",
142     cl::desc("Add symbol description for disassembly. This "
143              "option is for XCOFF files only"),
144     cl::init(false), cl::cat(ObjdumpCat));
145 
146 static cl::list<std::string>
147     DisassembleSymbols("disassemble-symbols", cl::CommaSeparated,
148                        cl::desc("List of symbols to disassemble. "
149                                 "Accept demangled names when --demangle is "
150                                 "specified, otherwise accept mangled names"),
151                        cl::cat(ObjdumpCat));
152 
153 static cl::opt<bool> DisassembleZeroes(
154     "disassemble-zeroes",
155     cl::desc("Do not skip blocks of zeroes when disassembling"),
156     cl::cat(ObjdumpCat));
157 static cl::alias
158     DisassembleZeroesShort("z", cl::desc("Alias for --disassemble-zeroes"),
159                            cl::NotHidden, cl::Grouping,
160                            cl::aliasopt(DisassembleZeroes));
161 
162 static cl::list<std::string>
163     DisassemblerOptions("disassembler-options",
164                         cl::desc("Pass target specific disassembler options"),
165                         cl::value_desc("options"), cl::CommaSeparated,
166                         cl::cat(ObjdumpCat));
167 static cl::alias
168     DisassemblerOptionsShort("M", cl::desc("Alias for --disassembler-options"),
169                              cl::NotHidden, cl::Grouping, cl::Prefix,
170                              cl::CommaSeparated,
171                              cl::aliasopt(DisassemblerOptions));
172 
173 cl::opt<DIDumpType> objdump::DwarfDumpType(
174     "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"),
175     cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame")),
176     cl::cat(ObjdumpCat));
177 
178 static cl::opt<bool> DynamicRelocations(
179     "dynamic-reloc",
180     cl::desc("Display the dynamic relocation entries in the file"),
181     cl::cat(ObjdumpCat));
182 static cl::alias DynamicRelocationShort("R",
183                                         cl::desc("Alias for --dynamic-reloc"),
184                                         cl::NotHidden, cl::Grouping,
185                                         cl::aliasopt(DynamicRelocations));
186 
187 static cl::opt<bool>
188     FaultMapSection("fault-map-section",
189                     cl::desc("Display contents of faultmap section"),
190                     cl::cat(ObjdumpCat));
191 
192 static cl::opt<bool>
193     FileHeaders("file-headers",
194                 cl::desc("Display the contents of the overall file header"),
195                 cl::cat(ObjdumpCat));
196 static cl::alias FileHeadersShort("f", cl::desc("Alias for --file-headers"),
197                                   cl::NotHidden, cl::Grouping,
198                                   cl::aliasopt(FileHeaders));
199 
200 cl::opt<bool>
201     objdump::SectionContents("full-contents",
202                              cl::desc("Display the content of each section"),
203                              cl::cat(ObjdumpCat));
204 static cl::alias SectionContentsShort("s",
205                                       cl::desc("Alias for --full-contents"),
206                                       cl::NotHidden, cl::Grouping,
207                                       cl::aliasopt(SectionContents));
208 
209 static cl::list<std::string> InputFilenames(cl::Positional,
210                                             cl::desc("<input object files>"),
211                                             cl::ZeroOrMore,
212                                             cl::cat(ObjdumpCat));
213 
214 static cl::opt<bool>
215     PrintLines("line-numbers",
216                cl::desc("Display source line numbers with "
217                         "disassembly. Implies disassemble object"),
218                cl::cat(ObjdumpCat));
219 static cl::alias PrintLinesShort("l", cl::desc("Alias for --line-numbers"),
220                                  cl::NotHidden, cl::Grouping,
221                                  cl::aliasopt(PrintLines));
222 
223 static cl::opt<bool> MachOOpt("macho",
224                               cl::desc("Use MachO specific object file parser"),
225                               cl::cat(ObjdumpCat));
226 static cl::alias MachOm("m", cl::desc("Alias for --macho"), cl::NotHidden,
227                         cl::Grouping, cl::aliasopt(MachOOpt));
228 
229 cl::opt<std::string> objdump::MCPU(
230     "mcpu", cl::desc("Target a specific cpu type (--mcpu=help for details)"),
231     cl::value_desc("cpu-name"), cl::init(""), cl::cat(ObjdumpCat));
232 
233 cl::list<std::string> objdump::MAttrs(
234     "mattr", cl::CommaSeparated,
235     cl::desc("Target specific attributes (--mattr=help for details)"),
236     cl::value_desc("a1,+a2,-a3,..."), cl::cat(ObjdumpCat));
237 
238 cl::opt<bool> objdump::NoShowRawInsn(
239     "no-show-raw-insn",
240     cl::desc(
241         "When disassembling instructions, do not print the instruction bytes."),
242     cl::cat(ObjdumpCat));
243 
244 cl::opt<bool> objdump::NoLeadingAddr("no-leading-addr",
245                                      cl::desc("Print no leading address"),
246                                      cl::cat(ObjdumpCat));
247 
248 static cl::opt<bool> RawClangAST(
249     "raw-clang-ast",
250     cl::desc("Dump the raw binary contents of the clang AST section"),
251     cl::cat(ObjdumpCat));
252 
253 cl::opt<bool>
254     objdump::Relocations("reloc",
255                          cl::desc("Display the relocation entries in the file"),
256                          cl::cat(ObjdumpCat));
257 static cl::alias RelocationsShort("r", cl::desc("Alias for --reloc"),
258                                   cl::NotHidden, cl::Grouping,
259                                   cl::aliasopt(Relocations));
260 
261 cl::opt<bool>
262     objdump::PrintImmHex("print-imm-hex",
263                          cl::desc("Use hex format for immediate values"),
264                          cl::cat(ObjdumpCat));
265 
266 cl::opt<bool>
267     objdump::PrivateHeaders("private-headers",
268                             cl::desc("Display format specific file headers"),
269                             cl::cat(ObjdumpCat));
270 static cl::alias PrivateHeadersShort("p",
271                                      cl::desc("Alias for --private-headers"),
272                                      cl::NotHidden, cl::Grouping,
273                                      cl::aliasopt(PrivateHeaders));
274 
275 cl::list<std::string>
276     objdump::FilterSections("section",
277                             cl::desc("Operate on the specified sections only. "
278                                      "With --macho dump segment,section"),
279                             cl::cat(ObjdumpCat));
280 static cl::alias FilterSectionsj("j", cl::desc("Alias for --section"),
281                                  cl::NotHidden, cl::Grouping, cl::Prefix,
282                                  cl::aliasopt(FilterSections));
283 
284 cl::opt<bool> objdump::SectionHeaders(
285     "section-headers",
286     cl::desc("Display summaries of the headers for each section."),
287     cl::cat(ObjdumpCat));
288 static cl::alias SectionHeadersShort("headers",
289                                      cl::desc("Alias for --section-headers"),
290                                      cl::NotHidden,
291                                      cl::aliasopt(SectionHeaders));
292 static cl::alias SectionHeadersShorter("h",
293                                        cl::desc("Alias for --section-headers"),
294                                        cl::NotHidden, cl::Grouping,
295                                        cl::aliasopt(SectionHeaders));
296 
297 static cl::opt<bool>
298     ShowLMA("show-lma",
299             cl::desc("Display LMA column when dumping ELF section headers"),
300             cl::cat(ObjdumpCat));
301 
302 static cl::opt<bool> PrintSource(
303     "source",
304     cl::desc(
305         "Display source inlined with disassembly. Implies disassemble object"),
306     cl::cat(ObjdumpCat));
307 static cl::alias PrintSourceShort("S", cl::desc("Alias for --source"),
308                                   cl::NotHidden, cl::Grouping,
309                                   cl::aliasopt(PrintSource));
310 
311 static cl::opt<uint64_t>
312     StartAddress("start-address", cl::desc("Disassemble beginning at address"),
313                  cl::value_desc("address"), cl::init(0), cl::cat(ObjdumpCat));
314 static cl::opt<uint64_t> StopAddress("stop-address",
315                                      cl::desc("Stop disassembly at address"),
316                                      cl::value_desc("address"),
317                                      cl::init(UINT64_MAX), cl::cat(ObjdumpCat));
318 
319 cl::opt<bool> objdump::SymbolTable("syms", cl::desc("Display the symbol table"),
320                                    cl::cat(ObjdumpCat));
321 static cl::alias SymbolTableShort("t", cl::desc("Alias for --syms"),
322                                   cl::NotHidden, cl::Grouping,
323                                   cl::aliasopt(SymbolTable));
324 
325 static cl::opt<bool> SymbolizeOperands(
326     "symbolize-operands",
327     cl::desc("Symbolize instruction operands when disassembling"),
328     cl::cat(ObjdumpCat));
329 
330 static cl::opt<bool> DynamicSymbolTable(
331     "dynamic-syms",
332     cl::desc("Display the contents of the dynamic symbol table"),
333     cl::cat(ObjdumpCat));
334 static cl::alias DynamicSymbolTableShort("T",
335                                          cl::desc("Alias for --dynamic-syms"),
336                                          cl::NotHidden, cl::Grouping,
337                                          cl::aliasopt(DynamicSymbolTable));
338 
339 cl::opt<std::string>
340     objdump::TripleName("triple",
341                         cl::desc("Target triple to disassemble for, see "
342                                  "--version for available targets"),
343                         cl::cat(ObjdumpCat));
344 
345 cl::opt<bool> objdump::UnwindInfo("unwind-info",
346                                   cl::desc("Display unwind information"),
347                                   cl::cat(ObjdumpCat));
348 static cl::alias UnwindInfoShort("u", cl::desc("Alias for --unwind-info"),
349                                  cl::NotHidden, cl::Grouping,
350                                  cl::aliasopt(UnwindInfo));
351 
352 static cl::opt<bool>
353     Wide("wide", cl::desc("Ignored for compatibility with GNU objdump"),
354          cl::cat(ObjdumpCat));
355 static cl::alias WideShort("w", cl::Grouping, cl::aliasopt(Wide));
356 
357 cl::opt<std::string> objdump::Prefix("prefix",
358                                      cl::desc("Add prefix to absolute paths"),
359                                      cl::cat(ObjdumpCat));
360 
361 enum DebugVarsFormat {
362   DVDisabled,
363   DVUnicode,
364   DVASCII,
365 };
366 
367 static cl::opt<DebugVarsFormat> DbgVariables(
368     "debug-vars", cl::init(DVDisabled),
369     cl::desc("Print the locations (in registers or memory) of "
370              "source-level variables alongside disassembly"),
371     cl::ValueOptional,
372     cl::values(clEnumValN(DVUnicode, "", "unicode"),
373                clEnumValN(DVUnicode, "unicode", "unicode"),
374                clEnumValN(DVASCII, "ascii", "unicode")),
375     cl::cat(ObjdumpCat));
376 
377 static cl::opt<int>
378     DbgIndent("debug-vars-indent", cl::init(40),
379               cl::desc("Distance to indent the source-level variable display, "
380                        "relative to the start of the disassembly"),
381               cl::cat(ObjdumpCat));
382 
383 static cl::extrahelp
384     HelpResponse("\nPass @FILE as argument to read options from FILE.\n");
385 
386 static StringSet<> DisasmSymbolSet;
387 StringSet<> objdump::FoundSectionSet;
388 static StringRef ToolName;
389 
390 namespace {
391 struct FilterResult {
392   // True if the section should not be skipped.
393   bool Keep;
394 
395   // True if the index counter should be incremented, even if the section should
396   // be skipped. For example, sections may be skipped if they are not included
397   // in the --section flag, but we still want those to count toward the section
398   // count.
399   bool IncrementIndex;
400 };
401 } // namespace
402 
403 static FilterResult checkSectionFilter(object::SectionRef S) {
404   if (FilterSections.empty())
405     return {/*Keep=*/true, /*IncrementIndex=*/true};
406 
407   Expected<StringRef> SecNameOrErr = S.getName();
408   if (!SecNameOrErr) {
409     consumeError(SecNameOrErr.takeError());
410     return {/*Keep=*/false, /*IncrementIndex=*/false};
411   }
412   StringRef SecName = *SecNameOrErr;
413 
414   // StringSet does not allow empty key so avoid adding sections with
415   // no name (such as the section with index 0) here.
416   if (!SecName.empty())
417     FoundSectionSet.insert(SecName);
418 
419   // Only show the section if it's in the FilterSections list, but always
420   // increment so the indexing is stable.
421   return {/*Keep=*/is_contained(FilterSections, SecName),
422           /*IncrementIndex=*/true};
423 }
424 
425 SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O,
426                                          uint64_t *Idx) {
427   // Start at UINT64_MAX so that the first index returned after an increment is
428   // zero (after the unsigned wrap).
429   if (Idx)
430     *Idx = UINT64_MAX;
431   return SectionFilter(
432       [Idx](object::SectionRef S) {
433         FilterResult Result = checkSectionFilter(S);
434         if (Idx != nullptr && Result.IncrementIndex)
435           *Idx += 1;
436         return Result.Keep;
437       },
438       O);
439 }
440 
441 std::string objdump::getFileNameForError(const object::Archive::Child &C,
442                                          unsigned Index) {
443   Expected<StringRef> NameOrErr = C.getName();
444   if (NameOrErr)
445     return std::string(NameOrErr.get());
446   // If we have an error getting the name then we print the index of the archive
447   // member. Since we are already in an error state, we just ignore this error.
448   consumeError(NameOrErr.takeError());
449   return "<file index: " + std::to_string(Index) + ">";
450 }
451 
452 void objdump::reportWarning(const Twine &Message, StringRef File) {
453   // Output order between errs() and outs() matters especially for archive
454   // files where the output is per member object.
455   outs().flush();
456   WithColor::warning(errs(), ToolName)
457       << "'" << File << "': " << Message << "\n";
458 }
459 
460 LLVM_ATTRIBUTE_NORETURN void objdump::reportError(StringRef File,
461                                                   const Twine &Message) {
462   outs().flush();
463   WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n";
464   exit(1);
465 }
466 
467 LLVM_ATTRIBUTE_NORETURN void objdump::reportError(Error E, StringRef FileName,
468                                                   StringRef ArchiveName,
469                                                   StringRef ArchitectureName) {
470   assert(E);
471   outs().flush();
472   WithColor::error(errs(), ToolName);
473   if (ArchiveName != "")
474     errs() << ArchiveName << "(" << FileName << ")";
475   else
476     errs() << "'" << FileName << "'";
477   if (!ArchitectureName.empty())
478     errs() << " (for architecture " << ArchitectureName << ")";
479   errs() << ": ";
480   logAllUnhandledErrors(std::move(E), errs());
481   exit(1);
482 }
483 
484 static void reportCmdLineWarning(const Twine &Message) {
485   WithColor::warning(errs(), ToolName) << Message << "\n";
486 }
487 
488 LLVM_ATTRIBUTE_NORETURN static void reportCmdLineError(const Twine &Message) {
489   WithColor::error(errs(), ToolName) << Message << "\n";
490   exit(1);
491 }
492 
493 static void warnOnNoMatchForSections() {
494   SetVector<StringRef> MissingSections;
495   for (StringRef S : FilterSections) {
496     if (FoundSectionSet.count(S))
497       return;
498     // User may specify a unnamed section. Don't warn for it.
499     if (!S.empty())
500       MissingSections.insert(S);
501   }
502 
503   // Warn only if no section in FilterSections is matched.
504   for (StringRef S : MissingSections)
505     reportCmdLineWarning("section '" + S +
506                          "' mentioned in a -j/--section option, but not "
507                          "found in any input file");
508 }
509 
510 static const Target *getTarget(const ObjectFile *Obj) {
511   // Figure out the target triple.
512   Triple TheTriple("unknown-unknown-unknown");
513   if (TripleName.empty()) {
514     TheTriple = Obj->makeTriple();
515   } else {
516     TheTriple.setTriple(Triple::normalize(TripleName));
517     auto Arch = Obj->getArch();
518     if (Arch == Triple::arm || Arch == Triple::armeb)
519       Obj->setARMSubArch(TheTriple);
520   }
521 
522   // Get the target specific parser.
523   std::string Error;
524   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
525                                                          Error);
526   if (!TheTarget)
527     reportError(Obj->getFileName(), "can't find target: " + Error);
528 
529   // Update the triple name and return the found target.
530   TripleName = TheTriple.getTriple();
531   return TheTarget;
532 }
533 
534 bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) {
535   return A.getOffset() < B.getOffset();
536 }
537 
538 static Error getRelocationValueString(const RelocationRef &Rel,
539                                       SmallVectorImpl<char> &Result) {
540   const ObjectFile *Obj = Rel.getObject();
541   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
542     return getELFRelocationValueString(ELF, Rel, Result);
543   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
544     return getCOFFRelocationValueString(COFF, Rel, Result);
545   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
546     return getWasmRelocationValueString(Wasm, Rel, Result);
547   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
548     return getMachORelocationValueString(MachO, Rel, Result);
549   if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj))
550     return getXCOFFRelocationValueString(XCOFF, Rel, Result);
551   llvm_unreachable("unknown object file format");
552 }
553 
554 /// Indicates whether this relocation should hidden when listing
555 /// relocations, usually because it is the trailing part of a multipart
556 /// relocation that will be printed as part of the leading relocation.
557 static bool getHidden(RelocationRef RelRef) {
558   auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
559   if (!MachO)
560     return false;
561 
562   unsigned Arch = MachO->getArch();
563   DataRefImpl Rel = RelRef.getRawDataRefImpl();
564   uint64_t Type = MachO->getRelocationType(Rel);
565 
566   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
567   // is always hidden.
568   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
569     return Type == MachO::GENERIC_RELOC_PAIR;
570 
571   if (Arch == Triple::x86_64) {
572     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
573     // an X86_64_RELOC_SUBTRACTOR.
574     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
575       DataRefImpl RelPrev = Rel;
576       RelPrev.d.a--;
577       uint64_t PrevType = MachO->getRelocationType(RelPrev);
578       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
579         return true;
580     }
581   }
582 
583   return false;
584 }
585 
586 namespace {
587 
588 /// Get the column at which we want to start printing the instruction
589 /// disassembly, taking into account anything which appears to the left of it.
590 unsigned getInstStartColumn(const MCSubtargetInfo &STI) {
591   return NoShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24;
592 }
593 
594 /// Stores a single expression representing the location of a source-level
595 /// variable, along with the PC range for which that expression is valid.
596 struct LiveVariable {
597   DWARFLocationExpression LocExpr;
598   const char *VarName;
599   DWARFUnit *Unit;
600   const DWARFDie FuncDie;
601 
602   LiveVariable(const DWARFLocationExpression &LocExpr, const char *VarName,
603                DWARFUnit *Unit, const DWARFDie FuncDie)
604       : LocExpr(LocExpr), VarName(VarName), Unit(Unit), FuncDie(FuncDie) {}
605 
606   bool liveAtAddress(object::SectionedAddress Addr) {
607     if (LocExpr.Range == None)
608       return false;
609     return LocExpr.Range->SectionIndex == Addr.SectionIndex &&
610            LocExpr.Range->LowPC <= Addr.Address &&
611            LocExpr.Range->HighPC > Addr.Address;
612   }
613 
614   void print(raw_ostream &OS, const MCRegisterInfo &MRI) const {
615     DataExtractor Data({LocExpr.Expr.data(), LocExpr.Expr.size()},
616                        Unit->getContext().isLittleEndian(), 0);
617     DWARFExpression Expression(Data, Unit->getAddressByteSize());
618     Expression.printCompact(OS, MRI);
619   }
620 };
621 
622 /// Helper class for printing source variable locations alongside disassembly.
623 class LiveVariablePrinter {
624   // Information we want to track about one column in which we are printing a
625   // variable live range.
626   struct Column {
627     unsigned VarIdx = NullVarIdx;
628     bool LiveIn = false;
629     bool LiveOut = false;
630     bool MustDrawLabel  = false;
631 
632     bool isActive() const { return VarIdx != NullVarIdx; }
633 
634     static constexpr unsigned NullVarIdx = std::numeric_limits<unsigned>::max();
635   };
636 
637   // All live variables we know about in the object/image file.
638   std::vector<LiveVariable> LiveVariables;
639 
640   // The columns we are currently drawing.
641   IndexedMap<Column> ActiveCols;
642 
643   const MCRegisterInfo &MRI;
644   const MCSubtargetInfo &STI;
645 
646   void addVariable(DWARFDie FuncDie, DWARFDie VarDie) {
647     uint64_t FuncLowPC, FuncHighPC, SectionIndex;
648     FuncDie.getLowAndHighPC(FuncLowPC, FuncHighPC, SectionIndex);
649     const char *VarName = VarDie.getName(DINameKind::ShortName);
650     DWARFUnit *U = VarDie.getDwarfUnit();
651 
652     Expected<DWARFLocationExpressionsVector> Locs =
653         VarDie.getLocations(dwarf::DW_AT_location);
654     if (!Locs) {
655       // If the variable doesn't have any locations, just ignore it. We don't
656       // report an error or warning here as that could be noisy on optimised
657       // code.
658       consumeError(Locs.takeError());
659       return;
660     }
661 
662     for (const DWARFLocationExpression &LocExpr : *Locs) {
663       if (LocExpr.Range) {
664         LiveVariables.emplace_back(LocExpr, VarName, U, FuncDie);
665       } else {
666         // If the LocExpr does not have an associated range, it is valid for
667         // the whole of the function.
668         // TODO: technically it is not valid for any range covered by another
669         // LocExpr, does that happen in reality?
670         DWARFLocationExpression WholeFuncExpr{
671             DWARFAddressRange(FuncLowPC, FuncHighPC, SectionIndex),
672             LocExpr.Expr};
673         LiveVariables.emplace_back(WholeFuncExpr, VarName, U, FuncDie);
674       }
675     }
676   }
677 
678   void addFunction(DWARFDie D) {
679     for (const DWARFDie &Child : D.children()) {
680       if (Child.getTag() == dwarf::DW_TAG_variable ||
681           Child.getTag() == dwarf::DW_TAG_formal_parameter)
682         addVariable(D, Child);
683       else
684         addFunction(Child);
685     }
686   }
687 
688   // Get the column number (in characters) at which the first live variable
689   // line should be printed.
690   unsigned getIndentLevel() const {
691     return DbgIndent + getInstStartColumn(STI);
692   }
693 
694   // Indent to the first live-range column to the right of the currently
695   // printed line, and return the index of that column.
696   // TODO: formatted_raw_ostream uses "column" to mean a number of characters
697   // since the last \n, and we use it to mean the number of slots in which we
698   // put live variable lines. Pick a less overloaded word.
699   unsigned moveToFirstVarColumn(formatted_raw_ostream &OS) {
700     // Logical column number: column zero is the first column we print in, each
701     // logical column is 2 physical columns wide.
702     unsigned FirstUnprintedLogicalColumn =
703         std::max((int)(OS.getColumn() - getIndentLevel() + 1) / 2, 0);
704     // Physical column number: the actual column number in characters, with
705     // zero being the left-most side of the screen.
706     unsigned FirstUnprintedPhysicalColumn =
707         getIndentLevel() + FirstUnprintedLogicalColumn * 2;
708 
709     if (FirstUnprintedPhysicalColumn > OS.getColumn())
710       OS.PadToColumn(FirstUnprintedPhysicalColumn);
711 
712     return FirstUnprintedLogicalColumn;
713   }
714 
715   unsigned findFreeColumn() {
716     for (unsigned ColIdx = 0; ColIdx < ActiveCols.size(); ++ColIdx)
717       if (!ActiveCols[ColIdx].isActive())
718         return ColIdx;
719 
720     size_t OldSize = ActiveCols.size();
721     ActiveCols.grow(std::max<size_t>(OldSize * 2, 1));
722     return OldSize;
723   }
724 
725 public:
726   LiveVariablePrinter(const MCRegisterInfo &MRI, const MCSubtargetInfo &STI)
727       : LiveVariables(), ActiveCols(Column()), MRI(MRI), STI(STI) {}
728 
729   void dump() const {
730     for (const LiveVariable &LV : LiveVariables) {
731       dbgs() << LV.VarName << " @ " << LV.LocExpr.Range << ": ";
732       LV.print(dbgs(), MRI);
733       dbgs() << "\n";
734     }
735   }
736 
737   void addCompileUnit(DWARFDie D) {
738     if (D.getTag() == dwarf::DW_TAG_subprogram)
739       addFunction(D);
740     else
741       for (const DWARFDie &Child : D.children())
742         addFunction(Child);
743   }
744 
745   /// Update to match the state of the instruction between ThisAddr and
746   /// NextAddr. In the common case, any live range active at ThisAddr is
747   /// live-in to the instruction, and any live range active at NextAddr is
748   /// live-out of the instruction. If IncludeDefinedVars is false, then live
749   /// ranges starting at NextAddr will be ignored.
750   void update(object::SectionedAddress ThisAddr,
751               object::SectionedAddress NextAddr, bool IncludeDefinedVars) {
752     // First, check variables which have already been assigned a column, so
753     // that we don't change their order.
754     SmallSet<unsigned, 8> CheckedVarIdxs;
755     for (unsigned ColIdx = 0, End = ActiveCols.size(); ColIdx < End; ++ColIdx) {
756       if (!ActiveCols[ColIdx].isActive())
757         continue;
758       CheckedVarIdxs.insert(ActiveCols[ColIdx].VarIdx);
759       LiveVariable &LV = LiveVariables[ActiveCols[ColIdx].VarIdx];
760       ActiveCols[ColIdx].LiveIn = LV.liveAtAddress(ThisAddr);
761       ActiveCols[ColIdx].LiveOut = LV.liveAtAddress(NextAddr);
762       LLVM_DEBUG(dbgs() << "pass 1, " << ThisAddr.Address << "-"
763                         << NextAddr.Address << ", " << LV.VarName << ", Col "
764                         << ColIdx << ": LiveIn=" << ActiveCols[ColIdx].LiveIn
765                         << ", LiveOut=" << ActiveCols[ColIdx].LiveOut << "\n");
766 
767       if (!ActiveCols[ColIdx].LiveIn && !ActiveCols[ColIdx].LiveOut)
768         ActiveCols[ColIdx].VarIdx = Column::NullVarIdx;
769     }
770 
771     // Next, look for variables which don't already have a column, but which
772     // are now live.
773     if (IncludeDefinedVars) {
774       for (unsigned VarIdx = 0, End = LiveVariables.size(); VarIdx < End;
775            ++VarIdx) {
776         if (CheckedVarIdxs.count(VarIdx))
777           continue;
778         LiveVariable &LV = LiveVariables[VarIdx];
779         bool LiveIn = LV.liveAtAddress(ThisAddr);
780         bool LiveOut = LV.liveAtAddress(NextAddr);
781         if (!LiveIn && !LiveOut)
782           continue;
783 
784         unsigned ColIdx = findFreeColumn();
785         LLVM_DEBUG(dbgs() << "pass 2, " << ThisAddr.Address << "-"
786                           << NextAddr.Address << ", " << LV.VarName << ", Col "
787                           << ColIdx << ": LiveIn=" << LiveIn
788                           << ", LiveOut=" << LiveOut << "\n");
789         ActiveCols[ColIdx].VarIdx = VarIdx;
790         ActiveCols[ColIdx].LiveIn = LiveIn;
791         ActiveCols[ColIdx].LiveOut = LiveOut;
792         ActiveCols[ColIdx].MustDrawLabel = true;
793       }
794     }
795   }
796 
797   enum class LineChar {
798     RangeStart,
799     RangeMid,
800     RangeEnd,
801     LabelVert,
802     LabelCornerNew,
803     LabelCornerActive,
804     LabelHoriz,
805   };
806   const char *getLineChar(LineChar C) const {
807     bool IsASCII = DbgVariables == DVASCII;
808     switch (C) {
809     case LineChar::RangeStart:
810       return IsASCII ? "^" : (const char *)u8"\u2548";
811     case LineChar::RangeMid:
812       return IsASCII ? "|" : (const char *)u8"\u2503";
813     case LineChar::RangeEnd:
814       return IsASCII ? "v" : (const char *)u8"\u253b";
815     case LineChar::LabelVert:
816       return IsASCII ? "|" : (const char *)u8"\u2502";
817     case LineChar::LabelCornerNew:
818       return IsASCII ? "/" : (const char *)u8"\u250c";
819     case LineChar::LabelCornerActive:
820       return IsASCII ? "|" : (const char *)u8"\u2520";
821     case LineChar::LabelHoriz:
822       return IsASCII ? "-" : (const char *)u8"\u2500";
823     }
824     llvm_unreachable("Unhandled LineChar enum");
825   }
826 
827   /// Print live ranges to the right of an existing line. This assumes the
828   /// line is not an instruction, so doesn't start or end any live ranges, so
829   /// we only need to print active ranges or empty columns. If AfterInst is
830   /// true, this is being printed after the last instruction fed to update(),
831   /// otherwise this is being printed before it.
832   void printAfterOtherLine(formatted_raw_ostream &OS, bool AfterInst) {
833     if (ActiveCols.size()) {
834       unsigned FirstUnprintedColumn = moveToFirstVarColumn(OS);
835       for (size_t ColIdx = FirstUnprintedColumn, End = ActiveCols.size();
836            ColIdx < End; ++ColIdx) {
837         if (ActiveCols[ColIdx].isActive()) {
838           if ((AfterInst && ActiveCols[ColIdx].LiveOut) ||
839               (!AfterInst && ActiveCols[ColIdx].LiveIn))
840             OS << getLineChar(LineChar::RangeMid);
841           else if (!AfterInst && ActiveCols[ColIdx].LiveOut)
842             OS << getLineChar(LineChar::LabelVert);
843           else
844             OS << " ";
845         }
846         OS << " ";
847       }
848     }
849     OS << "\n";
850   }
851 
852   /// Print any live variable range info needed to the right of a
853   /// non-instruction line of disassembly. This is where we print the variable
854   /// names and expressions, with thin line-drawing characters connecting them
855   /// to the live range which starts at the next instruction. If MustPrint is
856   /// true, we have to print at least one line (with the continuation of any
857   /// already-active live ranges) because something has already been printed
858   /// earlier on this line.
859   void printBetweenInsts(formatted_raw_ostream &OS, bool MustPrint) {
860     bool PrintedSomething = false;
861     for (unsigned ColIdx = 0, End = ActiveCols.size(); ColIdx < End; ++ColIdx) {
862       if (ActiveCols[ColIdx].isActive() && ActiveCols[ColIdx].MustDrawLabel) {
863         // First we need to print the live range markers for any active
864         // columns to the left of this one.
865         OS.PadToColumn(getIndentLevel());
866         for (unsigned ColIdx2 = 0; ColIdx2 < ColIdx; ++ColIdx2) {
867           if (ActiveCols[ColIdx2].isActive()) {
868             if (ActiveCols[ColIdx2].MustDrawLabel &&
869                            !ActiveCols[ColIdx2].LiveIn)
870               OS << getLineChar(LineChar::LabelVert) << " ";
871             else
872               OS << getLineChar(LineChar::RangeMid) << " ";
873           } else
874             OS << "  ";
875         }
876 
877         // Then print the variable name and location of the new live range,
878         // with box drawing characters joining it to the live range line.
879         OS << getLineChar(ActiveCols[ColIdx].LiveIn
880                               ? LineChar::LabelCornerActive
881                               : LineChar::LabelCornerNew)
882            << getLineChar(LineChar::LabelHoriz) << " ";
883         WithColor(OS, raw_ostream::GREEN)
884             << LiveVariables[ActiveCols[ColIdx].VarIdx].VarName;
885         OS << " = ";
886         {
887           WithColor ExprColor(OS, raw_ostream::CYAN);
888           LiveVariables[ActiveCols[ColIdx].VarIdx].print(OS, MRI);
889         }
890 
891         // If there are any columns to the right of the expression we just
892         // printed, then continue their live range lines.
893         unsigned FirstUnprintedColumn = moveToFirstVarColumn(OS);
894         for (unsigned ColIdx2 = FirstUnprintedColumn, End = ActiveCols.size();
895              ColIdx2 < End; ++ColIdx2) {
896           if (ActiveCols[ColIdx2].isActive() && ActiveCols[ColIdx2].LiveIn)
897             OS << getLineChar(LineChar::RangeMid) << " ";
898           else
899             OS << "  ";
900         }
901 
902         OS << "\n";
903         PrintedSomething = true;
904       }
905     }
906 
907     for (unsigned ColIdx = 0, End = ActiveCols.size(); ColIdx < End; ++ColIdx)
908       if (ActiveCols[ColIdx].isActive())
909         ActiveCols[ColIdx].MustDrawLabel = false;
910 
911     // If we must print something (because we printed a line/column number),
912     // but don't have any new variables to print, then print a line which
913     // just continues any existing live ranges.
914     if (MustPrint && !PrintedSomething)
915       printAfterOtherLine(OS, false);
916   }
917 
918   /// Print the live variable ranges to the right of a disassembled instruction.
919   void printAfterInst(formatted_raw_ostream &OS) {
920     if (!ActiveCols.size())
921       return;
922     unsigned FirstUnprintedColumn = moveToFirstVarColumn(OS);
923     for (unsigned ColIdx = FirstUnprintedColumn, End = ActiveCols.size();
924          ColIdx < End; ++ColIdx) {
925       if (!ActiveCols[ColIdx].isActive())
926         OS << "  ";
927       else if (ActiveCols[ColIdx].LiveIn && ActiveCols[ColIdx].LiveOut)
928         OS << getLineChar(LineChar::RangeMid) << " ";
929       else if (ActiveCols[ColIdx].LiveOut)
930         OS << getLineChar(LineChar::RangeStart) << " ";
931       else if (ActiveCols[ColIdx].LiveIn)
932         OS << getLineChar(LineChar::RangeEnd) << " ";
933       else
934         llvm_unreachable("var must be live in or out!");
935     }
936   }
937 };
938 
939 class SourcePrinter {
940 protected:
941   DILineInfo OldLineInfo;
942   const ObjectFile *Obj = nullptr;
943   std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
944   // File name to file contents of source.
945   std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache;
946   // Mark the line endings of the cached source.
947   std::unordered_map<std::string, std::vector<StringRef>> LineCache;
948   // Keep track of missing sources.
949   StringSet<> MissingSources;
950   // Only emit 'invalid debug info' warning once.
951   bool WarnedInvalidDebugInfo = false;
952 
953 private:
954   bool cacheSource(const DILineInfo& LineInfoFile);
955 
956   void printLines(formatted_raw_ostream &OS, const DILineInfo &LineInfo,
957                   StringRef Delimiter, LiveVariablePrinter &LVP);
958 
959   void printSources(formatted_raw_ostream &OS, const DILineInfo &LineInfo,
960                     StringRef ObjectFilename, StringRef Delimiter,
961                     LiveVariablePrinter &LVP);
962 
963 public:
964   SourcePrinter() = default;
965   SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch) : Obj(Obj) {
966     symbolize::LLVMSymbolizer::Options SymbolizerOpts;
967     SymbolizerOpts.PrintFunctions =
968         DILineInfoSpecifier::FunctionNameKind::LinkageName;
969     SymbolizerOpts.Demangle = Demangle;
970     SymbolizerOpts.DefaultArch = std::string(DefaultArch);
971     Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts));
972   }
973   virtual ~SourcePrinter() = default;
974   virtual void printSourceLine(formatted_raw_ostream &OS,
975                                object::SectionedAddress Address,
976                                StringRef ObjectFilename,
977                                LiveVariablePrinter &LVP,
978                                StringRef Delimiter = "; ");
979 };
980 
981 bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) {
982   std::unique_ptr<MemoryBuffer> Buffer;
983   if (LineInfo.Source) {
984     Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source);
985   } else {
986     auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName);
987     if (!BufferOrError) {
988       if (MissingSources.insert(LineInfo.FileName).second)
989         reportWarning("failed to find source " + LineInfo.FileName,
990                       Obj->getFileName());
991       return false;
992     }
993     Buffer = std::move(*BufferOrError);
994   }
995   // Chomp the file to get lines
996   const char *BufferStart = Buffer->getBufferStart(),
997              *BufferEnd = Buffer->getBufferEnd();
998   std::vector<StringRef> &Lines = LineCache[LineInfo.FileName];
999   const char *Start = BufferStart;
1000   for (const char *I = BufferStart; I != BufferEnd; ++I)
1001     if (*I == '\n') {
1002       Lines.emplace_back(Start, I - Start - (BufferStart < I && I[-1] == '\r'));
1003       Start = I + 1;
1004     }
1005   if (Start < BufferEnd)
1006     Lines.emplace_back(Start, BufferEnd - Start);
1007   SourceCache[LineInfo.FileName] = std::move(Buffer);
1008   return true;
1009 }
1010 
1011 void SourcePrinter::printSourceLine(formatted_raw_ostream &OS,
1012                                     object::SectionedAddress Address,
1013                                     StringRef ObjectFilename,
1014                                     LiveVariablePrinter &LVP,
1015                                     StringRef Delimiter) {
1016   if (!Symbolizer)
1017     return;
1018 
1019   DILineInfo LineInfo = DILineInfo();
1020   Expected<DILineInfo> ExpectedLineInfo =
1021       Symbolizer->symbolizeCode(*Obj, Address);
1022   std::string ErrorMessage;
1023   if (ExpectedLineInfo) {
1024     LineInfo = *ExpectedLineInfo;
1025   } else if (!WarnedInvalidDebugInfo) {
1026     WarnedInvalidDebugInfo = true;
1027     // TODO Untested.
1028     reportWarning("failed to parse debug information: " +
1029                       toString(ExpectedLineInfo.takeError()),
1030                   ObjectFilename);
1031   }
1032 
1033   if (!Prefix.empty() && sys::path::is_absolute_gnu(LineInfo.FileName)) {
1034     SmallString<128> FilePath;
1035     sys::path::append(FilePath, Prefix, LineInfo.FileName);
1036 
1037     LineInfo.FileName = std::string(FilePath);
1038   }
1039 
1040   if (PrintLines)
1041     printLines(OS, LineInfo, Delimiter, LVP);
1042   if (PrintSource)
1043     printSources(OS, LineInfo, ObjectFilename, Delimiter, LVP);
1044   OldLineInfo = LineInfo;
1045 }
1046 
1047 void SourcePrinter::printLines(formatted_raw_ostream &OS,
1048                                const DILineInfo &LineInfo, StringRef Delimiter,
1049                                LiveVariablePrinter &LVP) {
1050   bool PrintFunctionName = LineInfo.FunctionName != DILineInfo::BadString &&
1051                            LineInfo.FunctionName != OldLineInfo.FunctionName;
1052   if (PrintFunctionName) {
1053     OS << Delimiter << LineInfo.FunctionName;
1054     // If demangling is successful, FunctionName will end with "()". Print it
1055     // only if demangling did not run or was unsuccessful.
1056     if (!StringRef(LineInfo.FunctionName).endswith("()"))
1057       OS << "()";
1058     OS << ":\n";
1059   }
1060   if (LineInfo.FileName != DILineInfo::BadString && LineInfo.Line != 0 &&
1061       (OldLineInfo.Line != LineInfo.Line ||
1062        OldLineInfo.FileName != LineInfo.FileName || PrintFunctionName)) {
1063     OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line;
1064     LVP.printBetweenInsts(OS, true);
1065   }
1066 }
1067 
1068 void SourcePrinter::printSources(formatted_raw_ostream &OS,
1069                                  const DILineInfo &LineInfo,
1070                                  StringRef ObjectFilename, StringRef Delimiter,
1071                                  LiveVariablePrinter &LVP) {
1072   if (LineInfo.FileName == DILineInfo::BadString || LineInfo.Line == 0 ||
1073       (OldLineInfo.Line == LineInfo.Line &&
1074        OldLineInfo.FileName == LineInfo.FileName))
1075     return;
1076 
1077   if (SourceCache.find(LineInfo.FileName) == SourceCache.end())
1078     if (!cacheSource(LineInfo))
1079       return;
1080   auto LineBuffer = LineCache.find(LineInfo.FileName);
1081   if (LineBuffer != LineCache.end()) {
1082     if (LineInfo.Line > LineBuffer->second.size()) {
1083       reportWarning(
1084           formatv(
1085               "debug info line number {0} exceeds the number of lines in {1}",
1086               LineInfo.Line, LineInfo.FileName),
1087           ObjectFilename);
1088       return;
1089     }
1090     // Vector begins at 0, line numbers are non-zero
1091     OS << Delimiter << LineBuffer->second[LineInfo.Line - 1];
1092     LVP.printBetweenInsts(OS, true);
1093   }
1094 }
1095 
1096 static bool isAArch64Elf(const ObjectFile *Obj) {
1097   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
1098   return Elf && Elf->getEMachine() == ELF::EM_AARCH64;
1099 }
1100 
1101 static bool isArmElf(const ObjectFile *Obj) {
1102   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
1103   return Elf && Elf->getEMachine() == ELF::EM_ARM;
1104 }
1105 
1106 static bool hasMappingSymbols(const ObjectFile *Obj) {
1107   return isArmElf(Obj) || isAArch64Elf(Obj);
1108 }
1109 
1110 static void printRelocation(formatted_raw_ostream &OS, StringRef FileName,
1111                             const RelocationRef &Rel, uint64_t Address,
1112                             bool Is64Bits) {
1113   StringRef Fmt = Is64Bits ? "\t\t%016" PRIx64 ":  " : "\t\t\t%08" PRIx64 ":  ";
1114   SmallString<16> Name;
1115   SmallString<32> Val;
1116   Rel.getTypeName(Name);
1117   if (Error E = getRelocationValueString(Rel, Val))
1118     reportError(std::move(E), FileName);
1119   OS << format(Fmt.data(), Address) << Name << "\t" << Val;
1120 }
1121 
1122 class PrettyPrinter {
1123 public:
1124   virtual ~PrettyPrinter() = default;
1125   virtual void
1126   printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
1127             object::SectionedAddress Address, formatted_raw_ostream &OS,
1128             StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
1129             StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
1130             LiveVariablePrinter &LVP) {
1131     if (SP && (PrintSource || PrintLines))
1132       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
1133     LVP.printBetweenInsts(OS, false);
1134 
1135     size_t Start = OS.tell();
1136     if (!NoLeadingAddr)
1137       OS << format("%8" PRIx64 ":", Address.Address);
1138     if (!NoShowRawInsn) {
1139       OS << ' ';
1140       dumpBytes(Bytes, OS);
1141     }
1142 
1143     // The output of printInst starts with a tab. Print some spaces so that
1144     // the tab has 1 column and advances to the target tab stop.
1145     unsigned TabStop = getInstStartColumn(STI);
1146     unsigned Column = OS.tell() - Start;
1147     OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
1148 
1149     if (MI) {
1150       // See MCInstPrinter::printInst. On targets where a PC relative immediate
1151       // is relative to the next instruction and the length of a MCInst is
1152       // difficult to measure (x86), this is the address of the next
1153       // instruction.
1154       uint64_t Addr =
1155           Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0);
1156       IP.printInst(MI, Addr, "", STI, OS);
1157     } else
1158       OS << "\t<unknown>";
1159   }
1160 };
1161 PrettyPrinter PrettyPrinterInst;
1162 
1163 class HexagonPrettyPrinter : public PrettyPrinter {
1164 public:
1165   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
1166                  formatted_raw_ostream &OS) {
1167     uint32_t opcode =
1168       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
1169     if (!NoLeadingAddr)
1170       OS << format("%8" PRIx64 ":", Address);
1171     if (!NoShowRawInsn) {
1172       OS << "\t";
1173       dumpBytes(Bytes.slice(0, 4), OS);
1174       OS << format("\t%08" PRIx32, opcode);
1175     }
1176   }
1177   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
1178                  object::SectionedAddress Address, formatted_raw_ostream &OS,
1179                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
1180                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
1181                  LiveVariablePrinter &LVP) override {
1182     if (SP && (PrintSource || PrintLines))
1183       SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
1184     if (!MI) {
1185       printLead(Bytes, Address.Address, OS);
1186       OS << " <unknown>";
1187       return;
1188     }
1189     std::string Buffer;
1190     {
1191       raw_string_ostream TempStream(Buffer);
1192       IP.printInst(MI, Address.Address, "", STI, TempStream);
1193     }
1194     StringRef Contents(Buffer);
1195     // Split off bundle attributes
1196     auto PacketBundle = Contents.rsplit('\n');
1197     // Split off first instruction from the rest
1198     auto HeadTail = PacketBundle.first.split('\n');
1199     auto Preamble = " { ";
1200     auto Separator = "";
1201 
1202     // Hexagon's packets require relocations to be inline rather than
1203     // clustered at the end of the packet.
1204     std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
1205     std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
1206     auto PrintReloc = [&]() -> void {
1207       while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
1208         if (RelCur->getOffset() == Address.Address) {
1209           printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false);
1210           return;
1211         }
1212         ++RelCur;
1213       }
1214     };
1215 
1216     while (!HeadTail.first.empty()) {
1217       OS << Separator;
1218       Separator = "\n";
1219       if (SP && (PrintSource || PrintLines))
1220         SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
1221       printLead(Bytes, Address.Address, OS);
1222       OS << Preamble;
1223       Preamble = "   ";
1224       StringRef Inst;
1225       auto Duplex = HeadTail.first.split('\v');
1226       if (!Duplex.second.empty()) {
1227         OS << Duplex.first;
1228         OS << "; ";
1229         Inst = Duplex.second;
1230       }
1231       else
1232         Inst = HeadTail.first;
1233       OS << Inst;
1234       HeadTail = HeadTail.second.split('\n');
1235       if (HeadTail.first.empty())
1236         OS << " } " << PacketBundle.second;
1237       PrintReloc();
1238       Bytes = Bytes.slice(4);
1239       Address.Address += 4;
1240     }
1241   }
1242 };
1243 HexagonPrettyPrinter HexagonPrettyPrinterInst;
1244 
1245 class AMDGCNPrettyPrinter : public PrettyPrinter {
1246 public:
1247   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
1248                  object::SectionedAddress Address, formatted_raw_ostream &OS,
1249                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
1250                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
1251                  LiveVariablePrinter &LVP) override {
1252     if (SP && (PrintSource || PrintLines))
1253       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
1254 
1255     if (MI) {
1256       SmallString<40> InstStr;
1257       raw_svector_ostream IS(InstStr);
1258 
1259       IP.printInst(MI, Address.Address, "", STI, IS);
1260 
1261       OS << left_justify(IS.str(), 60);
1262     } else {
1263       // an unrecognized encoding - this is probably data so represent it
1264       // using the .long directive, or .byte directive if fewer than 4 bytes
1265       // remaining
1266       if (Bytes.size() >= 4) {
1267         OS << format("\t.long 0x%08" PRIx32 " ",
1268                      support::endian::read32<support::little>(Bytes.data()));
1269         OS.indent(42);
1270       } else {
1271           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
1272           for (unsigned int i = 1; i < Bytes.size(); i++)
1273             OS << format(", 0x%02" PRIx8, Bytes[i]);
1274           OS.indent(55 - (6 * Bytes.size()));
1275       }
1276     }
1277 
1278     OS << format("// %012" PRIX64 ":", Address.Address);
1279     if (Bytes.size() >= 4) {
1280       // D should be casted to uint32_t here as it is passed by format to
1281       // snprintf as vararg.
1282       for (uint32_t D : makeArrayRef(
1283                reinterpret_cast<const support::little32_t *>(Bytes.data()),
1284                Bytes.size() / 4))
1285         OS << format(" %08" PRIX32, D);
1286     } else {
1287       for (unsigned char B : Bytes)
1288         OS << format(" %02" PRIX8, B);
1289     }
1290 
1291     if (!Annot.empty())
1292       OS << " // " << Annot;
1293   }
1294 };
1295 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
1296 
1297 class BPFPrettyPrinter : public PrettyPrinter {
1298 public:
1299   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
1300                  object::SectionedAddress Address, formatted_raw_ostream &OS,
1301                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
1302                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
1303                  LiveVariablePrinter &LVP) override {
1304     if (SP && (PrintSource || PrintLines))
1305       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
1306     if (!NoLeadingAddr)
1307       OS << format("%8" PRId64 ":", Address.Address / 8);
1308     if (!NoShowRawInsn) {
1309       OS << "\t";
1310       dumpBytes(Bytes, OS);
1311     }
1312     if (MI)
1313       IP.printInst(MI, Address.Address, "", STI, OS);
1314     else
1315       OS << "\t<unknown>";
1316   }
1317 };
1318 BPFPrettyPrinter BPFPrettyPrinterInst;
1319 
1320 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
1321   switch(Triple.getArch()) {
1322   default:
1323     return PrettyPrinterInst;
1324   case Triple::hexagon:
1325     return HexagonPrettyPrinterInst;
1326   case Triple::amdgcn:
1327     return AMDGCNPrettyPrinterInst;
1328   case Triple::bpfel:
1329   case Triple::bpfeb:
1330     return BPFPrettyPrinterInst;
1331   }
1332 }
1333 }
1334 
1335 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
1336   assert(Obj->isELF());
1337   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
1338     return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()),
1339                          Obj->getFileName())
1340         ->getType();
1341   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
1342     return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()),
1343                          Obj->getFileName())
1344         ->getType();
1345   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
1346     return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()),
1347                          Obj->getFileName())
1348         ->getType();
1349   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
1350     return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()),
1351                          Obj->getFileName())
1352         ->getType();
1353   llvm_unreachable("Unsupported binary format");
1354 }
1355 
1356 template <class ELFT> static void
1357 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
1358                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1359   for (auto Symbol : Obj->getDynamicSymbolIterators()) {
1360     uint8_t SymbolType = Symbol.getELFType();
1361     if (SymbolType == ELF::STT_SECTION)
1362       continue;
1363 
1364     uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj->getFileName());
1365     // ELFSymbolRef::getAddress() returns size instead of value for common
1366     // symbols which is not desirable for disassembly output. Overriding.
1367     if (SymbolType == ELF::STT_COMMON)
1368       Address = unwrapOrError(Obj->getSymbol(Symbol.getRawDataRefImpl()),
1369                               Obj->getFileName())
1370                     ->st_value;
1371 
1372     StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName());
1373     if (Name.empty())
1374       continue;
1375 
1376     section_iterator SecI =
1377         unwrapOrError(Symbol.getSection(), Obj->getFileName());
1378     if (SecI == Obj->section_end())
1379       continue;
1380 
1381     AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
1382   }
1383 }
1384 
1385 static void
1386 addDynamicElfSymbols(const ObjectFile *Obj,
1387                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1388   assert(Obj->isELF());
1389   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
1390     addDynamicElfSymbols(Elf32LEObj, AllSymbols);
1391   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
1392     addDynamicElfSymbols(Elf64LEObj, AllSymbols);
1393   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
1394     addDynamicElfSymbols(Elf32BEObj, AllSymbols);
1395   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
1396     addDynamicElfSymbols(Elf64BEObj, AllSymbols);
1397   else
1398     llvm_unreachable("Unsupported binary format");
1399 }
1400 
1401 static void addPltEntries(const ObjectFile *Obj,
1402                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
1403                           StringSaver &Saver) {
1404   Optional<SectionRef> Plt = None;
1405   for (const SectionRef &Section : Obj->sections()) {
1406     Expected<StringRef> SecNameOrErr = Section.getName();
1407     if (!SecNameOrErr) {
1408       consumeError(SecNameOrErr.takeError());
1409       continue;
1410     }
1411     if (*SecNameOrErr == ".plt")
1412       Plt = Section;
1413   }
1414   if (!Plt)
1415     return;
1416   if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) {
1417     for (auto PltEntry : ElfObj->getPltAddresses()) {
1418       if (PltEntry.first) {
1419         SymbolRef Symbol(*PltEntry.first, ElfObj);
1420         uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
1421         if (Expected<StringRef> NameOrErr = Symbol.getName()) {
1422           if (!NameOrErr->empty())
1423             AllSymbols[*Plt].emplace_back(
1424                 PltEntry.second, Saver.save((*NameOrErr + "@plt").str()),
1425                 SymbolType);
1426           continue;
1427         } else {
1428           // The warning has been reported in disassembleObject().
1429           consumeError(NameOrErr.takeError());
1430         }
1431       }
1432       reportWarning("PLT entry at 0x" + Twine::utohexstr(PltEntry.second) +
1433                         " references an invalid symbol",
1434                     Obj->getFileName());
1435     }
1436   }
1437 }
1438 
1439 // Normally the disassembly output will skip blocks of zeroes. This function
1440 // returns the number of zero bytes that can be skipped when dumping the
1441 // disassembly of the instructions in Buf.
1442 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
1443   // Find the number of leading zeroes.
1444   size_t N = 0;
1445   while (N < Buf.size() && !Buf[N])
1446     ++N;
1447 
1448   // We may want to skip blocks of zero bytes, but unless we see
1449   // at least 8 of them in a row.
1450   if (N < 8)
1451     return 0;
1452 
1453   // We skip zeroes in multiples of 4 because do not want to truncate an
1454   // instruction if it starts with a zero byte.
1455   return N & ~0x3;
1456 }
1457 
1458 // Returns a map from sections to their relocations.
1459 static std::map<SectionRef, std::vector<RelocationRef>>
1460 getRelocsMap(object::ObjectFile const &Obj) {
1461   std::map<SectionRef, std::vector<RelocationRef>> Ret;
1462   uint64_t I = (uint64_t)-1;
1463   for (SectionRef Sec : Obj.sections()) {
1464     ++I;
1465     Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection();
1466     if (!RelocatedOrErr)
1467       reportError(Obj.getFileName(),
1468                   "section (" + Twine(I) +
1469                       "): failed to get a relocated section: " +
1470                       toString(RelocatedOrErr.takeError()));
1471 
1472     section_iterator Relocated = *RelocatedOrErr;
1473     if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep)
1474       continue;
1475     std::vector<RelocationRef> &V = Ret[*Relocated];
1476     append_range(V, Sec.relocations());
1477     // Sort relocations by address.
1478     llvm::stable_sort(V, isRelocAddressLess);
1479   }
1480   return Ret;
1481 }
1482 
1483 // Used for --adjust-vma to check if address should be adjusted by the
1484 // specified value for a given section.
1485 // For ELF we do not adjust non-allocatable sections like debug ones,
1486 // because they are not loadable.
1487 // TODO: implement for other file formats.
1488 static bool shouldAdjustVA(const SectionRef &Section) {
1489   const ObjectFile *Obj = Section.getObject();
1490   if (Obj->isELF())
1491     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
1492   return false;
1493 }
1494 
1495 
1496 typedef std::pair<uint64_t, char> MappingSymbolPair;
1497 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,
1498                                  uint64_t Address) {
1499   auto It =
1500       partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) {
1501         return Val.first <= Address;
1502       });
1503   // Return zero for any address before the first mapping symbol; this means
1504   // we should use the default disassembly mode, depending on the target.
1505   if (It == MappingSymbols.begin())
1506     return '\x00';
1507   return (It - 1)->second;
1508 }
1509 
1510 static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index,
1511                                uint64_t End, const ObjectFile *Obj,
1512                                ArrayRef<uint8_t> Bytes,
1513                                ArrayRef<MappingSymbolPair> MappingSymbols,
1514                                raw_ostream &OS) {
1515   support::endianness Endian =
1516       Obj->isLittleEndian() ? support::little : support::big;
1517   OS << format("%8" PRIx64 ":\t", SectionAddr + Index);
1518   if (Index + 4 <= End) {
1519     dumpBytes(Bytes.slice(Index, 4), OS);
1520     OS << "\t.word\t"
1521            << format_hex(support::endian::read32(Bytes.data() + Index, Endian),
1522                          10);
1523     return 4;
1524   }
1525   if (Index + 2 <= End) {
1526     dumpBytes(Bytes.slice(Index, 2), OS);
1527     OS << "\t\t.short\t"
1528            << format_hex(support::endian::read16(Bytes.data() + Index, Endian),
1529                          6);
1530     return 2;
1531   }
1532   dumpBytes(Bytes.slice(Index, 1), OS);
1533   OS << "\t\t.byte\t" << format_hex(Bytes[0], 4);
1534   return 1;
1535 }
1536 
1537 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
1538                         ArrayRef<uint8_t> Bytes) {
1539   // print out data up to 8 bytes at a time in hex and ascii
1540   uint8_t AsciiData[9] = {'\0'};
1541   uint8_t Byte;
1542   int NumBytes = 0;
1543 
1544   for (; Index < End; ++Index) {
1545     if (NumBytes == 0)
1546       outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1547     Byte = Bytes.slice(Index)[0];
1548     outs() << format(" %02x", Byte);
1549     AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
1550 
1551     uint8_t IndentOffset = 0;
1552     NumBytes++;
1553     if (Index == End - 1 || NumBytes > 8) {
1554       // Indent the space for less than 8 bytes data.
1555       // 2 spaces for byte and one for space between bytes
1556       IndentOffset = 3 * (8 - NumBytes);
1557       for (int Excess = NumBytes; Excess < 8; Excess++)
1558         AsciiData[Excess] = '\0';
1559       NumBytes = 8;
1560     }
1561     if (NumBytes == 8) {
1562       AsciiData[8] = '\0';
1563       outs() << std::string(IndentOffset, ' ') << "         ";
1564       outs() << reinterpret_cast<char *>(AsciiData);
1565       outs() << '\n';
1566       NumBytes = 0;
1567     }
1568   }
1569 }
1570 
1571 SymbolInfoTy objdump::createSymbolInfo(const ObjectFile *Obj,
1572                                        const SymbolRef &Symbol) {
1573   const StringRef FileName = Obj->getFileName();
1574   const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName);
1575   const StringRef Name = unwrapOrError(Symbol.getName(), FileName);
1576 
1577   if (Obj->isXCOFF() && SymbolDescription) {
1578     const auto *XCOFFObj = cast<XCOFFObjectFile>(Obj);
1579     DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl();
1580 
1581     const uint32_t SymbolIndex = XCOFFObj->getSymbolIndex(SymbolDRI.p);
1582     Optional<XCOFF::StorageMappingClass> Smc =
1583         getXCOFFSymbolCsectSMC(XCOFFObj, Symbol);
1584     return SymbolInfoTy(Addr, Name, Smc, SymbolIndex,
1585                         isLabel(XCOFFObj, Symbol));
1586   } else
1587     return SymbolInfoTy(Addr, Name,
1588                         Obj->isELF() ? getElfSymbolType(Obj, Symbol)
1589                                      : (uint8_t)ELF::STT_NOTYPE);
1590 }
1591 
1592 static SymbolInfoTy createDummySymbolInfo(const ObjectFile *Obj,
1593                                           const uint64_t Addr, StringRef &Name,
1594                                           uint8_t Type) {
1595   if (Obj->isXCOFF() && SymbolDescription)
1596     return SymbolInfoTy(Addr, Name, None, None, false);
1597   else
1598     return SymbolInfoTy(Addr, Name, Type);
1599 }
1600 
1601 static void
1602 collectLocalBranchTargets(ArrayRef<uint8_t> Bytes, const MCInstrAnalysis *MIA,
1603                           MCDisassembler *DisAsm, MCInstPrinter *IP,
1604                           const MCSubtargetInfo *STI, uint64_t SectionAddr,
1605                           uint64_t Start, uint64_t End,
1606                           std::unordered_map<uint64_t, std::string> &Labels) {
1607   // So far only supports X86.
1608   if (!STI->getTargetTriple().isX86())
1609     return;
1610 
1611   Labels.clear();
1612   unsigned LabelCount = 0;
1613   Start += SectionAddr;
1614   End += SectionAddr;
1615   uint64_t Index = Start;
1616   while (Index < End) {
1617     // Disassemble a real instruction and record function-local branch labels.
1618     MCInst Inst;
1619     uint64_t Size;
1620     bool Disassembled = DisAsm->getInstruction(
1621         Inst, Size, Bytes.slice(Index - SectionAddr), Index, nulls());
1622     if (Size == 0)
1623       Size = 1;
1624 
1625     if (Disassembled && MIA) {
1626       uint64_t Target;
1627       bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target);
1628       if (TargetKnown && (Target >= Start && Target < End) &&
1629           !Labels.count(Target))
1630         Labels[Target] = ("L" + Twine(LabelCount++)).str();
1631     }
1632 
1633     Index += Size;
1634   }
1635 }
1636 
1637 static StringRef getSegmentName(const MachOObjectFile *MachO,
1638                                 const SectionRef &Section) {
1639   if (MachO) {
1640     DataRefImpl DR = Section.getRawDataRefImpl();
1641     StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1642     return SegmentName;
1643   }
1644   return "";
1645 }
1646 
1647 static void disassembleObject(const Target *TheTarget, const ObjectFile *Obj,
1648                               MCContext &Ctx, MCDisassembler *PrimaryDisAsm,
1649                               MCDisassembler *SecondaryDisAsm,
1650                               const MCInstrAnalysis *MIA, MCInstPrinter *IP,
1651                               const MCSubtargetInfo *PrimarySTI,
1652                               const MCSubtargetInfo *SecondarySTI,
1653                               PrettyPrinter &PIP,
1654                               SourcePrinter &SP, bool InlineRelocs) {
1655   const MCSubtargetInfo *STI = PrimarySTI;
1656   MCDisassembler *DisAsm = PrimaryDisAsm;
1657   bool PrimaryIsThumb = false;
1658   if (isArmElf(Obj))
1659     PrimaryIsThumb = STI->checkFeatures("+thumb-mode");
1660 
1661   std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
1662   if (InlineRelocs)
1663     RelocMap = getRelocsMap(*Obj);
1664   bool Is64Bits = Obj->getBytesInAddress() > 4;
1665 
1666   // Create a mapping from virtual address to symbol name.  This is used to
1667   // pretty print the symbols while disassembling.
1668   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1669   SectionSymbolsTy AbsoluteSymbols;
1670   const StringRef FileName = Obj->getFileName();
1671   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
1672   for (const SymbolRef &Symbol : Obj->symbols()) {
1673     Expected<StringRef> NameOrErr = Symbol.getName();
1674     if (!NameOrErr) {
1675       reportWarning(toString(NameOrErr.takeError()), FileName);
1676       continue;
1677     }
1678     if (NameOrErr->empty() && !(Obj->isXCOFF() && SymbolDescription))
1679       continue;
1680 
1681     if (Obj->isELF() && getElfSymbolType(Obj, Symbol) == ELF::STT_SECTION)
1682       continue;
1683 
1684     // Don't ask a Mach-O STAB symbol for its section unless you know that
1685     // STAB symbol's section field refers to a valid section index. Otherwise
1686     // the symbol may error trying to load a section that does not exist.
1687     if (MachO) {
1688       DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
1689       uint8_t NType = (MachO->is64Bit() ?
1690                        MachO->getSymbol64TableEntry(SymDRI).n_type:
1691                        MachO->getSymbolTableEntry(SymDRI).n_type);
1692       if (NType & MachO::N_STAB)
1693         continue;
1694     }
1695 
1696     section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1697     if (SecI != Obj->section_end())
1698       AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol));
1699     else
1700       AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol));
1701   }
1702 
1703   if (AllSymbols.empty() && Obj->isELF())
1704     addDynamicElfSymbols(Obj, AllSymbols);
1705 
1706   BumpPtrAllocator A;
1707   StringSaver Saver(A);
1708   addPltEntries(Obj, AllSymbols, Saver);
1709 
1710   // Create a mapping from virtual address to section. An empty section can
1711   // cause more than one section at the same address. Sort such sections to be
1712   // before same-addressed non-empty sections so that symbol lookups prefer the
1713   // non-empty section.
1714   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1715   for (SectionRef Sec : Obj->sections())
1716     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1717   llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) {
1718     if (LHS.first != RHS.first)
1719       return LHS.first < RHS.first;
1720     return LHS.second.getSize() < RHS.second.getSize();
1721   });
1722 
1723   // Linked executables (.exe and .dll files) typically don't include a real
1724   // symbol table but they might contain an export table.
1725   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
1726     for (const auto &ExportEntry : COFFObj->export_directories()) {
1727       StringRef Name;
1728       if (Error E = ExportEntry.getSymbolName(Name))
1729         reportError(std::move(E), Obj->getFileName());
1730       if (Name.empty())
1731         continue;
1732 
1733       uint32_t RVA;
1734       if (Error E = ExportEntry.getExportRVA(RVA))
1735         reportError(std::move(E), Obj->getFileName());
1736 
1737       uint64_t VA = COFFObj->getImageBase() + RVA;
1738       auto Sec = partition_point(
1739           SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) {
1740             return O.first <= VA;
1741           });
1742       if (Sec != SectionAddresses.begin()) {
1743         --Sec;
1744         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1745       } else
1746         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1747     }
1748   }
1749 
1750   // Sort all the symbols, this allows us to use a simple binary search to find
1751   // Multiple symbols can have the same address. Use a stable sort to stabilize
1752   // the output.
1753   StringSet<> FoundDisasmSymbolSet;
1754   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1755     llvm::stable_sort(SecSyms.second);
1756   llvm::stable_sort(AbsoluteSymbols);
1757 
1758   std::unique_ptr<DWARFContext> DICtx;
1759   LiveVariablePrinter LVP(*Ctx.getRegisterInfo(), *STI);
1760 
1761   if (DbgVariables != DVDisabled) {
1762     DICtx = DWARFContext::create(*Obj);
1763     for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units())
1764       LVP.addCompileUnit(CU->getUnitDIE(false));
1765   }
1766 
1767   LLVM_DEBUG(LVP.dump());
1768 
1769   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1770     if (FilterSections.empty() && !DisassembleAll &&
1771         (!Section.isText() || Section.isVirtual()))
1772       continue;
1773 
1774     uint64_t SectionAddr = Section.getAddress();
1775     uint64_t SectSize = Section.getSize();
1776     if (!SectSize)
1777       continue;
1778 
1779     // Get the list of all the symbols in this section.
1780     SectionSymbolsTy &Symbols = AllSymbols[Section];
1781     std::vector<MappingSymbolPair> MappingSymbols;
1782     if (hasMappingSymbols(Obj)) {
1783       for (const auto &Symb : Symbols) {
1784         uint64_t Address = Symb.Addr;
1785         StringRef Name = Symb.Name;
1786         if (Name.startswith("$d"))
1787           MappingSymbols.emplace_back(Address - SectionAddr, 'd');
1788         if (Name.startswith("$x"))
1789           MappingSymbols.emplace_back(Address - SectionAddr, 'x');
1790         if (Name.startswith("$a"))
1791           MappingSymbols.emplace_back(Address - SectionAddr, 'a');
1792         if (Name.startswith("$t"))
1793           MappingSymbols.emplace_back(Address - SectionAddr, 't');
1794       }
1795     }
1796 
1797     llvm::sort(MappingSymbols);
1798 
1799     if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1800       // AMDGPU disassembler uses symbolizer for printing labels
1801       std::unique_ptr<MCRelocationInfo> RelInfo(
1802         TheTarget->createMCRelocationInfo(TripleName, Ctx));
1803       if (RelInfo) {
1804         std::unique_ptr<MCSymbolizer> Symbolizer(
1805           TheTarget->createMCSymbolizer(
1806             TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1807         DisAsm->setSymbolizer(std::move(Symbolizer));
1808       }
1809     }
1810 
1811     StringRef SegmentName = getSegmentName(MachO, Section);
1812     StringRef SectionName = unwrapOrError(Section.getName(), Obj->getFileName());
1813     // If the section has no symbol at the start, just insert a dummy one.
1814     if (Symbols.empty() || Symbols[0].Addr != 0) {
1815       Symbols.insert(Symbols.begin(),
1816                      createDummySymbolInfo(Obj, SectionAddr, SectionName,
1817                                            Section.isText() ? ELF::STT_FUNC
1818                                                             : ELF::STT_OBJECT));
1819     }
1820 
1821     SmallString<40> Comments;
1822     raw_svector_ostream CommentStream(Comments);
1823 
1824     ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(
1825         unwrapOrError(Section.getContents(), Obj->getFileName()));
1826 
1827     uint64_t VMAAdjustment = 0;
1828     if (shouldAdjustVA(Section))
1829       VMAAdjustment = AdjustVMA;
1830 
1831     uint64_t Size;
1832     uint64_t Index;
1833     bool PrintedSection = false;
1834     std::vector<RelocationRef> Rels = RelocMap[Section];
1835     std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1836     std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1837     // Disassemble symbol by symbol.
1838     for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) {
1839       std::string SymbolName = Symbols[SI].Name.str();
1840       if (Demangle)
1841         SymbolName = demangle(SymbolName);
1842 
1843       // Skip if --disassemble-symbols is not empty and the symbol is not in
1844       // the list.
1845       if (!DisasmSymbolSet.empty() && !DisasmSymbolSet.count(SymbolName))
1846         continue;
1847 
1848       uint64_t Start = Symbols[SI].Addr;
1849       if (Start < SectionAddr || StopAddress <= Start)
1850         continue;
1851       else
1852         FoundDisasmSymbolSet.insert(SymbolName);
1853 
1854       // The end is the section end, the beginning of the next symbol, or
1855       // --stop-address.
1856       uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress);
1857       if (SI + 1 < SE)
1858         End = std::min(End, Symbols[SI + 1].Addr);
1859       if (Start >= End || End <= StartAddress)
1860         continue;
1861       Start -= SectionAddr;
1862       End -= SectionAddr;
1863 
1864       if (!PrintedSection) {
1865         PrintedSection = true;
1866         outs() << "\nDisassembly of section ";
1867         if (!SegmentName.empty())
1868           outs() << SegmentName << ",";
1869         outs() << SectionName << ":\n";
1870       }
1871 
1872       outs() << '\n';
1873       if (!NoLeadingAddr)
1874         outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",
1875                          SectionAddr + Start + VMAAdjustment);
1876       if (Obj->isXCOFF() && SymbolDescription) {
1877         outs() << getXCOFFSymbolDescription(Symbols[SI], SymbolName) << ":\n";
1878       } else
1879         outs() << '<' << SymbolName << ">:\n";
1880 
1881       // Don't print raw contents of a virtual section. A virtual section
1882       // doesn't have any contents in the file.
1883       if (Section.isVirtual()) {
1884         outs() << "...\n";
1885         continue;
1886       }
1887 
1888       auto Status = DisAsm->onSymbolStart(Symbols[SI], Size,
1889                                           Bytes.slice(Start, End - Start),
1890                                           SectionAddr + Start, CommentStream);
1891       // To have round trippable disassembly, we fall back to decoding the
1892       // remaining bytes as instructions.
1893       //
1894       // If there is a failure, we disassemble the failed region as bytes before
1895       // falling back. The target is expected to print nothing in this case.
1896       //
1897       // If there is Success or SoftFail i.e no 'real' failure, we go ahead by
1898       // Size bytes before falling back.
1899       // So if the entire symbol is 'eaten' by the target:
1900       //   Start += Size  // Now Start = End and we will never decode as
1901       //                  // instructions
1902       //
1903       // Right now, most targets return None i.e ignore to treat a symbol
1904       // separately. But WebAssembly decodes preludes for some symbols.
1905       //
1906       if (Status.hasValue()) {
1907         if (Status.getValue() == MCDisassembler::Fail) {
1908           outs() << "// Error in decoding " << SymbolName
1909                  << " : Decoding failed region as bytes.\n";
1910           for (uint64_t I = 0; I < Size; ++I) {
1911             outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true)
1912                    << "\n";
1913           }
1914         }
1915       } else {
1916         Size = 0;
1917       }
1918 
1919       Start += Size;
1920 
1921       Index = Start;
1922       if (SectionAddr < StartAddress)
1923         Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
1924 
1925       // If there is a data/common symbol inside an ELF text section and we are
1926       // only disassembling text (applicable all architectures), we are in a
1927       // situation where we must print the data and not disassemble it.
1928       if (Obj->isELF() && !DisassembleAll && Section.isText()) {
1929         uint8_t SymTy = Symbols[SI].Type;
1930         if (SymTy == ELF::STT_OBJECT || SymTy == ELF::STT_COMMON) {
1931           dumpELFData(SectionAddr, Index, End, Bytes);
1932           Index = End;
1933         }
1934       }
1935 
1936       bool CheckARMELFData = hasMappingSymbols(Obj) &&
1937                              Symbols[SI].Type != ELF::STT_OBJECT &&
1938                              !DisassembleAll;
1939       bool DumpARMELFData = false;
1940       formatted_raw_ostream FOS(outs());
1941 
1942       std::unordered_map<uint64_t, std::string> AllLabels;
1943       if (SymbolizeOperands)
1944         collectLocalBranchTargets(Bytes, MIA, DisAsm, IP, PrimarySTI,
1945                                   SectionAddr, Index, End, AllLabels);
1946 
1947       while (Index < End) {
1948         // ARM and AArch64 ELF binaries can interleave data and text in the
1949         // same section. We rely on the markers introduced to understand what
1950         // we need to dump. If the data marker is within a function, it is
1951         // denoted as a word/short etc.
1952         if (CheckARMELFData) {
1953           char Kind = getMappingSymbolKind(MappingSymbols, Index);
1954           DumpARMELFData = Kind == 'd';
1955           if (SecondarySTI) {
1956             if (Kind == 'a') {
1957               STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI;
1958               DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm;
1959             } else if (Kind == 't') {
1960               STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI;
1961               DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm;
1962             }
1963           }
1964         }
1965 
1966         if (DumpARMELFData) {
1967           Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
1968                                 MappingSymbols, FOS);
1969         } else {
1970           // When -z or --disassemble-zeroes are given we always dissasemble
1971           // them. Otherwise we might want to skip zero bytes we see.
1972           if (!DisassembleZeroes) {
1973             uint64_t MaxOffset = End - Index;
1974             // For --reloc: print zero blocks patched by relocations, so that
1975             // relocations can be shown in the dump.
1976             if (RelCur != RelEnd)
1977               MaxOffset = RelCur->getOffset() - Index;
1978 
1979             if (size_t N =
1980                     countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
1981               FOS << "\t\t..." << '\n';
1982               Index += N;
1983               continue;
1984             }
1985           }
1986 
1987           // Print local label if there's any.
1988           auto Iter = AllLabels.find(SectionAddr + Index);
1989           if (Iter != AllLabels.end())
1990             FOS << "<" << Iter->second << ">:\n";
1991 
1992           // Disassemble a real instruction or a data when disassemble all is
1993           // provided
1994           MCInst Inst;
1995           bool Disassembled =
1996               DisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
1997                                      SectionAddr + Index, CommentStream);
1998           if (Size == 0)
1999             Size = 1;
2000 
2001           LVP.update({Index, Section.getIndex()},
2002                      {Index + Size, Section.getIndex()}, Index + Size != End);
2003 
2004           PIP.printInst(
2005               *IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size),
2006               {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS,
2007               "", *STI, &SP, Obj->getFileName(), &Rels, LVP);
2008           FOS << CommentStream.str();
2009           Comments.clear();
2010 
2011           // If disassembly has failed, avoid analysing invalid/incomplete
2012           // instruction information. Otherwise, try to resolve the target
2013           // address (jump target or memory operand address) and print it on the
2014           // right of the instruction.
2015           if (Disassembled && MIA) {
2016             uint64_t Target;
2017             bool PrintTarget =
2018                 MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target);
2019             if (!PrintTarget)
2020               if (Optional<uint64_t> MaybeTarget =
2021                       MIA->evaluateMemoryOperandAddress(
2022                           Inst, SectionAddr + Index, Size)) {
2023                 Target = *MaybeTarget;
2024                 PrintTarget = true;
2025                 // Do not print real address when symbolizing.
2026                 if (!SymbolizeOperands)
2027                   FOS << "  # " << Twine::utohexstr(Target);
2028               }
2029             if (PrintTarget) {
2030               // In a relocatable object, the target's section must reside in
2031               // the same section as the call instruction or it is accessed
2032               // through a relocation.
2033               //
2034               // In a non-relocatable object, the target may be in any section.
2035               // In that case, locate the section(s) containing the target
2036               // address and find the symbol in one of those, if possible.
2037               //
2038               // N.B. We don't walk the relocations in the relocatable case yet.
2039               std::vector<const SectionSymbolsTy *> TargetSectionSymbols;
2040               if (!Obj->isRelocatableObject()) {
2041                 auto It = llvm::partition_point(
2042                     SectionAddresses,
2043                     [=](const std::pair<uint64_t, SectionRef> &O) {
2044                       return O.first <= Target;
2045                     });
2046                 uint64_t TargetSecAddr = 0;
2047                 while (It != SectionAddresses.begin()) {
2048                   --It;
2049                   if (TargetSecAddr == 0)
2050                     TargetSecAddr = It->first;
2051                   if (It->first != TargetSecAddr)
2052                     break;
2053                   TargetSectionSymbols.push_back(&AllSymbols[It->second]);
2054                 }
2055               } else {
2056                 TargetSectionSymbols.push_back(&Symbols);
2057               }
2058               TargetSectionSymbols.push_back(&AbsoluteSymbols);
2059 
2060               // Find the last symbol in the first candidate section whose
2061               // offset is less than or equal to the target. If there are no
2062               // such symbols, try in the next section and so on, before finally
2063               // using the nearest preceding absolute symbol (if any), if there
2064               // are no other valid symbols.
2065               const SymbolInfoTy *TargetSym = nullptr;
2066               for (const SectionSymbolsTy *TargetSymbols :
2067                    TargetSectionSymbols) {
2068                 auto It = llvm::partition_point(
2069                     *TargetSymbols,
2070                     [=](const SymbolInfoTy &O) { return O.Addr <= Target; });
2071                 if (It != TargetSymbols->begin()) {
2072                   TargetSym = &*(It - 1);
2073                   break;
2074                 }
2075               }
2076 
2077               // Print the labels corresponding to the target if there's any.
2078               bool LabelAvailable = AllLabels.count(Target);
2079               if (TargetSym != nullptr) {
2080                 uint64_t TargetAddress = TargetSym->Addr;
2081                 uint64_t Disp = Target - TargetAddress;
2082                 std::string TargetName = TargetSym->Name.str();
2083                 if (Demangle)
2084                   TargetName = demangle(TargetName);
2085 
2086                 FOS << " <";
2087                 if (!Disp) {
2088                   // Always Print the binary symbol precisely corresponding to
2089                   // the target address.
2090                   FOS << TargetName;
2091                 } else if (!LabelAvailable) {
2092                   // Always Print the binary symbol plus an offset if there's no
2093                   // local label corresponding to the target address.
2094                   FOS << TargetName << "+0x" << Twine::utohexstr(Disp);
2095                 } else {
2096                   FOS << AllLabels[Target];
2097                 }
2098                 FOS << ">";
2099               } else if (LabelAvailable) {
2100                 FOS << " <" << AllLabels[Target] << ">";
2101               }
2102             }
2103           }
2104         }
2105 
2106         LVP.printAfterInst(FOS);
2107         FOS << "\n";
2108 
2109         // Hexagon does this in pretty printer
2110         if (Obj->getArch() != Triple::hexagon) {
2111           // Print relocation for instruction and data.
2112           while (RelCur != RelEnd) {
2113             uint64_t Offset = RelCur->getOffset();
2114             // If this relocation is hidden, skip it.
2115             if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) {
2116               ++RelCur;
2117               continue;
2118             }
2119 
2120             // Stop when RelCur's offset is past the disassembled
2121             // instruction/data. Note that it's possible the disassembled data
2122             // is not the complete data: we might see the relocation printed in
2123             // the middle of the data, but this matches the binutils objdump
2124             // output.
2125             if (Offset >= Index + Size)
2126               break;
2127 
2128             // When --adjust-vma is used, update the address printed.
2129             if (RelCur->getSymbol() != Obj->symbol_end()) {
2130               Expected<section_iterator> SymSI =
2131                   RelCur->getSymbol()->getSection();
2132               if (SymSI && *SymSI != Obj->section_end() &&
2133                   shouldAdjustVA(**SymSI))
2134                 Offset += AdjustVMA;
2135             }
2136 
2137             printRelocation(FOS, Obj->getFileName(), *RelCur,
2138                             SectionAddr + Offset, Is64Bits);
2139             LVP.printAfterOtherLine(FOS, true);
2140             ++RelCur;
2141           }
2142         }
2143 
2144         Index += Size;
2145       }
2146     }
2147   }
2148   StringSet<> MissingDisasmSymbolSet =
2149       set_difference(DisasmSymbolSet, FoundDisasmSymbolSet);
2150   for (StringRef Sym : MissingDisasmSymbolSet.keys())
2151     reportWarning("failed to disassemble missing symbol " + Sym, FileName);
2152 }
2153 
2154 static void disassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
2155   const Target *TheTarget = getTarget(Obj);
2156 
2157   // Package up features to be passed to target/subtarget
2158   SubtargetFeatures Features = Obj->getFeatures();
2159   if (!MAttrs.empty())
2160     for (unsigned I = 0; I != MAttrs.size(); ++I)
2161       Features.AddFeature(MAttrs[I]);
2162 
2163   std::unique_ptr<const MCRegisterInfo> MRI(
2164       TheTarget->createMCRegInfo(TripleName));
2165   if (!MRI)
2166     reportError(Obj->getFileName(),
2167                 "no register info for target " + TripleName);
2168 
2169   // Set up disassembler.
2170   MCTargetOptions MCOptions;
2171   std::unique_ptr<const MCAsmInfo> AsmInfo(
2172       TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions));
2173   if (!AsmInfo)
2174     reportError(Obj->getFileName(),
2175                 "no assembly info for target " + TripleName);
2176 
2177   if (MCPU.empty())
2178     MCPU = Obj->tryGetCPUName().getValueOr("").str();
2179 
2180   std::unique_ptr<const MCSubtargetInfo> STI(
2181       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
2182   if (!STI)
2183     reportError(Obj->getFileName(),
2184                 "no subtarget info for target " + TripleName);
2185   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
2186   if (!MII)
2187     reportError(Obj->getFileName(),
2188                 "no instruction info for target " + TripleName);
2189   MCObjectFileInfo MOFI;
2190   MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI);
2191   // FIXME: for now initialize MCObjectFileInfo with default values
2192   MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx);
2193 
2194   std::unique_ptr<MCDisassembler> DisAsm(
2195       TheTarget->createMCDisassembler(*STI, Ctx));
2196   if (!DisAsm)
2197     reportError(Obj->getFileName(), "no disassembler for target " + TripleName);
2198 
2199   // If we have an ARM object file, we need a second disassembler, because
2200   // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
2201   // We use mapping symbols to switch between the two assemblers, where
2202   // appropriate.
2203   std::unique_ptr<MCDisassembler> SecondaryDisAsm;
2204   std::unique_ptr<const MCSubtargetInfo> SecondarySTI;
2205   if (isArmElf(Obj) && !STI->checkFeatures("+mclass")) {
2206     if (STI->checkFeatures("+thumb-mode"))
2207       Features.AddFeature("-thumb-mode");
2208     else
2209       Features.AddFeature("+thumb-mode");
2210     SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU,
2211                                                         Features.getString()));
2212     SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx));
2213   }
2214 
2215   std::unique_ptr<const MCInstrAnalysis> MIA(
2216       TheTarget->createMCInstrAnalysis(MII.get()));
2217 
2218   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
2219   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
2220       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
2221   if (!IP)
2222     reportError(Obj->getFileName(),
2223                 "no instruction printer for target " + TripleName);
2224   IP->setPrintImmHex(PrintImmHex);
2225   IP->setPrintBranchImmAsAddress(true);
2226   IP->setSymbolizeOperands(SymbolizeOperands);
2227   IP->setMCInstrAnalysis(MIA.get());
2228 
2229   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
2230   SourcePrinter SP(Obj, TheTarget->getName());
2231 
2232   for (StringRef Opt : DisassemblerOptions)
2233     if (!IP->applyTargetSpecificCLOption(Opt))
2234       reportError(Obj->getFileName(),
2235                   "Unrecognized disassembler option: " + Opt);
2236 
2237   disassembleObject(TheTarget, Obj, Ctx, DisAsm.get(), SecondaryDisAsm.get(),
2238                     MIA.get(), IP.get(), STI.get(), SecondarySTI.get(), PIP,
2239                     SP, InlineRelocs);
2240 }
2241 
2242 void objdump::printRelocations(const ObjectFile *Obj) {
2243   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
2244                                                  "%08" PRIx64;
2245   // Regular objdump doesn't print relocations in non-relocatable object
2246   // files.
2247   if (!Obj->isRelocatableObject())
2248     return;
2249 
2250   // Build a mapping from relocation target to a vector of relocation
2251   // sections. Usually, there is an only one relocation section for
2252   // each relocated section.
2253   MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec;
2254   uint64_t Ndx;
2255   for (const SectionRef &Section : ToolSectionFilter(*Obj, &Ndx)) {
2256     if (Section.relocation_begin() == Section.relocation_end())
2257       continue;
2258     Expected<section_iterator> SecOrErr = Section.getRelocatedSection();
2259     if (!SecOrErr)
2260       reportError(Obj->getFileName(),
2261                   "section (" + Twine(Ndx) +
2262                       "): unable to get a relocation target: " +
2263                       toString(SecOrErr.takeError()));
2264     SecToRelSec[**SecOrErr].push_back(Section);
2265   }
2266 
2267   for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) {
2268     StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName());
2269     outs() << "RELOCATION RECORDS FOR [" << SecName << "]:\n";
2270     uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8);
2271     uint32_t TypePadding = 24;
2272     outs() << left_justify("OFFSET", OffsetPadding) << " "
2273            << left_justify("TYPE", TypePadding) << " "
2274            << "VALUE\n";
2275 
2276     for (SectionRef Section : P.second) {
2277       for (const RelocationRef &Reloc : Section.relocations()) {
2278         uint64_t Address = Reloc.getOffset();
2279         SmallString<32> RelocName;
2280         SmallString<32> ValueStr;
2281         if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
2282           continue;
2283         Reloc.getTypeName(RelocName);
2284         if (Error E = getRelocationValueString(Reloc, ValueStr))
2285           reportError(std::move(E), Obj->getFileName());
2286 
2287         outs() << format(Fmt.data(), Address) << " "
2288                << left_justify(RelocName, TypePadding) << " " << ValueStr
2289                << "\n";
2290       }
2291     }
2292     outs() << "\n";
2293   }
2294 }
2295 
2296 void objdump::printDynamicRelocations(const ObjectFile *Obj) {
2297   // For the moment, this option is for ELF only
2298   if (!Obj->isELF())
2299     return;
2300 
2301   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
2302   if (!Elf || Elf->getEType() != ELF::ET_DYN) {
2303     reportError(Obj->getFileName(), "not a dynamic object");
2304     return;
2305   }
2306 
2307   std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
2308   if (DynRelSec.empty())
2309     return;
2310 
2311   outs() << "DYNAMIC RELOCATION RECORDS\n";
2312   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2313   for (const SectionRef &Section : DynRelSec)
2314     for (const RelocationRef &Reloc : Section.relocations()) {
2315       uint64_t Address = Reloc.getOffset();
2316       SmallString<32> RelocName;
2317       SmallString<32> ValueStr;
2318       Reloc.getTypeName(RelocName);
2319       if (Error E = getRelocationValueString(Reloc, ValueStr))
2320         reportError(std::move(E), Obj->getFileName());
2321       outs() << format(Fmt.data(), Address) << " " << RelocName << " "
2322              << ValueStr << "\n";
2323     }
2324 }
2325 
2326 // Returns true if we need to show LMA column when dumping section headers. We
2327 // show it only when the platform is ELF and either we have at least one section
2328 // whose VMA and LMA are different and/or when --show-lma flag is used.
2329 static bool shouldDisplayLMA(const ObjectFile *Obj) {
2330   if (!Obj->isELF())
2331     return false;
2332   for (const SectionRef &S : ToolSectionFilter(*Obj))
2333     if (S.getAddress() != getELFSectionLMA(S))
2334       return true;
2335   return ShowLMA;
2336 }
2337 
2338 static size_t getMaxSectionNameWidth(const ObjectFile *Obj) {
2339   // Default column width for names is 13 even if no names are that long.
2340   size_t MaxWidth = 13;
2341   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
2342     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
2343     MaxWidth = std::max(MaxWidth, Name.size());
2344   }
2345   return MaxWidth;
2346 }
2347 
2348 void objdump::printSectionHeaders(const ObjectFile *Obj) {
2349   size_t NameWidth = getMaxSectionNameWidth(Obj);
2350   size_t AddressWidth = 2 * Obj->getBytesInAddress();
2351   bool HasLMAColumn = shouldDisplayLMA(Obj);
2352   if (HasLMAColumn)
2353     outs() << "Sections:\n"
2354               "Idx "
2355            << left_justify("Name", NameWidth) << " Size     "
2356            << left_justify("VMA", AddressWidth) << " "
2357            << left_justify("LMA", AddressWidth) << " Type\n";
2358   else
2359     outs() << "Sections:\n"
2360               "Idx "
2361            << left_justify("Name", NameWidth) << " Size     "
2362            << left_justify("VMA", AddressWidth) << " Type\n";
2363 
2364   uint64_t Idx;
2365   for (const SectionRef &Section : ToolSectionFilter(*Obj, &Idx)) {
2366     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
2367     uint64_t VMA = Section.getAddress();
2368     if (shouldAdjustVA(Section))
2369       VMA += AdjustVMA;
2370 
2371     uint64_t Size = Section.getSize();
2372 
2373     std::string Type = Section.isText() ? "TEXT" : "";
2374     if (Section.isData())
2375       Type += Type.empty() ? "DATA" : " DATA";
2376     if (Section.isBSS())
2377       Type += Type.empty() ? "BSS" : " BSS";
2378 
2379     if (HasLMAColumn)
2380       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
2381                        Name.str().c_str(), Size)
2382              << format_hex_no_prefix(VMA, AddressWidth) << " "
2383              << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth)
2384              << " " << Type << "\n";
2385     else
2386       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
2387                        Name.str().c_str(), Size)
2388              << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n";
2389   }
2390   outs() << "\n";
2391 }
2392 
2393 void objdump::printSectionContents(const ObjectFile *Obj) {
2394   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
2395 
2396   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
2397     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
2398     uint64_t BaseAddr = Section.getAddress();
2399     uint64_t Size = Section.getSize();
2400     if (!Size)
2401       continue;
2402 
2403     outs() << "Contents of section ";
2404     StringRef SegmentName = getSegmentName(MachO, Section);
2405     if (!SegmentName.empty())
2406       outs() << SegmentName << ",";
2407     outs() << Name << ":\n";
2408     if (Section.isBSS()) {
2409       outs() << format("<skipping contents of bss section at [%04" PRIx64
2410                        ", %04" PRIx64 ")>\n",
2411                        BaseAddr, BaseAddr + Size);
2412       continue;
2413     }
2414 
2415     StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName());
2416 
2417     // Dump out the content as hex and printable ascii characters.
2418     for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
2419       outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
2420       // Dump line of hex.
2421       for (std::size_t I = 0; I < 16; ++I) {
2422         if (I != 0 && I % 4 == 0)
2423           outs() << ' ';
2424         if (Addr + I < End)
2425           outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
2426                  << hexdigit(Contents[Addr + I] & 0xF, true);
2427         else
2428           outs() << "  ";
2429       }
2430       // Print ascii.
2431       outs() << "  ";
2432       for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
2433         if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
2434           outs() << Contents[Addr + I];
2435         else
2436           outs() << ".";
2437       }
2438       outs() << "\n";
2439     }
2440   }
2441 }
2442 
2443 void objdump::printSymbolTable(const ObjectFile *O, StringRef ArchiveName,
2444                                StringRef ArchitectureName, bool DumpDynamic) {
2445   if (O->isCOFF() && !DumpDynamic) {
2446     outs() << "SYMBOL TABLE:\n";
2447     printCOFFSymbolTable(cast<const COFFObjectFile>(O));
2448     return;
2449   }
2450 
2451   const StringRef FileName = O->getFileName();
2452 
2453   if (!DumpDynamic) {
2454     outs() << "SYMBOL TABLE:\n";
2455     for (auto I = O->symbol_begin(); I != O->symbol_end(); ++I)
2456       printSymbol(O, *I, FileName, ArchiveName, ArchitectureName, DumpDynamic);
2457     return;
2458   }
2459 
2460   outs() << "DYNAMIC SYMBOL TABLE:\n";
2461   if (!O->isELF()) {
2462     reportWarning(
2463         "this operation is not currently supported for this file format",
2464         FileName);
2465     return;
2466   }
2467 
2468   const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(O);
2469   for (auto I = ELF->getDynamicSymbolIterators().begin();
2470        I != ELF->getDynamicSymbolIterators().end(); ++I)
2471     printSymbol(O, *I, FileName, ArchiveName, ArchitectureName, DumpDynamic);
2472 }
2473 
2474 void objdump::printSymbol(const ObjectFile *O, const SymbolRef &Symbol,
2475                           StringRef FileName, StringRef ArchiveName,
2476                           StringRef ArchitectureName, bool DumpDynamic) {
2477   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(O);
2478   uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName,
2479                                    ArchitectureName);
2480   if ((Address < StartAddress) || (Address > StopAddress))
2481     return;
2482   SymbolRef::Type Type =
2483       unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName);
2484   uint32_t Flags =
2485       unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName);
2486 
2487   // Don't ask a Mach-O STAB symbol for its section unless you know that
2488   // STAB symbol's section field refers to a valid section index. Otherwise
2489   // the symbol may error trying to load a section that does not exist.
2490   bool IsSTAB = false;
2491   if (MachO) {
2492     DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
2493     uint8_t NType =
2494         (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type
2495                           : MachO->getSymbolTableEntry(SymDRI).n_type);
2496     if (NType & MachO::N_STAB)
2497       IsSTAB = true;
2498   }
2499   section_iterator Section = IsSTAB
2500                                  ? O->section_end()
2501                                  : unwrapOrError(Symbol.getSection(), FileName,
2502                                                  ArchiveName, ArchitectureName);
2503 
2504   StringRef Name;
2505   if (Type == SymbolRef::ST_Debug && Section != O->section_end()) {
2506     if (Expected<StringRef> NameOrErr = Section->getName())
2507       Name = *NameOrErr;
2508     else
2509       consumeError(NameOrErr.takeError());
2510 
2511   } else {
2512     Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName,
2513                          ArchitectureName);
2514   }
2515 
2516   bool Global = Flags & SymbolRef::SF_Global;
2517   bool Weak = Flags & SymbolRef::SF_Weak;
2518   bool Absolute = Flags & SymbolRef::SF_Absolute;
2519   bool Common = Flags & SymbolRef::SF_Common;
2520   bool Hidden = Flags & SymbolRef::SF_Hidden;
2521 
2522   char GlobLoc = ' ';
2523   if ((Section != O->section_end() || Absolute) && !Weak)
2524     GlobLoc = Global ? 'g' : 'l';
2525   char IFunc = ' ';
2526   if (O->isELF()) {
2527     if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC)
2528       IFunc = 'i';
2529     if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE)
2530       GlobLoc = 'u';
2531   }
2532 
2533   char Debug = ' ';
2534   if (DumpDynamic)
2535     Debug = 'D';
2536   else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
2537     Debug = 'd';
2538 
2539   char FileFunc = ' ';
2540   if (Type == SymbolRef::ST_File)
2541     FileFunc = 'f';
2542   else if (Type == SymbolRef::ST_Function)
2543     FileFunc = 'F';
2544   else if (Type == SymbolRef::ST_Data)
2545     FileFunc = 'O';
2546 
2547   const char *Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2548 
2549   outs() << format(Fmt, Address) << " "
2550          << GlobLoc            // Local -> 'l', Global -> 'g', Neither -> ' '
2551          << (Weak ? 'w' : ' ') // Weak?
2552          << ' '                // Constructor. Not supported yet.
2553          << ' '                // Warning. Not supported yet.
2554          << IFunc              // Indirect reference to another symbol.
2555          << Debug              // Debugging (d) or dynamic (D) symbol.
2556          << FileFunc           // Name of function (F), file (f) or object (O).
2557          << ' ';
2558   if (Absolute) {
2559     outs() << "*ABS*";
2560   } else if (Common) {
2561     outs() << "*COM*";
2562   } else if (Section == O->section_end()) {
2563     outs() << "*UND*";
2564   } else {
2565     StringRef SegmentName = getSegmentName(MachO, *Section);
2566     if (!SegmentName.empty())
2567       outs() << SegmentName << ",";
2568     StringRef SectionName = unwrapOrError(Section->getName(), FileName);
2569     outs() << SectionName;
2570   }
2571 
2572   if (Common || O->isELF()) {
2573     uint64_t Val =
2574         Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
2575     outs() << '\t' << format(Fmt, Val);
2576   }
2577 
2578   if (O->isELF()) {
2579     uint8_t Other = ELFSymbolRef(Symbol).getOther();
2580     switch (Other) {
2581     case ELF::STV_DEFAULT:
2582       break;
2583     case ELF::STV_INTERNAL:
2584       outs() << " .internal";
2585       break;
2586     case ELF::STV_HIDDEN:
2587       outs() << " .hidden";
2588       break;
2589     case ELF::STV_PROTECTED:
2590       outs() << " .protected";
2591       break;
2592     default:
2593       outs() << format(" 0x%02x", Other);
2594       break;
2595     }
2596   } else if (Hidden) {
2597     outs() << " .hidden";
2598   }
2599 
2600   if (Demangle)
2601     outs() << ' ' << demangle(std::string(Name)) << '\n';
2602   else
2603     outs() << ' ' << Name << '\n';
2604 }
2605 
2606 static void printUnwindInfo(const ObjectFile *O) {
2607   outs() << "Unwind info:\n\n";
2608 
2609   if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
2610     printCOFFUnwindInfo(Coff);
2611   else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
2612     printMachOUnwindInfo(MachO);
2613   else
2614     // TODO: Extract DWARF dump tool to objdump.
2615     WithColor::error(errs(), ToolName)
2616         << "This operation is only currently supported "
2617            "for COFF and MachO object files.\n";
2618 }
2619 
2620 /// Dump the raw contents of the __clangast section so the output can be piped
2621 /// into llvm-bcanalyzer.
2622 static void printRawClangAST(const ObjectFile *Obj) {
2623   if (outs().is_displayed()) {
2624     WithColor::error(errs(), ToolName)
2625         << "The -raw-clang-ast option will dump the raw binary contents of "
2626            "the clang ast section.\n"
2627            "Please redirect the output to a file or another program such as "
2628            "llvm-bcanalyzer.\n";
2629     return;
2630   }
2631 
2632   StringRef ClangASTSectionName("__clangast");
2633   if (Obj->isCOFF()) {
2634     ClangASTSectionName = "clangast";
2635   }
2636 
2637   Optional<object::SectionRef> ClangASTSection;
2638   for (auto Sec : ToolSectionFilter(*Obj)) {
2639     StringRef Name;
2640     if (Expected<StringRef> NameOrErr = Sec.getName())
2641       Name = *NameOrErr;
2642     else
2643       consumeError(NameOrErr.takeError());
2644 
2645     if (Name == ClangASTSectionName) {
2646       ClangASTSection = Sec;
2647       break;
2648     }
2649   }
2650   if (!ClangASTSection)
2651     return;
2652 
2653   StringRef ClangASTContents = unwrapOrError(
2654       ClangASTSection.getValue().getContents(), Obj->getFileName());
2655   outs().write(ClangASTContents.data(), ClangASTContents.size());
2656 }
2657 
2658 static void printFaultMaps(const ObjectFile *Obj) {
2659   StringRef FaultMapSectionName;
2660 
2661   if (Obj->isELF()) {
2662     FaultMapSectionName = ".llvm_faultmaps";
2663   } else if (Obj->isMachO()) {
2664     FaultMapSectionName = "__llvm_faultmaps";
2665   } else {
2666     WithColor::error(errs(), ToolName)
2667         << "This operation is only currently supported "
2668            "for ELF and Mach-O executable files.\n";
2669     return;
2670   }
2671 
2672   Optional<object::SectionRef> FaultMapSection;
2673 
2674   for (auto Sec : ToolSectionFilter(*Obj)) {
2675     StringRef Name;
2676     if (Expected<StringRef> NameOrErr = Sec.getName())
2677       Name = *NameOrErr;
2678     else
2679       consumeError(NameOrErr.takeError());
2680 
2681     if (Name == FaultMapSectionName) {
2682       FaultMapSection = Sec;
2683       break;
2684     }
2685   }
2686 
2687   outs() << "FaultMap table:\n";
2688 
2689   if (!FaultMapSection.hasValue()) {
2690     outs() << "<not found>\n";
2691     return;
2692   }
2693 
2694   StringRef FaultMapContents =
2695       unwrapOrError(FaultMapSection.getValue().getContents(), Obj->getFileName());
2696   FaultMapParser FMP(FaultMapContents.bytes_begin(),
2697                      FaultMapContents.bytes_end());
2698 
2699   outs() << FMP;
2700 }
2701 
2702 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) {
2703   if (O->isELF()) {
2704     printELFFileHeader(O);
2705     printELFDynamicSection(O);
2706     printELFSymbolVersionInfo(O);
2707     return;
2708   }
2709   if (O->isCOFF())
2710     return printCOFFFileHeader(O);
2711   if (O->isWasm())
2712     return printWasmFileHeader(O);
2713   if (O->isMachO()) {
2714     printMachOFileHeader(O);
2715     if (!OnlyFirst)
2716       printMachOLoadCommands(O);
2717     return;
2718   }
2719   reportError(O->getFileName(), "Invalid/Unsupported object file format");
2720 }
2721 
2722 static void printFileHeaders(const ObjectFile *O) {
2723   if (!O->isELF() && !O->isCOFF())
2724     reportError(O->getFileName(), "Invalid/Unsupported object file format");
2725 
2726   Triple::ArchType AT = O->getArch();
2727   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
2728   uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
2729 
2730   StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2731   outs() << "start address: "
2732          << "0x" << format(Fmt.data(), Address) << "\n\n";
2733 }
2734 
2735 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
2736   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
2737   if (!ModeOrErr) {
2738     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
2739     consumeError(ModeOrErr.takeError());
2740     return;
2741   }
2742   sys::fs::perms Mode = ModeOrErr.get();
2743   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
2744   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
2745   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
2746   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
2747   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
2748   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
2749   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
2750   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
2751   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
2752 
2753   outs() << " ";
2754 
2755   outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
2756                    unwrapOrError(C.getGID(), Filename),
2757                    unwrapOrError(C.getRawSize(), Filename));
2758 
2759   StringRef RawLastModified = C.getRawLastModified();
2760   unsigned Seconds;
2761   if (RawLastModified.getAsInteger(10, Seconds))
2762     outs() << "(date: \"" << RawLastModified
2763            << "\" contains non-decimal chars) ";
2764   else {
2765     // Since ctime(3) returns a 26 character string of the form:
2766     // "Sun Sep 16 01:03:52 1973\n\0"
2767     // just print 24 characters.
2768     time_t t = Seconds;
2769     outs() << format("%.24s ", ctime(&t));
2770   }
2771 
2772   StringRef Name = "";
2773   Expected<StringRef> NameOrErr = C.getName();
2774   if (!NameOrErr) {
2775     consumeError(NameOrErr.takeError());
2776     Name = unwrapOrError(C.getRawName(), Filename);
2777   } else {
2778     Name = NameOrErr.get();
2779   }
2780   outs() << Name << "\n";
2781 }
2782 
2783 // For ELF only now.
2784 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) {
2785   if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) {
2786     if (Elf->getEType() != ELF::ET_REL)
2787       return true;
2788   }
2789   return false;
2790 }
2791 
2792 static void checkForInvalidStartStopAddress(ObjectFile *Obj,
2793                                             uint64_t Start, uint64_t Stop) {
2794   if (!shouldWarnForInvalidStartStopAddress(Obj))
2795     return;
2796 
2797   for (const SectionRef &Section : Obj->sections())
2798     if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) {
2799       uint64_t BaseAddr = Section.getAddress();
2800       uint64_t Size = Section.getSize();
2801       if ((Start < BaseAddr + Size) && Stop > BaseAddr)
2802         return;
2803     }
2804 
2805   if (StartAddress.getNumOccurrences() == 0)
2806     reportWarning("no section has address less than 0x" +
2807                       Twine::utohexstr(Stop) + " specified by --stop-address",
2808                   Obj->getFileName());
2809   else if (StopAddress.getNumOccurrences() == 0)
2810     reportWarning("no section has address greater than or equal to 0x" +
2811                       Twine::utohexstr(Start) + " specified by --start-address",
2812                   Obj->getFileName());
2813   else
2814     reportWarning("no section overlaps the range [0x" +
2815                       Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) +
2816                       ") specified by --start-address/--stop-address",
2817                   Obj->getFileName());
2818 }
2819 
2820 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
2821                        const Archive::Child *C = nullptr) {
2822   // Avoid other output when using a raw option.
2823   if (!RawClangAST) {
2824     outs() << '\n';
2825     if (A)
2826       outs() << A->getFileName() << "(" << O->getFileName() << ")";
2827     else
2828       outs() << O->getFileName();
2829     outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n\n";
2830   }
2831 
2832   if (StartAddress.getNumOccurrences() || StopAddress.getNumOccurrences())
2833     checkForInvalidStartStopAddress(O, StartAddress, StopAddress);
2834 
2835   // Note: the order here matches GNU objdump for compatability.
2836   StringRef ArchiveName = A ? A->getFileName() : "";
2837   if (ArchiveHeaders && !MachOOpt && C)
2838     printArchiveChild(ArchiveName, *C);
2839   if (FileHeaders)
2840     printFileHeaders(O);
2841   if (PrivateHeaders || FirstPrivateHeader)
2842     printPrivateFileHeaders(O, FirstPrivateHeader);
2843   if (SectionHeaders)
2844     printSectionHeaders(O);
2845   if (SymbolTable)
2846     printSymbolTable(O, ArchiveName);
2847   if (DynamicSymbolTable)
2848     printSymbolTable(O, ArchiveName, /*ArchitectureName=*/"",
2849                      /*DumpDynamic=*/true);
2850   if (DwarfDumpType != DIDT_Null) {
2851     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
2852     // Dump the complete DWARF structure.
2853     DIDumpOptions DumpOpts;
2854     DumpOpts.DumpType = DwarfDumpType;
2855     DICtx->dump(outs(), DumpOpts);
2856   }
2857   if (Relocations && !Disassemble)
2858     printRelocations(O);
2859   if (DynamicRelocations)
2860     printDynamicRelocations(O);
2861   if (SectionContents)
2862     printSectionContents(O);
2863   if (Disassemble)
2864     disassembleObject(O, Relocations);
2865   if (UnwindInfo)
2866     printUnwindInfo(O);
2867 
2868   // Mach-O specific options:
2869   if (ExportsTrie)
2870     printExportsTrie(O);
2871   if (Rebase)
2872     printRebaseTable(O);
2873   if (Bind)
2874     printBindTable(O);
2875   if (LazyBind)
2876     printLazyBindTable(O);
2877   if (WeakBind)
2878     printWeakBindTable(O);
2879 
2880   // Other special sections:
2881   if (RawClangAST)
2882     printRawClangAST(O);
2883   if (FaultMapSection)
2884     printFaultMaps(O);
2885 }
2886 
2887 static void dumpObject(const COFFImportFile *I, const Archive *A,
2888                        const Archive::Child *C = nullptr) {
2889   StringRef ArchiveName = A ? A->getFileName() : "";
2890 
2891   // Avoid other output when using a raw option.
2892   if (!RawClangAST)
2893     outs() << '\n'
2894            << ArchiveName << "(" << I->getFileName() << ")"
2895            << ":\tfile format COFF-import-file"
2896            << "\n\n";
2897 
2898   if (ArchiveHeaders && !MachOOpt && C)
2899     printArchiveChild(ArchiveName, *C);
2900   if (SymbolTable)
2901     printCOFFSymbolTable(I);
2902 }
2903 
2904 /// Dump each object file in \a a;
2905 static void dumpArchive(const Archive *A) {
2906   Error Err = Error::success();
2907   unsigned I = -1;
2908   for (auto &C : A->children(Err)) {
2909     ++I;
2910     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2911     if (!ChildOrErr) {
2912       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2913         reportError(std::move(E), getFileNameForError(C, I), A->getFileName());
2914       continue;
2915     }
2916     if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2917       dumpObject(O, A, &C);
2918     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2919       dumpObject(I, A, &C);
2920     else
2921       reportError(errorCodeToError(object_error::invalid_file_type),
2922                   A->getFileName());
2923   }
2924   if (Err)
2925     reportError(std::move(Err), A->getFileName());
2926 }
2927 
2928 /// Open file and figure out how to dump it.
2929 static void dumpInput(StringRef file) {
2930   // If we are using the Mach-O specific object file parser, then let it parse
2931   // the file and process the command line options.  So the -arch flags can
2932   // be used to select specific slices, etc.
2933   if (MachOOpt) {
2934     parseInputMachO(file);
2935     return;
2936   }
2937 
2938   // Attempt to open the binary.
2939   OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
2940   Binary &Binary = *OBinary.getBinary();
2941 
2942   if (Archive *A = dyn_cast<Archive>(&Binary))
2943     dumpArchive(A);
2944   else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
2945     dumpObject(O);
2946   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2947     parseInputMachO(UB);
2948   else
2949     reportError(errorCodeToError(object_error::invalid_file_type), file);
2950 }
2951 
2952 int main(int argc, char **argv) {
2953   using namespace llvm;
2954   InitLLVM X(argc, argv);
2955   const cl::OptionCategory *OptionFilters[] = {&ObjdumpCat, &MachOCat};
2956   cl::HideUnrelatedOptions(OptionFilters);
2957 
2958   // Initialize targets and assembly printers/parsers.
2959   InitializeAllTargetInfos();
2960   InitializeAllTargetMCs();
2961   InitializeAllDisassemblers();
2962 
2963   // Register the target printer for --version.
2964   cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);
2965 
2966   cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n", nullptr,
2967                               /*EnvVar=*/nullptr,
2968                               /*LongOptionsUseDoubleDash=*/true);
2969 
2970   if (StartAddress >= StopAddress)
2971     reportCmdLineError("start address should be less than stop address");
2972 
2973   ToolName = argv[0];
2974 
2975   // Defaults to a.out if no filenames specified.
2976   if (InputFilenames.empty())
2977     InputFilenames.push_back("a.out");
2978 
2979   // Removes trailing separators from prefix.
2980   while (!Prefix.empty() && sys::path::is_separator(Prefix.back()))
2981     Prefix.pop_back();
2982 
2983   if (AllHeaders)
2984     ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
2985         SectionHeaders = SymbolTable = true;
2986 
2987   if (DisassembleAll || PrintSource || PrintLines ||
2988       !DisassembleSymbols.empty())
2989     Disassemble = true;
2990 
2991   if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null &&
2992       !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST &&
2993       !Relocations && !SectionHeaders && !SectionContents && !SymbolTable &&
2994       !DynamicSymbolTable && !UnwindInfo && !FaultMapSection &&
2995       !(MachOOpt &&
2996         (Bind || DataInCode || DylibId || DylibsUsed || ExportsTrie ||
2997          FirstPrivateHeader || FunctionStarts || IndirectSymbols || InfoPlist ||
2998          LazyBind || LinkOptHints || ObjcMetaData || Rebase ||
2999          UniversalHeaders || WeakBind || !FilterSections.empty()))) {
3000     cl::PrintHelpMessage();
3001     return 2;
3002   }
3003 
3004   DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end());
3005 
3006   llvm::for_each(InputFilenames, dumpInput);
3007 
3008   warnOnNoMatchForSections();
3009 
3010   return EXIT_SUCCESS;
3011 }
3012