xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision 4dfcc4a7882f5e6d6e66d3c535c01edb3c56053d)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This program is a utility that works like binutils "objdump", that is, it
11 // dumps out a plethora of information about an object file depending on the
12 // flags.
13 //
14 // The flags and output of this program should be near identical to those of
15 // binutils objdump.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm-objdump.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringSet.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/CodeGen/FaultMaps.h"
26 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
27 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCContext.h"
30 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
31 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
32 #include "llvm/MC/MCInst.h"
33 #include "llvm/MC/MCInstPrinter.h"
34 #include "llvm/MC/MCInstrAnalysis.h"
35 #include "llvm/MC/MCInstrInfo.h"
36 #include "llvm/MC/MCObjectFileInfo.h"
37 #include "llvm/MC/MCRegisterInfo.h"
38 #include "llvm/MC/MCSubtargetInfo.h"
39 #include "llvm/Object/Archive.h"
40 #include "llvm/Object/COFF.h"
41 #include "llvm/Object/COFFImportFile.h"
42 #include "llvm/Object/ELFObjectFile.h"
43 #include "llvm/Object/MachO.h"
44 #include "llvm/Object/ObjectFile.h"
45 #include "llvm/Object/Wasm.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/Errc.h"
50 #include "llvm/Support/FileSystem.h"
51 #include "llvm/Support/Format.h"
52 #include "llvm/Support/GraphWriter.h"
53 #include "llvm/Support/Host.h"
54 #include "llvm/Support/InitLLVM.h"
55 #include "llvm/Support/MemoryBuffer.h"
56 #include "llvm/Support/SourceMgr.h"
57 #include "llvm/Support/TargetRegistry.h"
58 #include "llvm/Support/TargetSelect.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <algorithm>
61 #include <cctype>
62 #include <cstring>
63 #include <system_error>
64 #include <unordered_map>
65 #include <utility>
66 
67 using namespace llvm;
68 using namespace object;
69 
70 static cl::list<std::string>
71 InputFilenames(cl::Positional, cl::desc("<input object files>"),cl::ZeroOrMore);
72 
73 cl::opt<bool>
74 llvm::Disassemble("disassemble",
75   cl::desc("Display assembler mnemonics for the machine instructions"));
76 static cl::alias
77 Disassembled("d", cl::desc("Alias for --disassemble"),
78              cl::aliasopt(Disassemble));
79 
80 cl::opt<bool>
81 llvm::DisassembleAll("disassemble-all",
82   cl::desc("Display assembler mnemonics for the machine instructions"));
83 static cl::alias
84 DisassembleAlld("D", cl::desc("Alias for --disassemble-all"),
85              cl::aliasopt(DisassembleAll));
86 
87 static cl::list<std::string>
88 DisassembleFunctions("df",
89                      cl::CommaSeparated,
90                      cl::desc("List of functions to disassemble"));
91 static StringSet<> DisasmFuncsSet;
92 
93 cl::opt<bool>
94 llvm::Relocations("r", cl::desc("Display the relocation entries in the file"));
95 
96 cl::opt<bool>
97 llvm::SectionContents("s", cl::desc("Display the content of each section"));
98 
99 cl::opt<bool>
100 llvm::SymbolTable("t", cl::desc("Display the symbol table"));
101 
102 cl::opt<bool>
103 llvm::ExportsTrie("exports-trie", cl::desc("Display mach-o exported symbols"));
104 
105 cl::opt<bool>
106 llvm::Rebase("rebase", cl::desc("Display mach-o rebasing info"));
107 
108 cl::opt<bool>
109 llvm::Bind("bind", cl::desc("Display mach-o binding info"));
110 
111 cl::opt<bool>
112 llvm::LazyBind("lazy-bind", cl::desc("Display mach-o lazy binding info"));
113 
114 cl::opt<bool>
115 llvm::WeakBind("weak-bind", cl::desc("Display mach-o weak binding info"));
116 
117 cl::opt<bool>
118 llvm::RawClangAST("raw-clang-ast",
119     cl::desc("Dump the raw binary contents of the clang AST section"));
120 
121 static cl::opt<bool>
122 MachOOpt("macho", cl::desc("Use MachO specific object file parser"));
123 static cl::alias
124 MachOm("m", cl::desc("Alias for --macho"), cl::aliasopt(MachOOpt));
125 
126 cl::opt<std::string>
127 llvm::TripleName("triple", cl::desc("Target triple to disassemble for, "
128                                     "see -version for available targets"));
129 
130 cl::opt<std::string>
131 llvm::MCPU("mcpu",
132      cl::desc("Target a specific cpu type (-mcpu=help for details)"),
133      cl::value_desc("cpu-name"),
134      cl::init(""));
135 
136 cl::opt<std::string>
137 llvm::ArchName("arch-name", cl::desc("Target arch to disassemble for, "
138                                 "see -version for available targets"));
139 
140 cl::opt<bool>
141 llvm::SectionHeaders("section-headers", cl::desc("Display summaries of the "
142                                                  "headers for each section."));
143 static cl::alias
144 SectionHeadersShort("headers", cl::desc("Alias for --section-headers"),
145                     cl::aliasopt(SectionHeaders));
146 static cl::alias
147 SectionHeadersShorter("h", cl::desc("Alias for --section-headers"),
148                       cl::aliasopt(SectionHeaders));
149 
150 cl::list<std::string>
151 llvm::FilterSections("section", cl::desc("Operate on the specified sections only. "
152                                          "With -macho dump segment,section"));
153 cl::alias
154 static FilterSectionsj("j", cl::desc("Alias for --section"),
155                  cl::aliasopt(llvm::FilterSections));
156 
157 cl::list<std::string>
158 llvm::MAttrs("mattr",
159   cl::CommaSeparated,
160   cl::desc("Target specific attributes"),
161   cl::value_desc("a1,+a2,-a3,..."));
162 
163 cl::opt<bool>
164 llvm::NoShowRawInsn("no-show-raw-insn", cl::desc("When disassembling "
165                                                  "instructions, do not print "
166                                                  "the instruction bytes."));
167 cl::opt<bool>
168 llvm::NoLeadingAddr("no-leading-addr", cl::desc("Print no leading address"));
169 
170 cl::opt<bool>
171 llvm::UnwindInfo("unwind-info", cl::desc("Display unwind information"));
172 
173 static cl::alias
174 UnwindInfoShort("u", cl::desc("Alias for --unwind-info"),
175                 cl::aliasopt(UnwindInfo));
176 
177 cl::opt<bool>
178 llvm::PrivateHeaders("private-headers",
179                      cl::desc("Display format specific file headers"));
180 
181 cl::opt<bool>
182 llvm::FirstPrivateHeader("private-header",
183                          cl::desc("Display only the first format specific file "
184                                   "header"));
185 
186 static cl::alias
187 PrivateHeadersShort("p", cl::desc("Alias for --private-headers"),
188                     cl::aliasopt(PrivateHeaders));
189 
190 cl::opt<bool>
191     llvm::PrintImmHex("print-imm-hex",
192                       cl::desc("Use hex format for immediate values"));
193 
194 cl::opt<bool> PrintFaultMaps("fault-map-section",
195                              cl::desc("Display contents of faultmap section"));
196 
197 cl::opt<DIDumpType> llvm::DwarfDumpType(
198     "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"),
199     cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame")));
200 
201 cl::opt<bool> PrintSource(
202     "source",
203     cl::desc(
204         "Display source inlined with disassembly. Implies disassemble object"));
205 
206 cl::alias PrintSourceShort("S", cl::desc("Alias for -source"),
207                            cl::aliasopt(PrintSource));
208 
209 cl::opt<bool> PrintLines("line-numbers",
210                          cl::desc("Display source line numbers with "
211                                   "disassembly. Implies disassemble object"));
212 
213 cl::alias PrintLinesShort("l", cl::desc("Alias for -line-numbers"),
214                           cl::aliasopt(PrintLines));
215 
216 cl::opt<unsigned long long>
217     StartAddress("start-address", cl::desc("Disassemble beginning at address"),
218                  cl::value_desc("address"), cl::init(0));
219 cl::opt<unsigned long long>
220     StopAddress("stop-address", cl::desc("Stop disassembly at address"),
221                 cl::value_desc("address"), cl::init(UINT64_MAX));
222 static StringRef ToolName;
223 
224 typedef std::vector<std::tuple<uint64_t, StringRef, uint8_t>> SectionSymbolsTy;
225 
226 namespace {
227 typedef std::function<bool(llvm::object::SectionRef const &)> FilterPredicate;
228 
229 class SectionFilterIterator {
230 public:
231   SectionFilterIterator(FilterPredicate P,
232                         llvm::object::section_iterator const &I,
233                         llvm::object::section_iterator const &E)
234       : Predicate(std::move(P)), Iterator(I), End(E) {
235     ScanPredicate();
236   }
237   const llvm::object::SectionRef &operator*() const { return *Iterator; }
238   SectionFilterIterator &operator++() {
239     ++Iterator;
240     ScanPredicate();
241     return *this;
242   }
243   bool operator!=(SectionFilterIterator const &Other) const {
244     return Iterator != Other.Iterator;
245   }
246 
247 private:
248   void ScanPredicate() {
249     while (Iterator != End && !Predicate(*Iterator)) {
250       ++Iterator;
251     }
252   }
253   FilterPredicate Predicate;
254   llvm::object::section_iterator Iterator;
255   llvm::object::section_iterator End;
256 };
257 
258 class SectionFilter {
259 public:
260   SectionFilter(FilterPredicate P, llvm::object::ObjectFile const &O)
261       : Predicate(std::move(P)), Object(O) {}
262   SectionFilterIterator begin() {
263     return SectionFilterIterator(Predicate, Object.section_begin(),
264                                  Object.section_end());
265   }
266   SectionFilterIterator end() {
267     return SectionFilterIterator(Predicate, Object.section_end(),
268                                  Object.section_end());
269   }
270 
271 private:
272   FilterPredicate Predicate;
273   llvm::object::ObjectFile const &Object;
274 };
275 SectionFilter ToolSectionFilter(llvm::object::ObjectFile const &O) {
276   return SectionFilter(
277       [](llvm::object::SectionRef const &S) {
278         if (FilterSections.empty())
279           return true;
280         llvm::StringRef String;
281         std::error_code error = S.getName(String);
282         if (error)
283           return false;
284         return is_contained(FilterSections, String);
285       },
286       O);
287 }
288 }
289 
290 void llvm::error(std::error_code EC) {
291   if (!EC)
292     return;
293 
294   errs() << ToolName << ": error reading file: " << EC.message() << ".\n";
295   errs().flush();
296   exit(1);
297 }
298 
299 LLVM_ATTRIBUTE_NORETURN void llvm::error(Twine Message) {
300   errs() << ToolName << ": " << Message << ".\n";
301   errs().flush();
302   exit(1);
303 }
304 
305 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
306                                                 Twine Message) {
307   errs() << ToolName << ": '" << File << "': " << Message << ".\n";
308   exit(1);
309 }
310 
311 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
312                                                 std::error_code EC) {
313   assert(EC);
314   errs() << ToolName << ": '" << File << "': " << EC.message() << ".\n";
315   exit(1);
316 }
317 
318 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
319                                                 llvm::Error E) {
320   assert(E);
321   std::string Buf;
322   raw_string_ostream OS(Buf);
323   logAllUnhandledErrors(std::move(E), OS, "");
324   OS.flush();
325   errs() << ToolName << ": '" << File << "': " << Buf;
326   exit(1);
327 }
328 
329 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
330                                                 StringRef FileName,
331                                                 llvm::Error E,
332                                                 StringRef ArchitectureName) {
333   assert(E);
334   errs() << ToolName << ": ";
335   if (ArchiveName != "")
336     errs() << ArchiveName << "(" << FileName << ")";
337   else
338     errs() << "'" << FileName << "'";
339   if (!ArchitectureName.empty())
340     errs() << " (for architecture " << ArchitectureName << ")";
341   std::string Buf;
342   raw_string_ostream OS(Buf);
343   logAllUnhandledErrors(std::move(E), OS, "");
344   OS.flush();
345   errs() << ": " << Buf;
346   exit(1);
347 }
348 
349 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
350                                                 const object::Archive::Child &C,
351                                                 llvm::Error E,
352                                                 StringRef ArchitectureName) {
353   Expected<StringRef> NameOrErr = C.getName();
354   // TODO: if we have a error getting the name then it would be nice to print
355   // the index of which archive member this is and or its offset in the
356   // archive instead of "???" as the name.
357   if (!NameOrErr) {
358     consumeError(NameOrErr.takeError());
359     llvm::report_error(ArchiveName, "???", std::move(E), ArchitectureName);
360   } else
361     llvm::report_error(ArchiveName, NameOrErr.get(), std::move(E),
362                        ArchitectureName);
363 }
364 
365 static const Target *getTarget(const ObjectFile *Obj = nullptr) {
366   // Figure out the target triple.
367   llvm::Triple TheTriple("unknown-unknown-unknown");
368   if (TripleName.empty()) {
369     if (Obj) {
370       TheTriple = Obj->makeTriple();
371     }
372   } else {
373     TheTriple.setTriple(Triple::normalize(TripleName));
374 
375     // Use the triple, but also try to combine with ARM build attributes.
376     if (Obj) {
377       auto Arch = Obj->getArch();
378       if (Arch == Triple::arm || Arch == Triple::armeb) {
379         Obj->setARMSubArch(TheTriple);
380       }
381     }
382   }
383 
384   // Get the target specific parser.
385   std::string Error;
386   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
387                                                          Error);
388   if (!TheTarget) {
389     if (Obj)
390       report_error(Obj->getFileName(), "can't find target: " + Error);
391     else
392       error("can't find target: " + Error);
393   }
394 
395   // Update the triple name and return the found target.
396   TripleName = TheTriple.getTriple();
397   return TheTarget;
398 }
399 
400 bool llvm::RelocAddressLess(RelocationRef a, RelocationRef b) {
401   return a.getOffset() < b.getOffset();
402 }
403 
404 namespace {
405 class SourcePrinter {
406 protected:
407   DILineInfo OldLineInfo;
408   const ObjectFile *Obj = nullptr;
409   std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
410   // File name to file contents of source
411   std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache;
412   // Mark the line endings of the cached source
413   std::unordered_map<std::string, std::vector<StringRef>> LineCache;
414 
415 private:
416   bool cacheSource(const DILineInfo& LineInfoFile);
417 
418 public:
419   SourcePrinter() = default;
420   SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch) : Obj(Obj) {
421     symbolize::LLVMSymbolizer::Options SymbolizerOpts(
422         DILineInfoSpecifier::FunctionNameKind::None, true, false, false,
423         DefaultArch);
424     Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts));
425   }
426   virtual ~SourcePrinter() = default;
427   virtual void printSourceLine(raw_ostream &OS, uint64_t Address,
428                                StringRef Delimiter = "; ");
429 };
430 
431 bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) {
432   std::unique_ptr<MemoryBuffer> Buffer;
433   if (LineInfo.Source) {
434     Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source);
435   } else {
436     auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName);
437     if (!BufferOrError)
438       return false;
439     Buffer = std::move(*BufferOrError);
440   }
441   // Chomp the file to get lines
442   size_t BufferSize = Buffer->getBufferSize();
443   const char *BufferStart = Buffer->getBufferStart();
444   for (const char *Start = BufferStart, *End = BufferStart;
445        End < BufferStart + BufferSize; End++)
446     if (*End == '\n' || End == BufferStart + BufferSize - 1 ||
447         (*End == '\r' && *(End + 1) == '\n')) {
448       LineCache[LineInfo.FileName].push_back(StringRef(Start, End - Start));
449       if (*End == '\r')
450         End++;
451       Start = End + 1;
452     }
453   SourceCache[LineInfo.FileName] = std::move(Buffer);
454   return true;
455 }
456 
457 void SourcePrinter::printSourceLine(raw_ostream &OS, uint64_t Address,
458                                     StringRef Delimiter) {
459   if (!Symbolizer)
460     return;
461   DILineInfo LineInfo = DILineInfo();
462   auto ExpectecLineInfo =
463       Symbolizer->symbolizeCode(Obj->getFileName(), Address);
464   if (!ExpectecLineInfo)
465     consumeError(ExpectecLineInfo.takeError());
466   else
467     LineInfo = *ExpectecLineInfo;
468 
469   if ((LineInfo.FileName == "<invalid>") || OldLineInfo.Line == LineInfo.Line ||
470       LineInfo.Line == 0)
471     return;
472 
473   if (PrintLines)
474     OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line << "\n";
475   if (PrintSource) {
476     if (SourceCache.find(LineInfo.FileName) == SourceCache.end())
477       if (!cacheSource(LineInfo))
478         return;
479     auto FileBuffer = SourceCache.find(LineInfo.FileName);
480     if (FileBuffer != SourceCache.end()) {
481       auto LineBuffer = LineCache.find(LineInfo.FileName);
482       if (LineBuffer != LineCache.end()) {
483         if (LineInfo.Line > LineBuffer->second.size())
484           return;
485         // Vector begins at 0, line numbers are non-zero
486         OS << Delimiter << LineBuffer->second[LineInfo.Line - 1].ltrim()
487            << "\n";
488       }
489     }
490   }
491   OldLineInfo = LineInfo;
492 }
493 
494 static bool isArmElf(const ObjectFile *Obj) {
495   return (Obj->isELF() &&
496           (Obj->getArch() == Triple::aarch64 ||
497            Obj->getArch() == Triple::aarch64_be ||
498            Obj->getArch() == Triple::arm || Obj->getArch() == Triple::armeb ||
499            Obj->getArch() == Triple::thumb ||
500            Obj->getArch() == Triple::thumbeb));
501 }
502 
503 class PrettyPrinter {
504 public:
505   virtual ~PrettyPrinter() = default;
506   virtual void printInst(MCInstPrinter &IP, const MCInst *MI,
507                          ArrayRef<uint8_t> Bytes, uint64_t Address,
508                          raw_ostream &OS, StringRef Annot,
509                          MCSubtargetInfo const &STI, SourcePrinter *SP) {
510     if (SP && (PrintSource || PrintLines))
511       SP->printSourceLine(OS, Address);
512     if (!NoLeadingAddr)
513       OS << format("%8" PRIx64 ":", Address);
514     if (!NoShowRawInsn) {
515       OS << "\t";
516       dumpBytes(Bytes, OS);
517     }
518     if (MI)
519       IP.printInst(MI, OS, "", STI);
520     else
521       OS << " <unknown>";
522   }
523 };
524 PrettyPrinter PrettyPrinterInst;
525 class HexagonPrettyPrinter : public PrettyPrinter {
526 public:
527   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
528                  raw_ostream &OS) {
529     uint32_t opcode =
530       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
531     if (!NoLeadingAddr)
532       OS << format("%8" PRIx64 ":", Address);
533     if (!NoShowRawInsn) {
534       OS << "\t";
535       dumpBytes(Bytes.slice(0, 4), OS);
536       OS << format("%08" PRIx32, opcode);
537     }
538   }
539   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
540                  uint64_t Address, raw_ostream &OS, StringRef Annot,
541                  MCSubtargetInfo const &STI, SourcePrinter *SP) override {
542     if (SP && (PrintSource || PrintLines))
543       SP->printSourceLine(OS, Address, "");
544     if (!MI) {
545       printLead(Bytes, Address, OS);
546       OS << " <unknown>";
547       return;
548     }
549     std::string Buffer;
550     {
551       raw_string_ostream TempStream(Buffer);
552       IP.printInst(MI, TempStream, "", STI);
553     }
554     StringRef Contents(Buffer);
555     // Split off bundle attributes
556     auto PacketBundle = Contents.rsplit('\n');
557     // Split off first instruction from the rest
558     auto HeadTail = PacketBundle.first.split('\n');
559     auto Preamble = " { ";
560     auto Separator = "";
561     while(!HeadTail.first.empty()) {
562       OS << Separator;
563       Separator = "\n";
564       if (SP && (PrintSource || PrintLines))
565         SP->printSourceLine(OS, Address, "");
566       printLead(Bytes, Address, OS);
567       OS << Preamble;
568       Preamble = "   ";
569       StringRef Inst;
570       auto Duplex = HeadTail.first.split('\v');
571       if(!Duplex.second.empty()){
572         OS << Duplex.first;
573         OS << "; ";
574         Inst = Duplex.second;
575       }
576       else
577         Inst = HeadTail.first;
578       OS << Inst;
579       Bytes = Bytes.slice(4);
580       Address += 4;
581       HeadTail = HeadTail.second.split('\n');
582     }
583     OS << " } " << PacketBundle.second;
584   }
585 };
586 HexagonPrettyPrinter HexagonPrettyPrinterInst;
587 
588 class AMDGCNPrettyPrinter : public PrettyPrinter {
589 public:
590   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
591                  uint64_t Address, raw_ostream &OS, StringRef Annot,
592                  MCSubtargetInfo const &STI, SourcePrinter *SP) override {
593     if (SP && (PrintSource || PrintLines))
594       SP->printSourceLine(OS, Address);
595 
596     typedef support::ulittle32_t U32;
597 
598     if (MI) {
599       SmallString<40> InstStr;
600       raw_svector_ostream IS(InstStr);
601 
602       IP.printInst(MI, IS, "", STI);
603 
604       OS << left_justify(IS.str(), 60);
605     } else {
606       // an unrecognized encoding - this is probably data so represent it
607       // using the .long directive, or .byte directive if fewer than 4 bytes
608       // remaining
609       if (Bytes.size() >= 4) {
610         OS << format("\t.long 0x%08" PRIx32 " ",
611                      static_cast<uint32_t>(*reinterpret_cast<const U32*>(Bytes.data())));
612         OS.indent(42);
613       } else {
614           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
615           for (unsigned int i = 1; i < Bytes.size(); i++)
616             OS << format(", 0x%02" PRIx8, Bytes[i]);
617           OS.indent(55 - (6 * Bytes.size()));
618       }
619     }
620 
621     OS << format("// %012" PRIX64 ": ", Address);
622     if (Bytes.size() >=4) {
623       for (auto D : makeArrayRef(reinterpret_cast<const U32*>(Bytes.data()),
624                                  Bytes.size() / sizeof(U32)))
625         // D should be explicitly casted to uint32_t here as it is passed
626         // by format to snprintf as vararg.
627         OS << format("%08" PRIX32 " ", static_cast<uint32_t>(D));
628     } else {
629       for (unsigned int i = 0; i < Bytes.size(); i++)
630         OS << format("%02" PRIX8 " ", Bytes[i]);
631     }
632 
633     if (!Annot.empty())
634       OS << "// " << Annot;
635   }
636 };
637 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
638 
639 class BPFPrettyPrinter : public PrettyPrinter {
640 public:
641   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
642                  uint64_t Address, raw_ostream &OS, StringRef Annot,
643                  MCSubtargetInfo const &STI, SourcePrinter *SP) override {
644     if (SP && (PrintSource || PrintLines))
645       SP->printSourceLine(OS, Address);
646     if (!NoLeadingAddr)
647       OS << format("%8" PRId64 ":", Address / 8);
648     if (!NoShowRawInsn) {
649       OS << "\t";
650       dumpBytes(Bytes, OS);
651     }
652     if (MI)
653       IP.printInst(MI, OS, "", STI);
654     else
655       OS << " <unknown>";
656   }
657 };
658 BPFPrettyPrinter BPFPrettyPrinterInst;
659 
660 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
661   switch(Triple.getArch()) {
662   default:
663     return PrettyPrinterInst;
664   case Triple::hexagon:
665     return HexagonPrettyPrinterInst;
666   case Triple::amdgcn:
667     return AMDGCNPrettyPrinterInst;
668   case Triple::bpfel:
669   case Triple::bpfeb:
670     return BPFPrettyPrinterInst;
671   }
672 }
673 }
674 
675 template <class ELFT>
676 static std::error_code getRelocationValueString(const ELFObjectFile<ELFT> *Obj,
677                                                 const RelocationRef &RelRef,
678                                                 SmallVectorImpl<char> &Result) {
679   DataRefImpl Rel = RelRef.getRawDataRefImpl();
680 
681   typedef typename ELFObjectFile<ELFT>::Elf_Sym Elf_Sym;
682   typedef typename ELFObjectFile<ELFT>::Elf_Shdr Elf_Shdr;
683   typedef typename ELFObjectFile<ELFT>::Elf_Rela Elf_Rela;
684 
685   const ELFFile<ELFT> &EF = *Obj->getELFFile();
686 
687   auto SecOrErr = EF.getSection(Rel.d.a);
688   if (!SecOrErr)
689     return errorToErrorCode(SecOrErr.takeError());
690   const Elf_Shdr *Sec = *SecOrErr;
691   auto SymTabOrErr = EF.getSection(Sec->sh_link);
692   if (!SymTabOrErr)
693     return errorToErrorCode(SymTabOrErr.takeError());
694   const Elf_Shdr *SymTab = *SymTabOrErr;
695   assert(SymTab->sh_type == ELF::SHT_SYMTAB ||
696          SymTab->sh_type == ELF::SHT_DYNSYM);
697   auto StrTabSec = EF.getSection(SymTab->sh_link);
698   if (!StrTabSec)
699     return errorToErrorCode(StrTabSec.takeError());
700   auto StrTabOrErr = EF.getStringTable(*StrTabSec);
701   if (!StrTabOrErr)
702     return errorToErrorCode(StrTabOrErr.takeError());
703   StringRef StrTab = *StrTabOrErr;
704   uint8_t type = RelRef.getType();
705   StringRef res;
706   int64_t addend = 0;
707   switch (Sec->sh_type) {
708   default:
709     return object_error::parse_failed;
710   case ELF::SHT_REL: {
711     // TODO: Read implicit addend from section data.
712     break;
713   }
714   case ELF::SHT_RELA: {
715     const Elf_Rela *ERela = Obj->getRela(Rel);
716     addend = ERela->r_addend;
717     break;
718   }
719   }
720   symbol_iterator SI = RelRef.getSymbol();
721   const Elf_Sym *symb = Obj->getSymbol(SI->getRawDataRefImpl());
722   StringRef Target;
723   if (symb->getType() == ELF::STT_SECTION) {
724     Expected<section_iterator> SymSI = SI->getSection();
725     if (!SymSI)
726       return errorToErrorCode(SymSI.takeError());
727     const Elf_Shdr *SymSec = Obj->getSection((*SymSI)->getRawDataRefImpl());
728     auto SecName = EF.getSectionName(SymSec);
729     if (!SecName)
730       return errorToErrorCode(SecName.takeError());
731     Target = *SecName;
732   } else {
733     Expected<StringRef> SymName = symb->getName(StrTab);
734     if (!SymName)
735       return errorToErrorCode(SymName.takeError());
736     Target = *SymName;
737   }
738   switch (EF.getHeader()->e_machine) {
739   case ELF::EM_X86_64:
740     switch (type) {
741     case ELF::R_X86_64_PC8:
742     case ELF::R_X86_64_PC16:
743     case ELF::R_X86_64_PC32: {
744       std::string fmtbuf;
745       raw_string_ostream fmt(fmtbuf);
746       fmt << Target << (addend < 0 ? "" : "+") << addend << "-P";
747       fmt.flush();
748       Result.append(fmtbuf.begin(), fmtbuf.end());
749     } break;
750     case ELF::R_X86_64_8:
751     case ELF::R_X86_64_16:
752     case ELF::R_X86_64_32:
753     case ELF::R_X86_64_32S:
754     case ELF::R_X86_64_64: {
755       std::string fmtbuf;
756       raw_string_ostream fmt(fmtbuf);
757       fmt << Target << (addend < 0 ? "" : "+") << addend;
758       fmt.flush();
759       Result.append(fmtbuf.begin(), fmtbuf.end());
760     } break;
761     default:
762       res = "Unknown";
763     }
764     break;
765   case ELF::EM_LANAI:
766   case ELF::EM_AVR:
767   case ELF::EM_AARCH64: {
768     std::string fmtbuf;
769     raw_string_ostream fmt(fmtbuf);
770     fmt << Target;
771     if (addend != 0)
772       fmt << (addend < 0 ? "" : "+") << addend;
773     fmt.flush();
774     Result.append(fmtbuf.begin(), fmtbuf.end());
775     break;
776   }
777   case ELF::EM_386:
778   case ELF::EM_IAMCU:
779   case ELF::EM_ARM:
780   case ELF::EM_HEXAGON:
781   case ELF::EM_MIPS:
782   case ELF::EM_BPF:
783   case ELF::EM_RISCV:
784     res = Target;
785     break;
786   case ELF::EM_WEBASSEMBLY:
787     switch (type) {
788     case ELF::R_WEBASSEMBLY_DATA: {
789       std::string fmtbuf;
790       raw_string_ostream fmt(fmtbuf);
791       fmt << Target << (addend < 0 ? "" : "+") << addend;
792       fmt.flush();
793       Result.append(fmtbuf.begin(), fmtbuf.end());
794       break;
795     }
796     case ELF::R_WEBASSEMBLY_FUNCTION:
797       res = Target;
798       break;
799     default:
800       res = "Unknown";
801     }
802     break;
803   default:
804     res = "Unknown";
805   }
806   if (Result.empty())
807     Result.append(res.begin(), res.end());
808   return std::error_code();
809 }
810 
811 static std::error_code getRelocationValueString(const ELFObjectFileBase *Obj,
812                                                 const RelocationRef &Rel,
813                                                 SmallVectorImpl<char> &Result) {
814   if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj))
815     return getRelocationValueString(ELF32LE, Rel, Result);
816   if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj))
817     return getRelocationValueString(ELF64LE, Rel, Result);
818   if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj))
819     return getRelocationValueString(ELF32BE, Rel, Result);
820   auto *ELF64BE = cast<ELF64BEObjectFile>(Obj);
821   return getRelocationValueString(ELF64BE, Rel, Result);
822 }
823 
824 static std::error_code getRelocationValueString(const COFFObjectFile *Obj,
825                                                 const RelocationRef &Rel,
826                                                 SmallVectorImpl<char> &Result) {
827   symbol_iterator SymI = Rel.getSymbol();
828   Expected<StringRef> SymNameOrErr = SymI->getName();
829   if (!SymNameOrErr)
830     return errorToErrorCode(SymNameOrErr.takeError());
831   StringRef SymName = *SymNameOrErr;
832   Result.append(SymName.begin(), SymName.end());
833   return std::error_code();
834 }
835 
836 static void printRelocationTargetName(const MachOObjectFile *O,
837                                       const MachO::any_relocation_info &RE,
838                                       raw_string_ostream &fmt) {
839   bool IsScattered = O->isRelocationScattered(RE);
840 
841   // Target of a scattered relocation is an address.  In the interest of
842   // generating pretty output, scan through the symbol table looking for a
843   // symbol that aligns with that address.  If we find one, print it.
844   // Otherwise, we just print the hex address of the target.
845   if (IsScattered) {
846     uint32_t Val = O->getPlainRelocationSymbolNum(RE);
847 
848     for (const SymbolRef &Symbol : O->symbols()) {
849       std::error_code ec;
850       Expected<uint64_t> Addr = Symbol.getAddress();
851       if (!Addr)
852         report_error(O->getFileName(), Addr.takeError());
853       if (*Addr != Val)
854         continue;
855       Expected<StringRef> Name = Symbol.getName();
856       if (!Name)
857         report_error(O->getFileName(), Name.takeError());
858       fmt << *Name;
859       return;
860     }
861 
862     // If we couldn't find a symbol that this relocation refers to, try
863     // to find a section beginning instead.
864     for (const SectionRef &Section : ToolSectionFilter(*O)) {
865       std::error_code ec;
866 
867       StringRef Name;
868       uint64_t Addr = Section.getAddress();
869       if (Addr != Val)
870         continue;
871       if ((ec = Section.getName(Name)))
872         report_error(O->getFileName(), ec);
873       fmt << Name;
874       return;
875     }
876 
877     fmt << format("0x%x", Val);
878     return;
879   }
880 
881   StringRef S;
882   bool isExtern = O->getPlainRelocationExternal(RE);
883   uint64_t Val = O->getPlainRelocationSymbolNum(RE);
884 
885   if (O->getAnyRelocationType(RE) == MachO::ARM64_RELOC_ADDEND) {
886     fmt << format("0x%0" PRIx64, Val);
887     return;
888   } else if (isExtern) {
889     symbol_iterator SI = O->symbol_begin();
890     advance(SI, Val);
891     Expected<StringRef> SOrErr = SI->getName();
892     if (!SOrErr)
893       report_error(O->getFileName(), SOrErr.takeError());
894     S = *SOrErr;
895   } else {
896     section_iterator SI = O->section_begin();
897     // Adjust for the fact that sections are 1-indexed.
898     if (Val == 0) {
899       fmt << "0 (?,?)";
900       return;
901     }
902     uint32_t i = Val - 1;
903     while (i != 0 && SI != O->section_end()) {
904       i--;
905       advance(SI, 1);
906     }
907     if (SI == O->section_end())
908       fmt << Val << " (?,?)";
909     else
910       SI->getName(S);
911   }
912 
913   fmt << S;
914 }
915 
916 static std::error_code getRelocationValueString(const WasmObjectFile *Obj,
917                                                 const RelocationRef &RelRef,
918                                                 SmallVectorImpl<char> &Result) {
919   const wasm::WasmRelocation& Rel = Obj->getWasmRelocation(RelRef);
920   symbol_iterator SI = RelRef.getSymbol();
921   std::string fmtbuf;
922   raw_string_ostream fmt(fmtbuf);
923   if (SI == Obj->symbol_end()) {
924     // Not all wasm relocations have symbols associated with them.
925     // In particular R_WEBASSEMBLY_TYPE_INDEX_LEB.
926     fmt << Rel.Index;
927   } else {
928     Expected<StringRef> SymNameOrErr = SI->getName();
929     if (!SymNameOrErr)
930       return errorToErrorCode(SymNameOrErr.takeError());
931     StringRef SymName = *SymNameOrErr;
932     Result.append(SymName.begin(), SymName.end());
933   }
934   fmt << (Rel.Addend < 0 ? "" : "+") << Rel.Addend;
935   fmt.flush();
936   Result.append(fmtbuf.begin(), fmtbuf.end());
937   return std::error_code();
938 }
939 
940 static std::error_code getRelocationValueString(const MachOObjectFile *Obj,
941                                                 const RelocationRef &RelRef,
942                                                 SmallVectorImpl<char> &Result) {
943   DataRefImpl Rel = RelRef.getRawDataRefImpl();
944   MachO::any_relocation_info RE = Obj->getRelocation(Rel);
945 
946   unsigned Arch = Obj->getArch();
947 
948   std::string fmtbuf;
949   raw_string_ostream fmt(fmtbuf);
950   unsigned Type = Obj->getAnyRelocationType(RE);
951   bool IsPCRel = Obj->getAnyRelocationPCRel(RE);
952 
953   // Determine any addends that should be displayed with the relocation.
954   // These require decoding the relocation type, which is triple-specific.
955 
956   // X86_64 has entirely custom relocation types.
957   if (Arch == Triple::x86_64) {
958     bool isPCRel = Obj->getAnyRelocationPCRel(RE);
959 
960     switch (Type) {
961     case MachO::X86_64_RELOC_GOT_LOAD:
962     case MachO::X86_64_RELOC_GOT: {
963       printRelocationTargetName(Obj, RE, fmt);
964       fmt << "@GOT";
965       if (isPCRel)
966         fmt << "PCREL";
967       break;
968     }
969     case MachO::X86_64_RELOC_SUBTRACTOR: {
970       DataRefImpl RelNext = Rel;
971       Obj->moveRelocationNext(RelNext);
972       MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
973 
974       // X86_64_RELOC_SUBTRACTOR must be followed by a relocation of type
975       // X86_64_RELOC_UNSIGNED.
976       // NOTE: Scattered relocations don't exist on x86_64.
977       unsigned RType = Obj->getAnyRelocationType(RENext);
978       if (RType != MachO::X86_64_RELOC_UNSIGNED)
979         report_error(Obj->getFileName(), "Expected X86_64_RELOC_UNSIGNED after "
980                      "X86_64_RELOC_SUBTRACTOR.");
981 
982       // The X86_64_RELOC_UNSIGNED contains the minuend symbol;
983       // X86_64_RELOC_SUBTRACTOR contains the subtrahend.
984       printRelocationTargetName(Obj, RENext, fmt);
985       fmt << "-";
986       printRelocationTargetName(Obj, RE, fmt);
987       break;
988     }
989     case MachO::X86_64_RELOC_TLV:
990       printRelocationTargetName(Obj, RE, fmt);
991       fmt << "@TLV";
992       if (isPCRel)
993         fmt << "P";
994       break;
995     case MachO::X86_64_RELOC_SIGNED_1:
996       printRelocationTargetName(Obj, RE, fmt);
997       fmt << "-1";
998       break;
999     case MachO::X86_64_RELOC_SIGNED_2:
1000       printRelocationTargetName(Obj, RE, fmt);
1001       fmt << "-2";
1002       break;
1003     case MachO::X86_64_RELOC_SIGNED_4:
1004       printRelocationTargetName(Obj, RE, fmt);
1005       fmt << "-4";
1006       break;
1007     default:
1008       printRelocationTargetName(Obj, RE, fmt);
1009       break;
1010     }
1011     // X86 and ARM share some relocation types in common.
1012   } else if (Arch == Triple::x86 || Arch == Triple::arm ||
1013              Arch == Triple::ppc) {
1014     // Generic relocation types...
1015     switch (Type) {
1016     case MachO::GENERIC_RELOC_PAIR: // prints no info
1017       return std::error_code();
1018     case MachO::GENERIC_RELOC_SECTDIFF: {
1019       DataRefImpl RelNext = Rel;
1020       Obj->moveRelocationNext(RelNext);
1021       MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
1022 
1023       // X86 sect diff's must be followed by a relocation of type
1024       // GENERIC_RELOC_PAIR.
1025       unsigned RType = Obj->getAnyRelocationType(RENext);
1026 
1027       if (RType != MachO::GENERIC_RELOC_PAIR)
1028         report_error(Obj->getFileName(), "Expected GENERIC_RELOC_PAIR after "
1029                      "GENERIC_RELOC_SECTDIFF.");
1030 
1031       printRelocationTargetName(Obj, RE, fmt);
1032       fmt << "-";
1033       printRelocationTargetName(Obj, RENext, fmt);
1034       break;
1035     }
1036     }
1037 
1038     if (Arch == Triple::x86 || Arch == Triple::ppc) {
1039       switch (Type) {
1040       case MachO::GENERIC_RELOC_LOCAL_SECTDIFF: {
1041         DataRefImpl RelNext = Rel;
1042         Obj->moveRelocationNext(RelNext);
1043         MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
1044 
1045         // X86 sect diff's must be followed by a relocation of type
1046         // GENERIC_RELOC_PAIR.
1047         unsigned RType = Obj->getAnyRelocationType(RENext);
1048         if (RType != MachO::GENERIC_RELOC_PAIR)
1049           report_error(Obj->getFileName(), "Expected GENERIC_RELOC_PAIR after "
1050                        "GENERIC_RELOC_LOCAL_SECTDIFF.");
1051 
1052         printRelocationTargetName(Obj, RE, fmt);
1053         fmt << "-";
1054         printRelocationTargetName(Obj, RENext, fmt);
1055         break;
1056       }
1057       case MachO::GENERIC_RELOC_TLV: {
1058         printRelocationTargetName(Obj, RE, fmt);
1059         fmt << "@TLV";
1060         if (IsPCRel)
1061           fmt << "P";
1062         break;
1063       }
1064       default:
1065         printRelocationTargetName(Obj, RE, fmt);
1066       }
1067     } else { // ARM-specific relocations
1068       switch (Type) {
1069       case MachO::ARM_RELOC_HALF:
1070       case MachO::ARM_RELOC_HALF_SECTDIFF: {
1071         // Half relocations steal a bit from the length field to encode
1072         // whether this is an upper16 or a lower16 relocation.
1073         bool isUpper = (Obj->getAnyRelocationLength(RE) & 0x1) == 1;
1074 
1075         if (isUpper)
1076           fmt << ":upper16:(";
1077         else
1078           fmt << ":lower16:(";
1079         printRelocationTargetName(Obj, RE, fmt);
1080 
1081         DataRefImpl RelNext = Rel;
1082         Obj->moveRelocationNext(RelNext);
1083         MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
1084 
1085         // ARM half relocs must be followed by a relocation of type
1086         // ARM_RELOC_PAIR.
1087         unsigned RType = Obj->getAnyRelocationType(RENext);
1088         if (RType != MachO::ARM_RELOC_PAIR)
1089           report_error(Obj->getFileName(), "Expected ARM_RELOC_PAIR after "
1090                        "ARM_RELOC_HALF");
1091 
1092         // NOTE: The half of the target virtual address is stashed in the
1093         // address field of the secondary relocation, but we can't reverse
1094         // engineer the constant offset from it without decoding the movw/movt
1095         // instruction to find the other half in its immediate field.
1096 
1097         // ARM_RELOC_HALF_SECTDIFF encodes the second section in the
1098         // symbol/section pointer of the follow-on relocation.
1099         if (Type == MachO::ARM_RELOC_HALF_SECTDIFF) {
1100           fmt << "-";
1101           printRelocationTargetName(Obj, RENext, fmt);
1102         }
1103 
1104         fmt << ")";
1105         break;
1106       }
1107       default: { printRelocationTargetName(Obj, RE, fmt); }
1108       }
1109     }
1110   } else
1111     printRelocationTargetName(Obj, RE, fmt);
1112 
1113   fmt.flush();
1114   Result.append(fmtbuf.begin(), fmtbuf.end());
1115   return std::error_code();
1116 }
1117 
1118 static std::error_code getRelocationValueString(const RelocationRef &Rel,
1119                                                 SmallVectorImpl<char> &Result) {
1120   const ObjectFile *Obj = Rel.getObject();
1121   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
1122     return getRelocationValueString(ELF, Rel, Result);
1123   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
1124     return getRelocationValueString(COFF, Rel, Result);
1125   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
1126     return getRelocationValueString(Wasm, Rel, Result);
1127   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
1128     return getRelocationValueString(MachO, Rel, Result);
1129   llvm_unreachable("unknown object file format");
1130 }
1131 
1132 /// Indicates whether this relocation should hidden when listing
1133 /// relocations, usually because it is the trailing part of a multipart
1134 /// relocation that will be printed as part of the leading relocation.
1135 static bool getHidden(RelocationRef RelRef) {
1136   const ObjectFile *Obj = RelRef.getObject();
1137   auto *MachO = dyn_cast<MachOObjectFile>(Obj);
1138   if (!MachO)
1139     return false;
1140 
1141   unsigned Arch = MachO->getArch();
1142   DataRefImpl Rel = RelRef.getRawDataRefImpl();
1143   uint64_t Type = MachO->getRelocationType(Rel);
1144 
1145   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
1146   // is always hidden.
1147   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) {
1148     if (Type == MachO::GENERIC_RELOC_PAIR)
1149       return true;
1150   } else if (Arch == Triple::x86_64) {
1151     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
1152     // an X86_64_RELOC_SUBTRACTOR.
1153     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
1154       DataRefImpl RelPrev = Rel;
1155       RelPrev.d.a--;
1156       uint64_t PrevType = MachO->getRelocationType(RelPrev);
1157       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
1158         return true;
1159     }
1160   }
1161 
1162   return false;
1163 }
1164 
1165 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
1166   assert(Obj->isELF());
1167   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
1168     return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1169   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
1170     return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1171   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
1172     return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1173   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
1174     return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1175   llvm_unreachable("Unsupported binary format");
1176 }
1177 
1178 template <class ELFT> static void
1179 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
1180                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1181   for (auto Symbol : Obj->getDynamicSymbolIterators()) {
1182     uint8_t SymbolType = Symbol.getELFType();
1183     if (SymbolType != ELF::STT_FUNC || Symbol.getSize() == 0)
1184       continue;
1185 
1186     Expected<uint64_t> AddressOrErr = Symbol.getAddress();
1187     if (!AddressOrErr)
1188       report_error(Obj->getFileName(), AddressOrErr.takeError());
1189     uint64_t Address = *AddressOrErr;
1190 
1191     Expected<StringRef> Name = Symbol.getName();
1192     if (!Name)
1193       report_error(Obj->getFileName(), Name.takeError());
1194     if (Name->empty())
1195       continue;
1196 
1197     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1198     if (!SectionOrErr)
1199       report_error(Obj->getFileName(), SectionOrErr.takeError());
1200     section_iterator SecI = *SectionOrErr;
1201     if (SecI == Obj->section_end())
1202       continue;
1203 
1204     AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType);
1205   }
1206 }
1207 
1208 static void
1209 addDynamicElfSymbols(const ObjectFile *Obj,
1210                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1211   assert(Obj->isELF());
1212   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
1213     addDynamicElfSymbols(Elf32LEObj, AllSymbols);
1214   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
1215     addDynamicElfSymbols(Elf64LEObj, AllSymbols);
1216   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
1217     addDynamicElfSymbols(Elf32BEObj, AllSymbols);
1218   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
1219     addDynamicElfSymbols(Elf64BEObj, AllSymbols);
1220   else
1221     llvm_unreachable("Unsupported binary format");
1222 }
1223 
1224 static void DisassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
1225   if (StartAddress > StopAddress)
1226     error("Start address should be less than stop address");
1227 
1228   const Target *TheTarget = getTarget(Obj);
1229 
1230   // Package up features to be passed to target/subtarget
1231   SubtargetFeatures Features = Obj->getFeatures();
1232   if (MAttrs.size()) {
1233     for (unsigned i = 0; i != MAttrs.size(); ++i)
1234       Features.AddFeature(MAttrs[i]);
1235   }
1236 
1237   std::unique_ptr<const MCRegisterInfo> MRI(
1238       TheTarget->createMCRegInfo(TripleName));
1239   if (!MRI)
1240     report_error(Obj->getFileName(), "no register info for target " +
1241                  TripleName);
1242 
1243   // Set up disassembler.
1244   std::unique_ptr<const MCAsmInfo> AsmInfo(
1245       TheTarget->createMCAsmInfo(*MRI, TripleName));
1246   if (!AsmInfo)
1247     report_error(Obj->getFileName(), "no assembly info for target " +
1248                  TripleName);
1249   std::unique_ptr<const MCSubtargetInfo> STI(
1250       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1251   if (!STI)
1252     report_error(Obj->getFileName(), "no subtarget info for target " +
1253                  TripleName);
1254   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
1255   if (!MII)
1256     report_error(Obj->getFileName(), "no instruction info for target " +
1257                  TripleName);
1258   MCObjectFileInfo MOFI;
1259   MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI);
1260   // FIXME: for now initialize MCObjectFileInfo with default values
1261   MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx);
1262 
1263   std::unique_ptr<MCDisassembler> DisAsm(
1264     TheTarget->createMCDisassembler(*STI, Ctx));
1265   if (!DisAsm)
1266     report_error(Obj->getFileName(), "no disassembler for target " +
1267                  TripleName);
1268 
1269   std::unique_ptr<const MCInstrAnalysis> MIA(
1270       TheTarget->createMCInstrAnalysis(MII.get()));
1271 
1272   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1273   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
1274       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
1275   if (!IP)
1276     report_error(Obj->getFileName(), "no instruction printer for target " +
1277                  TripleName);
1278   IP->setPrintImmHex(PrintImmHex);
1279   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
1280 
1281   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "\t\t%016" PRIx64 ":  " :
1282                                                  "\t\t\t%08" PRIx64 ":  ";
1283 
1284   SourcePrinter SP(Obj, TheTarget->getName());
1285 
1286   // Create a mapping, RelocSecs = SectionRelocMap[S], where sections
1287   // in RelocSecs contain the relocations for section S.
1288   std::error_code EC;
1289   std::map<SectionRef, SmallVector<SectionRef, 1>> SectionRelocMap;
1290   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1291     section_iterator Sec2 = Section.getRelocatedSection();
1292     if (Sec2 != Obj->section_end())
1293       SectionRelocMap[*Sec2].push_back(Section);
1294   }
1295 
1296   // Create a mapping from virtual address to symbol name.  This is used to
1297   // pretty print the symbols while disassembling.
1298   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1299   for (const SymbolRef &Symbol : Obj->symbols()) {
1300     Expected<uint64_t> AddressOrErr = Symbol.getAddress();
1301     if (!AddressOrErr)
1302       report_error(Obj->getFileName(), AddressOrErr.takeError());
1303     uint64_t Address = *AddressOrErr;
1304 
1305     Expected<StringRef> Name = Symbol.getName();
1306     if (!Name)
1307       report_error(Obj->getFileName(), Name.takeError());
1308     if (Name->empty())
1309       continue;
1310 
1311     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1312     if (!SectionOrErr)
1313       report_error(Obj->getFileName(), SectionOrErr.takeError());
1314     section_iterator SecI = *SectionOrErr;
1315     if (SecI == Obj->section_end())
1316       continue;
1317 
1318     uint8_t SymbolType = ELF::STT_NOTYPE;
1319     if (Obj->isELF())
1320       SymbolType = getElfSymbolType(Obj, Symbol);
1321 
1322     AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType);
1323 
1324   }
1325   if (AllSymbols.empty() && Obj->isELF())
1326     addDynamicElfSymbols(Obj, AllSymbols);
1327 
1328   // Create a mapping from virtual address to section.
1329   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1330   for (SectionRef Sec : Obj->sections())
1331     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1332   array_pod_sort(SectionAddresses.begin(), SectionAddresses.end());
1333 
1334   // Linked executables (.exe and .dll files) typically don't include a real
1335   // symbol table but they might contain an export table.
1336   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
1337     for (const auto &ExportEntry : COFFObj->export_directories()) {
1338       StringRef Name;
1339       error(ExportEntry.getSymbolName(Name));
1340       if (Name.empty())
1341         continue;
1342       uint32_t RVA;
1343       error(ExportEntry.getExportRVA(RVA));
1344 
1345       uint64_t VA = COFFObj->getImageBase() + RVA;
1346       auto Sec = std::upper_bound(
1347           SectionAddresses.begin(), SectionAddresses.end(), VA,
1348           [](uint64_t LHS, const std::pair<uint64_t, SectionRef> &RHS) {
1349             return LHS < RHS.first;
1350           });
1351       if (Sec != SectionAddresses.begin())
1352         --Sec;
1353       else
1354         Sec = SectionAddresses.end();
1355 
1356       if (Sec != SectionAddresses.end())
1357         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1358     }
1359   }
1360 
1361   // Sort all the symbols, this allows us to use a simple binary search to find
1362   // a symbol near an address.
1363   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1364     array_pod_sort(SecSyms.second.begin(), SecSyms.second.end());
1365 
1366   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1367     if (!DisassembleAll && (!Section.isText() || Section.isVirtual()))
1368       continue;
1369 
1370     uint64_t SectionAddr = Section.getAddress();
1371     uint64_t SectSize = Section.getSize();
1372     if (!SectSize)
1373       continue;
1374 
1375     // Get the list of all the symbols in this section.
1376     SectionSymbolsTy &Symbols = AllSymbols[Section];
1377     std::vector<uint64_t> DataMappingSymsAddr;
1378     std::vector<uint64_t> TextMappingSymsAddr;
1379     if (isArmElf(Obj)) {
1380       for (const auto &Symb : Symbols) {
1381         uint64_t Address = std::get<0>(Symb);
1382         StringRef Name = std::get<1>(Symb);
1383         if (Name.startswith("$d"))
1384           DataMappingSymsAddr.push_back(Address - SectionAddr);
1385         if (Name.startswith("$x"))
1386           TextMappingSymsAddr.push_back(Address - SectionAddr);
1387         if (Name.startswith("$a"))
1388           TextMappingSymsAddr.push_back(Address - SectionAddr);
1389         if (Name.startswith("$t"))
1390           TextMappingSymsAddr.push_back(Address - SectionAddr);
1391       }
1392     }
1393 
1394     llvm::sort(DataMappingSymsAddr.begin(), DataMappingSymsAddr.end());
1395     llvm::sort(TextMappingSymsAddr.begin(), TextMappingSymsAddr.end());
1396 
1397     if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1398       // AMDGPU disassembler uses symbolizer for printing labels
1399       std::unique_ptr<MCRelocationInfo> RelInfo(
1400         TheTarget->createMCRelocationInfo(TripleName, Ctx));
1401       if (RelInfo) {
1402         std::unique_ptr<MCSymbolizer> Symbolizer(
1403           TheTarget->createMCSymbolizer(
1404             TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1405         DisAsm->setSymbolizer(std::move(Symbolizer));
1406       }
1407     }
1408 
1409     // Make a list of all the relocations for this section.
1410     std::vector<RelocationRef> Rels;
1411     if (InlineRelocs) {
1412       for (const SectionRef &RelocSec : SectionRelocMap[Section]) {
1413         for (const RelocationRef &Reloc : RelocSec.relocations()) {
1414           Rels.push_back(Reloc);
1415         }
1416       }
1417     }
1418 
1419     // Sort relocations by address.
1420     llvm::sort(Rels.begin(), Rels.end(), RelocAddressLess);
1421 
1422     StringRef SegmentName = "";
1423     if (const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj)) {
1424       DataRefImpl DR = Section.getRawDataRefImpl();
1425       SegmentName = MachO->getSectionFinalSegmentName(DR);
1426     }
1427     StringRef SectionName;
1428     error(Section.getName(SectionName));
1429 
1430     // If the section has no symbol at the start, just insert a dummy one.
1431     if (Symbols.empty() || std::get<0>(Symbols[0]) != 0) {
1432       Symbols.insert(
1433           Symbols.begin(),
1434           std::make_tuple(SectionAddr, SectionName,
1435                           Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT));
1436     }
1437 
1438     SmallString<40> Comments;
1439     raw_svector_ostream CommentStream(Comments);
1440 
1441     StringRef BytesStr;
1442     error(Section.getContents(BytesStr));
1443     ArrayRef<uint8_t> Bytes(reinterpret_cast<const uint8_t *>(BytesStr.data()),
1444                             BytesStr.size());
1445 
1446     uint64_t Size;
1447     uint64_t Index;
1448     bool PrintedSection = false;
1449 
1450     std::vector<RelocationRef>::const_iterator rel_cur = Rels.begin();
1451     std::vector<RelocationRef>::const_iterator rel_end = Rels.end();
1452     // Disassemble symbol by symbol.
1453     for (unsigned si = 0, se = Symbols.size(); si != se; ++si) {
1454       uint64_t Start = std::get<0>(Symbols[si]) - SectionAddr;
1455       // The end is either the section end or the beginning of the next
1456       // symbol.
1457       uint64_t End =
1458           (si == se - 1) ? SectSize : std::get<0>(Symbols[si + 1]) - SectionAddr;
1459       // Don't try to disassemble beyond the end of section contents.
1460       if (End > SectSize)
1461         End = SectSize;
1462       // If this symbol has the same address as the next symbol, then skip it.
1463       if (Start >= End)
1464         continue;
1465 
1466       // Check if we need to skip symbol
1467       // Skip if the symbol's data is not between StartAddress and StopAddress
1468       if (End + SectionAddr < StartAddress ||
1469           Start + SectionAddr > StopAddress) {
1470         continue;
1471       }
1472 
1473       /// Skip if user requested specific symbols and this is not in the list
1474       if (!DisasmFuncsSet.empty() &&
1475           !DisasmFuncsSet.count(std::get<1>(Symbols[si])))
1476         continue;
1477 
1478       if (!PrintedSection) {
1479         PrintedSection = true;
1480         outs() << "Disassembly of section ";
1481         if (!SegmentName.empty())
1482           outs() << SegmentName << ",";
1483         outs() << SectionName << ':';
1484       }
1485 
1486       // Stop disassembly at the stop address specified
1487       if (End + SectionAddr > StopAddress)
1488         End = StopAddress - SectionAddr;
1489 
1490       if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1491         if (std::get<2>(Symbols[si]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1492           // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes)
1493           Start += 256;
1494         }
1495         if (si == se - 1 ||
1496             std::get<2>(Symbols[si + 1]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1497           // cut trailing zeroes at the end of kernel
1498           // cut up to 256 bytes
1499           const uint64_t EndAlign = 256;
1500           const auto Limit = End - (std::min)(EndAlign, End - Start);
1501           while (End > Limit &&
1502             *reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0)
1503             End -= 4;
1504         }
1505       }
1506 
1507       outs() << '\n' << std::get<1>(Symbols[si]) << ":\n";
1508 
1509       // Don't print raw contents of a virtual section. A virtual section
1510       // doesn't have any contents in the file.
1511       if (Section.isVirtual()) {
1512         outs() << "...\n";
1513         continue;
1514       }
1515 
1516 #ifndef NDEBUG
1517       raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
1518 #else
1519       raw_ostream &DebugOut = nulls();
1520 #endif
1521 
1522       for (Index = Start; Index < End; Index += Size) {
1523         MCInst Inst;
1524 
1525         if (Index + SectionAddr < StartAddress ||
1526             Index + SectionAddr > StopAddress) {
1527           // skip byte by byte till StartAddress is reached
1528           Size = 1;
1529           continue;
1530         }
1531         // AArch64 ELF binaries can interleave data and text in the
1532         // same section. We rely on the markers introduced to
1533         // understand what we need to dump. If the data marker is within a
1534         // function, it is denoted as a word/short etc
1535         if (isArmElf(Obj) && std::get<2>(Symbols[si]) != ELF::STT_OBJECT &&
1536             !DisassembleAll) {
1537           uint64_t Stride = 0;
1538 
1539           auto DAI = std::lower_bound(DataMappingSymsAddr.begin(),
1540                                       DataMappingSymsAddr.end(), Index);
1541           if (DAI != DataMappingSymsAddr.end() && *DAI == Index) {
1542             // Switch to data.
1543             while (Index < End) {
1544               outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1545               outs() << "\t";
1546               if (Index + 4 <= End) {
1547                 Stride = 4;
1548                 dumpBytes(Bytes.slice(Index, 4), outs());
1549                 outs() << "\t.word\t";
1550                 uint32_t Data = 0;
1551                 if (Obj->isLittleEndian()) {
1552                   const auto Word =
1553                       reinterpret_cast<const support::ulittle32_t *>(
1554                           Bytes.data() + Index);
1555                   Data = *Word;
1556                 } else {
1557                   const auto Word = reinterpret_cast<const support::ubig32_t *>(
1558                       Bytes.data() + Index);
1559                   Data = *Word;
1560                 }
1561                 outs() << "0x" << format("%08" PRIx32, Data);
1562               } else if (Index + 2 <= End) {
1563                 Stride = 2;
1564                 dumpBytes(Bytes.slice(Index, 2), outs());
1565                 outs() << "\t\t.short\t";
1566                 uint16_t Data = 0;
1567                 if (Obj->isLittleEndian()) {
1568                   const auto Short =
1569                       reinterpret_cast<const support::ulittle16_t *>(
1570                           Bytes.data() + Index);
1571                   Data = *Short;
1572                 } else {
1573                   const auto Short =
1574                       reinterpret_cast<const support::ubig16_t *>(Bytes.data() +
1575                                                                   Index);
1576                   Data = *Short;
1577                 }
1578                 outs() << "0x" << format("%04" PRIx16, Data);
1579               } else {
1580                 Stride = 1;
1581                 dumpBytes(Bytes.slice(Index, 1), outs());
1582                 outs() << "\t\t.byte\t";
1583                 outs() << "0x" << format("%02" PRIx8, Bytes.slice(Index, 1)[0]);
1584               }
1585               Index += Stride;
1586               outs() << "\n";
1587               auto TAI = std::lower_bound(TextMappingSymsAddr.begin(),
1588                                           TextMappingSymsAddr.end(), Index);
1589               if (TAI != TextMappingSymsAddr.end() && *TAI == Index)
1590                 break;
1591             }
1592           }
1593         }
1594 
1595         // If there is a data symbol inside an ELF text section and we are only
1596         // disassembling text (applicable all architectures),
1597         // we are in a situation where we must print the data and not
1598         // disassemble it.
1599         if (Obj->isELF() && std::get<2>(Symbols[si]) == ELF::STT_OBJECT &&
1600             !DisassembleAll && Section.isText()) {
1601           // print out data up to 8 bytes at a time in hex and ascii
1602           uint8_t AsciiData[9] = {'\0'};
1603           uint8_t Byte;
1604           int NumBytes = 0;
1605 
1606           for (Index = Start; Index < End; Index += 1) {
1607             if (((SectionAddr + Index) < StartAddress) ||
1608                 ((SectionAddr + Index) > StopAddress))
1609               continue;
1610             if (NumBytes == 0) {
1611               outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1612               outs() << "\t";
1613             }
1614             Byte = Bytes.slice(Index)[0];
1615             outs() << format(" %02x", Byte);
1616             AsciiData[NumBytes] = isprint(Byte) ? Byte : '.';
1617 
1618             uint8_t IndentOffset = 0;
1619             NumBytes++;
1620             if (Index == End - 1 || NumBytes > 8) {
1621               // Indent the space for less than 8 bytes data.
1622               // 2 spaces for byte and one for space between bytes
1623               IndentOffset = 3 * (8 - NumBytes);
1624               for (int Excess = 8 - NumBytes; Excess < 8; Excess++)
1625                 AsciiData[Excess] = '\0';
1626               NumBytes = 8;
1627             }
1628             if (NumBytes == 8) {
1629               AsciiData[8] = '\0';
1630               outs() << std::string(IndentOffset, ' ') << "         ";
1631               outs() << reinterpret_cast<char *>(AsciiData);
1632               outs() << '\n';
1633               NumBytes = 0;
1634             }
1635           }
1636         }
1637         if (Index >= End)
1638           break;
1639 
1640         // Disassemble a real instruction or a data when disassemble all is
1641         // provided
1642         bool Disassembled = DisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
1643                                                    SectionAddr + Index, DebugOut,
1644                                                    CommentStream);
1645         if (Size == 0)
1646           Size = 1;
1647 
1648         PIP.printInst(*IP, Disassembled ? &Inst : nullptr,
1649                       Bytes.slice(Index, Size), SectionAddr + Index, outs(), "",
1650                       *STI, &SP);
1651         outs() << CommentStream.str();
1652         Comments.clear();
1653 
1654         // Try to resolve the target of a call, tail call, etc. to a specific
1655         // symbol.
1656         if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) ||
1657                     MIA->isConditionalBranch(Inst))) {
1658           uint64_t Target;
1659           if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) {
1660             // In a relocatable object, the target's section must reside in
1661             // the same section as the call instruction or it is accessed
1662             // through a relocation.
1663             //
1664             // In a non-relocatable object, the target may be in any section.
1665             //
1666             // N.B. We don't walk the relocations in the relocatable case yet.
1667             auto *TargetSectionSymbols = &Symbols;
1668             if (!Obj->isRelocatableObject()) {
1669               auto SectionAddress = std::upper_bound(
1670                   SectionAddresses.begin(), SectionAddresses.end(), Target,
1671                   [](uint64_t LHS,
1672                       const std::pair<uint64_t, SectionRef> &RHS) {
1673                     return LHS < RHS.first;
1674                   });
1675               if (SectionAddress != SectionAddresses.begin()) {
1676                 --SectionAddress;
1677                 TargetSectionSymbols = &AllSymbols[SectionAddress->second];
1678               } else {
1679                 TargetSectionSymbols = nullptr;
1680               }
1681             }
1682 
1683             // Find the first symbol in the section whose offset is less than
1684             // or equal to the target.
1685             if (TargetSectionSymbols) {
1686               auto TargetSym = std::upper_bound(
1687                   TargetSectionSymbols->begin(), TargetSectionSymbols->end(),
1688                   Target, [](uint64_t LHS,
1689                              const std::tuple<uint64_t, StringRef, uint8_t> &RHS) {
1690                     return LHS < std::get<0>(RHS);
1691                   });
1692               if (TargetSym != TargetSectionSymbols->begin()) {
1693                 --TargetSym;
1694                 uint64_t TargetAddress = std::get<0>(*TargetSym);
1695                 StringRef TargetName = std::get<1>(*TargetSym);
1696                 outs() << " <" << TargetName;
1697                 uint64_t Disp = Target - TargetAddress;
1698                 if (Disp)
1699                   outs() << "+0x" << Twine::utohexstr(Disp);
1700                 outs() << '>';
1701               }
1702             }
1703           }
1704         }
1705         outs() << "\n";
1706 
1707         // Print relocation for instruction.
1708         while (rel_cur != rel_end) {
1709           bool hidden = getHidden(*rel_cur);
1710           uint64_t addr = rel_cur->getOffset();
1711           SmallString<16> name;
1712           SmallString<32> val;
1713 
1714           // If this relocation is hidden, skip it.
1715           if (hidden || ((SectionAddr + addr) < StartAddress)) {
1716             ++rel_cur;
1717             continue;
1718           }
1719 
1720           // Stop when rel_cur's address is past the current instruction.
1721           if (addr >= Index + Size) break;
1722           rel_cur->getTypeName(name);
1723           error(getRelocationValueString(*rel_cur, val));
1724           outs() << format(Fmt.data(), SectionAddr + addr) << name
1725                  << "\t" << val << "\n";
1726           ++rel_cur;
1727         }
1728       }
1729     }
1730   }
1731 }
1732 
1733 void llvm::PrintRelocations(const ObjectFile *Obj) {
1734   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
1735                                                  "%08" PRIx64;
1736   // Regular objdump doesn't print relocations in non-relocatable object
1737   // files.
1738   if (!Obj->isRelocatableObject())
1739     return;
1740 
1741   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1742     if (Section.relocation_begin() == Section.relocation_end())
1743       continue;
1744     StringRef secname;
1745     error(Section.getName(secname));
1746     outs() << "RELOCATION RECORDS FOR [" << secname << "]:\n";
1747     for (const RelocationRef &Reloc : Section.relocations()) {
1748       bool hidden = getHidden(Reloc);
1749       uint64_t address = Reloc.getOffset();
1750       SmallString<32> relocname;
1751       SmallString<32> valuestr;
1752       if (address < StartAddress || address > StopAddress || hidden)
1753         continue;
1754       Reloc.getTypeName(relocname);
1755       error(getRelocationValueString(Reloc, valuestr));
1756       outs() << format(Fmt.data(), address) << " " << relocname << " "
1757              << valuestr << "\n";
1758     }
1759     outs() << "\n";
1760   }
1761 }
1762 
1763 void llvm::PrintSectionHeaders(const ObjectFile *Obj) {
1764   outs() << "Sections:\n"
1765             "Idx Name          Size      Address          Type\n";
1766   unsigned i = 0;
1767   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1768     StringRef Name;
1769     error(Section.getName(Name));
1770     uint64_t Address = Section.getAddress();
1771     uint64_t Size = Section.getSize();
1772     bool Text = Section.isText();
1773     bool Data = Section.isData();
1774     bool BSS = Section.isBSS();
1775     std::string Type = (std::string(Text ? "TEXT " : "") +
1776                         (Data ? "DATA " : "") + (BSS ? "BSS" : ""));
1777     outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %s\n", i,
1778                      Name.str().c_str(), Size, Address, Type.c_str());
1779     ++i;
1780   }
1781 }
1782 
1783 void llvm::PrintSectionContents(const ObjectFile *Obj) {
1784   std::error_code EC;
1785   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1786     StringRef Name;
1787     StringRef Contents;
1788     error(Section.getName(Name));
1789     uint64_t BaseAddr = Section.getAddress();
1790     uint64_t Size = Section.getSize();
1791     if (!Size)
1792       continue;
1793 
1794     outs() << "Contents of section " << Name << ":\n";
1795     if (Section.isBSS()) {
1796       outs() << format("<skipping contents of bss section at [%04" PRIx64
1797                        ", %04" PRIx64 ")>\n",
1798                        BaseAddr, BaseAddr + Size);
1799       continue;
1800     }
1801 
1802     error(Section.getContents(Contents));
1803 
1804     // Dump out the content as hex and printable ascii characters.
1805     for (std::size_t addr = 0, end = Contents.size(); addr < end; addr += 16) {
1806       outs() << format(" %04" PRIx64 " ", BaseAddr + addr);
1807       // Dump line of hex.
1808       for (std::size_t i = 0; i < 16; ++i) {
1809         if (i != 0 && i % 4 == 0)
1810           outs() << ' ';
1811         if (addr + i < end)
1812           outs() << hexdigit((Contents[addr + i] >> 4) & 0xF, true)
1813                  << hexdigit(Contents[addr + i] & 0xF, true);
1814         else
1815           outs() << "  ";
1816       }
1817       // Print ascii.
1818       outs() << "  ";
1819       for (std::size_t i = 0; i < 16 && addr + i < end; ++i) {
1820         if (std::isprint(static_cast<unsigned char>(Contents[addr + i]) & 0xFF))
1821           outs() << Contents[addr + i];
1822         else
1823           outs() << ".";
1824       }
1825       outs() << "\n";
1826     }
1827   }
1828 }
1829 
1830 void llvm::PrintSymbolTable(const ObjectFile *o, StringRef ArchiveName,
1831                             StringRef ArchitectureName) {
1832   outs() << "SYMBOL TABLE:\n";
1833 
1834   if (const COFFObjectFile *coff = dyn_cast<const COFFObjectFile>(o)) {
1835     printCOFFSymbolTable(coff);
1836     return;
1837   }
1838   for (const SymbolRef &Symbol : o->symbols()) {
1839     Expected<uint64_t> AddressOrError = Symbol.getAddress();
1840     if (!AddressOrError)
1841       report_error(ArchiveName, o->getFileName(), AddressOrError.takeError(),
1842                    ArchitectureName);
1843     uint64_t Address = *AddressOrError;
1844     if ((Address < StartAddress) || (Address > StopAddress))
1845       continue;
1846     Expected<SymbolRef::Type> TypeOrError = Symbol.getType();
1847     if (!TypeOrError)
1848       report_error(ArchiveName, o->getFileName(), TypeOrError.takeError(),
1849                    ArchitectureName);
1850     SymbolRef::Type Type = *TypeOrError;
1851     uint32_t Flags = Symbol.getFlags();
1852     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1853     if (!SectionOrErr)
1854       report_error(ArchiveName, o->getFileName(), SectionOrErr.takeError(),
1855                    ArchitectureName);
1856     section_iterator Section = *SectionOrErr;
1857     StringRef Name;
1858     if (Type == SymbolRef::ST_Debug && Section != o->section_end()) {
1859       Section->getName(Name);
1860     } else {
1861       Expected<StringRef> NameOrErr = Symbol.getName();
1862       if (!NameOrErr)
1863         report_error(ArchiveName, o->getFileName(), NameOrErr.takeError(),
1864                      ArchitectureName);
1865       Name = *NameOrErr;
1866     }
1867 
1868     bool Global = Flags & SymbolRef::SF_Global;
1869     bool Weak = Flags & SymbolRef::SF_Weak;
1870     bool Absolute = Flags & SymbolRef::SF_Absolute;
1871     bool Common = Flags & SymbolRef::SF_Common;
1872     bool Hidden = Flags & SymbolRef::SF_Hidden;
1873 
1874     char GlobLoc = ' ';
1875     if (Type != SymbolRef::ST_Unknown)
1876       GlobLoc = Global ? 'g' : 'l';
1877     char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
1878                  ? 'd' : ' ';
1879     char FileFunc = ' ';
1880     if (Type == SymbolRef::ST_File)
1881       FileFunc = 'f';
1882     else if (Type == SymbolRef::ST_Function)
1883       FileFunc = 'F';
1884 
1885     const char *Fmt = o->getBytesInAddress() > 4 ? "%016" PRIx64 :
1886                                                    "%08" PRIx64;
1887 
1888     outs() << format(Fmt, Address) << " "
1889            << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' '
1890            << (Weak ? 'w' : ' ') // Weak?
1891            << ' ' // Constructor. Not supported yet.
1892            << ' ' // Warning. Not supported yet.
1893            << ' ' // Indirect reference to another symbol.
1894            << Debug // Debugging (d) or dynamic (D) symbol.
1895            << FileFunc // Name of function (F), file (f) or object (O).
1896            << ' ';
1897     if (Absolute) {
1898       outs() << "*ABS*";
1899     } else if (Common) {
1900       outs() << "*COM*";
1901     } else if (Section == o->section_end()) {
1902       outs() << "*UND*";
1903     } else {
1904       if (const MachOObjectFile *MachO =
1905           dyn_cast<const MachOObjectFile>(o)) {
1906         DataRefImpl DR = Section->getRawDataRefImpl();
1907         StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1908         outs() << SegmentName << ",";
1909       }
1910       StringRef SectionName;
1911       error(Section->getName(SectionName));
1912       outs() << SectionName;
1913     }
1914 
1915     outs() << '\t';
1916     if (Common || isa<ELFObjectFileBase>(o)) {
1917       uint64_t Val =
1918           Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
1919       outs() << format("\t %08" PRIx64 " ", Val);
1920     }
1921 
1922     if (Hidden) {
1923       outs() << ".hidden ";
1924     }
1925     outs() << Name
1926            << '\n';
1927   }
1928 }
1929 
1930 static void PrintUnwindInfo(const ObjectFile *o) {
1931   outs() << "Unwind info:\n\n";
1932 
1933   if (const COFFObjectFile *coff = dyn_cast<COFFObjectFile>(o)) {
1934     printCOFFUnwindInfo(coff);
1935   } else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1936     printMachOUnwindInfo(MachO);
1937   else {
1938     // TODO: Extract DWARF dump tool to objdump.
1939     errs() << "This operation is only currently supported "
1940               "for COFF and MachO object files.\n";
1941     return;
1942   }
1943 }
1944 
1945 void llvm::printExportsTrie(const ObjectFile *o) {
1946   outs() << "Exports trie:\n";
1947   if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1948     printMachOExportsTrie(MachO);
1949   else {
1950     errs() << "This operation is only currently supported "
1951               "for Mach-O executable files.\n";
1952     return;
1953   }
1954 }
1955 
1956 void llvm::printRebaseTable(ObjectFile *o) {
1957   outs() << "Rebase table:\n";
1958   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1959     printMachORebaseTable(MachO);
1960   else {
1961     errs() << "This operation is only currently supported "
1962               "for Mach-O executable files.\n";
1963     return;
1964   }
1965 }
1966 
1967 void llvm::printBindTable(ObjectFile *o) {
1968   outs() << "Bind table:\n";
1969   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1970     printMachOBindTable(MachO);
1971   else {
1972     errs() << "This operation is only currently supported "
1973               "for Mach-O executable files.\n";
1974     return;
1975   }
1976 }
1977 
1978 void llvm::printLazyBindTable(ObjectFile *o) {
1979   outs() << "Lazy bind table:\n";
1980   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1981     printMachOLazyBindTable(MachO);
1982   else {
1983     errs() << "This operation is only currently supported "
1984               "for Mach-O executable files.\n";
1985     return;
1986   }
1987 }
1988 
1989 void llvm::printWeakBindTable(ObjectFile *o) {
1990   outs() << "Weak bind table:\n";
1991   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1992     printMachOWeakBindTable(MachO);
1993   else {
1994     errs() << "This operation is only currently supported "
1995               "for Mach-O executable files.\n";
1996     return;
1997   }
1998 }
1999 
2000 /// Dump the raw contents of the __clangast section so the output can be piped
2001 /// into llvm-bcanalyzer.
2002 void llvm::printRawClangAST(const ObjectFile *Obj) {
2003   if (outs().is_displayed()) {
2004     errs() << "The -raw-clang-ast option will dump the raw binary contents of "
2005               "the clang ast section.\n"
2006               "Please redirect the output to a file or another program such as "
2007               "llvm-bcanalyzer.\n";
2008     return;
2009   }
2010 
2011   StringRef ClangASTSectionName("__clangast");
2012   if (isa<COFFObjectFile>(Obj)) {
2013     ClangASTSectionName = "clangast";
2014   }
2015 
2016   Optional<object::SectionRef> ClangASTSection;
2017   for (auto Sec : ToolSectionFilter(*Obj)) {
2018     StringRef Name;
2019     Sec.getName(Name);
2020     if (Name == ClangASTSectionName) {
2021       ClangASTSection = Sec;
2022       break;
2023     }
2024   }
2025   if (!ClangASTSection)
2026     return;
2027 
2028   StringRef ClangASTContents;
2029   error(ClangASTSection.getValue().getContents(ClangASTContents));
2030   outs().write(ClangASTContents.data(), ClangASTContents.size());
2031 }
2032 
2033 static void printFaultMaps(const ObjectFile *Obj) {
2034   const char *FaultMapSectionName = nullptr;
2035 
2036   if (isa<ELFObjectFileBase>(Obj)) {
2037     FaultMapSectionName = ".llvm_faultmaps";
2038   } else if (isa<MachOObjectFile>(Obj)) {
2039     FaultMapSectionName = "__llvm_faultmaps";
2040   } else {
2041     errs() << "This operation is only currently supported "
2042               "for ELF and Mach-O executable files.\n";
2043     return;
2044   }
2045 
2046   Optional<object::SectionRef> FaultMapSection;
2047 
2048   for (auto Sec : ToolSectionFilter(*Obj)) {
2049     StringRef Name;
2050     Sec.getName(Name);
2051     if (Name == FaultMapSectionName) {
2052       FaultMapSection = Sec;
2053       break;
2054     }
2055   }
2056 
2057   outs() << "FaultMap table:\n";
2058 
2059   if (!FaultMapSection.hasValue()) {
2060     outs() << "<not found>\n";
2061     return;
2062   }
2063 
2064   StringRef FaultMapContents;
2065   error(FaultMapSection.getValue().getContents(FaultMapContents));
2066 
2067   FaultMapParser FMP(FaultMapContents.bytes_begin(),
2068                      FaultMapContents.bytes_end());
2069 
2070   outs() << FMP;
2071 }
2072 
2073 static void printPrivateFileHeaders(const ObjectFile *o, bool onlyFirst) {
2074   if (o->isELF())
2075     return printELFFileHeader(o);
2076   if (o->isCOFF())
2077     return printCOFFFileHeader(o);
2078   if (o->isWasm())
2079     return printWasmFileHeader(o);
2080   if (o->isMachO()) {
2081     printMachOFileHeader(o);
2082     if (!onlyFirst)
2083       printMachOLoadCommands(o);
2084     return;
2085   }
2086   report_error(o->getFileName(), "Invalid/Unsupported object file format");
2087 }
2088 
2089 static void DumpObject(ObjectFile *o, const Archive *a = nullptr) {
2090   StringRef ArchiveName = a != nullptr ? a->getFileName() : "";
2091   // Avoid other output when using a raw option.
2092   if (!RawClangAST) {
2093     outs() << '\n';
2094     if (a)
2095       outs() << a->getFileName() << "(" << o->getFileName() << ")";
2096     else
2097       outs() << o->getFileName();
2098     outs() << ":\tfile format " << o->getFileFormatName() << "\n\n";
2099   }
2100 
2101   if (Disassemble)
2102     DisassembleObject(o, Relocations);
2103   if (Relocations && !Disassemble)
2104     PrintRelocations(o);
2105   if (SectionHeaders)
2106     PrintSectionHeaders(o);
2107   if (SectionContents)
2108     PrintSectionContents(o);
2109   if (SymbolTable)
2110     PrintSymbolTable(o, ArchiveName);
2111   if (UnwindInfo)
2112     PrintUnwindInfo(o);
2113   if (PrivateHeaders || FirstPrivateHeader)
2114     printPrivateFileHeaders(o, FirstPrivateHeader);
2115   if (ExportsTrie)
2116     printExportsTrie(o);
2117   if (Rebase)
2118     printRebaseTable(o);
2119   if (Bind)
2120     printBindTable(o);
2121   if (LazyBind)
2122     printLazyBindTable(o);
2123   if (WeakBind)
2124     printWeakBindTable(o);
2125   if (RawClangAST)
2126     printRawClangAST(o);
2127   if (PrintFaultMaps)
2128     printFaultMaps(o);
2129   if (DwarfDumpType != DIDT_Null) {
2130     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*o);
2131     // Dump the complete DWARF structure.
2132     DIDumpOptions DumpOpts;
2133     DumpOpts.DumpType = DwarfDumpType;
2134     DICtx->dump(outs(), DumpOpts);
2135   }
2136 }
2137 
2138 static void DumpObject(const COFFImportFile *I, const Archive *A) {
2139   StringRef ArchiveName = A ? A->getFileName() : "";
2140 
2141   // Avoid other output when using a raw option.
2142   if (!RawClangAST)
2143     outs() << '\n'
2144            << ArchiveName << "(" << I->getFileName() << ")"
2145            << ":\tfile format COFF-import-file"
2146            << "\n\n";
2147 
2148   if (SymbolTable)
2149     printCOFFSymbolTable(I);
2150 }
2151 
2152 /// Dump each object file in \a a;
2153 static void DumpArchive(const Archive *a) {
2154   Error Err = Error::success();
2155   for (auto &C : a->children(Err)) {
2156     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2157     if (!ChildOrErr) {
2158       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2159         report_error(a->getFileName(), C, std::move(E));
2160       continue;
2161     }
2162     if (ObjectFile *o = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2163       DumpObject(o, a);
2164     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2165       DumpObject(I, a);
2166     else
2167       report_error(a->getFileName(), object_error::invalid_file_type);
2168   }
2169   if (Err)
2170     report_error(a->getFileName(), std::move(Err));
2171 }
2172 
2173 /// Open file and figure out how to dump it.
2174 static void DumpInput(StringRef file) {
2175 
2176   // If we are using the Mach-O specific object file parser, then let it parse
2177   // the file and process the command line options.  So the -arch flags can
2178   // be used to select specific slices, etc.
2179   if (MachOOpt) {
2180     ParseInputMachO(file);
2181     return;
2182   }
2183 
2184   // Attempt to open the binary.
2185   Expected<OwningBinary<Binary>> BinaryOrErr = createBinary(file);
2186   if (!BinaryOrErr)
2187     report_error(file, BinaryOrErr.takeError());
2188   Binary &Binary = *BinaryOrErr.get().getBinary();
2189 
2190   if (Archive *a = dyn_cast<Archive>(&Binary))
2191     DumpArchive(a);
2192   else if (ObjectFile *o = dyn_cast<ObjectFile>(&Binary))
2193     DumpObject(o);
2194   else
2195     report_error(file, object_error::invalid_file_type);
2196 }
2197 
2198 int main(int argc, char **argv) {
2199   InitLLVM X(argc, argv);
2200 
2201   // Initialize targets and assembly printers/parsers.
2202   llvm::InitializeAllTargetInfos();
2203   llvm::InitializeAllTargetMCs();
2204   llvm::InitializeAllDisassemblers();
2205 
2206   // Register the target printer for --version.
2207   cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);
2208 
2209   cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n");
2210   TripleName = Triple::normalize(TripleName);
2211 
2212   ToolName = argv[0];
2213 
2214   // Defaults to a.out if no filenames specified.
2215   if (InputFilenames.size() == 0)
2216     InputFilenames.push_back("a.out");
2217 
2218   if (DisassembleAll || PrintSource || PrintLines)
2219     Disassemble = true;
2220   if (!Disassemble
2221       && !Relocations
2222       && !SectionHeaders
2223       && !SectionContents
2224       && !SymbolTable
2225       && !UnwindInfo
2226       && !PrivateHeaders
2227       && !FirstPrivateHeader
2228       && !ExportsTrie
2229       && !Rebase
2230       && !Bind
2231       && !LazyBind
2232       && !WeakBind
2233       && !RawClangAST
2234       && !(UniversalHeaders && MachOOpt)
2235       && !(ArchiveHeaders && MachOOpt)
2236       && !(IndirectSymbols && MachOOpt)
2237       && !(DataInCode && MachOOpt)
2238       && !(LinkOptHints && MachOOpt)
2239       && !(InfoPlist && MachOOpt)
2240       && !(DylibsUsed && MachOOpt)
2241       && !(DylibId && MachOOpt)
2242       && !(ObjcMetaData && MachOOpt)
2243       && !(FilterSections.size() != 0 && MachOOpt)
2244       && !PrintFaultMaps
2245       && DwarfDumpType == DIDT_Null) {
2246     cl::PrintHelpMessage();
2247     return 2;
2248   }
2249 
2250   DisasmFuncsSet.insert(DisassembleFunctions.begin(),
2251                         DisassembleFunctions.end());
2252 
2253   llvm::for_each(InputFilenames, DumpInput);
2254 
2255   return EXIT_SUCCESS;
2256 }
2257