xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision 1834682b97f498093684674f8f0d95113ef3cb66)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This program is a utility that works like binutils "objdump", that is, it
11 // dumps out a plethora of information about an object file depending on the
12 // flags.
13 //
14 // The flags and output of this program should be near identical to those of
15 // binutils objdump.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm-objdump.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringSet.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/CodeGen/FaultMaps.h"
26 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
27 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCContext.h"
30 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
31 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
32 #include "llvm/MC/MCInst.h"
33 #include "llvm/MC/MCInstPrinter.h"
34 #include "llvm/MC/MCInstrAnalysis.h"
35 #include "llvm/MC/MCInstrInfo.h"
36 #include "llvm/MC/MCObjectFileInfo.h"
37 #include "llvm/MC/MCRegisterInfo.h"
38 #include "llvm/MC/MCSubtargetInfo.h"
39 #include "llvm/Object/Archive.h"
40 #include "llvm/Object/COFF.h"
41 #include "llvm/Object/COFFImportFile.h"
42 #include "llvm/Object/ELFObjectFile.h"
43 #include "llvm/Object/MachO.h"
44 #include "llvm/Object/ObjectFile.h"
45 #include "llvm/Object/Wasm.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/Errc.h"
50 #include "llvm/Support/FileSystem.h"
51 #include "llvm/Support/Format.h"
52 #include "llvm/Support/GraphWriter.h"
53 #include "llvm/Support/Host.h"
54 #include "llvm/Support/InitLLVM.h"
55 #include "llvm/Support/MemoryBuffer.h"
56 #include "llvm/Support/SourceMgr.h"
57 #include "llvm/Support/TargetRegistry.h"
58 #include "llvm/Support/TargetSelect.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <algorithm>
61 #include <cctype>
62 #include <cstring>
63 #include <system_error>
64 #include <unordered_map>
65 #include <utility>
66 
67 using namespace llvm;
68 using namespace object;
69 
70 static cl::list<std::string>
71 InputFilenames(cl::Positional, cl::desc("<input object files>"),cl::ZeroOrMore);
72 
73 cl::opt<bool>
74 llvm::Disassemble("disassemble",
75   cl::desc("Display assembler mnemonics for the machine instructions"));
76 static cl::alias
77 Disassembled("d", cl::desc("Alias for --disassemble"),
78              cl::aliasopt(Disassemble));
79 
80 cl::opt<bool>
81 llvm::DisassembleAll("disassemble-all",
82   cl::desc("Display assembler mnemonics for the machine instructions"));
83 static cl::alias
84 DisassembleAlld("D", cl::desc("Alias for --disassemble-all"),
85              cl::aliasopt(DisassembleAll));
86 
87 static cl::list<std::string>
88 DisassembleFunctions("df",
89                      cl::CommaSeparated,
90                      cl::desc("List of functions to disassemble"));
91 static StringSet<> DisasmFuncsSet;
92 
93 cl::opt<bool>
94 llvm::Relocations("r", cl::desc("Display the relocation entries in the file"));
95 
96 cl::opt<bool>
97 llvm::SectionContents("s", cl::desc("Display the content of each section"));
98 
99 cl::opt<bool>
100 llvm::SymbolTable("t", cl::desc("Display the symbol table"));
101 
102 cl::opt<bool>
103 llvm::ExportsTrie("exports-trie", cl::desc("Display mach-o exported symbols"));
104 
105 cl::opt<bool>
106 llvm::Rebase("rebase", cl::desc("Display mach-o rebasing info"));
107 
108 cl::opt<bool>
109 llvm::Bind("bind", cl::desc("Display mach-o binding info"));
110 
111 cl::opt<bool>
112 llvm::LazyBind("lazy-bind", cl::desc("Display mach-o lazy binding info"));
113 
114 cl::opt<bool>
115 llvm::WeakBind("weak-bind", cl::desc("Display mach-o weak binding info"));
116 
117 cl::opt<bool>
118 llvm::RawClangAST("raw-clang-ast",
119     cl::desc("Dump the raw binary contents of the clang AST section"));
120 
121 static cl::opt<bool>
122 MachOOpt("macho", cl::desc("Use MachO specific object file parser"));
123 static cl::alias
124 MachOm("m", cl::desc("Alias for --macho"), cl::aliasopt(MachOOpt));
125 
126 cl::opt<std::string>
127 llvm::TripleName("triple", cl::desc("Target triple to disassemble for, "
128                                     "see -version for available targets"));
129 
130 cl::opt<std::string>
131 llvm::MCPU("mcpu",
132      cl::desc("Target a specific cpu type (-mcpu=help for details)"),
133      cl::value_desc("cpu-name"),
134      cl::init(""));
135 
136 cl::opt<std::string>
137 llvm::ArchName("arch-name", cl::desc("Target arch to disassemble for, "
138                                 "see -version for available targets"));
139 
140 cl::opt<bool>
141 llvm::SectionHeaders("section-headers", cl::desc("Display summaries of the "
142                                                  "headers for each section."));
143 static cl::alias
144 SectionHeadersShort("headers", cl::desc("Alias for --section-headers"),
145                     cl::aliasopt(SectionHeaders));
146 static cl::alias
147 SectionHeadersShorter("h", cl::desc("Alias for --section-headers"),
148                       cl::aliasopt(SectionHeaders));
149 
150 cl::list<std::string>
151 llvm::FilterSections("section", cl::desc("Operate on the specified sections only. "
152                                          "With -macho dump segment,section"));
153 cl::alias
154 static FilterSectionsj("j", cl::desc("Alias for --section"),
155                  cl::aliasopt(llvm::FilterSections));
156 
157 cl::list<std::string>
158 llvm::MAttrs("mattr",
159   cl::CommaSeparated,
160   cl::desc("Target specific attributes"),
161   cl::value_desc("a1,+a2,-a3,..."));
162 
163 cl::opt<bool>
164 llvm::NoShowRawInsn("no-show-raw-insn", cl::desc("When disassembling "
165                                                  "instructions, do not print "
166                                                  "the instruction bytes."));
167 cl::opt<bool>
168 llvm::NoLeadingAddr("no-leading-addr", cl::desc("Print no leading address"));
169 
170 cl::opt<bool>
171 llvm::UnwindInfo("unwind-info", cl::desc("Display unwind information"));
172 
173 static cl::alias
174 UnwindInfoShort("u", cl::desc("Alias for --unwind-info"),
175                 cl::aliasopt(UnwindInfo));
176 
177 cl::opt<bool>
178 llvm::PrivateHeaders("private-headers",
179                      cl::desc("Display format specific file headers"));
180 
181 cl::opt<bool>
182 llvm::FirstPrivateHeader("private-header",
183                          cl::desc("Display only the first format specific file "
184                                   "header"));
185 
186 static cl::alias
187 PrivateHeadersShort("p", cl::desc("Alias for --private-headers"),
188                     cl::aliasopt(PrivateHeaders));
189 
190 cl::opt<bool>
191     llvm::PrintImmHex("print-imm-hex",
192                       cl::desc("Use hex format for immediate values"));
193 
194 cl::opt<bool> PrintFaultMaps("fault-map-section",
195                              cl::desc("Display contents of faultmap section"));
196 
197 cl::opt<DIDumpType> llvm::DwarfDumpType(
198     "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"),
199     cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame")));
200 
201 cl::opt<bool> PrintSource(
202     "source",
203     cl::desc(
204         "Display source inlined with disassembly. Implies disassemble object"));
205 
206 cl::alias PrintSourceShort("S", cl::desc("Alias for -source"),
207                            cl::aliasopt(PrintSource));
208 
209 cl::opt<bool> PrintLines("line-numbers",
210                          cl::desc("Display source line numbers with "
211                                   "disassembly. Implies disassemble object"));
212 
213 cl::alias PrintLinesShort("l", cl::desc("Alias for -line-numbers"),
214                           cl::aliasopt(PrintLines));
215 
216 cl::opt<unsigned long long>
217     StartAddress("start-address", cl::desc("Disassemble beginning at address"),
218                  cl::value_desc("address"), cl::init(0));
219 cl::opt<unsigned long long>
220     StopAddress("stop-address", cl::desc("Stop disassembly at address"),
221                 cl::value_desc("address"), cl::init(UINT64_MAX));
222 static StringRef ToolName;
223 
224 typedef std::vector<std::tuple<uint64_t, StringRef, uint8_t>> SectionSymbolsTy;
225 
226 namespace {
227 typedef std::function<bool(llvm::object::SectionRef const &)> FilterPredicate;
228 
229 class SectionFilterIterator {
230 public:
231   SectionFilterIterator(FilterPredicate P,
232                         llvm::object::section_iterator const &I,
233                         llvm::object::section_iterator const &E)
234       : Predicate(std::move(P)), Iterator(I), End(E) {
235     ScanPredicate();
236   }
237   const llvm::object::SectionRef &operator*() const { return *Iterator; }
238   SectionFilterIterator &operator++() {
239     ++Iterator;
240     ScanPredicate();
241     return *this;
242   }
243   bool operator!=(SectionFilterIterator const &Other) const {
244     return Iterator != Other.Iterator;
245   }
246 
247 private:
248   void ScanPredicate() {
249     while (Iterator != End && !Predicate(*Iterator)) {
250       ++Iterator;
251     }
252   }
253   FilterPredicate Predicate;
254   llvm::object::section_iterator Iterator;
255   llvm::object::section_iterator End;
256 };
257 
258 class SectionFilter {
259 public:
260   SectionFilter(FilterPredicate P, llvm::object::ObjectFile const &O)
261       : Predicate(std::move(P)), Object(O) {}
262   SectionFilterIterator begin() {
263     return SectionFilterIterator(Predicate, Object.section_begin(),
264                                  Object.section_end());
265   }
266   SectionFilterIterator end() {
267     return SectionFilterIterator(Predicate, Object.section_end(),
268                                  Object.section_end());
269   }
270 
271 private:
272   FilterPredicate Predicate;
273   llvm::object::ObjectFile const &Object;
274 };
275 SectionFilter ToolSectionFilter(llvm::object::ObjectFile const &O) {
276   return SectionFilter(
277       [](llvm::object::SectionRef const &S) {
278         if (FilterSections.empty())
279           return true;
280         llvm::StringRef String;
281         std::error_code error = S.getName(String);
282         if (error)
283           return false;
284         return is_contained(FilterSections, String);
285       },
286       O);
287 }
288 }
289 
290 void llvm::error(std::error_code EC) {
291   if (!EC)
292     return;
293 
294   errs() << ToolName << ": error reading file: " << EC.message() << ".\n";
295   errs().flush();
296   exit(1);
297 }
298 
299 LLVM_ATTRIBUTE_NORETURN void llvm::error(Twine Message) {
300   errs() << ToolName << ": " << Message << ".\n";
301   errs().flush();
302   exit(1);
303 }
304 
305 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
306                                                 Twine Message) {
307   errs() << ToolName << ": '" << File << "': " << Message << ".\n";
308   exit(1);
309 }
310 
311 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
312                                                 std::error_code EC) {
313   assert(EC);
314   errs() << ToolName << ": '" << File << "': " << EC.message() << ".\n";
315   exit(1);
316 }
317 
318 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
319                                                 llvm::Error E) {
320   assert(E);
321   std::string Buf;
322   raw_string_ostream OS(Buf);
323   logAllUnhandledErrors(std::move(E), OS, "");
324   OS.flush();
325   errs() << ToolName << ": '" << File << "': " << Buf;
326   exit(1);
327 }
328 
329 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
330                                                 StringRef FileName,
331                                                 llvm::Error E,
332                                                 StringRef ArchitectureName) {
333   assert(E);
334   errs() << ToolName << ": ";
335   if (ArchiveName != "")
336     errs() << ArchiveName << "(" << FileName << ")";
337   else
338     errs() << "'" << FileName << "'";
339   if (!ArchitectureName.empty())
340     errs() << " (for architecture " << ArchitectureName << ")";
341   std::string Buf;
342   raw_string_ostream OS(Buf);
343   logAllUnhandledErrors(std::move(E), OS, "");
344   OS.flush();
345   errs() << ": " << Buf;
346   exit(1);
347 }
348 
349 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
350                                                 const object::Archive::Child &C,
351                                                 llvm::Error E,
352                                                 StringRef ArchitectureName) {
353   Expected<StringRef> NameOrErr = C.getName();
354   // TODO: if we have a error getting the name then it would be nice to print
355   // the index of which archive member this is and or its offset in the
356   // archive instead of "???" as the name.
357   if (!NameOrErr) {
358     consumeError(NameOrErr.takeError());
359     llvm::report_error(ArchiveName, "???", std::move(E), ArchitectureName);
360   } else
361     llvm::report_error(ArchiveName, NameOrErr.get(), std::move(E),
362                        ArchitectureName);
363 }
364 
365 static const Target *getTarget(const ObjectFile *Obj = nullptr) {
366   // Figure out the target triple.
367   llvm::Triple TheTriple("unknown-unknown-unknown");
368   if (TripleName.empty()) {
369     if (Obj) {
370       TheTriple = Obj->makeTriple();
371     }
372   } else {
373     TheTriple.setTriple(Triple::normalize(TripleName));
374 
375     // Use the triple, but also try to combine with ARM build attributes.
376     if (Obj) {
377       auto Arch = Obj->getArch();
378       if (Arch == Triple::arm || Arch == Triple::armeb) {
379         Obj->setARMSubArch(TheTriple);
380       }
381     }
382   }
383 
384   // Get the target specific parser.
385   std::string Error;
386   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
387                                                          Error);
388   if (!TheTarget) {
389     if (Obj)
390       report_error(Obj->getFileName(), "can't find target: " + Error);
391     else
392       error("can't find target: " + Error);
393   }
394 
395   // Update the triple name and return the found target.
396   TripleName = TheTriple.getTriple();
397   return TheTarget;
398 }
399 
400 bool llvm::RelocAddressLess(RelocationRef a, RelocationRef b) {
401   return a.getOffset() < b.getOffset();
402 }
403 
404 namespace {
405 class SourcePrinter {
406 protected:
407   DILineInfo OldLineInfo;
408   const ObjectFile *Obj = nullptr;
409   std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
410   // File name to file contents of source
411   std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache;
412   // Mark the line endings of the cached source
413   std::unordered_map<std::string, std::vector<StringRef>> LineCache;
414 
415 private:
416   bool cacheSource(const DILineInfo& LineInfoFile);
417 
418 public:
419   SourcePrinter() = default;
420   SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch) : Obj(Obj) {
421     symbolize::LLVMSymbolizer::Options SymbolizerOpts(
422         DILineInfoSpecifier::FunctionNameKind::None, true, false, false,
423         DefaultArch);
424     Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts));
425   }
426   virtual ~SourcePrinter() = default;
427   virtual void printSourceLine(raw_ostream &OS, uint64_t Address,
428                                StringRef Delimiter = "; ");
429 };
430 
431 bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) {
432   std::unique_ptr<MemoryBuffer> Buffer;
433   if (LineInfo.Source) {
434     Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source);
435   } else {
436     auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName);
437     if (!BufferOrError)
438       return false;
439     Buffer = std::move(*BufferOrError);
440   }
441   // Chomp the file to get lines
442   size_t BufferSize = Buffer->getBufferSize();
443   const char *BufferStart = Buffer->getBufferStart();
444   for (const char *Start = BufferStart, *End = BufferStart;
445        End < BufferStart + BufferSize; End++)
446     if (*End == '\n' || End == BufferStart + BufferSize - 1 ||
447         (*End == '\r' && *(End + 1) == '\n')) {
448       LineCache[LineInfo.FileName].push_back(StringRef(Start, End - Start));
449       if (*End == '\r')
450         End++;
451       Start = End + 1;
452     }
453   SourceCache[LineInfo.FileName] = std::move(Buffer);
454   return true;
455 }
456 
457 void SourcePrinter::printSourceLine(raw_ostream &OS, uint64_t Address,
458                                     StringRef Delimiter) {
459   if (!Symbolizer)
460     return;
461   DILineInfo LineInfo = DILineInfo();
462   auto ExpectecLineInfo =
463       Symbolizer->symbolizeCode(Obj->getFileName(), Address);
464   if (!ExpectecLineInfo)
465     consumeError(ExpectecLineInfo.takeError());
466   else
467     LineInfo = *ExpectecLineInfo;
468 
469   if ((LineInfo.FileName == "<invalid>") || OldLineInfo.Line == LineInfo.Line ||
470       LineInfo.Line == 0)
471     return;
472 
473   if (PrintLines)
474     OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line << "\n";
475   if (PrintSource) {
476     if (SourceCache.find(LineInfo.FileName) == SourceCache.end())
477       if (!cacheSource(LineInfo))
478         return;
479     auto FileBuffer = SourceCache.find(LineInfo.FileName);
480     if (FileBuffer != SourceCache.end()) {
481       auto LineBuffer = LineCache.find(LineInfo.FileName);
482       if (LineBuffer != LineCache.end()) {
483         if (LineInfo.Line > LineBuffer->second.size())
484           return;
485         // Vector begins at 0, line numbers are non-zero
486         OS << Delimiter << LineBuffer->second[LineInfo.Line - 1].ltrim()
487            << "\n";
488       }
489     }
490   }
491   OldLineInfo = LineInfo;
492 }
493 
494 static bool isArmElf(const ObjectFile *Obj) {
495   return (Obj->isELF() &&
496           (Obj->getArch() == Triple::aarch64 ||
497            Obj->getArch() == Triple::aarch64_be ||
498            Obj->getArch() == Triple::arm || Obj->getArch() == Triple::armeb ||
499            Obj->getArch() == Triple::thumb ||
500            Obj->getArch() == Triple::thumbeb));
501 }
502 
503 class PrettyPrinter {
504 public:
505   virtual ~PrettyPrinter() = default;
506   virtual void printInst(MCInstPrinter &IP, const MCInst *MI,
507                          ArrayRef<uint8_t> Bytes, uint64_t Address,
508                          raw_ostream &OS, StringRef Annot,
509                          MCSubtargetInfo const &STI, SourcePrinter *SP) {
510     if (SP && (PrintSource || PrintLines))
511       SP->printSourceLine(OS, Address);
512     if (!NoLeadingAddr)
513       OS << format("%8" PRIx64 ":", Address);
514     if (!NoShowRawInsn) {
515       OS << "\t";
516       dumpBytes(Bytes, OS);
517     }
518     if (MI)
519       IP.printInst(MI, OS, "", STI);
520     else
521       OS << " <unknown>";
522   }
523 };
524 PrettyPrinter PrettyPrinterInst;
525 class HexagonPrettyPrinter : public PrettyPrinter {
526 public:
527   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
528                  raw_ostream &OS) {
529     uint32_t opcode =
530       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
531     if (!NoLeadingAddr)
532       OS << format("%8" PRIx64 ":", Address);
533     if (!NoShowRawInsn) {
534       OS << "\t";
535       dumpBytes(Bytes.slice(0, 4), OS);
536       OS << format("%08" PRIx32, opcode);
537     }
538   }
539   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
540                  uint64_t Address, raw_ostream &OS, StringRef Annot,
541                  MCSubtargetInfo const &STI, SourcePrinter *SP) override {
542     if (SP && (PrintSource || PrintLines))
543       SP->printSourceLine(OS, Address, "");
544     if (!MI) {
545       printLead(Bytes, Address, OS);
546       OS << " <unknown>";
547       return;
548     }
549     std::string Buffer;
550     {
551       raw_string_ostream TempStream(Buffer);
552       IP.printInst(MI, TempStream, "", STI);
553     }
554     StringRef Contents(Buffer);
555     // Split off bundle attributes
556     auto PacketBundle = Contents.rsplit('\n');
557     // Split off first instruction from the rest
558     auto HeadTail = PacketBundle.first.split('\n');
559     auto Preamble = " { ";
560     auto Separator = "";
561     while(!HeadTail.first.empty()) {
562       OS << Separator;
563       Separator = "\n";
564       if (SP && (PrintSource || PrintLines))
565         SP->printSourceLine(OS, Address, "");
566       printLead(Bytes, Address, OS);
567       OS << Preamble;
568       Preamble = "   ";
569       StringRef Inst;
570       auto Duplex = HeadTail.first.split('\v');
571       if(!Duplex.second.empty()){
572         OS << Duplex.first;
573         OS << "; ";
574         Inst = Duplex.second;
575       }
576       else
577         Inst = HeadTail.first;
578       OS << Inst;
579       Bytes = Bytes.slice(4);
580       Address += 4;
581       HeadTail = HeadTail.second.split('\n');
582     }
583     OS << " } " << PacketBundle.second;
584   }
585 };
586 HexagonPrettyPrinter HexagonPrettyPrinterInst;
587 
588 class AMDGCNPrettyPrinter : public PrettyPrinter {
589 public:
590   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
591                  uint64_t Address, raw_ostream &OS, StringRef Annot,
592                  MCSubtargetInfo const &STI, SourcePrinter *SP) override {
593     if (SP && (PrintSource || PrintLines))
594       SP->printSourceLine(OS, Address);
595 
596     typedef support::ulittle32_t U32;
597 
598     if (MI) {
599       SmallString<40> InstStr;
600       raw_svector_ostream IS(InstStr);
601 
602       IP.printInst(MI, IS, "", STI);
603 
604       OS << left_justify(IS.str(), 60);
605     } else {
606       // an unrecognized encoding - this is probably data so represent it
607       // using the .long directive, or .byte directive if fewer than 4 bytes
608       // remaining
609       if (Bytes.size() >= 4) {
610         OS << format("\t.long 0x%08" PRIx32 " ",
611                      static_cast<uint32_t>(*reinterpret_cast<const U32*>(Bytes.data())));
612         OS.indent(42);
613       } else {
614           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
615           for (unsigned int i = 1; i < Bytes.size(); i++)
616             OS << format(", 0x%02" PRIx8, Bytes[i]);
617           OS.indent(55 - (6 * Bytes.size()));
618       }
619     }
620 
621     OS << format("// %012" PRIX64 ": ", Address);
622     if (Bytes.size() >=4) {
623       for (auto D : makeArrayRef(reinterpret_cast<const U32*>(Bytes.data()),
624                                  Bytes.size() / sizeof(U32)))
625         // D should be explicitly casted to uint32_t here as it is passed
626         // by format to snprintf as vararg.
627         OS << format("%08" PRIX32 " ", static_cast<uint32_t>(D));
628     } else {
629       for (unsigned int i = 0; i < Bytes.size(); i++)
630         OS << format("%02" PRIX8 " ", Bytes[i]);
631     }
632 
633     if (!Annot.empty())
634       OS << "// " << Annot;
635   }
636 };
637 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
638 
639 class BPFPrettyPrinter : public PrettyPrinter {
640 public:
641   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
642                  uint64_t Address, raw_ostream &OS, StringRef Annot,
643                  MCSubtargetInfo const &STI, SourcePrinter *SP) override {
644     if (SP && (PrintSource || PrintLines))
645       SP->printSourceLine(OS, Address);
646     if (!NoLeadingAddr)
647       OS << format("%8" PRId64 ":", Address / 8);
648     if (!NoShowRawInsn) {
649       OS << "\t";
650       dumpBytes(Bytes, OS);
651     }
652     if (MI)
653       IP.printInst(MI, OS, "", STI);
654     else
655       OS << " <unknown>";
656   }
657 };
658 BPFPrettyPrinter BPFPrettyPrinterInst;
659 
660 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
661   switch(Triple.getArch()) {
662   default:
663     return PrettyPrinterInst;
664   case Triple::hexagon:
665     return HexagonPrettyPrinterInst;
666   case Triple::amdgcn:
667     return AMDGCNPrettyPrinterInst;
668   case Triple::bpfel:
669   case Triple::bpfeb:
670     return BPFPrettyPrinterInst;
671   }
672 }
673 }
674 
675 template <class ELFT>
676 static std::error_code getRelocationValueString(const ELFObjectFile<ELFT> *Obj,
677                                                 const RelocationRef &RelRef,
678                                                 SmallVectorImpl<char> &Result) {
679   DataRefImpl Rel = RelRef.getRawDataRefImpl();
680 
681   typedef typename ELFObjectFile<ELFT>::Elf_Sym Elf_Sym;
682   typedef typename ELFObjectFile<ELFT>::Elf_Shdr Elf_Shdr;
683   typedef typename ELFObjectFile<ELFT>::Elf_Rela Elf_Rela;
684 
685   const ELFFile<ELFT> &EF = *Obj->getELFFile();
686 
687   auto SecOrErr = EF.getSection(Rel.d.a);
688   if (!SecOrErr)
689     return errorToErrorCode(SecOrErr.takeError());
690   const Elf_Shdr *Sec = *SecOrErr;
691   auto SymTabOrErr = EF.getSection(Sec->sh_link);
692   if (!SymTabOrErr)
693     return errorToErrorCode(SymTabOrErr.takeError());
694   const Elf_Shdr *SymTab = *SymTabOrErr;
695   assert(SymTab->sh_type == ELF::SHT_SYMTAB ||
696          SymTab->sh_type == ELF::SHT_DYNSYM);
697   auto StrTabSec = EF.getSection(SymTab->sh_link);
698   if (!StrTabSec)
699     return errorToErrorCode(StrTabSec.takeError());
700   auto StrTabOrErr = EF.getStringTable(*StrTabSec);
701   if (!StrTabOrErr)
702     return errorToErrorCode(StrTabOrErr.takeError());
703   StringRef StrTab = *StrTabOrErr;
704   uint8_t type = RelRef.getType();
705   StringRef res;
706   int64_t addend = 0;
707   switch (Sec->sh_type) {
708   default:
709     return object_error::parse_failed;
710   case ELF::SHT_REL: {
711     // TODO: Read implicit addend from section data.
712     break;
713   }
714   case ELF::SHT_RELA: {
715     const Elf_Rela *ERela = Obj->getRela(Rel);
716     addend = ERela->r_addend;
717     break;
718   }
719   }
720   symbol_iterator SI = RelRef.getSymbol();
721   const Elf_Sym *symb = Obj->getSymbol(SI->getRawDataRefImpl());
722   StringRef Target;
723   if (symb->getType() == ELF::STT_SECTION) {
724     Expected<section_iterator> SymSI = SI->getSection();
725     if (!SymSI)
726       return errorToErrorCode(SymSI.takeError());
727     const Elf_Shdr *SymSec = Obj->getSection((*SymSI)->getRawDataRefImpl());
728     auto SecName = EF.getSectionName(SymSec);
729     if (!SecName)
730       return errorToErrorCode(SecName.takeError());
731     Target = *SecName;
732   } else {
733     Expected<StringRef> SymName = symb->getName(StrTab);
734     if (!SymName)
735       return errorToErrorCode(SymName.takeError());
736     Target = *SymName;
737   }
738   switch (EF.getHeader()->e_machine) {
739   case ELF::EM_X86_64:
740     switch (type) {
741     case ELF::R_X86_64_PC8:
742     case ELF::R_X86_64_PC16:
743     case ELF::R_X86_64_PC32: {
744       std::string fmtbuf;
745       raw_string_ostream fmt(fmtbuf);
746       fmt << Target << (addend < 0 ? "" : "+") << addend << "-P";
747       fmt.flush();
748       Result.append(fmtbuf.begin(), fmtbuf.end());
749     } break;
750     case ELF::R_X86_64_8:
751     case ELF::R_X86_64_16:
752     case ELF::R_X86_64_32:
753     case ELF::R_X86_64_32S:
754     case ELF::R_X86_64_64: {
755       std::string fmtbuf;
756       raw_string_ostream fmt(fmtbuf);
757       fmt << Target << (addend < 0 ? "" : "+") << addend;
758       fmt.flush();
759       Result.append(fmtbuf.begin(), fmtbuf.end());
760     } break;
761     default:
762       res = "Unknown";
763     }
764     break;
765   case ELF::EM_LANAI:
766   case ELF::EM_AVR:
767   case ELF::EM_AARCH64: {
768     std::string fmtbuf;
769     raw_string_ostream fmt(fmtbuf);
770     fmt << Target;
771     if (addend != 0)
772       fmt << (addend < 0 ? "" : "+") << addend;
773     fmt.flush();
774     Result.append(fmtbuf.begin(), fmtbuf.end());
775     break;
776   }
777   case ELF::EM_386:
778   case ELF::EM_IAMCU:
779   case ELF::EM_ARM:
780   case ELF::EM_HEXAGON:
781   case ELF::EM_MIPS:
782   case ELF::EM_BPF:
783   case ELF::EM_RISCV:
784     res = Target;
785     break;
786   case ELF::EM_WEBASSEMBLY:
787     switch (type) {
788     case ELF::R_WEBASSEMBLY_DATA: {
789       std::string fmtbuf;
790       raw_string_ostream fmt(fmtbuf);
791       fmt << Target << (addend < 0 ? "" : "+") << addend;
792       fmt.flush();
793       Result.append(fmtbuf.begin(), fmtbuf.end());
794       break;
795     }
796     case ELF::R_WEBASSEMBLY_FUNCTION:
797       res = Target;
798       break;
799     default:
800       res = "Unknown";
801     }
802     break;
803   default:
804     res = "Unknown";
805   }
806   if (Result.empty())
807     Result.append(res.begin(), res.end());
808   return std::error_code();
809 }
810 
811 static std::error_code getRelocationValueString(const ELFObjectFileBase *Obj,
812                                                 const RelocationRef &Rel,
813                                                 SmallVectorImpl<char> &Result) {
814   if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj))
815     return getRelocationValueString(ELF32LE, Rel, Result);
816   if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj))
817     return getRelocationValueString(ELF64LE, Rel, Result);
818   if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj))
819     return getRelocationValueString(ELF32BE, Rel, Result);
820   auto *ELF64BE = cast<ELF64BEObjectFile>(Obj);
821   return getRelocationValueString(ELF64BE, Rel, Result);
822 }
823 
824 static std::error_code getRelocationValueString(const COFFObjectFile *Obj,
825                                                 const RelocationRef &Rel,
826                                                 SmallVectorImpl<char> &Result) {
827   symbol_iterator SymI = Rel.getSymbol();
828   Expected<StringRef> SymNameOrErr = SymI->getName();
829   if (!SymNameOrErr)
830     return errorToErrorCode(SymNameOrErr.takeError());
831   StringRef SymName = *SymNameOrErr;
832   Result.append(SymName.begin(), SymName.end());
833   return std::error_code();
834 }
835 
836 static void printRelocationTargetName(const MachOObjectFile *O,
837                                       const MachO::any_relocation_info &RE,
838                                       raw_string_ostream &fmt) {
839   bool IsScattered = O->isRelocationScattered(RE);
840 
841   // Target of a scattered relocation is an address.  In the interest of
842   // generating pretty output, scan through the symbol table looking for a
843   // symbol that aligns with that address.  If we find one, print it.
844   // Otherwise, we just print the hex address of the target.
845   if (IsScattered) {
846     uint32_t Val = O->getPlainRelocationSymbolNum(RE);
847 
848     for (const SymbolRef &Symbol : O->symbols()) {
849       std::error_code ec;
850       Expected<uint64_t> Addr = Symbol.getAddress();
851       if (!Addr)
852         report_error(O->getFileName(), Addr.takeError());
853       if (*Addr != Val)
854         continue;
855       Expected<StringRef> Name = Symbol.getName();
856       if (!Name)
857         report_error(O->getFileName(), Name.takeError());
858       fmt << *Name;
859       return;
860     }
861 
862     // If we couldn't find a symbol that this relocation refers to, try
863     // to find a section beginning instead.
864     for (const SectionRef &Section : ToolSectionFilter(*O)) {
865       std::error_code ec;
866 
867       StringRef Name;
868       uint64_t Addr = Section.getAddress();
869       if (Addr != Val)
870         continue;
871       if ((ec = Section.getName(Name)))
872         report_error(O->getFileName(), ec);
873       fmt << Name;
874       return;
875     }
876 
877     fmt << format("0x%x", Val);
878     return;
879   }
880 
881   StringRef S;
882   bool isExtern = O->getPlainRelocationExternal(RE);
883   uint64_t Val = O->getPlainRelocationSymbolNum(RE);
884 
885   if (O->getAnyRelocationType(RE) == MachO::ARM64_RELOC_ADDEND) {
886     fmt << format("0x%0" PRIx64, Val);
887     return;
888   } else if (isExtern) {
889     symbol_iterator SI = O->symbol_begin();
890     advance(SI, Val);
891     Expected<StringRef> SOrErr = SI->getName();
892     if (!SOrErr)
893       report_error(O->getFileName(), SOrErr.takeError());
894     S = *SOrErr;
895   } else {
896     section_iterator SI = O->section_begin();
897     // Adjust for the fact that sections are 1-indexed.
898     if (Val == 0) {
899       fmt << "0 (?,?)";
900       return;
901     }
902     uint32_t i = Val - 1;
903     while (i != 0 && SI != O->section_end()) {
904       i--;
905       advance(SI, 1);
906     }
907     if (SI == O->section_end())
908       fmt << Val << " (?,?)";
909     else
910       SI->getName(S);
911   }
912 
913   fmt << S;
914 }
915 
916 static std::error_code getRelocationValueString(const WasmObjectFile *Obj,
917                                                 const RelocationRef &RelRef,
918                                                 SmallVectorImpl<char> &Result) {
919   const wasm::WasmRelocation& Rel = Obj->getWasmRelocation(RelRef);
920   std::string fmtbuf;
921   raw_string_ostream fmt(fmtbuf);
922   fmt << Rel.Index << (Rel.Addend < 0 ? "" : "+") << Rel.Addend;
923   fmt.flush();
924   Result.append(fmtbuf.begin(), fmtbuf.end());
925   return std::error_code();
926 }
927 
928 static std::error_code getRelocationValueString(const MachOObjectFile *Obj,
929                                                 const RelocationRef &RelRef,
930                                                 SmallVectorImpl<char> &Result) {
931   DataRefImpl Rel = RelRef.getRawDataRefImpl();
932   MachO::any_relocation_info RE = Obj->getRelocation(Rel);
933 
934   unsigned Arch = Obj->getArch();
935 
936   std::string fmtbuf;
937   raw_string_ostream fmt(fmtbuf);
938   unsigned Type = Obj->getAnyRelocationType(RE);
939   bool IsPCRel = Obj->getAnyRelocationPCRel(RE);
940 
941   // Determine any addends that should be displayed with the relocation.
942   // These require decoding the relocation type, which is triple-specific.
943 
944   // X86_64 has entirely custom relocation types.
945   if (Arch == Triple::x86_64) {
946     bool isPCRel = Obj->getAnyRelocationPCRel(RE);
947 
948     switch (Type) {
949     case MachO::X86_64_RELOC_GOT_LOAD:
950     case MachO::X86_64_RELOC_GOT: {
951       printRelocationTargetName(Obj, RE, fmt);
952       fmt << "@GOT";
953       if (isPCRel)
954         fmt << "PCREL";
955       break;
956     }
957     case MachO::X86_64_RELOC_SUBTRACTOR: {
958       DataRefImpl RelNext = Rel;
959       Obj->moveRelocationNext(RelNext);
960       MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
961 
962       // X86_64_RELOC_SUBTRACTOR must be followed by a relocation of type
963       // X86_64_RELOC_UNSIGNED.
964       // NOTE: Scattered relocations don't exist on x86_64.
965       unsigned RType = Obj->getAnyRelocationType(RENext);
966       if (RType != MachO::X86_64_RELOC_UNSIGNED)
967         report_error(Obj->getFileName(), "Expected X86_64_RELOC_UNSIGNED after "
968                      "X86_64_RELOC_SUBTRACTOR.");
969 
970       // The X86_64_RELOC_UNSIGNED contains the minuend symbol;
971       // X86_64_RELOC_SUBTRACTOR contains the subtrahend.
972       printRelocationTargetName(Obj, RENext, fmt);
973       fmt << "-";
974       printRelocationTargetName(Obj, RE, fmt);
975       break;
976     }
977     case MachO::X86_64_RELOC_TLV:
978       printRelocationTargetName(Obj, RE, fmt);
979       fmt << "@TLV";
980       if (isPCRel)
981         fmt << "P";
982       break;
983     case MachO::X86_64_RELOC_SIGNED_1:
984       printRelocationTargetName(Obj, RE, fmt);
985       fmt << "-1";
986       break;
987     case MachO::X86_64_RELOC_SIGNED_2:
988       printRelocationTargetName(Obj, RE, fmt);
989       fmt << "-2";
990       break;
991     case MachO::X86_64_RELOC_SIGNED_4:
992       printRelocationTargetName(Obj, RE, fmt);
993       fmt << "-4";
994       break;
995     default:
996       printRelocationTargetName(Obj, RE, fmt);
997       break;
998     }
999     // X86 and ARM share some relocation types in common.
1000   } else if (Arch == Triple::x86 || Arch == Triple::arm ||
1001              Arch == Triple::ppc) {
1002     // Generic relocation types...
1003     switch (Type) {
1004     case MachO::GENERIC_RELOC_PAIR: // prints no info
1005       return std::error_code();
1006     case MachO::GENERIC_RELOC_SECTDIFF: {
1007       DataRefImpl RelNext = Rel;
1008       Obj->moveRelocationNext(RelNext);
1009       MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
1010 
1011       // X86 sect diff's must be followed by a relocation of type
1012       // GENERIC_RELOC_PAIR.
1013       unsigned RType = Obj->getAnyRelocationType(RENext);
1014 
1015       if (RType != MachO::GENERIC_RELOC_PAIR)
1016         report_error(Obj->getFileName(), "Expected GENERIC_RELOC_PAIR after "
1017                      "GENERIC_RELOC_SECTDIFF.");
1018 
1019       printRelocationTargetName(Obj, RE, fmt);
1020       fmt << "-";
1021       printRelocationTargetName(Obj, RENext, fmt);
1022       break;
1023     }
1024     }
1025 
1026     if (Arch == Triple::x86 || Arch == Triple::ppc) {
1027       switch (Type) {
1028       case MachO::GENERIC_RELOC_LOCAL_SECTDIFF: {
1029         DataRefImpl RelNext = Rel;
1030         Obj->moveRelocationNext(RelNext);
1031         MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
1032 
1033         // X86 sect diff's must be followed by a relocation of type
1034         // GENERIC_RELOC_PAIR.
1035         unsigned RType = Obj->getAnyRelocationType(RENext);
1036         if (RType != MachO::GENERIC_RELOC_PAIR)
1037           report_error(Obj->getFileName(), "Expected GENERIC_RELOC_PAIR after "
1038                        "GENERIC_RELOC_LOCAL_SECTDIFF.");
1039 
1040         printRelocationTargetName(Obj, RE, fmt);
1041         fmt << "-";
1042         printRelocationTargetName(Obj, RENext, fmt);
1043         break;
1044       }
1045       case MachO::GENERIC_RELOC_TLV: {
1046         printRelocationTargetName(Obj, RE, fmt);
1047         fmt << "@TLV";
1048         if (IsPCRel)
1049           fmt << "P";
1050         break;
1051       }
1052       default:
1053         printRelocationTargetName(Obj, RE, fmt);
1054       }
1055     } else { // ARM-specific relocations
1056       switch (Type) {
1057       case MachO::ARM_RELOC_HALF:
1058       case MachO::ARM_RELOC_HALF_SECTDIFF: {
1059         // Half relocations steal a bit from the length field to encode
1060         // whether this is an upper16 or a lower16 relocation.
1061         bool isUpper = (Obj->getAnyRelocationLength(RE) & 0x1) == 1;
1062 
1063         if (isUpper)
1064           fmt << ":upper16:(";
1065         else
1066           fmt << ":lower16:(";
1067         printRelocationTargetName(Obj, RE, fmt);
1068 
1069         DataRefImpl RelNext = Rel;
1070         Obj->moveRelocationNext(RelNext);
1071         MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
1072 
1073         // ARM half relocs must be followed by a relocation of type
1074         // ARM_RELOC_PAIR.
1075         unsigned RType = Obj->getAnyRelocationType(RENext);
1076         if (RType != MachO::ARM_RELOC_PAIR)
1077           report_error(Obj->getFileName(), "Expected ARM_RELOC_PAIR after "
1078                        "ARM_RELOC_HALF");
1079 
1080         // NOTE: The half of the target virtual address is stashed in the
1081         // address field of the secondary relocation, but we can't reverse
1082         // engineer the constant offset from it without decoding the movw/movt
1083         // instruction to find the other half in its immediate field.
1084 
1085         // ARM_RELOC_HALF_SECTDIFF encodes the second section in the
1086         // symbol/section pointer of the follow-on relocation.
1087         if (Type == MachO::ARM_RELOC_HALF_SECTDIFF) {
1088           fmt << "-";
1089           printRelocationTargetName(Obj, RENext, fmt);
1090         }
1091 
1092         fmt << ")";
1093         break;
1094       }
1095       default: { printRelocationTargetName(Obj, RE, fmt); }
1096       }
1097     }
1098   } else
1099     printRelocationTargetName(Obj, RE, fmt);
1100 
1101   fmt.flush();
1102   Result.append(fmtbuf.begin(), fmtbuf.end());
1103   return std::error_code();
1104 }
1105 
1106 static std::error_code getRelocationValueString(const RelocationRef &Rel,
1107                                                 SmallVectorImpl<char> &Result) {
1108   const ObjectFile *Obj = Rel.getObject();
1109   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
1110     return getRelocationValueString(ELF, Rel, Result);
1111   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
1112     return getRelocationValueString(COFF, Rel, Result);
1113   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
1114     return getRelocationValueString(Wasm, Rel, Result);
1115   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
1116     return getRelocationValueString(MachO, Rel, Result);
1117   llvm_unreachable("unknown object file format");
1118 }
1119 
1120 /// @brief Indicates whether this relocation should hidden when listing
1121 /// relocations, usually because it is the trailing part of a multipart
1122 /// relocation that will be printed as part of the leading relocation.
1123 static bool getHidden(RelocationRef RelRef) {
1124   const ObjectFile *Obj = RelRef.getObject();
1125   auto *MachO = dyn_cast<MachOObjectFile>(Obj);
1126   if (!MachO)
1127     return false;
1128 
1129   unsigned Arch = MachO->getArch();
1130   DataRefImpl Rel = RelRef.getRawDataRefImpl();
1131   uint64_t Type = MachO->getRelocationType(Rel);
1132 
1133   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
1134   // is always hidden.
1135   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) {
1136     if (Type == MachO::GENERIC_RELOC_PAIR)
1137       return true;
1138   } else if (Arch == Triple::x86_64) {
1139     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
1140     // an X86_64_RELOC_SUBTRACTOR.
1141     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
1142       DataRefImpl RelPrev = Rel;
1143       RelPrev.d.a--;
1144       uint64_t PrevType = MachO->getRelocationType(RelPrev);
1145       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
1146         return true;
1147     }
1148   }
1149 
1150   return false;
1151 }
1152 
1153 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
1154   assert(Obj->isELF());
1155   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
1156     return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1157   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
1158     return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1159   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
1160     return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1161   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
1162     return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1163   llvm_unreachable("Unsupported binary format");
1164 }
1165 
1166 template <class ELFT> static void
1167 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
1168                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1169   for (auto Symbol : Obj->getDynamicSymbolIterators()) {
1170     uint8_t SymbolType = Symbol.getELFType();
1171     if (SymbolType != ELF::STT_FUNC || Symbol.getSize() == 0)
1172       continue;
1173 
1174     Expected<uint64_t> AddressOrErr = Symbol.getAddress();
1175     if (!AddressOrErr)
1176       report_error(Obj->getFileName(), AddressOrErr.takeError());
1177     uint64_t Address = *AddressOrErr;
1178 
1179     Expected<StringRef> Name = Symbol.getName();
1180     if (!Name)
1181       report_error(Obj->getFileName(), Name.takeError());
1182     if (Name->empty())
1183       continue;
1184 
1185     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1186     if (!SectionOrErr)
1187       report_error(Obj->getFileName(), SectionOrErr.takeError());
1188     section_iterator SecI = *SectionOrErr;
1189     if (SecI == Obj->section_end())
1190       continue;
1191 
1192     AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType);
1193   }
1194 }
1195 
1196 static void
1197 addDynamicElfSymbols(const ObjectFile *Obj,
1198                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1199   assert(Obj->isELF());
1200   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
1201     addDynamicElfSymbols(Elf32LEObj, AllSymbols);
1202   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
1203     addDynamicElfSymbols(Elf64LEObj, AllSymbols);
1204   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
1205     addDynamicElfSymbols(Elf32BEObj, AllSymbols);
1206   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
1207     addDynamicElfSymbols(Elf64BEObj, AllSymbols);
1208   else
1209     llvm_unreachable("Unsupported binary format");
1210 }
1211 
1212 static void DisassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
1213   if (StartAddress > StopAddress)
1214     error("Start address should be less than stop address");
1215 
1216   const Target *TheTarget = getTarget(Obj);
1217 
1218   // Package up features to be passed to target/subtarget
1219   SubtargetFeatures Features = Obj->getFeatures();
1220   if (MAttrs.size()) {
1221     for (unsigned i = 0; i != MAttrs.size(); ++i)
1222       Features.AddFeature(MAttrs[i]);
1223   }
1224 
1225   std::unique_ptr<const MCRegisterInfo> MRI(
1226       TheTarget->createMCRegInfo(TripleName));
1227   if (!MRI)
1228     report_error(Obj->getFileName(), "no register info for target " +
1229                  TripleName);
1230 
1231   // Set up disassembler.
1232   std::unique_ptr<const MCAsmInfo> AsmInfo(
1233       TheTarget->createMCAsmInfo(*MRI, TripleName));
1234   if (!AsmInfo)
1235     report_error(Obj->getFileName(), "no assembly info for target " +
1236                  TripleName);
1237   std::unique_ptr<const MCSubtargetInfo> STI(
1238       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1239   if (!STI)
1240     report_error(Obj->getFileName(), "no subtarget info for target " +
1241                  TripleName);
1242   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
1243   if (!MII)
1244     report_error(Obj->getFileName(), "no instruction info for target " +
1245                  TripleName);
1246   MCObjectFileInfo MOFI;
1247   MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI);
1248   // FIXME: for now initialize MCObjectFileInfo with default values
1249   MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx);
1250 
1251   std::unique_ptr<MCDisassembler> DisAsm(
1252     TheTarget->createMCDisassembler(*STI, Ctx));
1253   if (!DisAsm)
1254     report_error(Obj->getFileName(), "no disassembler for target " +
1255                  TripleName);
1256 
1257   std::unique_ptr<const MCInstrAnalysis> MIA(
1258       TheTarget->createMCInstrAnalysis(MII.get()));
1259 
1260   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1261   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
1262       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
1263   if (!IP)
1264     report_error(Obj->getFileName(), "no instruction printer for target " +
1265                  TripleName);
1266   IP->setPrintImmHex(PrintImmHex);
1267   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
1268 
1269   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "\t\t%016" PRIx64 ":  " :
1270                                                  "\t\t\t%08" PRIx64 ":  ";
1271 
1272   SourcePrinter SP(Obj, TheTarget->getName());
1273 
1274   // Create a mapping, RelocSecs = SectionRelocMap[S], where sections
1275   // in RelocSecs contain the relocations for section S.
1276   std::error_code EC;
1277   std::map<SectionRef, SmallVector<SectionRef, 1>> SectionRelocMap;
1278   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1279     section_iterator Sec2 = Section.getRelocatedSection();
1280     if (Sec2 != Obj->section_end())
1281       SectionRelocMap[*Sec2].push_back(Section);
1282   }
1283 
1284   // Create a mapping from virtual address to symbol name.  This is used to
1285   // pretty print the symbols while disassembling.
1286   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1287   for (const SymbolRef &Symbol : Obj->symbols()) {
1288     Expected<uint64_t> AddressOrErr = Symbol.getAddress();
1289     if (!AddressOrErr)
1290       report_error(Obj->getFileName(), AddressOrErr.takeError());
1291     uint64_t Address = *AddressOrErr;
1292 
1293     Expected<StringRef> Name = Symbol.getName();
1294     if (!Name)
1295       report_error(Obj->getFileName(), Name.takeError());
1296     if (Name->empty())
1297       continue;
1298 
1299     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1300     if (!SectionOrErr)
1301       report_error(Obj->getFileName(), SectionOrErr.takeError());
1302     section_iterator SecI = *SectionOrErr;
1303     if (SecI == Obj->section_end())
1304       continue;
1305 
1306     uint8_t SymbolType = ELF::STT_NOTYPE;
1307     if (Obj->isELF())
1308       SymbolType = getElfSymbolType(Obj, Symbol);
1309 
1310     AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType);
1311 
1312   }
1313   if (AllSymbols.empty() && Obj->isELF())
1314     addDynamicElfSymbols(Obj, AllSymbols);
1315 
1316   // Create a mapping from virtual address to section.
1317   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1318   for (SectionRef Sec : Obj->sections())
1319     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1320   array_pod_sort(SectionAddresses.begin(), SectionAddresses.end());
1321 
1322   // Linked executables (.exe and .dll files) typically don't include a real
1323   // symbol table but they might contain an export table.
1324   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
1325     for (const auto &ExportEntry : COFFObj->export_directories()) {
1326       StringRef Name;
1327       error(ExportEntry.getSymbolName(Name));
1328       if (Name.empty())
1329         continue;
1330       uint32_t RVA;
1331       error(ExportEntry.getExportRVA(RVA));
1332 
1333       uint64_t VA = COFFObj->getImageBase() + RVA;
1334       auto Sec = std::upper_bound(
1335           SectionAddresses.begin(), SectionAddresses.end(), VA,
1336           [](uint64_t LHS, const std::pair<uint64_t, SectionRef> &RHS) {
1337             return LHS < RHS.first;
1338           });
1339       if (Sec != SectionAddresses.begin())
1340         --Sec;
1341       else
1342         Sec = SectionAddresses.end();
1343 
1344       if (Sec != SectionAddresses.end())
1345         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1346     }
1347   }
1348 
1349   // Sort all the symbols, this allows us to use a simple binary search to find
1350   // a symbol near an address.
1351   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1352     array_pod_sort(SecSyms.second.begin(), SecSyms.second.end());
1353 
1354   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1355     if (!DisassembleAll && (!Section.isText() || Section.isVirtual()))
1356       continue;
1357 
1358     uint64_t SectionAddr = Section.getAddress();
1359     uint64_t SectSize = Section.getSize();
1360     if (!SectSize)
1361       continue;
1362 
1363     // Get the list of all the symbols in this section.
1364     SectionSymbolsTy &Symbols = AllSymbols[Section];
1365     std::vector<uint64_t> DataMappingSymsAddr;
1366     std::vector<uint64_t> TextMappingSymsAddr;
1367     if (isArmElf(Obj)) {
1368       for (const auto &Symb : Symbols) {
1369         uint64_t Address = std::get<0>(Symb);
1370         StringRef Name = std::get<1>(Symb);
1371         if (Name.startswith("$d"))
1372           DataMappingSymsAddr.push_back(Address - SectionAddr);
1373         if (Name.startswith("$x"))
1374           TextMappingSymsAddr.push_back(Address - SectionAddr);
1375         if (Name.startswith("$a"))
1376           TextMappingSymsAddr.push_back(Address - SectionAddr);
1377         if (Name.startswith("$t"))
1378           TextMappingSymsAddr.push_back(Address - SectionAddr);
1379       }
1380     }
1381 
1382     llvm::sort(DataMappingSymsAddr.begin(), DataMappingSymsAddr.end());
1383     llvm::sort(TextMappingSymsAddr.begin(), TextMappingSymsAddr.end());
1384 
1385     if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1386       // AMDGPU disassembler uses symbolizer for printing labels
1387       std::unique_ptr<MCRelocationInfo> RelInfo(
1388         TheTarget->createMCRelocationInfo(TripleName, Ctx));
1389       if (RelInfo) {
1390         std::unique_ptr<MCSymbolizer> Symbolizer(
1391           TheTarget->createMCSymbolizer(
1392             TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1393         DisAsm->setSymbolizer(std::move(Symbolizer));
1394       }
1395     }
1396 
1397     // Make a list of all the relocations for this section.
1398     std::vector<RelocationRef> Rels;
1399     if (InlineRelocs) {
1400       for (const SectionRef &RelocSec : SectionRelocMap[Section]) {
1401         for (const RelocationRef &Reloc : RelocSec.relocations()) {
1402           Rels.push_back(Reloc);
1403         }
1404       }
1405     }
1406 
1407     // Sort relocations by address.
1408     llvm::sort(Rels.begin(), Rels.end(), RelocAddressLess);
1409 
1410     StringRef SegmentName = "";
1411     if (const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj)) {
1412       DataRefImpl DR = Section.getRawDataRefImpl();
1413       SegmentName = MachO->getSectionFinalSegmentName(DR);
1414     }
1415     StringRef SectionName;
1416     error(Section.getName(SectionName));
1417 
1418     // If the section has no symbol at the start, just insert a dummy one.
1419     if (Symbols.empty() || std::get<0>(Symbols[0]) != 0) {
1420       Symbols.insert(
1421           Symbols.begin(),
1422           std::make_tuple(SectionAddr, SectionName,
1423                           Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT));
1424     }
1425 
1426     SmallString<40> Comments;
1427     raw_svector_ostream CommentStream(Comments);
1428 
1429     StringRef BytesStr;
1430     error(Section.getContents(BytesStr));
1431     ArrayRef<uint8_t> Bytes(reinterpret_cast<const uint8_t *>(BytesStr.data()),
1432                             BytesStr.size());
1433 
1434     uint64_t Size;
1435     uint64_t Index;
1436     bool PrintedSection = false;
1437 
1438     std::vector<RelocationRef>::const_iterator rel_cur = Rels.begin();
1439     std::vector<RelocationRef>::const_iterator rel_end = Rels.end();
1440     // Disassemble symbol by symbol.
1441     for (unsigned si = 0, se = Symbols.size(); si != se; ++si) {
1442       uint64_t Start = std::get<0>(Symbols[si]) - SectionAddr;
1443       // The end is either the section end or the beginning of the next
1444       // symbol.
1445       uint64_t End =
1446           (si == se - 1) ? SectSize : std::get<0>(Symbols[si + 1]) - SectionAddr;
1447       // Don't try to disassemble beyond the end of section contents.
1448       if (End > SectSize)
1449         End = SectSize;
1450       // If this symbol has the same address as the next symbol, then skip it.
1451       if (Start >= End)
1452         continue;
1453 
1454       // Check if we need to skip symbol
1455       // Skip if the symbol's data is not between StartAddress and StopAddress
1456       if (End + SectionAddr < StartAddress ||
1457           Start + SectionAddr > StopAddress) {
1458         continue;
1459       }
1460 
1461       /// Skip if user requested specific symbols and this is not in the list
1462       if (!DisasmFuncsSet.empty() &&
1463           !DisasmFuncsSet.count(std::get<1>(Symbols[si])))
1464         continue;
1465 
1466       if (!PrintedSection) {
1467         PrintedSection = true;
1468         outs() << "Disassembly of section ";
1469         if (!SegmentName.empty())
1470           outs() << SegmentName << ",";
1471         outs() << SectionName << ':';
1472       }
1473 
1474       // Stop disassembly at the stop address specified
1475       if (End + SectionAddr > StopAddress)
1476         End = StopAddress - SectionAddr;
1477 
1478       if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1479         if (std::get<2>(Symbols[si]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1480           // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes)
1481           Start += 256;
1482         }
1483         if (si == se - 1 ||
1484             std::get<2>(Symbols[si + 1]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1485           // cut trailing zeroes at the end of kernel
1486           // cut up to 256 bytes
1487           const uint64_t EndAlign = 256;
1488           const auto Limit = End - (std::min)(EndAlign, End - Start);
1489           while (End > Limit &&
1490             *reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0)
1491             End -= 4;
1492         }
1493       }
1494 
1495       outs() << '\n' << std::get<1>(Symbols[si]) << ":\n";
1496 
1497       // Don't print raw contents of a virtual section. A virtual section
1498       // doesn't have any contents in the file.
1499       if (Section.isVirtual()) {
1500         outs() << "...\n";
1501         continue;
1502       }
1503 
1504 #ifndef NDEBUG
1505       raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
1506 #else
1507       raw_ostream &DebugOut = nulls();
1508 #endif
1509 
1510       for (Index = Start; Index < End; Index += Size) {
1511         MCInst Inst;
1512 
1513         if (Index + SectionAddr < StartAddress ||
1514             Index + SectionAddr > StopAddress) {
1515           // skip byte by byte till StartAddress is reached
1516           Size = 1;
1517           continue;
1518         }
1519         // AArch64 ELF binaries can interleave data and text in the
1520         // same section. We rely on the markers introduced to
1521         // understand what we need to dump. If the data marker is within a
1522         // function, it is denoted as a word/short etc
1523         if (isArmElf(Obj) && std::get<2>(Symbols[si]) != ELF::STT_OBJECT &&
1524             !DisassembleAll) {
1525           uint64_t Stride = 0;
1526 
1527           auto DAI = std::lower_bound(DataMappingSymsAddr.begin(),
1528                                       DataMappingSymsAddr.end(), Index);
1529           if (DAI != DataMappingSymsAddr.end() && *DAI == Index) {
1530             // Switch to data.
1531             while (Index < End) {
1532               outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1533               outs() << "\t";
1534               if (Index + 4 <= End) {
1535                 Stride = 4;
1536                 dumpBytes(Bytes.slice(Index, 4), outs());
1537                 outs() << "\t.word\t";
1538                 uint32_t Data = 0;
1539                 if (Obj->isLittleEndian()) {
1540                   const auto Word =
1541                       reinterpret_cast<const support::ulittle32_t *>(
1542                           Bytes.data() + Index);
1543                   Data = *Word;
1544                 } else {
1545                   const auto Word = reinterpret_cast<const support::ubig32_t *>(
1546                       Bytes.data() + Index);
1547                   Data = *Word;
1548                 }
1549                 outs() << "0x" << format("%08" PRIx32, Data);
1550               } else if (Index + 2 <= End) {
1551                 Stride = 2;
1552                 dumpBytes(Bytes.slice(Index, 2), outs());
1553                 outs() << "\t\t.short\t";
1554                 uint16_t Data = 0;
1555                 if (Obj->isLittleEndian()) {
1556                   const auto Short =
1557                       reinterpret_cast<const support::ulittle16_t *>(
1558                           Bytes.data() + Index);
1559                   Data = *Short;
1560                 } else {
1561                   const auto Short =
1562                       reinterpret_cast<const support::ubig16_t *>(Bytes.data() +
1563                                                                   Index);
1564                   Data = *Short;
1565                 }
1566                 outs() << "0x" << format("%04" PRIx16, Data);
1567               } else {
1568                 Stride = 1;
1569                 dumpBytes(Bytes.slice(Index, 1), outs());
1570                 outs() << "\t\t.byte\t";
1571                 outs() << "0x" << format("%02" PRIx8, Bytes.slice(Index, 1)[0]);
1572               }
1573               Index += Stride;
1574               outs() << "\n";
1575               auto TAI = std::lower_bound(TextMappingSymsAddr.begin(),
1576                                           TextMappingSymsAddr.end(), Index);
1577               if (TAI != TextMappingSymsAddr.end() && *TAI == Index)
1578                 break;
1579             }
1580           }
1581         }
1582 
1583         // If there is a data symbol inside an ELF text section and we are only
1584         // disassembling text (applicable all architectures),
1585         // we are in a situation where we must print the data and not
1586         // disassemble it.
1587         if (Obj->isELF() && std::get<2>(Symbols[si]) == ELF::STT_OBJECT &&
1588             !DisassembleAll && Section.isText()) {
1589           // print out data up to 8 bytes at a time in hex and ascii
1590           uint8_t AsciiData[9] = {'\0'};
1591           uint8_t Byte;
1592           int NumBytes = 0;
1593 
1594           for (Index = Start; Index < End; Index += 1) {
1595             if (((SectionAddr + Index) < StartAddress) ||
1596                 ((SectionAddr + Index) > StopAddress))
1597               continue;
1598             if (NumBytes == 0) {
1599               outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1600               outs() << "\t";
1601             }
1602             Byte = Bytes.slice(Index)[0];
1603             outs() << format(" %02x", Byte);
1604             AsciiData[NumBytes] = isprint(Byte) ? Byte : '.';
1605 
1606             uint8_t IndentOffset = 0;
1607             NumBytes++;
1608             if (Index == End - 1 || NumBytes > 8) {
1609               // Indent the space for less than 8 bytes data.
1610               // 2 spaces for byte and one for space between bytes
1611               IndentOffset = 3 * (8 - NumBytes);
1612               for (int Excess = 8 - NumBytes; Excess < 8; Excess++)
1613                 AsciiData[Excess] = '\0';
1614               NumBytes = 8;
1615             }
1616             if (NumBytes == 8) {
1617               AsciiData[8] = '\0';
1618               outs() << std::string(IndentOffset, ' ') << "         ";
1619               outs() << reinterpret_cast<char *>(AsciiData);
1620               outs() << '\n';
1621               NumBytes = 0;
1622             }
1623           }
1624         }
1625         if (Index >= End)
1626           break;
1627 
1628         // Disassemble a real instruction or a data when disassemble all is
1629         // provided
1630         bool Disassembled = DisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
1631                                                    SectionAddr + Index, DebugOut,
1632                                                    CommentStream);
1633         if (Size == 0)
1634           Size = 1;
1635 
1636         PIP.printInst(*IP, Disassembled ? &Inst : nullptr,
1637                       Bytes.slice(Index, Size), SectionAddr + Index, outs(), "",
1638                       *STI, &SP);
1639         outs() << CommentStream.str();
1640         Comments.clear();
1641 
1642         // Try to resolve the target of a call, tail call, etc. to a specific
1643         // symbol.
1644         if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) ||
1645                     MIA->isConditionalBranch(Inst))) {
1646           uint64_t Target;
1647           if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) {
1648             // In a relocatable object, the target's section must reside in
1649             // the same section as the call instruction or it is accessed
1650             // through a relocation.
1651             //
1652             // In a non-relocatable object, the target may be in any section.
1653             //
1654             // N.B. We don't walk the relocations in the relocatable case yet.
1655             auto *TargetSectionSymbols = &Symbols;
1656             if (!Obj->isRelocatableObject()) {
1657               auto SectionAddress = std::upper_bound(
1658                   SectionAddresses.begin(), SectionAddresses.end(), Target,
1659                   [](uint64_t LHS,
1660                       const std::pair<uint64_t, SectionRef> &RHS) {
1661                     return LHS < RHS.first;
1662                   });
1663               if (SectionAddress != SectionAddresses.begin()) {
1664                 --SectionAddress;
1665                 TargetSectionSymbols = &AllSymbols[SectionAddress->second];
1666               } else {
1667                 TargetSectionSymbols = nullptr;
1668               }
1669             }
1670 
1671             // Find the first symbol in the section whose offset is less than
1672             // or equal to the target.
1673             if (TargetSectionSymbols) {
1674               auto TargetSym = std::upper_bound(
1675                   TargetSectionSymbols->begin(), TargetSectionSymbols->end(),
1676                   Target, [](uint64_t LHS,
1677                              const std::tuple<uint64_t, StringRef, uint8_t> &RHS) {
1678                     return LHS < std::get<0>(RHS);
1679                   });
1680               if (TargetSym != TargetSectionSymbols->begin()) {
1681                 --TargetSym;
1682                 uint64_t TargetAddress = std::get<0>(*TargetSym);
1683                 StringRef TargetName = std::get<1>(*TargetSym);
1684                 outs() << " <" << TargetName;
1685                 uint64_t Disp = Target - TargetAddress;
1686                 if (Disp)
1687                   outs() << "+0x" << Twine::utohexstr(Disp);
1688                 outs() << '>';
1689               }
1690             }
1691           }
1692         }
1693         outs() << "\n";
1694 
1695         // Print relocation for instruction.
1696         while (rel_cur != rel_end) {
1697           bool hidden = getHidden(*rel_cur);
1698           uint64_t addr = rel_cur->getOffset();
1699           SmallString<16> name;
1700           SmallString<32> val;
1701 
1702           // If this relocation is hidden, skip it.
1703           if (hidden || ((SectionAddr + addr) < StartAddress)) {
1704             ++rel_cur;
1705             continue;
1706           }
1707 
1708           // Stop when rel_cur's address is past the current instruction.
1709           if (addr >= Index + Size) break;
1710           rel_cur->getTypeName(name);
1711           error(getRelocationValueString(*rel_cur, val));
1712           outs() << format(Fmt.data(), SectionAddr + addr) << name
1713                  << "\t" << val << "\n";
1714           ++rel_cur;
1715         }
1716       }
1717     }
1718   }
1719 }
1720 
1721 void llvm::PrintRelocations(const ObjectFile *Obj) {
1722   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
1723                                                  "%08" PRIx64;
1724   // Regular objdump doesn't print relocations in non-relocatable object
1725   // files.
1726   if (!Obj->isRelocatableObject())
1727     return;
1728 
1729   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1730     if (Section.relocation_begin() == Section.relocation_end())
1731       continue;
1732     StringRef secname;
1733     error(Section.getName(secname));
1734     outs() << "RELOCATION RECORDS FOR [" << secname << "]:\n";
1735     for (const RelocationRef &Reloc : Section.relocations()) {
1736       bool hidden = getHidden(Reloc);
1737       uint64_t address = Reloc.getOffset();
1738       SmallString<32> relocname;
1739       SmallString<32> valuestr;
1740       if (address < StartAddress || address > StopAddress || hidden)
1741         continue;
1742       Reloc.getTypeName(relocname);
1743       error(getRelocationValueString(Reloc, valuestr));
1744       outs() << format(Fmt.data(), address) << " " << relocname << " "
1745              << valuestr << "\n";
1746     }
1747     outs() << "\n";
1748   }
1749 }
1750 
1751 void llvm::PrintSectionHeaders(const ObjectFile *Obj) {
1752   outs() << "Sections:\n"
1753             "Idx Name          Size      Address          Type\n";
1754   unsigned i = 0;
1755   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1756     StringRef Name;
1757     error(Section.getName(Name));
1758     uint64_t Address = Section.getAddress();
1759     uint64_t Size = Section.getSize();
1760     bool Text = Section.isText();
1761     bool Data = Section.isData();
1762     bool BSS = Section.isBSS();
1763     std::string Type = (std::string(Text ? "TEXT " : "") +
1764                         (Data ? "DATA " : "") + (BSS ? "BSS" : ""));
1765     outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %s\n", i,
1766                      Name.str().c_str(), Size, Address, Type.c_str());
1767     ++i;
1768   }
1769 }
1770 
1771 void llvm::PrintSectionContents(const ObjectFile *Obj) {
1772   std::error_code EC;
1773   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1774     StringRef Name;
1775     StringRef Contents;
1776     error(Section.getName(Name));
1777     uint64_t BaseAddr = Section.getAddress();
1778     uint64_t Size = Section.getSize();
1779     if (!Size)
1780       continue;
1781 
1782     outs() << "Contents of section " << Name << ":\n";
1783     if (Section.isBSS()) {
1784       outs() << format("<skipping contents of bss section at [%04" PRIx64
1785                        ", %04" PRIx64 ")>\n",
1786                        BaseAddr, BaseAddr + Size);
1787       continue;
1788     }
1789 
1790     error(Section.getContents(Contents));
1791 
1792     // Dump out the content as hex and printable ascii characters.
1793     for (std::size_t addr = 0, end = Contents.size(); addr < end; addr += 16) {
1794       outs() << format(" %04" PRIx64 " ", BaseAddr + addr);
1795       // Dump line of hex.
1796       for (std::size_t i = 0; i < 16; ++i) {
1797         if (i != 0 && i % 4 == 0)
1798           outs() << ' ';
1799         if (addr + i < end)
1800           outs() << hexdigit((Contents[addr + i] >> 4) & 0xF, true)
1801                  << hexdigit(Contents[addr + i] & 0xF, true);
1802         else
1803           outs() << "  ";
1804       }
1805       // Print ascii.
1806       outs() << "  ";
1807       for (std::size_t i = 0; i < 16 && addr + i < end; ++i) {
1808         if (std::isprint(static_cast<unsigned char>(Contents[addr + i]) & 0xFF))
1809           outs() << Contents[addr + i];
1810         else
1811           outs() << ".";
1812       }
1813       outs() << "\n";
1814     }
1815   }
1816 }
1817 
1818 void llvm::PrintSymbolTable(const ObjectFile *o, StringRef ArchiveName,
1819                             StringRef ArchitectureName) {
1820   outs() << "SYMBOL TABLE:\n";
1821 
1822   if (const COFFObjectFile *coff = dyn_cast<const COFFObjectFile>(o)) {
1823     printCOFFSymbolTable(coff);
1824     return;
1825   }
1826   for (const SymbolRef &Symbol : o->symbols()) {
1827     Expected<uint64_t> AddressOrError = Symbol.getAddress();
1828     if (!AddressOrError)
1829       report_error(ArchiveName, o->getFileName(), AddressOrError.takeError(),
1830                    ArchitectureName);
1831     uint64_t Address = *AddressOrError;
1832     if ((Address < StartAddress) || (Address > StopAddress))
1833       continue;
1834     Expected<SymbolRef::Type> TypeOrError = Symbol.getType();
1835     if (!TypeOrError)
1836       report_error(ArchiveName, o->getFileName(), TypeOrError.takeError(),
1837                    ArchitectureName);
1838     SymbolRef::Type Type = *TypeOrError;
1839     uint32_t Flags = Symbol.getFlags();
1840     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1841     if (!SectionOrErr)
1842       report_error(ArchiveName, o->getFileName(), SectionOrErr.takeError(),
1843                    ArchitectureName);
1844     section_iterator Section = *SectionOrErr;
1845     StringRef Name;
1846     if (Type == SymbolRef::ST_Debug && Section != o->section_end()) {
1847       Section->getName(Name);
1848     } else {
1849       Expected<StringRef> NameOrErr = Symbol.getName();
1850       if (!NameOrErr)
1851         report_error(ArchiveName, o->getFileName(), NameOrErr.takeError(),
1852                      ArchitectureName);
1853       Name = *NameOrErr;
1854     }
1855 
1856     bool Global = Flags & SymbolRef::SF_Global;
1857     bool Weak = Flags & SymbolRef::SF_Weak;
1858     bool Absolute = Flags & SymbolRef::SF_Absolute;
1859     bool Common = Flags & SymbolRef::SF_Common;
1860     bool Hidden = Flags & SymbolRef::SF_Hidden;
1861 
1862     char GlobLoc = ' ';
1863     if (Type != SymbolRef::ST_Unknown)
1864       GlobLoc = Global ? 'g' : 'l';
1865     char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
1866                  ? 'd' : ' ';
1867     char FileFunc = ' ';
1868     if (Type == SymbolRef::ST_File)
1869       FileFunc = 'f';
1870     else if (Type == SymbolRef::ST_Function)
1871       FileFunc = 'F';
1872 
1873     const char *Fmt = o->getBytesInAddress() > 4 ? "%016" PRIx64 :
1874                                                    "%08" PRIx64;
1875 
1876     outs() << format(Fmt, Address) << " "
1877            << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' '
1878            << (Weak ? 'w' : ' ') // Weak?
1879            << ' ' // Constructor. Not supported yet.
1880            << ' ' // Warning. Not supported yet.
1881            << ' ' // Indirect reference to another symbol.
1882            << Debug // Debugging (d) or dynamic (D) symbol.
1883            << FileFunc // Name of function (F), file (f) or object (O).
1884            << ' ';
1885     if (Absolute) {
1886       outs() << "*ABS*";
1887     } else if (Common) {
1888       outs() << "*COM*";
1889     } else if (Section == o->section_end()) {
1890       outs() << "*UND*";
1891     } else {
1892       if (const MachOObjectFile *MachO =
1893           dyn_cast<const MachOObjectFile>(o)) {
1894         DataRefImpl DR = Section->getRawDataRefImpl();
1895         StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1896         outs() << SegmentName << ",";
1897       }
1898       StringRef SectionName;
1899       error(Section->getName(SectionName));
1900       outs() << SectionName;
1901     }
1902 
1903     outs() << '\t';
1904     if (Common || isa<ELFObjectFileBase>(o)) {
1905       uint64_t Val =
1906           Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
1907       outs() << format("\t %08" PRIx64 " ", Val);
1908     }
1909 
1910     if (Hidden) {
1911       outs() << ".hidden ";
1912     }
1913     outs() << Name
1914            << '\n';
1915   }
1916 }
1917 
1918 static void PrintUnwindInfo(const ObjectFile *o) {
1919   outs() << "Unwind info:\n\n";
1920 
1921   if (const COFFObjectFile *coff = dyn_cast<COFFObjectFile>(o)) {
1922     printCOFFUnwindInfo(coff);
1923   } else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1924     printMachOUnwindInfo(MachO);
1925   else {
1926     // TODO: Extract DWARF dump tool to objdump.
1927     errs() << "This operation is only currently supported "
1928               "for COFF and MachO object files.\n";
1929     return;
1930   }
1931 }
1932 
1933 void llvm::printExportsTrie(const ObjectFile *o) {
1934   outs() << "Exports trie:\n";
1935   if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1936     printMachOExportsTrie(MachO);
1937   else {
1938     errs() << "This operation is only currently supported "
1939               "for Mach-O executable files.\n";
1940     return;
1941   }
1942 }
1943 
1944 void llvm::printRebaseTable(ObjectFile *o) {
1945   outs() << "Rebase table:\n";
1946   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1947     printMachORebaseTable(MachO);
1948   else {
1949     errs() << "This operation is only currently supported "
1950               "for Mach-O executable files.\n";
1951     return;
1952   }
1953 }
1954 
1955 void llvm::printBindTable(ObjectFile *o) {
1956   outs() << "Bind table:\n";
1957   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1958     printMachOBindTable(MachO);
1959   else {
1960     errs() << "This operation is only currently supported "
1961               "for Mach-O executable files.\n";
1962     return;
1963   }
1964 }
1965 
1966 void llvm::printLazyBindTable(ObjectFile *o) {
1967   outs() << "Lazy bind table:\n";
1968   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1969     printMachOLazyBindTable(MachO);
1970   else {
1971     errs() << "This operation is only currently supported "
1972               "for Mach-O executable files.\n";
1973     return;
1974   }
1975 }
1976 
1977 void llvm::printWeakBindTable(ObjectFile *o) {
1978   outs() << "Weak bind table:\n";
1979   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1980     printMachOWeakBindTable(MachO);
1981   else {
1982     errs() << "This operation is only currently supported "
1983               "for Mach-O executable files.\n";
1984     return;
1985   }
1986 }
1987 
1988 /// Dump the raw contents of the __clangast section so the output can be piped
1989 /// into llvm-bcanalyzer.
1990 void llvm::printRawClangAST(const ObjectFile *Obj) {
1991   if (outs().is_displayed()) {
1992     errs() << "The -raw-clang-ast option will dump the raw binary contents of "
1993               "the clang ast section.\n"
1994               "Please redirect the output to a file or another program such as "
1995               "llvm-bcanalyzer.\n";
1996     return;
1997   }
1998 
1999   StringRef ClangASTSectionName("__clangast");
2000   if (isa<COFFObjectFile>(Obj)) {
2001     ClangASTSectionName = "clangast";
2002   }
2003 
2004   Optional<object::SectionRef> ClangASTSection;
2005   for (auto Sec : ToolSectionFilter(*Obj)) {
2006     StringRef Name;
2007     Sec.getName(Name);
2008     if (Name == ClangASTSectionName) {
2009       ClangASTSection = Sec;
2010       break;
2011     }
2012   }
2013   if (!ClangASTSection)
2014     return;
2015 
2016   StringRef ClangASTContents;
2017   error(ClangASTSection.getValue().getContents(ClangASTContents));
2018   outs().write(ClangASTContents.data(), ClangASTContents.size());
2019 }
2020 
2021 static void printFaultMaps(const ObjectFile *Obj) {
2022   const char *FaultMapSectionName = nullptr;
2023 
2024   if (isa<ELFObjectFileBase>(Obj)) {
2025     FaultMapSectionName = ".llvm_faultmaps";
2026   } else if (isa<MachOObjectFile>(Obj)) {
2027     FaultMapSectionName = "__llvm_faultmaps";
2028   } else {
2029     errs() << "This operation is only currently supported "
2030               "for ELF and Mach-O executable files.\n";
2031     return;
2032   }
2033 
2034   Optional<object::SectionRef> FaultMapSection;
2035 
2036   for (auto Sec : ToolSectionFilter(*Obj)) {
2037     StringRef Name;
2038     Sec.getName(Name);
2039     if (Name == FaultMapSectionName) {
2040       FaultMapSection = Sec;
2041       break;
2042     }
2043   }
2044 
2045   outs() << "FaultMap table:\n";
2046 
2047   if (!FaultMapSection.hasValue()) {
2048     outs() << "<not found>\n";
2049     return;
2050   }
2051 
2052   StringRef FaultMapContents;
2053   error(FaultMapSection.getValue().getContents(FaultMapContents));
2054 
2055   FaultMapParser FMP(FaultMapContents.bytes_begin(),
2056                      FaultMapContents.bytes_end());
2057 
2058   outs() << FMP;
2059 }
2060 
2061 static void printPrivateFileHeaders(const ObjectFile *o, bool onlyFirst) {
2062   if (o->isELF())
2063     return printELFFileHeader(o);
2064   if (o->isCOFF())
2065     return printCOFFFileHeader(o);
2066   if (o->isWasm())
2067     return printWasmFileHeader(o);
2068   if (o->isMachO()) {
2069     printMachOFileHeader(o);
2070     if (!onlyFirst)
2071       printMachOLoadCommands(o);
2072     return;
2073   }
2074   report_error(o->getFileName(), "Invalid/Unsupported object file format");
2075 }
2076 
2077 static void DumpObject(ObjectFile *o, const Archive *a = nullptr) {
2078   StringRef ArchiveName = a != nullptr ? a->getFileName() : "";
2079   // Avoid other output when using a raw option.
2080   if (!RawClangAST) {
2081     outs() << '\n';
2082     if (a)
2083       outs() << a->getFileName() << "(" << o->getFileName() << ")";
2084     else
2085       outs() << o->getFileName();
2086     outs() << ":\tfile format " << o->getFileFormatName() << "\n\n";
2087   }
2088 
2089   if (Disassemble)
2090     DisassembleObject(o, Relocations);
2091   if (Relocations && !Disassemble)
2092     PrintRelocations(o);
2093   if (SectionHeaders)
2094     PrintSectionHeaders(o);
2095   if (SectionContents)
2096     PrintSectionContents(o);
2097   if (SymbolTable)
2098     PrintSymbolTable(o, ArchiveName);
2099   if (UnwindInfo)
2100     PrintUnwindInfo(o);
2101   if (PrivateHeaders || FirstPrivateHeader)
2102     printPrivateFileHeaders(o, FirstPrivateHeader);
2103   if (ExportsTrie)
2104     printExportsTrie(o);
2105   if (Rebase)
2106     printRebaseTable(o);
2107   if (Bind)
2108     printBindTable(o);
2109   if (LazyBind)
2110     printLazyBindTable(o);
2111   if (WeakBind)
2112     printWeakBindTable(o);
2113   if (RawClangAST)
2114     printRawClangAST(o);
2115   if (PrintFaultMaps)
2116     printFaultMaps(o);
2117   if (DwarfDumpType != DIDT_Null) {
2118     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*o);
2119     // Dump the complete DWARF structure.
2120     DIDumpOptions DumpOpts;
2121     DumpOpts.DumpType = DwarfDumpType;
2122     DICtx->dump(outs(), DumpOpts);
2123   }
2124 }
2125 
2126 static void DumpObject(const COFFImportFile *I, const Archive *A) {
2127   StringRef ArchiveName = A ? A->getFileName() : "";
2128 
2129   // Avoid other output when using a raw option.
2130   if (!RawClangAST)
2131     outs() << '\n'
2132            << ArchiveName << "(" << I->getFileName() << ")"
2133            << ":\tfile format COFF-import-file"
2134            << "\n\n";
2135 
2136   if (SymbolTable)
2137     printCOFFSymbolTable(I);
2138 }
2139 
2140 /// @brief Dump each object file in \a a;
2141 static void DumpArchive(const Archive *a) {
2142   Error Err = Error::success();
2143   for (auto &C : a->children(Err)) {
2144     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2145     if (!ChildOrErr) {
2146       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2147         report_error(a->getFileName(), C, std::move(E));
2148       continue;
2149     }
2150     if (ObjectFile *o = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2151       DumpObject(o, a);
2152     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2153       DumpObject(I, a);
2154     else
2155       report_error(a->getFileName(), object_error::invalid_file_type);
2156   }
2157   if (Err)
2158     report_error(a->getFileName(), std::move(Err));
2159 }
2160 
2161 /// @brief Open file and figure out how to dump it.
2162 static void DumpInput(StringRef file) {
2163 
2164   // If we are using the Mach-O specific object file parser, then let it parse
2165   // the file and process the command line options.  So the -arch flags can
2166   // be used to select specific slices, etc.
2167   if (MachOOpt) {
2168     ParseInputMachO(file);
2169     return;
2170   }
2171 
2172   // Attempt to open the binary.
2173   Expected<OwningBinary<Binary>> BinaryOrErr = createBinary(file);
2174   if (!BinaryOrErr)
2175     report_error(file, BinaryOrErr.takeError());
2176   Binary &Binary = *BinaryOrErr.get().getBinary();
2177 
2178   if (Archive *a = dyn_cast<Archive>(&Binary))
2179     DumpArchive(a);
2180   else if (ObjectFile *o = dyn_cast<ObjectFile>(&Binary))
2181     DumpObject(o);
2182   else
2183     report_error(file, object_error::invalid_file_type);
2184 }
2185 
2186 int main(int argc, char **argv) {
2187   InitLLVM X(argc, argv);
2188 
2189   // Initialize targets and assembly printers/parsers.
2190   llvm::InitializeAllTargetInfos();
2191   llvm::InitializeAllTargetMCs();
2192   llvm::InitializeAllDisassemblers();
2193 
2194   // Register the target printer for --version.
2195   cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);
2196 
2197   cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n");
2198   TripleName = Triple::normalize(TripleName);
2199 
2200   ToolName = argv[0];
2201 
2202   // Defaults to a.out if no filenames specified.
2203   if (InputFilenames.size() == 0)
2204     InputFilenames.push_back("a.out");
2205 
2206   if (DisassembleAll || PrintSource || PrintLines)
2207     Disassemble = true;
2208   if (!Disassemble
2209       && !Relocations
2210       && !SectionHeaders
2211       && !SectionContents
2212       && !SymbolTable
2213       && !UnwindInfo
2214       && !PrivateHeaders
2215       && !FirstPrivateHeader
2216       && !ExportsTrie
2217       && !Rebase
2218       && !Bind
2219       && !LazyBind
2220       && !WeakBind
2221       && !RawClangAST
2222       && !(UniversalHeaders && MachOOpt)
2223       && !(ArchiveHeaders && MachOOpt)
2224       && !(IndirectSymbols && MachOOpt)
2225       && !(DataInCode && MachOOpt)
2226       && !(LinkOptHints && MachOOpt)
2227       && !(InfoPlist && MachOOpt)
2228       && !(DylibsUsed && MachOOpt)
2229       && !(DylibId && MachOOpt)
2230       && !(ObjcMetaData && MachOOpt)
2231       && !(FilterSections.size() != 0 && MachOOpt)
2232       && !PrintFaultMaps
2233       && DwarfDumpType == DIDT_Null) {
2234     cl::PrintHelpMessage();
2235     return 2;
2236   }
2237 
2238   DisasmFuncsSet.insert(DisassembleFunctions.begin(),
2239                         DisassembleFunctions.end());
2240 
2241   llvm::for_each(InputFilenames, DumpInput);
2242 
2243   return EXIT_SUCCESS;
2244 }
2245