1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This program is a utility that works like binutils "objdump", that is, it 11 // dumps out a plethora of information about an object file depending on the 12 // flags. 13 // 14 // The flags and output of this program should be near identical to those of 15 // binutils objdump. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm-objdump.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/ADT/StringSet.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/CodeGen/FaultMaps.h" 26 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 27 #include "llvm/DebugInfo/Symbolize/Symbolize.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 31 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h" 32 #include "llvm/MC/MCInst.h" 33 #include "llvm/MC/MCInstPrinter.h" 34 #include "llvm/MC/MCInstrAnalysis.h" 35 #include "llvm/MC/MCInstrInfo.h" 36 #include "llvm/MC/MCObjectFileInfo.h" 37 #include "llvm/MC/MCRegisterInfo.h" 38 #include "llvm/MC/MCSubtargetInfo.h" 39 #include "llvm/Object/Archive.h" 40 #include "llvm/Object/COFF.h" 41 #include "llvm/Object/COFFImportFile.h" 42 #include "llvm/Object/ELFObjectFile.h" 43 #include "llvm/Object/MachO.h" 44 #include "llvm/Object/ObjectFile.h" 45 #include "llvm/Object/Wasm.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/Errc.h" 50 #include "llvm/Support/FileSystem.h" 51 #include "llvm/Support/Format.h" 52 #include "llvm/Support/GraphWriter.h" 53 #include "llvm/Support/Host.h" 54 #include "llvm/Support/InitLLVM.h" 55 #include "llvm/Support/MemoryBuffer.h" 56 #include "llvm/Support/SourceMgr.h" 57 #include "llvm/Support/TargetRegistry.h" 58 #include "llvm/Support/TargetSelect.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <algorithm> 61 #include <cctype> 62 #include <cstring> 63 #include <system_error> 64 #include <unordered_map> 65 #include <utility> 66 67 using namespace llvm; 68 using namespace object; 69 70 cl::opt<bool> 71 llvm::AllHeaders("all-headers", 72 cl::desc("Display all available header information")); 73 static cl::alias AllHeadersShort("x", cl::desc("Alias for --all-headers"), 74 cl::aliasopt(AllHeaders)); 75 76 static cl::list<std::string> 77 InputFilenames(cl::Positional, cl::desc("<input object files>"),cl::ZeroOrMore); 78 79 cl::opt<bool> 80 llvm::Disassemble("disassemble", 81 cl::desc("Display assembler mnemonics for the machine instructions")); 82 static cl::alias 83 Disassembled("d", cl::desc("Alias for --disassemble"), 84 cl::aliasopt(Disassemble)); 85 86 cl::opt<bool> 87 llvm::DisassembleAll("disassemble-all", 88 cl::desc("Display assembler mnemonics for the machine instructions")); 89 static cl::alias 90 DisassembleAlld("D", cl::desc("Alias for --disassemble-all"), 91 cl::aliasopt(DisassembleAll)); 92 93 static cl::list<std::string> 94 DisassembleFunctions("df", 95 cl::CommaSeparated, 96 cl::desc("List of functions to disassemble")); 97 static StringSet<> DisasmFuncsSet; 98 99 cl::opt<bool> 100 llvm::Relocations("r", cl::desc("Display the relocation entries in the file")); 101 102 cl::opt<bool> 103 llvm::DynamicRelocations("dynamic-reloc", 104 cl::desc("Display the dynamic relocation entries in the file")); 105 static cl::alias 106 DynamicRelocationsd("R", cl::desc("Alias for --dynamic-reloc"), 107 cl::aliasopt(DynamicRelocations)); 108 109 cl::opt<bool> 110 llvm::SectionContents("s", cl::desc("Display the content of each section")); 111 112 cl::opt<bool> 113 llvm::SymbolTable("t", cl::desc("Display the symbol table")); 114 115 cl::opt<bool> 116 llvm::ExportsTrie("exports-trie", cl::desc("Display mach-o exported symbols")); 117 118 cl::opt<bool> 119 llvm::Rebase("rebase", cl::desc("Display mach-o rebasing info")); 120 121 cl::opt<bool> 122 llvm::Bind("bind", cl::desc("Display mach-o binding info")); 123 124 cl::opt<bool> 125 llvm::LazyBind("lazy-bind", cl::desc("Display mach-o lazy binding info")); 126 127 cl::opt<bool> 128 llvm::WeakBind("weak-bind", cl::desc("Display mach-o weak binding info")); 129 130 cl::opt<bool> 131 llvm::RawClangAST("raw-clang-ast", 132 cl::desc("Dump the raw binary contents of the clang AST section")); 133 134 static cl::opt<bool> 135 MachOOpt("macho", cl::desc("Use MachO specific object file parser")); 136 static cl::alias 137 MachOm("m", cl::desc("Alias for --macho"), cl::aliasopt(MachOOpt)); 138 139 cl::opt<std::string> 140 llvm::TripleName("triple", cl::desc("Target triple to disassemble for, " 141 "see -version for available targets")); 142 143 cl::opt<std::string> 144 llvm::MCPU("mcpu", 145 cl::desc("Target a specific cpu type (-mcpu=help for details)"), 146 cl::value_desc("cpu-name"), 147 cl::init("")); 148 149 cl::opt<std::string> 150 llvm::ArchName("arch-name", cl::desc("Target arch to disassemble for, " 151 "see -version for available targets")); 152 153 cl::opt<bool> 154 llvm::SectionHeaders("section-headers", cl::desc("Display summaries of the " 155 "headers for each section.")); 156 static cl::alias 157 SectionHeadersShort("headers", cl::desc("Alias for --section-headers"), 158 cl::aliasopt(SectionHeaders)); 159 static cl::alias 160 SectionHeadersShorter("h", cl::desc("Alias for --section-headers"), 161 cl::aliasopt(SectionHeaders)); 162 163 cl::list<std::string> 164 llvm::FilterSections("section", cl::desc("Operate on the specified sections only. " 165 "With -macho dump segment,section")); 166 cl::alias 167 static FilterSectionsj("j", cl::desc("Alias for --section"), 168 cl::aliasopt(llvm::FilterSections)); 169 170 cl::list<std::string> 171 llvm::MAttrs("mattr", 172 cl::CommaSeparated, 173 cl::desc("Target specific attributes"), 174 cl::value_desc("a1,+a2,-a3,...")); 175 176 cl::opt<bool> 177 llvm::NoShowRawInsn("no-show-raw-insn", cl::desc("When disassembling " 178 "instructions, do not print " 179 "the instruction bytes.")); 180 cl::opt<bool> 181 llvm::NoLeadingAddr("no-leading-addr", cl::desc("Print no leading address")); 182 183 cl::opt<bool> 184 llvm::UnwindInfo("unwind-info", cl::desc("Display unwind information")); 185 186 static cl::alias 187 UnwindInfoShort("u", cl::desc("Alias for --unwind-info"), 188 cl::aliasopt(UnwindInfo)); 189 190 cl::opt<bool> 191 llvm::PrivateHeaders("private-headers", 192 cl::desc("Display format specific file headers")); 193 194 cl::opt<bool> 195 llvm::FirstPrivateHeader("private-header", 196 cl::desc("Display only the first format specific file " 197 "header")); 198 199 static cl::alias 200 PrivateHeadersShort("p", cl::desc("Alias for --private-headers"), 201 cl::aliasopt(PrivateHeaders)); 202 203 cl::opt<bool> llvm::FileHeaders( 204 "file-headers", 205 cl::desc("Display the contents of the overall file header")); 206 207 static cl::alias FileHeadersShort("f", cl::desc("Alias for --file-headers"), 208 cl::aliasopt(FileHeaders)); 209 210 cl::opt<bool> 211 llvm::ArchiveHeaders("archive-headers", 212 cl::desc("Display archive header information")); 213 214 cl::alias 215 ArchiveHeadersShort("a", cl::desc("Alias for --archive-headers"), 216 cl::aliasopt(ArchiveHeaders)); 217 218 cl::opt<bool> 219 llvm::PrintImmHex("print-imm-hex", 220 cl::desc("Use hex format for immediate values")); 221 222 cl::opt<bool> PrintFaultMaps("fault-map-section", 223 cl::desc("Display contents of faultmap section")); 224 225 cl::opt<DIDumpType> llvm::DwarfDumpType( 226 "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"), 227 cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame"))); 228 229 cl::opt<bool> PrintSource( 230 "source", 231 cl::desc( 232 "Display source inlined with disassembly. Implies disassemble object")); 233 234 cl::alias PrintSourceShort("S", cl::desc("Alias for -source"), 235 cl::aliasopt(PrintSource)); 236 237 cl::opt<bool> PrintLines("line-numbers", 238 cl::desc("Display source line numbers with " 239 "disassembly. Implies disassemble object")); 240 241 cl::alias PrintLinesShort("l", cl::desc("Alias for -line-numbers"), 242 cl::aliasopt(PrintLines)); 243 244 cl::opt<unsigned long long> 245 StartAddress("start-address", cl::desc("Disassemble beginning at address"), 246 cl::value_desc("address"), cl::init(0)); 247 cl::opt<unsigned long long> 248 StopAddress("stop-address", cl::desc("Stop disassembly at address"), 249 cl::value_desc("address"), cl::init(UINT64_MAX)); 250 static StringRef ToolName; 251 252 typedef std::vector<std::tuple<uint64_t, StringRef, uint8_t>> SectionSymbolsTy; 253 254 namespace { 255 typedef std::function<bool(llvm::object::SectionRef const &)> FilterPredicate; 256 257 class SectionFilterIterator { 258 public: 259 SectionFilterIterator(FilterPredicate P, 260 llvm::object::section_iterator const &I, 261 llvm::object::section_iterator const &E) 262 : Predicate(std::move(P)), Iterator(I), End(E) { 263 ScanPredicate(); 264 } 265 const llvm::object::SectionRef &operator*() const { return *Iterator; } 266 SectionFilterIterator &operator++() { 267 ++Iterator; 268 ScanPredicate(); 269 return *this; 270 } 271 bool operator!=(SectionFilterIterator const &Other) const { 272 return Iterator != Other.Iterator; 273 } 274 275 private: 276 void ScanPredicate() { 277 while (Iterator != End && !Predicate(*Iterator)) { 278 ++Iterator; 279 } 280 } 281 FilterPredicate Predicate; 282 llvm::object::section_iterator Iterator; 283 llvm::object::section_iterator End; 284 }; 285 286 class SectionFilter { 287 public: 288 SectionFilter(FilterPredicate P, llvm::object::ObjectFile const &O) 289 : Predicate(std::move(P)), Object(O) {} 290 SectionFilterIterator begin() { 291 return SectionFilterIterator(Predicate, Object.section_begin(), 292 Object.section_end()); 293 } 294 SectionFilterIterator end() { 295 return SectionFilterIterator(Predicate, Object.section_end(), 296 Object.section_end()); 297 } 298 299 private: 300 FilterPredicate Predicate; 301 llvm::object::ObjectFile const &Object; 302 }; 303 SectionFilter ToolSectionFilter(llvm::object::ObjectFile const &O) { 304 return SectionFilter( 305 [](llvm::object::SectionRef const &S) { 306 if (FilterSections.empty()) 307 return true; 308 llvm::StringRef String; 309 std::error_code error = S.getName(String); 310 if (error) 311 return false; 312 return is_contained(FilterSections, String); 313 }, 314 O); 315 } 316 } 317 318 void llvm::error(std::error_code EC) { 319 if (!EC) 320 return; 321 322 errs() << ToolName << ": error reading file: " << EC.message() << ".\n"; 323 errs().flush(); 324 exit(1); 325 } 326 327 LLVM_ATTRIBUTE_NORETURN void llvm::error(Twine Message) { 328 errs() << ToolName << ": " << Message << ".\n"; 329 errs().flush(); 330 exit(1); 331 } 332 333 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File, 334 Twine Message) { 335 errs() << ToolName << ": '" << File << "': " << Message << ".\n"; 336 exit(1); 337 } 338 339 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File, 340 std::error_code EC) { 341 assert(EC); 342 errs() << ToolName << ": '" << File << "': " << EC.message() << ".\n"; 343 exit(1); 344 } 345 346 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File, 347 llvm::Error E) { 348 assert(E); 349 std::string Buf; 350 raw_string_ostream OS(Buf); 351 logAllUnhandledErrors(std::move(E), OS, ""); 352 OS.flush(); 353 errs() << ToolName << ": '" << File << "': " << Buf; 354 exit(1); 355 } 356 357 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName, 358 StringRef FileName, 359 llvm::Error E, 360 StringRef ArchitectureName) { 361 assert(E); 362 errs() << ToolName << ": "; 363 if (ArchiveName != "") 364 errs() << ArchiveName << "(" << FileName << ")"; 365 else 366 errs() << "'" << FileName << "'"; 367 if (!ArchitectureName.empty()) 368 errs() << " (for architecture " << ArchitectureName << ")"; 369 std::string Buf; 370 raw_string_ostream OS(Buf); 371 logAllUnhandledErrors(std::move(E), OS, ""); 372 OS.flush(); 373 errs() << ": " << Buf; 374 exit(1); 375 } 376 377 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName, 378 const object::Archive::Child &C, 379 llvm::Error E, 380 StringRef ArchitectureName) { 381 Expected<StringRef> NameOrErr = C.getName(); 382 // TODO: if we have a error getting the name then it would be nice to print 383 // the index of which archive member this is and or its offset in the 384 // archive instead of "???" as the name. 385 if (!NameOrErr) { 386 consumeError(NameOrErr.takeError()); 387 llvm::report_error(ArchiveName, "???", std::move(E), ArchitectureName); 388 } else 389 llvm::report_error(ArchiveName, NameOrErr.get(), std::move(E), 390 ArchitectureName); 391 } 392 393 static const Target *getTarget(const ObjectFile *Obj = nullptr) { 394 // Figure out the target triple. 395 llvm::Triple TheTriple("unknown-unknown-unknown"); 396 if (TripleName.empty()) { 397 if (Obj) { 398 TheTriple = Obj->makeTriple(); 399 } 400 } else { 401 TheTriple.setTriple(Triple::normalize(TripleName)); 402 403 // Use the triple, but also try to combine with ARM build attributes. 404 if (Obj) { 405 auto Arch = Obj->getArch(); 406 if (Arch == Triple::arm || Arch == Triple::armeb) { 407 Obj->setARMSubArch(TheTriple); 408 } 409 } 410 } 411 412 // Get the target specific parser. 413 std::string Error; 414 const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple, 415 Error); 416 if (!TheTarget) { 417 if (Obj) 418 report_error(Obj->getFileName(), "can't find target: " + Error); 419 else 420 error("can't find target: " + Error); 421 } 422 423 // Update the triple name and return the found target. 424 TripleName = TheTriple.getTriple(); 425 return TheTarget; 426 } 427 428 bool llvm::RelocAddressLess(RelocationRef a, RelocationRef b) { 429 return a.getOffset() < b.getOffset(); 430 } 431 432 template <class ELFT> 433 static std::error_code getRelocationValueString(const ELFObjectFile<ELFT> *Obj, 434 const RelocationRef &RelRef, 435 SmallVectorImpl<char> &Result) { 436 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 437 438 typedef typename ELFObjectFile<ELFT>::Elf_Sym Elf_Sym; 439 typedef typename ELFObjectFile<ELFT>::Elf_Shdr Elf_Shdr; 440 typedef typename ELFObjectFile<ELFT>::Elf_Rela Elf_Rela; 441 442 const ELFFile<ELFT> &EF = *Obj->getELFFile(); 443 444 auto SecOrErr = EF.getSection(Rel.d.a); 445 if (!SecOrErr) 446 return errorToErrorCode(SecOrErr.takeError()); 447 const Elf_Shdr *Sec = *SecOrErr; 448 auto SymTabOrErr = EF.getSection(Sec->sh_link); 449 if (!SymTabOrErr) 450 return errorToErrorCode(SymTabOrErr.takeError()); 451 const Elf_Shdr *SymTab = *SymTabOrErr; 452 assert(SymTab->sh_type == ELF::SHT_SYMTAB || 453 SymTab->sh_type == ELF::SHT_DYNSYM); 454 auto StrTabSec = EF.getSection(SymTab->sh_link); 455 if (!StrTabSec) 456 return errorToErrorCode(StrTabSec.takeError()); 457 auto StrTabOrErr = EF.getStringTable(*StrTabSec); 458 if (!StrTabOrErr) 459 return errorToErrorCode(StrTabOrErr.takeError()); 460 StringRef StrTab = *StrTabOrErr; 461 int64_t addend = 0; 462 // If there is no Symbol associated with the relocation, we set the undef 463 // boolean value to 'true'. This will prevent us from calling functions that 464 // requires the relocation to be associated with a symbol. 465 bool undef = false; 466 switch (Sec->sh_type) { 467 default: 468 return object_error::parse_failed; 469 case ELF::SHT_REL: { 470 // TODO: Read implicit addend from section data. 471 break; 472 } 473 case ELF::SHT_RELA: { 474 const Elf_Rela *ERela = Obj->getRela(Rel); 475 addend = ERela->r_addend; 476 undef = ERela->getSymbol(false) == 0; 477 break; 478 } 479 } 480 StringRef Target; 481 if (!undef) { 482 symbol_iterator SI = RelRef.getSymbol(); 483 const Elf_Sym *symb = Obj->getSymbol(SI->getRawDataRefImpl()); 484 if (symb->getType() == ELF::STT_SECTION) { 485 Expected<section_iterator> SymSI = SI->getSection(); 486 if (!SymSI) 487 return errorToErrorCode(SymSI.takeError()); 488 const Elf_Shdr *SymSec = Obj->getSection((*SymSI)->getRawDataRefImpl()); 489 auto SecName = EF.getSectionName(SymSec); 490 if (!SecName) 491 return errorToErrorCode(SecName.takeError()); 492 Target = *SecName; 493 } else { 494 Expected<StringRef> SymName = symb->getName(StrTab); 495 if (!SymName) 496 return errorToErrorCode(SymName.takeError()); 497 Target = *SymName; 498 } 499 } else 500 Target = "*ABS*"; 501 502 // Default scheme is to print Target, as well as "+ <addend>" for nonzero 503 // addend. Should be acceptable for all normal purposes. 504 std::string fmtbuf; 505 raw_string_ostream fmt(fmtbuf); 506 fmt << Target; 507 if (addend != 0) 508 fmt << (addend < 0 ? "" : "+") << addend; 509 fmt.flush(); 510 Result.append(fmtbuf.begin(), fmtbuf.end()); 511 return std::error_code(); 512 } 513 514 static std::error_code getRelocationValueString(const ELFObjectFileBase *Obj, 515 const RelocationRef &Rel, 516 SmallVectorImpl<char> &Result) { 517 if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj)) 518 return getRelocationValueString(ELF32LE, Rel, Result); 519 if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj)) 520 return getRelocationValueString(ELF64LE, Rel, Result); 521 if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj)) 522 return getRelocationValueString(ELF32BE, Rel, Result); 523 auto *ELF64BE = cast<ELF64BEObjectFile>(Obj); 524 return getRelocationValueString(ELF64BE, Rel, Result); 525 } 526 527 static std::error_code getRelocationValueString(const COFFObjectFile *Obj, 528 const RelocationRef &Rel, 529 SmallVectorImpl<char> &Result) { 530 symbol_iterator SymI = Rel.getSymbol(); 531 Expected<StringRef> SymNameOrErr = SymI->getName(); 532 if (!SymNameOrErr) 533 return errorToErrorCode(SymNameOrErr.takeError()); 534 StringRef SymName = *SymNameOrErr; 535 Result.append(SymName.begin(), SymName.end()); 536 return std::error_code(); 537 } 538 539 static void printRelocationTargetName(const MachOObjectFile *O, 540 const MachO::any_relocation_info &RE, 541 raw_string_ostream &fmt) { 542 bool IsScattered = O->isRelocationScattered(RE); 543 544 // Target of a scattered relocation is an address. In the interest of 545 // generating pretty output, scan through the symbol table looking for a 546 // symbol that aligns with that address. If we find one, print it. 547 // Otherwise, we just print the hex address of the target. 548 if (IsScattered) { 549 uint32_t Val = O->getPlainRelocationSymbolNum(RE); 550 551 for (const SymbolRef &Symbol : O->symbols()) { 552 std::error_code ec; 553 Expected<uint64_t> Addr = Symbol.getAddress(); 554 if (!Addr) 555 report_error(O->getFileName(), Addr.takeError()); 556 if (*Addr != Val) 557 continue; 558 Expected<StringRef> Name = Symbol.getName(); 559 if (!Name) 560 report_error(O->getFileName(), Name.takeError()); 561 fmt << *Name; 562 return; 563 } 564 565 // If we couldn't find a symbol that this relocation refers to, try 566 // to find a section beginning instead. 567 for (const SectionRef &Section : ToolSectionFilter(*O)) { 568 std::error_code ec; 569 570 StringRef Name; 571 uint64_t Addr = Section.getAddress(); 572 if (Addr != Val) 573 continue; 574 if ((ec = Section.getName(Name))) 575 report_error(O->getFileName(), ec); 576 fmt << Name; 577 return; 578 } 579 580 fmt << format("0x%x", Val); 581 return; 582 } 583 584 StringRef S; 585 bool isExtern = O->getPlainRelocationExternal(RE); 586 uint64_t Val = O->getPlainRelocationSymbolNum(RE); 587 588 if (O->getAnyRelocationType(RE) == MachO::ARM64_RELOC_ADDEND) { 589 fmt << format("0x%0" PRIx64, Val); 590 return; 591 } else if (isExtern) { 592 symbol_iterator SI = O->symbol_begin(); 593 advance(SI, Val); 594 Expected<StringRef> SOrErr = SI->getName(); 595 if (!SOrErr) 596 report_error(O->getFileName(), SOrErr.takeError()); 597 S = *SOrErr; 598 } else { 599 section_iterator SI = O->section_begin(); 600 // Adjust for the fact that sections are 1-indexed. 601 if (Val == 0) { 602 fmt << "0 (?,?)"; 603 return; 604 } 605 uint32_t i = Val - 1; 606 while (i != 0 && SI != O->section_end()) { 607 i--; 608 advance(SI, 1); 609 } 610 if (SI == O->section_end()) 611 fmt << Val << " (?,?)"; 612 else 613 SI->getName(S); 614 } 615 616 fmt << S; 617 } 618 619 static std::error_code getRelocationValueString(const WasmObjectFile *Obj, 620 const RelocationRef &RelRef, 621 SmallVectorImpl<char> &Result) { 622 const wasm::WasmRelocation& Rel = Obj->getWasmRelocation(RelRef); 623 symbol_iterator SI = RelRef.getSymbol(); 624 std::string fmtbuf; 625 raw_string_ostream fmt(fmtbuf); 626 if (SI == Obj->symbol_end()) { 627 // Not all wasm relocations have symbols associated with them. 628 // In particular R_WEBASSEMBLY_TYPE_INDEX_LEB. 629 fmt << Rel.Index; 630 } else { 631 Expected<StringRef> SymNameOrErr = SI->getName(); 632 if (!SymNameOrErr) 633 return errorToErrorCode(SymNameOrErr.takeError()); 634 StringRef SymName = *SymNameOrErr; 635 Result.append(SymName.begin(), SymName.end()); 636 } 637 fmt << (Rel.Addend < 0 ? "" : "+") << Rel.Addend; 638 fmt.flush(); 639 Result.append(fmtbuf.begin(), fmtbuf.end()); 640 return std::error_code(); 641 } 642 643 static std::error_code getRelocationValueString(const MachOObjectFile *Obj, 644 const RelocationRef &RelRef, 645 SmallVectorImpl<char> &Result) { 646 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 647 MachO::any_relocation_info RE = Obj->getRelocation(Rel); 648 649 unsigned Arch = Obj->getArch(); 650 651 std::string fmtbuf; 652 raw_string_ostream fmt(fmtbuf); 653 unsigned Type = Obj->getAnyRelocationType(RE); 654 bool IsPCRel = Obj->getAnyRelocationPCRel(RE); 655 656 // Determine any addends that should be displayed with the relocation. 657 // These require decoding the relocation type, which is triple-specific. 658 659 // X86_64 has entirely custom relocation types. 660 if (Arch == Triple::x86_64) { 661 bool isPCRel = Obj->getAnyRelocationPCRel(RE); 662 663 switch (Type) { 664 case MachO::X86_64_RELOC_GOT_LOAD: 665 case MachO::X86_64_RELOC_GOT: { 666 printRelocationTargetName(Obj, RE, fmt); 667 fmt << "@GOT"; 668 if (isPCRel) 669 fmt << "PCREL"; 670 break; 671 } 672 case MachO::X86_64_RELOC_SUBTRACTOR: { 673 DataRefImpl RelNext = Rel; 674 Obj->moveRelocationNext(RelNext); 675 MachO::any_relocation_info RENext = Obj->getRelocation(RelNext); 676 677 // X86_64_RELOC_SUBTRACTOR must be followed by a relocation of type 678 // X86_64_RELOC_UNSIGNED. 679 // NOTE: Scattered relocations don't exist on x86_64. 680 unsigned RType = Obj->getAnyRelocationType(RENext); 681 if (RType != MachO::X86_64_RELOC_UNSIGNED) 682 report_error(Obj->getFileName(), "Expected X86_64_RELOC_UNSIGNED after " 683 "X86_64_RELOC_SUBTRACTOR."); 684 685 // The X86_64_RELOC_UNSIGNED contains the minuend symbol; 686 // X86_64_RELOC_SUBTRACTOR contains the subtrahend. 687 printRelocationTargetName(Obj, RENext, fmt); 688 fmt << "-"; 689 printRelocationTargetName(Obj, RE, fmt); 690 break; 691 } 692 case MachO::X86_64_RELOC_TLV: 693 printRelocationTargetName(Obj, RE, fmt); 694 fmt << "@TLV"; 695 if (isPCRel) 696 fmt << "P"; 697 break; 698 case MachO::X86_64_RELOC_SIGNED_1: 699 printRelocationTargetName(Obj, RE, fmt); 700 fmt << "-1"; 701 break; 702 case MachO::X86_64_RELOC_SIGNED_2: 703 printRelocationTargetName(Obj, RE, fmt); 704 fmt << "-2"; 705 break; 706 case MachO::X86_64_RELOC_SIGNED_4: 707 printRelocationTargetName(Obj, RE, fmt); 708 fmt << "-4"; 709 break; 710 default: 711 printRelocationTargetName(Obj, RE, fmt); 712 break; 713 } 714 // X86 and ARM share some relocation types in common. 715 } else if (Arch == Triple::x86 || Arch == Triple::arm || 716 Arch == Triple::ppc) { 717 // Generic relocation types... 718 switch (Type) { 719 case MachO::GENERIC_RELOC_PAIR: // prints no info 720 return std::error_code(); 721 case MachO::GENERIC_RELOC_SECTDIFF: { 722 DataRefImpl RelNext = Rel; 723 Obj->moveRelocationNext(RelNext); 724 MachO::any_relocation_info RENext = Obj->getRelocation(RelNext); 725 726 // X86 sect diff's must be followed by a relocation of type 727 // GENERIC_RELOC_PAIR. 728 unsigned RType = Obj->getAnyRelocationType(RENext); 729 730 if (RType != MachO::GENERIC_RELOC_PAIR) 731 report_error(Obj->getFileName(), "Expected GENERIC_RELOC_PAIR after " 732 "GENERIC_RELOC_SECTDIFF."); 733 734 printRelocationTargetName(Obj, RE, fmt); 735 fmt << "-"; 736 printRelocationTargetName(Obj, RENext, fmt); 737 break; 738 } 739 } 740 741 if (Arch == Triple::x86 || Arch == Triple::ppc) { 742 switch (Type) { 743 case MachO::GENERIC_RELOC_LOCAL_SECTDIFF: { 744 DataRefImpl RelNext = Rel; 745 Obj->moveRelocationNext(RelNext); 746 MachO::any_relocation_info RENext = Obj->getRelocation(RelNext); 747 748 // X86 sect diff's must be followed by a relocation of type 749 // GENERIC_RELOC_PAIR. 750 unsigned RType = Obj->getAnyRelocationType(RENext); 751 if (RType != MachO::GENERIC_RELOC_PAIR) 752 report_error(Obj->getFileName(), "Expected GENERIC_RELOC_PAIR after " 753 "GENERIC_RELOC_LOCAL_SECTDIFF."); 754 755 printRelocationTargetName(Obj, RE, fmt); 756 fmt << "-"; 757 printRelocationTargetName(Obj, RENext, fmt); 758 break; 759 } 760 case MachO::GENERIC_RELOC_TLV: { 761 printRelocationTargetName(Obj, RE, fmt); 762 fmt << "@TLV"; 763 if (IsPCRel) 764 fmt << "P"; 765 break; 766 } 767 default: 768 printRelocationTargetName(Obj, RE, fmt); 769 } 770 } else { // ARM-specific relocations 771 switch (Type) { 772 case MachO::ARM_RELOC_HALF: 773 case MachO::ARM_RELOC_HALF_SECTDIFF: { 774 // Half relocations steal a bit from the length field to encode 775 // whether this is an upper16 or a lower16 relocation. 776 bool isUpper = (Obj->getAnyRelocationLength(RE) & 0x1) == 1; 777 778 if (isUpper) 779 fmt << ":upper16:("; 780 else 781 fmt << ":lower16:("; 782 printRelocationTargetName(Obj, RE, fmt); 783 784 DataRefImpl RelNext = Rel; 785 Obj->moveRelocationNext(RelNext); 786 MachO::any_relocation_info RENext = Obj->getRelocation(RelNext); 787 788 // ARM half relocs must be followed by a relocation of type 789 // ARM_RELOC_PAIR. 790 unsigned RType = Obj->getAnyRelocationType(RENext); 791 if (RType != MachO::ARM_RELOC_PAIR) 792 report_error(Obj->getFileName(), "Expected ARM_RELOC_PAIR after " 793 "ARM_RELOC_HALF"); 794 795 // NOTE: The half of the target virtual address is stashed in the 796 // address field of the secondary relocation, but we can't reverse 797 // engineer the constant offset from it without decoding the movw/movt 798 // instruction to find the other half in its immediate field. 799 800 // ARM_RELOC_HALF_SECTDIFF encodes the second section in the 801 // symbol/section pointer of the follow-on relocation. 802 if (Type == MachO::ARM_RELOC_HALF_SECTDIFF) { 803 fmt << "-"; 804 printRelocationTargetName(Obj, RENext, fmt); 805 } 806 807 fmt << ")"; 808 break; 809 } 810 default: { printRelocationTargetName(Obj, RE, fmt); } 811 } 812 } 813 } else 814 printRelocationTargetName(Obj, RE, fmt); 815 816 fmt.flush(); 817 Result.append(fmtbuf.begin(), fmtbuf.end()); 818 return std::error_code(); 819 } 820 821 static std::error_code getRelocationValueString(const RelocationRef &Rel, 822 SmallVectorImpl<char> &Result) { 823 const ObjectFile *Obj = Rel.getObject(); 824 if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj)) 825 return getRelocationValueString(ELF, Rel, Result); 826 if (auto *COFF = dyn_cast<COFFObjectFile>(Obj)) 827 return getRelocationValueString(COFF, Rel, Result); 828 if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj)) 829 return getRelocationValueString(Wasm, Rel, Result); 830 if (auto *MachO = dyn_cast<MachOObjectFile>(Obj)) 831 return getRelocationValueString(MachO, Rel, Result); 832 llvm_unreachable("unknown object file format"); 833 } 834 835 /// Indicates whether this relocation should hidden when listing 836 /// relocations, usually because it is the trailing part of a multipart 837 /// relocation that will be printed as part of the leading relocation. 838 static bool getHidden(RelocationRef RelRef) { 839 const ObjectFile *Obj = RelRef.getObject(); 840 auto *MachO = dyn_cast<MachOObjectFile>(Obj); 841 if (!MachO) 842 return false; 843 844 unsigned Arch = MachO->getArch(); 845 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 846 uint64_t Type = MachO->getRelocationType(Rel); 847 848 // On arches that use the generic relocations, GENERIC_RELOC_PAIR 849 // is always hidden. 850 if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) { 851 if (Type == MachO::GENERIC_RELOC_PAIR) 852 return true; 853 } else if (Arch == Triple::x86_64) { 854 // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows 855 // an X86_64_RELOC_SUBTRACTOR. 856 if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) { 857 DataRefImpl RelPrev = Rel; 858 RelPrev.d.a--; 859 uint64_t PrevType = MachO->getRelocationType(RelPrev); 860 if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR) 861 return true; 862 } 863 } 864 865 return false; 866 } 867 868 namespace { 869 class SourcePrinter { 870 protected: 871 DILineInfo OldLineInfo; 872 const ObjectFile *Obj = nullptr; 873 std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer; 874 // File name to file contents of source 875 std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache; 876 // Mark the line endings of the cached source 877 std::unordered_map<std::string, std::vector<StringRef>> LineCache; 878 879 private: 880 bool cacheSource(const DILineInfo& LineInfoFile); 881 882 public: 883 SourcePrinter() = default; 884 SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch) : Obj(Obj) { 885 symbolize::LLVMSymbolizer::Options SymbolizerOpts( 886 DILineInfoSpecifier::FunctionNameKind::None, true, false, false, 887 DefaultArch); 888 Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts)); 889 } 890 virtual ~SourcePrinter() = default; 891 virtual void printSourceLine(raw_ostream &OS, uint64_t Address, 892 StringRef Delimiter = "; "); 893 }; 894 895 bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) { 896 std::unique_ptr<MemoryBuffer> Buffer; 897 if (LineInfo.Source) { 898 Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source); 899 } else { 900 auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName); 901 if (!BufferOrError) 902 return false; 903 Buffer = std::move(*BufferOrError); 904 } 905 // Chomp the file to get lines 906 size_t BufferSize = Buffer->getBufferSize(); 907 const char *BufferStart = Buffer->getBufferStart(); 908 for (const char *Start = BufferStart, *End = BufferStart; 909 End < BufferStart + BufferSize; End++) 910 if (*End == '\n' || End == BufferStart + BufferSize - 1 || 911 (*End == '\r' && *(End + 1) == '\n')) { 912 LineCache[LineInfo.FileName].push_back(StringRef(Start, End - Start)); 913 if (*End == '\r') 914 End++; 915 Start = End + 1; 916 } 917 SourceCache[LineInfo.FileName] = std::move(Buffer); 918 return true; 919 } 920 921 void SourcePrinter::printSourceLine(raw_ostream &OS, uint64_t Address, 922 StringRef Delimiter) { 923 if (!Symbolizer) 924 return; 925 DILineInfo LineInfo = DILineInfo(); 926 auto ExpectecLineInfo = 927 Symbolizer->symbolizeCode(Obj->getFileName(), Address); 928 if (!ExpectecLineInfo) 929 consumeError(ExpectecLineInfo.takeError()); 930 else 931 LineInfo = *ExpectecLineInfo; 932 933 if ((LineInfo.FileName == "<invalid>") || OldLineInfo.Line == LineInfo.Line || 934 LineInfo.Line == 0) 935 return; 936 937 if (PrintLines) 938 OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line << "\n"; 939 if (PrintSource) { 940 if (SourceCache.find(LineInfo.FileName) == SourceCache.end()) 941 if (!cacheSource(LineInfo)) 942 return; 943 auto FileBuffer = SourceCache.find(LineInfo.FileName); 944 if (FileBuffer != SourceCache.end()) { 945 auto LineBuffer = LineCache.find(LineInfo.FileName); 946 if (LineBuffer != LineCache.end()) { 947 if (LineInfo.Line > LineBuffer->second.size()) 948 return; 949 // Vector begins at 0, line numbers are non-zero 950 OS << Delimiter << LineBuffer->second[LineInfo.Line - 1].ltrim() 951 << "\n"; 952 } 953 } 954 } 955 OldLineInfo = LineInfo; 956 } 957 958 static bool isArmElf(const ObjectFile *Obj) { 959 return (Obj->isELF() && 960 (Obj->getArch() == Triple::aarch64 || 961 Obj->getArch() == Triple::aarch64_be || 962 Obj->getArch() == Triple::arm || Obj->getArch() == Triple::armeb || 963 Obj->getArch() == Triple::thumb || 964 Obj->getArch() == Triple::thumbeb)); 965 } 966 967 class PrettyPrinter { 968 public: 969 virtual ~PrettyPrinter() = default; 970 virtual void printInst(MCInstPrinter &IP, const MCInst *MI, 971 ArrayRef<uint8_t> Bytes, uint64_t Address, 972 raw_ostream &OS, StringRef Annot, 973 MCSubtargetInfo const &STI, SourcePrinter *SP, 974 std::vector<RelocationRef> *Rels = nullptr) { 975 if (SP && (PrintSource || PrintLines)) 976 SP->printSourceLine(OS, Address); 977 if (!NoLeadingAddr) 978 OS << format("%8" PRIx64 ":", Address); 979 if (!NoShowRawInsn) { 980 OS << "\t"; 981 dumpBytes(Bytes, OS); 982 } 983 if (MI) 984 IP.printInst(MI, OS, "", STI); 985 else 986 OS << " <unknown>"; 987 } 988 }; 989 PrettyPrinter PrettyPrinterInst; 990 class HexagonPrettyPrinter : public PrettyPrinter { 991 public: 992 void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address, 993 raw_ostream &OS) { 994 uint32_t opcode = 995 (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0]; 996 if (!NoLeadingAddr) 997 OS << format("%8" PRIx64 ":", Address); 998 if (!NoShowRawInsn) { 999 OS << "\t"; 1000 dumpBytes(Bytes.slice(0, 4), OS); 1001 OS << format("%08" PRIx32, opcode); 1002 } 1003 } 1004 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 1005 uint64_t Address, raw_ostream &OS, StringRef Annot, 1006 MCSubtargetInfo const &STI, SourcePrinter *SP, 1007 std::vector<RelocationRef> *Rels) override { 1008 if (SP && (PrintSource || PrintLines)) 1009 SP->printSourceLine(OS, Address, ""); 1010 if (!MI) { 1011 printLead(Bytes, Address, OS); 1012 OS << " <unknown>"; 1013 return; 1014 } 1015 std::string Buffer; 1016 { 1017 raw_string_ostream TempStream(Buffer); 1018 IP.printInst(MI, TempStream, "", STI); 1019 } 1020 StringRef Contents(Buffer); 1021 // Split off bundle attributes 1022 auto PacketBundle = Contents.rsplit('\n'); 1023 // Split off first instruction from the rest 1024 auto HeadTail = PacketBundle.first.split('\n'); 1025 auto Preamble = " { "; 1026 auto Separator = ""; 1027 StringRef Fmt = "\t\t\t%08" PRIx64 ": "; 1028 std::vector<RelocationRef>::const_iterator rel_cur = Rels->begin(); 1029 std::vector<RelocationRef>::const_iterator rel_end = Rels->end(); 1030 1031 // Hexagon's packets require relocations to be inline rather than 1032 // clustered at the end of the packet. 1033 auto PrintReloc = [&]() -> void { 1034 while ((rel_cur != rel_end) && (rel_cur->getOffset() <= Address)) { 1035 if (rel_cur->getOffset() == Address) { 1036 SmallString<16> name; 1037 SmallString<32> val; 1038 rel_cur->getTypeName(name); 1039 error(getRelocationValueString(*rel_cur, val)); 1040 OS << Separator << format(Fmt.data(), Address) << name << "\t" << val 1041 << "\n"; 1042 return; 1043 } 1044 rel_cur++; 1045 } 1046 }; 1047 1048 while(!HeadTail.first.empty()) { 1049 OS << Separator; 1050 Separator = "\n"; 1051 if (SP && (PrintSource || PrintLines)) 1052 SP->printSourceLine(OS, Address, ""); 1053 printLead(Bytes, Address, OS); 1054 OS << Preamble; 1055 Preamble = " "; 1056 StringRef Inst; 1057 auto Duplex = HeadTail.first.split('\v'); 1058 if(!Duplex.second.empty()){ 1059 OS << Duplex.first; 1060 OS << "; "; 1061 Inst = Duplex.second; 1062 } 1063 else 1064 Inst = HeadTail.first; 1065 OS << Inst; 1066 HeadTail = HeadTail.second.split('\n'); 1067 if (HeadTail.first.empty()) 1068 OS << " } " << PacketBundle.second; 1069 PrintReloc(); 1070 Bytes = Bytes.slice(4); 1071 Address += 4; 1072 } 1073 } 1074 }; 1075 HexagonPrettyPrinter HexagonPrettyPrinterInst; 1076 1077 class AMDGCNPrettyPrinter : public PrettyPrinter { 1078 public: 1079 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 1080 uint64_t Address, raw_ostream &OS, StringRef Annot, 1081 MCSubtargetInfo const &STI, SourcePrinter *SP, 1082 std::vector<RelocationRef> *Rels) override { 1083 if (SP && (PrintSource || PrintLines)) 1084 SP->printSourceLine(OS, Address); 1085 1086 typedef support::ulittle32_t U32; 1087 1088 if (MI) { 1089 SmallString<40> InstStr; 1090 raw_svector_ostream IS(InstStr); 1091 1092 IP.printInst(MI, IS, "", STI); 1093 1094 OS << left_justify(IS.str(), 60); 1095 } else { 1096 // an unrecognized encoding - this is probably data so represent it 1097 // using the .long directive, or .byte directive if fewer than 4 bytes 1098 // remaining 1099 if (Bytes.size() >= 4) { 1100 OS << format("\t.long 0x%08" PRIx32 " ", 1101 static_cast<uint32_t>(*reinterpret_cast<const U32*>(Bytes.data()))); 1102 OS.indent(42); 1103 } else { 1104 OS << format("\t.byte 0x%02" PRIx8, Bytes[0]); 1105 for (unsigned int i = 1; i < Bytes.size(); i++) 1106 OS << format(", 0x%02" PRIx8, Bytes[i]); 1107 OS.indent(55 - (6 * Bytes.size())); 1108 } 1109 } 1110 1111 OS << format("// %012" PRIX64 ": ", Address); 1112 if (Bytes.size() >=4) { 1113 for (auto D : makeArrayRef(reinterpret_cast<const U32*>(Bytes.data()), 1114 Bytes.size() / sizeof(U32))) 1115 // D should be explicitly casted to uint32_t here as it is passed 1116 // by format to snprintf as vararg. 1117 OS << format("%08" PRIX32 " ", static_cast<uint32_t>(D)); 1118 } else { 1119 for (unsigned int i = 0; i < Bytes.size(); i++) 1120 OS << format("%02" PRIX8 " ", Bytes[i]); 1121 } 1122 1123 if (!Annot.empty()) 1124 OS << "// " << Annot; 1125 } 1126 }; 1127 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst; 1128 1129 class BPFPrettyPrinter : public PrettyPrinter { 1130 public: 1131 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 1132 uint64_t Address, raw_ostream &OS, StringRef Annot, 1133 MCSubtargetInfo const &STI, SourcePrinter *SP, 1134 std::vector<RelocationRef> *Rels) override { 1135 if (SP && (PrintSource || PrintLines)) 1136 SP->printSourceLine(OS, Address); 1137 if (!NoLeadingAddr) 1138 OS << format("%8" PRId64 ":", Address / 8); 1139 if (!NoShowRawInsn) { 1140 OS << "\t"; 1141 dumpBytes(Bytes, OS); 1142 } 1143 if (MI) 1144 IP.printInst(MI, OS, "", STI); 1145 else 1146 OS << " <unknown>"; 1147 } 1148 }; 1149 BPFPrettyPrinter BPFPrettyPrinterInst; 1150 1151 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) { 1152 switch(Triple.getArch()) { 1153 default: 1154 return PrettyPrinterInst; 1155 case Triple::hexagon: 1156 return HexagonPrettyPrinterInst; 1157 case Triple::amdgcn: 1158 return AMDGCNPrettyPrinterInst; 1159 case Triple::bpfel: 1160 case Triple::bpfeb: 1161 return BPFPrettyPrinterInst; 1162 } 1163 } 1164 } 1165 1166 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) { 1167 assert(Obj->isELF()); 1168 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj)) 1169 return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType(); 1170 if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj)) 1171 return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType(); 1172 if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj)) 1173 return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType(); 1174 if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj)) 1175 return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType(); 1176 llvm_unreachable("Unsupported binary format"); 1177 } 1178 1179 template <class ELFT> static void 1180 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj, 1181 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 1182 for (auto Symbol : Obj->getDynamicSymbolIterators()) { 1183 uint8_t SymbolType = Symbol.getELFType(); 1184 if (SymbolType != ELF::STT_FUNC || Symbol.getSize() == 0) 1185 continue; 1186 1187 Expected<uint64_t> AddressOrErr = Symbol.getAddress(); 1188 if (!AddressOrErr) 1189 report_error(Obj->getFileName(), AddressOrErr.takeError()); 1190 uint64_t Address = *AddressOrErr; 1191 1192 Expected<StringRef> Name = Symbol.getName(); 1193 if (!Name) 1194 report_error(Obj->getFileName(), Name.takeError()); 1195 if (Name->empty()) 1196 continue; 1197 1198 Expected<section_iterator> SectionOrErr = Symbol.getSection(); 1199 if (!SectionOrErr) 1200 report_error(Obj->getFileName(), SectionOrErr.takeError()); 1201 section_iterator SecI = *SectionOrErr; 1202 if (SecI == Obj->section_end()) 1203 continue; 1204 1205 AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType); 1206 } 1207 } 1208 1209 static void 1210 addDynamicElfSymbols(const ObjectFile *Obj, 1211 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 1212 assert(Obj->isELF()); 1213 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj)) 1214 addDynamicElfSymbols(Elf32LEObj, AllSymbols); 1215 else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj)) 1216 addDynamicElfSymbols(Elf64LEObj, AllSymbols); 1217 else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj)) 1218 addDynamicElfSymbols(Elf32BEObj, AllSymbols); 1219 else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj)) 1220 addDynamicElfSymbols(Elf64BEObj, AllSymbols); 1221 else 1222 llvm_unreachable("Unsupported binary format"); 1223 } 1224 1225 static void DisassembleObject(const ObjectFile *Obj, bool InlineRelocs) { 1226 if (StartAddress > StopAddress) 1227 error("Start address should be less than stop address"); 1228 1229 const Target *TheTarget = getTarget(Obj); 1230 1231 // Package up features to be passed to target/subtarget 1232 SubtargetFeatures Features = Obj->getFeatures(); 1233 if (MAttrs.size()) { 1234 for (unsigned i = 0; i != MAttrs.size(); ++i) 1235 Features.AddFeature(MAttrs[i]); 1236 } 1237 1238 std::unique_ptr<const MCRegisterInfo> MRI( 1239 TheTarget->createMCRegInfo(TripleName)); 1240 if (!MRI) 1241 report_error(Obj->getFileName(), "no register info for target " + 1242 TripleName); 1243 1244 // Set up disassembler. 1245 std::unique_ptr<const MCAsmInfo> AsmInfo( 1246 TheTarget->createMCAsmInfo(*MRI, TripleName)); 1247 if (!AsmInfo) 1248 report_error(Obj->getFileName(), "no assembly info for target " + 1249 TripleName); 1250 std::unique_ptr<const MCSubtargetInfo> STI( 1251 TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString())); 1252 if (!STI) 1253 report_error(Obj->getFileName(), "no subtarget info for target " + 1254 TripleName); 1255 std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo()); 1256 if (!MII) 1257 report_error(Obj->getFileName(), "no instruction info for target " + 1258 TripleName); 1259 MCObjectFileInfo MOFI; 1260 MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI); 1261 // FIXME: for now initialize MCObjectFileInfo with default values 1262 MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx); 1263 1264 std::unique_ptr<MCDisassembler> DisAsm( 1265 TheTarget->createMCDisassembler(*STI, Ctx)); 1266 if (!DisAsm) 1267 report_error(Obj->getFileName(), "no disassembler for target " + 1268 TripleName); 1269 1270 std::unique_ptr<const MCInstrAnalysis> MIA( 1271 TheTarget->createMCInstrAnalysis(MII.get())); 1272 1273 int AsmPrinterVariant = AsmInfo->getAssemblerDialect(); 1274 std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter( 1275 Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI)); 1276 if (!IP) 1277 report_error(Obj->getFileName(), "no instruction printer for target " + 1278 TripleName); 1279 IP->setPrintImmHex(PrintImmHex); 1280 PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName)); 1281 1282 StringRef Fmt = Obj->getBytesInAddress() > 4 ? "\t\t%016" PRIx64 ": " : 1283 "\t\t\t%08" PRIx64 ": "; 1284 1285 SourcePrinter SP(Obj, TheTarget->getName()); 1286 1287 // Create a mapping, RelocSecs = SectionRelocMap[S], where sections 1288 // in RelocSecs contain the relocations for section S. 1289 std::error_code EC; 1290 std::map<SectionRef, SmallVector<SectionRef, 1>> SectionRelocMap; 1291 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 1292 section_iterator Sec2 = Section.getRelocatedSection(); 1293 if (Sec2 != Obj->section_end()) 1294 SectionRelocMap[*Sec2].push_back(Section); 1295 } 1296 1297 // Create a mapping from virtual address to symbol name. This is used to 1298 // pretty print the symbols while disassembling. 1299 std::map<SectionRef, SectionSymbolsTy> AllSymbols; 1300 SectionSymbolsTy AbsoluteSymbols; 1301 for (const SymbolRef &Symbol : Obj->symbols()) { 1302 Expected<uint64_t> AddressOrErr = Symbol.getAddress(); 1303 if (!AddressOrErr) 1304 report_error(Obj->getFileName(), AddressOrErr.takeError()); 1305 uint64_t Address = *AddressOrErr; 1306 1307 Expected<StringRef> Name = Symbol.getName(); 1308 if (!Name) 1309 report_error(Obj->getFileName(), Name.takeError()); 1310 if (Name->empty()) 1311 continue; 1312 1313 Expected<section_iterator> SectionOrErr = Symbol.getSection(); 1314 if (!SectionOrErr) 1315 report_error(Obj->getFileName(), SectionOrErr.takeError()); 1316 1317 uint8_t SymbolType = ELF::STT_NOTYPE; 1318 if (Obj->isELF()) 1319 SymbolType = getElfSymbolType(Obj, Symbol); 1320 1321 section_iterator SecI = *SectionOrErr; 1322 if (SecI != Obj->section_end()) 1323 AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType); 1324 else 1325 AbsoluteSymbols.emplace_back(Address, *Name, SymbolType); 1326 1327 1328 } 1329 if (AllSymbols.empty() && Obj->isELF()) 1330 addDynamicElfSymbols(Obj, AllSymbols); 1331 1332 // Create a mapping from virtual address to section. 1333 std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses; 1334 for (SectionRef Sec : Obj->sections()) 1335 SectionAddresses.emplace_back(Sec.getAddress(), Sec); 1336 array_pod_sort(SectionAddresses.begin(), SectionAddresses.end()); 1337 1338 // Linked executables (.exe and .dll files) typically don't include a real 1339 // symbol table but they might contain an export table. 1340 if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) { 1341 for (const auto &ExportEntry : COFFObj->export_directories()) { 1342 StringRef Name; 1343 error(ExportEntry.getSymbolName(Name)); 1344 if (Name.empty()) 1345 continue; 1346 uint32_t RVA; 1347 error(ExportEntry.getExportRVA(RVA)); 1348 1349 uint64_t VA = COFFObj->getImageBase() + RVA; 1350 auto Sec = std::upper_bound( 1351 SectionAddresses.begin(), SectionAddresses.end(), VA, 1352 [](uint64_t LHS, const std::pair<uint64_t, SectionRef> &RHS) { 1353 return LHS < RHS.first; 1354 }); 1355 if (Sec != SectionAddresses.begin()) 1356 --Sec; 1357 else 1358 Sec = SectionAddresses.end(); 1359 1360 if (Sec != SectionAddresses.end()) 1361 AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE); 1362 else 1363 AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE); 1364 } 1365 } 1366 1367 // Sort all the symbols, this allows us to use a simple binary search to find 1368 // a symbol near an address. 1369 for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols) 1370 array_pod_sort(SecSyms.second.begin(), SecSyms.second.end()); 1371 array_pod_sort(AbsoluteSymbols.begin(), AbsoluteSymbols.end()); 1372 1373 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 1374 if (!DisassembleAll && (!Section.isText() || Section.isVirtual())) 1375 continue; 1376 1377 uint64_t SectionAddr = Section.getAddress(); 1378 uint64_t SectSize = Section.getSize(); 1379 if (!SectSize) 1380 continue; 1381 1382 // Get the list of all the symbols in this section. 1383 SectionSymbolsTy &Symbols = AllSymbols[Section]; 1384 std::vector<uint64_t> DataMappingSymsAddr; 1385 std::vector<uint64_t> TextMappingSymsAddr; 1386 if (isArmElf(Obj)) { 1387 for (const auto &Symb : Symbols) { 1388 uint64_t Address = std::get<0>(Symb); 1389 StringRef Name = std::get<1>(Symb); 1390 if (Name.startswith("$d")) 1391 DataMappingSymsAddr.push_back(Address - SectionAddr); 1392 if (Name.startswith("$x")) 1393 TextMappingSymsAddr.push_back(Address - SectionAddr); 1394 if (Name.startswith("$a")) 1395 TextMappingSymsAddr.push_back(Address - SectionAddr); 1396 if (Name.startswith("$t")) 1397 TextMappingSymsAddr.push_back(Address - SectionAddr); 1398 } 1399 } 1400 1401 llvm::sort(DataMappingSymsAddr.begin(), DataMappingSymsAddr.end()); 1402 llvm::sort(TextMappingSymsAddr.begin(), TextMappingSymsAddr.end()); 1403 1404 if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) { 1405 // AMDGPU disassembler uses symbolizer for printing labels 1406 std::unique_ptr<MCRelocationInfo> RelInfo( 1407 TheTarget->createMCRelocationInfo(TripleName, Ctx)); 1408 if (RelInfo) { 1409 std::unique_ptr<MCSymbolizer> Symbolizer( 1410 TheTarget->createMCSymbolizer( 1411 TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo))); 1412 DisAsm->setSymbolizer(std::move(Symbolizer)); 1413 } 1414 } 1415 1416 // Make a list of all the relocations for this section. 1417 std::vector<RelocationRef> Rels; 1418 if (InlineRelocs) { 1419 for (const SectionRef &RelocSec : SectionRelocMap[Section]) { 1420 for (const RelocationRef &Reloc : RelocSec.relocations()) { 1421 Rels.push_back(Reloc); 1422 } 1423 } 1424 } 1425 1426 // Sort relocations by address. 1427 llvm::sort(Rels.begin(), Rels.end(), RelocAddressLess); 1428 1429 StringRef SegmentName = ""; 1430 if (const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj)) { 1431 DataRefImpl DR = Section.getRawDataRefImpl(); 1432 SegmentName = MachO->getSectionFinalSegmentName(DR); 1433 } 1434 StringRef SectionName; 1435 error(Section.getName(SectionName)); 1436 1437 // If the section has no symbol at the start, just insert a dummy one. 1438 if (Symbols.empty() || std::get<0>(Symbols[0]) != 0) { 1439 Symbols.insert( 1440 Symbols.begin(), 1441 std::make_tuple(SectionAddr, SectionName, 1442 Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT)); 1443 } 1444 1445 SmallString<40> Comments; 1446 raw_svector_ostream CommentStream(Comments); 1447 1448 StringRef BytesStr; 1449 error(Section.getContents(BytesStr)); 1450 ArrayRef<uint8_t> Bytes(reinterpret_cast<const uint8_t *>(BytesStr.data()), 1451 BytesStr.size()); 1452 1453 uint64_t Size; 1454 uint64_t Index; 1455 bool PrintedSection = false; 1456 1457 std::vector<RelocationRef>::const_iterator rel_cur = Rels.begin(); 1458 std::vector<RelocationRef>::const_iterator rel_end = Rels.end(); 1459 // Disassemble symbol by symbol. 1460 for (unsigned si = 0, se = Symbols.size(); si != se; ++si) { 1461 uint64_t Start = std::get<0>(Symbols[si]) - SectionAddr; 1462 // The end is either the section end or the beginning of the next 1463 // symbol. 1464 uint64_t End = 1465 (si == se - 1) ? SectSize : std::get<0>(Symbols[si + 1]) - SectionAddr; 1466 // Don't try to disassemble beyond the end of section contents. 1467 if (End > SectSize) 1468 End = SectSize; 1469 // If this symbol has the same address as the next symbol, then skip it. 1470 if (Start >= End) 1471 continue; 1472 1473 // Check if we need to skip symbol 1474 // Skip if the symbol's data is not between StartAddress and StopAddress 1475 if (End + SectionAddr < StartAddress || 1476 Start + SectionAddr > StopAddress) { 1477 continue; 1478 } 1479 1480 /// Skip if user requested specific symbols and this is not in the list 1481 if (!DisasmFuncsSet.empty() && 1482 !DisasmFuncsSet.count(std::get<1>(Symbols[si]))) 1483 continue; 1484 1485 if (!PrintedSection) { 1486 PrintedSection = true; 1487 outs() << "Disassembly of section "; 1488 if (!SegmentName.empty()) 1489 outs() << SegmentName << ","; 1490 outs() << SectionName << ':'; 1491 } 1492 1493 // Stop disassembly at the stop address specified 1494 if (End + SectionAddr > StopAddress) 1495 End = StopAddress - SectionAddr; 1496 1497 if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) { 1498 if (std::get<2>(Symbols[si]) == ELF::STT_AMDGPU_HSA_KERNEL) { 1499 // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes) 1500 Start += 256; 1501 } 1502 if (si == se - 1 || 1503 std::get<2>(Symbols[si + 1]) == ELF::STT_AMDGPU_HSA_KERNEL) { 1504 // cut trailing zeroes at the end of kernel 1505 // cut up to 256 bytes 1506 const uint64_t EndAlign = 256; 1507 const auto Limit = End - (std::min)(EndAlign, End - Start); 1508 while (End > Limit && 1509 *reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0) 1510 End -= 4; 1511 } 1512 } 1513 1514 outs() << '\n' << std::get<1>(Symbols[si]) << ":\n"; 1515 1516 // Don't print raw contents of a virtual section. A virtual section 1517 // doesn't have any contents in the file. 1518 if (Section.isVirtual()) { 1519 outs() << "...\n"; 1520 continue; 1521 } 1522 1523 #ifndef NDEBUG 1524 raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls(); 1525 #else 1526 raw_ostream &DebugOut = nulls(); 1527 #endif 1528 1529 for (Index = Start; Index < End; Index += Size) { 1530 MCInst Inst; 1531 1532 if (Index + SectionAddr < StartAddress || 1533 Index + SectionAddr > StopAddress) { 1534 // skip byte by byte till StartAddress is reached 1535 Size = 1; 1536 continue; 1537 } 1538 // AArch64 ELF binaries can interleave data and text in the 1539 // same section. We rely on the markers introduced to 1540 // understand what we need to dump. If the data marker is within a 1541 // function, it is denoted as a word/short etc 1542 if (isArmElf(Obj) && std::get<2>(Symbols[si]) != ELF::STT_OBJECT && 1543 !DisassembleAll) { 1544 uint64_t Stride = 0; 1545 1546 auto DAI = std::lower_bound(DataMappingSymsAddr.begin(), 1547 DataMappingSymsAddr.end(), Index); 1548 if (DAI != DataMappingSymsAddr.end() && *DAI == Index) { 1549 // Switch to data. 1550 while (Index < End) { 1551 outs() << format("%8" PRIx64 ":", SectionAddr + Index); 1552 outs() << "\t"; 1553 if (Index + 4 <= End) { 1554 Stride = 4; 1555 dumpBytes(Bytes.slice(Index, 4), outs()); 1556 outs() << "\t.word\t"; 1557 uint32_t Data = 0; 1558 if (Obj->isLittleEndian()) { 1559 const auto Word = 1560 reinterpret_cast<const support::ulittle32_t *>( 1561 Bytes.data() + Index); 1562 Data = *Word; 1563 } else { 1564 const auto Word = reinterpret_cast<const support::ubig32_t *>( 1565 Bytes.data() + Index); 1566 Data = *Word; 1567 } 1568 outs() << "0x" << format("%08" PRIx32, Data); 1569 } else if (Index + 2 <= End) { 1570 Stride = 2; 1571 dumpBytes(Bytes.slice(Index, 2), outs()); 1572 outs() << "\t\t.short\t"; 1573 uint16_t Data = 0; 1574 if (Obj->isLittleEndian()) { 1575 const auto Short = 1576 reinterpret_cast<const support::ulittle16_t *>( 1577 Bytes.data() + Index); 1578 Data = *Short; 1579 } else { 1580 const auto Short = 1581 reinterpret_cast<const support::ubig16_t *>(Bytes.data() + 1582 Index); 1583 Data = *Short; 1584 } 1585 outs() << "0x" << format("%04" PRIx16, Data); 1586 } else { 1587 Stride = 1; 1588 dumpBytes(Bytes.slice(Index, 1), outs()); 1589 outs() << "\t\t.byte\t"; 1590 outs() << "0x" << format("%02" PRIx8, Bytes.slice(Index, 1)[0]); 1591 } 1592 Index += Stride; 1593 outs() << "\n"; 1594 auto TAI = std::lower_bound(TextMappingSymsAddr.begin(), 1595 TextMappingSymsAddr.end(), Index); 1596 if (TAI != TextMappingSymsAddr.end() && *TAI == Index) 1597 break; 1598 } 1599 } 1600 } 1601 1602 // If there is a data symbol inside an ELF text section and we are only 1603 // disassembling text (applicable all architectures), 1604 // we are in a situation where we must print the data and not 1605 // disassemble it. 1606 if (Obj->isELF() && std::get<2>(Symbols[si]) == ELF::STT_OBJECT && 1607 !DisassembleAll && Section.isText()) { 1608 // print out data up to 8 bytes at a time in hex and ascii 1609 uint8_t AsciiData[9] = {'\0'}; 1610 uint8_t Byte; 1611 int NumBytes = 0; 1612 1613 for (Index = Start; Index < End; Index += 1) { 1614 if (((SectionAddr + Index) < StartAddress) || 1615 ((SectionAddr + Index) > StopAddress)) 1616 continue; 1617 if (NumBytes == 0) { 1618 outs() << format("%8" PRIx64 ":", SectionAddr + Index); 1619 outs() << "\t"; 1620 } 1621 Byte = Bytes.slice(Index)[0]; 1622 outs() << format(" %02x", Byte); 1623 AsciiData[NumBytes] = isprint(Byte) ? Byte : '.'; 1624 1625 uint8_t IndentOffset = 0; 1626 NumBytes++; 1627 if (Index == End - 1 || NumBytes > 8) { 1628 // Indent the space for less than 8 bytes data. 1629 // 2 spaces for byte and one for space between bytes 1630 IndentOffset = 3 * (8 - NumBytes); 1631 for (int Excess = 8 - NumBytes; Excess < 8; Excess++) 1632 AsciiData[Excess] = '\0'; 1633 NumBytes = 8; 1634 } 1635 if (NumBytes == 8) { 1636 AsciiData[8] = '\0'; 1637 outs() << std::string(IndentOffset, ' ') << " "; 1638 outs() << reinterpret_cast<char *>(AsciiData); 1639 outs() << '\n'; 1640 NumBytes = 0; 1641 } 1642 } 1643 } 1644 if (Index >= End) 1645 break; 1646 1647 // Disassemble a real instruction or a data when disassemble all is 1648 // provided 1649 bool Disassembled = DisAsm->getInstruction(Inst, Size, Bytes.slice(Index), 1650 SectionAddr + Index, DebugOut, 1651 CommentStream); 1652 if (Size == 0) 1653 Size = 1; 1654 1655 PIP.printInst(*IP, Disassembled ? &Inst : nullptr, 1656 Bytes.slice(Index, Size), SectionAddr + Index, outs(), "", 1657 *STI, &SP, &Rels); 1658 outs() << CommentStream.str(); 1659 Comments.clear(); 1660 1661 // Try to resolve the target of a call, tail call, etc. to a specific 1662 // symbol. 1663 if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) || 1664 MIA->isConditionalBranch(Inst))) { 1665 uint64_t Target; 1666 if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) { 1667 // In a relocatable object, the target's section must reside in 1668 // the same section as the call instruction or it is accessed 1669 // through a relocation. 1670 // 1671 // In a non-relocatable object, the target may be in any section. 1672 // 1673 // N.B. We don't walk the relocations in the relocatable case yet. 1674 auto *TargetSectionSymbols = &Symbols; 1675 if (!Obj->isRelocatableObject()) { 1676 auto SectionAddress = std::upper_bound( 1677 SectionAddresses.begin(), SectionAddresses.end(), Target, 1678 [](uint64_t LHS, 1679 const std::pair<uint64_t, SectionRef> &RHS) { 1680 return LHS < RHS.first; 1681 }); 1682 if (SectionAddress != SectionAddresses.begin()) { 1683 --SectionAddress; 1684 TargetSectionSymbols = &AllSymbols[SectionAddress->second]; 1685 } else { 1686 TargetSectionSymbols = &AbsoluteSymbols; 1687 } 1688 } 1689 1690 // Find the first symbol in the section whose offset is less than 1691 // or equal to the target. If there isn't a section that contains 1692 // the target, find the nearest preceding absolute symbol. 1693 auto TargetSym = std::upper_bound( 1694 TargetSectionSymbols->begin(), TargetSectionSymbols->end(), 1695 Target, [](uint64_t LHS, 1696 const std::tuple<uint64_t, StringRef, uint8_t> &RHS) { 1697 return LHS < std::get<0>(RHS); 1698 }); 1699 if (TargetSym == TargetSectionSymbols->begin()) { 1700 TargetSectionSymbols = &AbsoluteSymbols; 1701 TargetSym = std::upper_bound( 1702 AbsoluteSymbols.begin(), AbsoluteSymbols.end(), 1703 Target, [](uint64_t LHS, 1704 const std::tuple<uint64_t, StringRef, uint8_t> &RHS) { 1705 return LHS < std::get<0>(RHS); 1706 }); 1707 } 1708 if (TargetSym != TargetSectionSymbols->begin()) { 1709 --TargetSym; 1710 uint64_t TargetAddress = std::get<0>(*TargetSym); 1711 StringRef TargetName = std::get<1>(*TargetSym); 1712 outs() << " <" << TargetName; 1713 uint64_t Disp = Target - TargetAddress; 1714 if (Disp) 1715 outs() << "+0x" << Twine::utohexstr(Disp); 1716 outs() << '>'; 1717 } 1718 } 1719 } 1720 outs() << "\n"; 1721 1722 // Hexagon does this in pretty printer 1723 if (Obj->getArch() != Triple::hexagon) 1724 // Print relocation for instruction. 1725 while (rel_cur != rel_end) { 1726 bool hidden = getHidden(*rel_cur); 1727 uint64_t addr = rel_cur->getOffset(); 1728 SmallString<16> name; 1729 SmallString<32> val; 1730 1731 // If this relocation is hidden, skip it. 1732 if (hidden || ((SectionAddr + addr) < StartAddress)) { 1733 ++rel_cur; 1734 continue; 1735 } 1736 1737 // Stop when rel_cur's address is past the current instruction. 1738 if (addr >= Index + Size) break; 1739 rel_cur->getTypeName(name); 1740 error(getRelocationValueString(*rel_cur, val)); 1741 outs() << format(Fmt.data(), SectionAddr + addr) << name 1742 << "\t" << val << "\n"; 1743 ++rel_cur; 1744 } 1745 } 1746 } 1747 } 1748 } 1749 1750 void llvm::PrintRelocations(const ObjectFile *Obj) { 1751 StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : 1752 "%08" PRIx64; 1753 // Regular objdump doesn't print relocations in non-relocatable object 1754 // files. 1755 if (!Obj->isRelocatableObject()) 1756 return; 1757 1758 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 1759 if (Section.relocation_begin() == Section.relocation_end()) 1760 continue; 1761 StringRef secname; 1762 error(Section.getName(secname)); 1763 outs() << "RELOCATION RECORDS FOR [" << secname << "]:\n"; 1764 for (const RelocationRef &Reloc : Section.relocations()) { 1765 bool hidden = getHidden(Reloc); 1766 uint64_t address = Reloc.getOffset(); 1767 SmallString<32> relocname; 1768 SmallString<32> valuestr; 1769 if (address < StartAddress || address > StopAddress || hidden) 1770 continue; 1771 Reloc.getTypeName(relocname); 1772 error(getRelocationValueString(Reloc, valuestr)); 1773 outs() << format(Fmt.data(), address) << " " << relocname << " " 1774 << valuestr << "\n"; 1775 } 1776 outs() << "\n"; 1777 } 1778 } 1779 1780 void llvm::PrintDynamicRelocations(const ObjectFile *Obj) { 1781 1782 // For the moment, this option is for ELF only 1783 if (!Obj->isELF()) 1784 return; 1785 1786 const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj); 1787 1788 if (!Elf || Elf->getEType() != ELF::ET_DYN) { 1789 error("not a dynamic object"); 1790 return; 1791 } 1792 1793 StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 1794 1795 std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections(); 1796 if (DynRelSec.empty()) 1797 return; 1798 1799 outs() << "DYNAMIC RELOCATION RECORDS\n"; 1800 for (const SectionRef &Section : DynRelSec) { 1801 if (Section.relocation_begin() == Section.relocation_end()) 1802 continue; 1803 for (const RelocationRef &Reloc : Section.relocations()) { 1804 uint64_t address = Reloc.getOffset(); 1805 SmallString<32> relocname; 1806 SmallString<32> valuestr; 1807 Reloc.getTypeName(relocname); 1808 error(getRelocationValueString(Reloc, valuestr)); 1809 outs() << format(Fmt.data(), address) << " " << relocname << " " 1810 << valuestr << "\n"; 1811 } 1812 } 1813 } 1814 1815 void llvm::PrintSectionHeaders(const ObjectFile *Obj) { 1816 outs() << "Sections:\n" 1817 "Idx Name Size Address Type\n"; 1818 unsigned i = 0; 1819 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 1820 StringRef Name; 1821 error(Section.getName(Name)); 1822 uint64_t Address = Section.getAddress(); 1823 uint64_t Size = Section.getSize(); 1824 bool Text = Section.isText(); 1825 bool Data = Section.isData(); 1826 bool BSS = Section.isBSS(); 1827 std::string Type = (std::string(Text ? "TEXT " : "") + 1828 (Data ? "DATA " : "") + (BSS ? "BSS" : "")); 1829 outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %s\n", i, 1830 Name.str().c_str(), Size, Address, Type.c_str()); 1831 ++i; 1832 } 1833 } 1834 1835 void llvm::PrintSectionContents(const ObjectFile *Obj) { 1836 std::error_code EC; 1837 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 1838 StringRef Name; 1839 StringRef Contents; 1840 error(Section.getName(Name)); 1841 uint64_t BaseAddr = Section.getAddress(); 1842 uint64_t Size = Section.getSize(); 1843 if (!Size) 1844 continue; 1845 1846 outs() << "Contents of section " << Name << ":\n"; 1847 if (Section.isBSS()) { 1848 outs() << format("<skipping contents of bss section at [%04" PRIx64 1849 ", %04" PRIx64 ")>\n", 1850 BaseAddr, BaseAddr + Size); 1851 continue; 1852 } 1853 1854 error(Section.getContents(Contents)); 1855 1856 // Dump out the content as hex and printable ascii characters. 1857 for (std::size_t addr = 0, end = Contents.size(); addr < end; addr += 16) { 1858 outs() << format(" %04" PRIx64 " ", BaseAddr + addr); 1859 // Dump line of hex. 1860 for (std::size_t i = 0; i < 16; ++i) { 1861 if (i != 0 && i % 4 == 0) 1862 outs() << ' '; 1863 if (addr + i < end) 1864 outs() << hexdigit((Contents[addr + i] >> 4) & 0xF, true) 1865 << hexdigit(Contents[addr + i] & 0xF, true); 1866 else 1867 outs() << " "; 1868 } 1869 // Print ascii. 1870 outs() << " "; 1871 for (std::size_t i = 0; i < 16 && addr + i < end; ++i) { 1872 if (std::isprint(static_cast<unsigned char>(Contents[addr + i]) & 0xFF)) 1873 outs() << Contents[addr + i]; 1874 else 1875 outs() << "."; 1876 } 1877 outs() << "\n"; 1878 } 1879 } 1880 } 1881 1882 void llvm::PrintSymbolTable(const ObjectFile *o, StringRef ArchiveName, 1883 StringRef ArchitectureName) { 1884 outs() << "SYMBOL TABLE:\n"; 1885 1886 if (const COFFObjectFile *coff = dyn_cast<const COFFObjectFile>(o)) { 1887 printCOFFSymbolTable(coff); 1888 return; 1889 } 1890 for (const SymbolRef &Symbol : o->symbols()) { 1891 Expected<uint64_t> AddressOrError = Symbol.getAddress(); 1892 if (!AddressOrError) 1893 report_error(ArchiveName, o->getFileName(), AddressOrError.takeError(), 1894 ArchitectureName); 1895 uint64_t Address = *AddressOrError; 1896 if ((Address < StartAddress) || (Address > StopAddress)) 1897 continue; 1898 Expected<SymbolRef::Type> TypeOrError = Symbol.getType(); 1899 if (!TypeOrError) 1900 report_error(ArchiveName, o->getFileName(), TypeOrError.takeError(), 1901 ArchitectureName); 1902 SymbolRef::Type Type = *TypeOrError; 1903 uint32_t Flags = Symbol.getFlags(); 1904 Expected<section_iterator> SectionOrErr = Symbol.getSection(); 1905 if (!SectionOrErr) 1906 report_error(ArchiveName, o->getFileName(), SectionOrErr.takeError(), 1907 ArchitectureName); 1908 section_iterator Section = *SectionOrErr; 1909 StringRef Name; 1910 if (Type == SymbolRef::ST_Debug && Section != o->section_end()) { 1911 Section->getName(Name); 1912 } else { 1913 Expected<StringRef> NameOrErr = Symbol.getName(); 1914 if (!NameOrErr) 1915 report_error(ArchiveName, o->getFileName(), NameOrErr.takeError(), 1916 ArchitectureName); 1917 Name = *NameOrErr; 1918 } 1919 1920 bool Global = Flags & SymbolRef::SF_Global; 1921 bool Weak = Flags & SymbolRef::SF_Weak; 1922 bool Absolute = Flags & SymbolRef::SF_Absolute; 1923 bool Common = Flags & SymbolRef::SF_Common; 1924 bool Hidden = Flags & SymbolRef::SF_Hidden; 1925 1926 char GlobLoc = ' '; 1927 if (Type != SymbolRef::ST_Unknown) 1928 GlobLoc = Global ? 'g' : 'l'; 1929 char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File) 1930 ? 'd' : ' '; 1931 char FileFunc = ' '; 1932 if (Type == SymbolRef::ST_File) 1933 FileFunc = 'f'; 1934 else if (Type == SymbolRef::ST_Function) 1935 FileFunc = 'F'; 1936 1937 const char *Fmt = o->getBytesInAddress() > 4 ? "%016" PRIx64 : 1938 "%08" PRIx64; 1939 1940 outs() << format(Fmt, Address) << " " 1941 << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' ' 1942 << (Weak ? 'w' : ' ') // Weak? 1943 << ' ' // Constructor. Not supported yet. 1944 << ' ' // Warning. Not supported yet. 1945 << ' ' // Indirect reference to another symbol. 1946 << Debug // Debugging (d) or dynamic (D) symbol. 1947 << FileFunc // Name of function (F), file (f) or object (O). 1948 << ' '; 1949 if (Absolute) { 1950 outs() << "*ABS*"; 1951 } else if (Common) { 1952 outs() << "*COM*"; 1953 } else if (Section == o->section_end()) { 1954 outs() << "*UND*"; 1955 } else { 1956 if (const MachOObjectFile *MachO = 1957 dyn_cast<const MachOObjectFile>(o)) { 1958 DataRefImpl DR = Section->getRawDataRefImpl(); 1959 StringRef SegmentName = MachO->getSectionFinalSegmentName(DR); 1960 outs() << SegmentName << ","; 1961 } 1962 StringRef SectionName; 1963 error(Section->getName(SectionName)); 1964 outs() << SectionName; 1965 } 1966 1967 outs() << '\t'; 1968 if (Common || isa<ELFObjectFileBase>(o)) { 1969 uint64_t Val = 1970 Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize(); 1971 outs() << format("\t %08" PRIx64 " ", Val); 1972 } 1973 1974 if (Hidden) { 1975 outs() << ".hidden "; 1976 } 1977 outs() << Name 1978 << '\n'; 1979 } 1980 } 1981 1982 static void PrintUnwindInfo(const ObjectFile *o) { 1983 outs() << "Unwind info:\n\n"; 1984 1985 if (const COFFObjectFile *coff = dyn_cast<COFFObjectFile>(o)) { 1986 printCOFFUnwindInfo(coff); 1987 } else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o)) 1988 printMachOUnwindInfo(MachO); 1989 else { 1990 // TODO: Extract DWARF dump tool to objdump. 1991 errs() << "This operation is only currently supported " 1992 "for COFF and MachO object files.\n"; 1993 return; 1994 } 1995 } 1996 1997 void llvm::printExportsTrie(const ObjectFile *o) { 1998 outs() << "Exports trie:\n"; 1999 if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o)) 2000 printMachOExportsTrie(MachO); 2001 else { 2002 errs() << "This operation is only currently supported " 2003 "for Mach-O executable files.\n"; 2004 return; 2005 } 2006 } 2007 2008 void llvm::printRebaseTable(ObjectFile *o) { 2009 outs() << "Rebase table:\n"; 2010 if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o)) 2011 printMachORebaseTable(MachO); 2012 else { 2013 errs() << "This operation is only currently supported " 2014 "for Mach-O executable files.\n"; 2015 return; 2016 } 2017 } 2018 2019 void llvm::printBindTable(ObjectFile *o) { 2020 outs() << "Bind table:\n"; 2021 if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o)) 2022 printMachOBindTable(MachO); 2023 else { 2024 errs() << "This operation is only currently supported " 2025 "for Mach-O executable files.\n"; 2026 return; 2027 } 2028 } 2029 2030 void llvm::printLazyBindTable(ObjectFile *o) { 2031 outs() << "Lazy bind table:\n"; 2032 if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o)) 2033 printMachOLazyBindTable(MachO); 2034 else { 2035 errs() << "This operation is only currently supported " 2036 "for Mach-O executable files.\n"; 2037 return; 2038 } 2039 } 2040 2041 void llvm::printWeakBindTable(ObjectFile *o) { 2042 outs() << "Weak bind table:\n"; 2043 if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o)) 2044 printMachOWeakBindTable(MachO); 2045 else { 2046 errs() << "This operation is only currently supported " 2047 "for Mach-O executable files.\n"; 2048 return; 2049 } 2050 } 2051 2052 /// Dump the raw contents of the __clangast section so the output can be piped 2053 /// into llvm-bcanalyzer. 2054 void llvm::printRawClangAST(const ObjectFile *Obj) { 2055 if (outs().is_displayed()) { 2056 errs() << "The -raw-clang-ast option will dump the raw binary contents of " 2057 "the clang ast section.\n" 2058 "Please redirect the output to a file or another program such as " 2059 "llvm-bcanalyzer.\n"; 2060 return; 2061 } 2062 2063 StringRef ClangASTSectionName("__clangast"); 2064 if (isa<COFFObjectFile>(Obj)) { 2065 ClangASTSectionName = "clangast"; 2066 } 2067 2068 Optional<object::SectionRef> ClangASTSection; 2069 for (auto Sec : ToolSectionFilter(*Obj)) { 2070 StringRef Name; 2071 Sec.getName(Name); 2072 if (Name == ClangASTSectionName) { 2073 ClangASTSection = Sec; 2074 break; 2075 } 2076 } 2077 if (!ClangASTSection) 2078 return; 2079 2080 StringRef ClangASTContents; 2081 error(ClangASTSection.getValue().getContents(ClangASTContents)); 2082 outs().write(ClangASTContents.data(), ClangASTContents.size()); 2083 } 2084 2085 static void printFaultMaps(const ObjectFile *Obj) { 2086 const char *FaultMapSectionName = nullptr; 2087 2088 if (isa<ELFObjectFileBase>(Obj)) { 2089 FaultMapSectionName = ".llvm_faultmaps"; 2090 } else if (isa<MachOObjectFile>(Obj)) { 2091 FaultMapSectionName = "__llvm_faultmaps"; 2092 } else { 2093 errs() << "This operation is only currently supported " 2094 "for ELF and Mach-O executable files.\n"; 2095 return; 2096 } 2097 2098 Optional<object::SectionRef> FaultMapSection; 2099 2100 for (auto Sec : ToolSectionFilter(*Obj)) { 2101 StringRef Name; 2102 Sec.getName(Name); 2103 if (Name == FaultMapSectionName) { 2104 FaultMapSection = Sec; 2105 break; 2106 } 2107 } 2108 2109 outs() << "FaultMap table:\n"; 2110 2111 if (!FaultMapSection.hasValue()) { 2112 outs() << "<not found>\n"; 2113 return; 2114 } 2115 2116 StringRef FaultMapContents; 2117 error(FaultMapSection.getValue().getContents(FaultMapContents)); 2118 2119 FaultMapParser FMP(FaultMapContents.bytes_begin(), 2120 FaultMapContents.bytes_end()); 2121 2122 outs() << FMP; 2123 } 2124 2125 static void printPrivateFileHeaders(const ObjectFile *o, bool onlyFirst) { 2126 if (o->isELF()) 2127 return printELFFileHeader(o); 2128 if (o->isCOFF()) 2129 return printCOFFFileHeader(o); 2130 if (o->isWasm()) 2131 return printWasmFileHeader(o); 2132 if (o->isMachO()) { 2133 printMachOFileHeader(o); 2134 if (!onlyFirst) 2135 printMachOLoadCommands(o); 2136 return; 2137 } 2138 report_error(o->getFileName(), "Invalid/Unsupported object file format"); 2139 } 2140 2141 static void printFileHeaders(const ObjectFile *o) { 2142 if (!o->isELF() && !o->isCOFF()) 2143 report_error(o->getFileName(), "Invalid/Unsupported object file format"); 2144 2145 Triple::ArchType AT = o->getArch(); 2146 outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n"; 2147 Expected<uint64_t> StartAddrOrErr = o->getStartAddress(); 2148 if (!StartAddrOrErr) 2149 report_error(o->getFileName(), StartAddrOrErr.takeError()); 2150 outs() << "start address: " 2151 << format("0x%0*x", o->getBytesInAddress(), StartAddrOrErr.get()) 2152 << "\n"; 2153 } 2154 2155 static void printArchiveChild(StringRef Filename, const Archive::Child &C) { 2156 Expected<sys::fs::perms> ModeOrErr = C.getAccessMode(); 2157 if (!ModeOrErr) { 2158 errs() << "ill-formed archive entry.\n"; 2159 consumeError(ModeOrErr.takeError()); 2160 return; 2161 } 2162 sys::fs::perms Mode = ModeOrErr.get(); 2163 outs() << ((Mode & sys::fs::owner_read) ? "r" : "-"); 2164 outs() << ((Mode & sys::fs::owner_write) ? "w" : "-"); 2165 outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-"); 2166 outs() << ((Mode & sys::fs::group_read) ? "r" : "-"); 2167 outs() << ((Mode & sys::fs::group_write) ? "w" : "-"); 2168 outs() << ((Mode & sys::fs::group_exe) ? "x" : "-"); 2169 outs() << ((Mode & sys::fs::others_read) ? "r" : "-"); 2170 outs() << ((Mode & sys::fs::others_write) ? "w" : "-"); 2171 outs() << ((Mode & sys::fs::others_exe) ? "x" : "-"); 2172 2173 outs() << " "; 2174 2175 Expected<unsigned> UIDOrErr = C.getUID(); 2176 if (!UIDOrErr) 2177 report_error(Filename, UIDOrErr.takeError()); 2178 unsigned UID = UIDOrErr.get(); 2179 outs() << format("%d/", UID); 2180 2181 Expected<unsigned> GIDOrErr = C.getGID(); 2182 if (!GIDOrErr) 2183 report_error(Filename, GIDOrErr.takeError()); 2184 unsigned GID = GIDOrErr.get(); 2185 outs() << format("%-d ", GID); 2186 2187 Expected<uint64_t> Size = C.getRawSize(); 2188 if (!Size) 2189 report_error(Filename, Size.takeError()); 2190 outs() << format("%6" PRId64, Size.get()) << " "; 2191 2192 StringRef RawLastModified = C.getRawLastModified(); 2193 unsigned Seconds; 2194 if (RawLastModified.getAsInteger(10, Seconds)) 2195 outs() << "(date: \"" << RawLastModified 2196 << "\" contains non-decimal chars) "; 2197 else { 2198 // Since ctime(3) returns a 26 character string of the form: 2199 // "Sun Sep 16 01:03:52 1973\n\0" 2200 // just print 24 characters. 2201 time_t t = Seconds; 2202 outs() << format("%.24s ", ctime(&t)); 2203 } 2204 2205 StringRef Name = ""; 2206 Expected<StringRef> NameOrErr = C.getName(); 2207 if (!NameOrErr) { 2208 consumeError(NameOrErr.takeError()); 2209 Expected<StringRef> RawNameOrErr = C.getRawName(); 2210 if (!RawNameOrErr) 2211 report_error(Filename, NameOrErr.takeError()); 2212 Name = RawNameOrErr.get(); 2213 } else { 2214 Name = NameOrErr.get(); 2215 } 2216 outs() << Name << "\n"; 2217 } 2218 2219 static void DumpObject(ObjectFile *o, const Archive *a = nullptr, 2220 const Archive::Child *c = nullptr) { 2221 StringRef ArchiveName = a != nullptr ? a->getFileName() : ""; 2222 // Avoid other output when using a raw option. 2223 if (!RawClangAST) { 2224 outs() << '\n'; 2225 if (a) 2226 outs() << a->getFileName() << "(" << o->getFileName() << ")"; 2227 else 2228 outs() << o->getFileName(); 2229 outs() << ":\tfile format " << o->getFileFormatName() << "\n\n"; 2230 } 2231 2232 if (ArchiveHeaders && !MachOOpt) 2233 printArchiveChild(a->getFileName(), *c); 2234 if (Disassemble) 2235 DisassembleObject(o, Relocations); 2236 if (Relocations && !Disassemble) 2237 PrintRelocations(o); 2238 if (DynamicRelocations) 2239 PrintDynamicRelocations(o); 2240 if (SectionHeaders) 2241 PrintSectionHeaders(o); 2242 if (SectionContents) 2243 PrintSectionContents(o); 2244 if (SymbolTable) 2245 PrintSymbolTable(o, ArchiveName); 2246 if (UnwindInfo) 2247 PrintUnwindInfo(o); 2248 if (PrivateHeaders || FirstPrivateHeader) 2249 printPrivateFileHeaders(o, FirstPrivateHeader); 2250 if (FileHeaders) 2251 printFileHeaders(o); 2252 if (ExportsTrie) 2253 printExportsTrie(o); 2254 if (Rebase) 2255 printRebaseTable(o); 2256 if (Bind) 2257 printBindTable(o); 2258 if (LazyBind) 2259 printLazyBindTable(o); 2260 if (WeakBind) 2261 printWeakBindTable(o); 2262 if (RawClangAST) 2263 printRawClangAST(o); 2264 if (PrintFaultMaps) 2265 printFaultMaps(o); 2266 if (DwarfDumpType != DIDT_Null) { 2267 std::unique_ptr<DIContext> DICtx = DWARFContext::create(*o); 2268 // Dump the complete DWARF structure. 2269 DIDumpOptions DumpOpts; 2270 DumpOpts.DumpType = DwarfDumpType; 2271 DICtx->dump(outs(), DumpOpts); 2272 } 2273 } 2274 2275 static void DumpObject(const COFFImportFile *I, const Archive *A, 2276 const Archive::Child *C = nullptr) { 2277 StringRef ArchiveName = A ? A->getFileName() : ""; 2278 2279 // Avoid other output when using a raw option. 2280 if (!RawClangAST) 2281 outs() << '\n' 2282 << ArchiveName << "(" << I->getFileName() << ")" 2283 << ":\tfile format COFF-import-file" 2284 << "\n\n"; 2285 2286 if (ArchiveHeaders && !MachOOpt) 2287 printArchiveChild(A->getFileName(), *C); 2288 if (SymbolTable) 2289 printCOFFSymbolTable(I); 2290 } 2291 2292 /// Dump each object file in \a a; 2293 static void DumpArchive(const Archive *a) { 2294 Error Err = Error::success(); 2295 for (auto &C : a->children(Err)) { 2296 Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary(); 2297 if (!ChildOrErr) { 2298 if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError())) 2299 report_error(a->getFileName(), C, std::move(E)); 2300 continue; 2301 } 2302 if (ObjectFile *o = dyn_cast<ObjectFile>(&*ChildOrErr.get())) 2303 DumpObject(o, a, &C); 2304 else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get())) 2305 DumpObject(I, a, &C); 2306 else 2307 report_error(a->getFileName(), object_error::invalid_file_type); 2308 } 2309 if (Err) 2310 report_error(a->getFileName(), std::move(Err)); 2311 } 2312 2313 /// Open file and figure out how to dump it. 2314 static void DumpInput(StringRef file) { 2315 2316 // If we are using the Mach-O specific object file parser, then let it parse 2317 // the file and process the command line options. So the -arch flags can 2318 // be used to select specific slices, etc. 2319 if (MachOOpt) { 2320 ParseInputMachO(file); 2321 return; 2322 } 2323 2324 // Attempt to open the binary. 2325 Expected<OwningBinary<Binary>> BinaryOrErr = createBinary(file); 2326 if (!BinaryOrErr) 2327 report_error(file, BinaryOrErr.takeError()); 2328 Binary &Binary = *BinaryOrErr.get().getBinary(); 2329 2330 if (Archive *a = dyn_cast<Archive>(&Binary)) 2331 DumpArchive(a); 2332 else if (ObjectFile *o = dyn_cast<ObjectFile>(&Binary)) 2333 DumpObject(o); 2334 else 2335 report_error(file, object_error::invalid_file_type); 2336 } 2337 2338 int main(int argc, char **argv) { 2339 InitLLVM X(argc, argv); 2340 2341 // Initialize targets and assembly printers/parsers. 2342 llvm::InitializeAllTargetInfos(); 2343 llvm::InitializeAllTargetMCs(); 2344 llvm::InitializeAllDisassemblers(); 2345 2346 // Register the target printer for --version. 2347 cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion); 2348 2349 cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n"); 2350 TripleName = Triple::normalize(TripleName); 2351 2352 ToolName = argv[0]; 2353 2354 // Defaults to a.out if no filenames specified. 2355 if (InputFilenames.size() == 0) 2356 InputFilenames.push_back("a.out"); 2357 2358 if (AllHeaders) 2359 PrivateHeaders = Relocations = SectionHeaders = SymbolTable = true; 2360 2361 if (DisassembleAll || PrintSource || PrintLines) 2362 Disassemble = true; 2363 if (!Disassemble 2364 && !Relocations 2365 && !DynamicRelocations 2366 && !SectionHeaders 2367 && !SectionContents 2368 && !SymbolTable 2369 && !UnwindInfo 2370 && !PrivateHeaders 2371 && !FileHeaders 2372 && !FirstPrivateHeader 2373 && !ExportsTrie 2374 && !Rebase 2375 && !Bind 2376 && !LazyBind 2377 && !WeakBind 2378 && !RawClangAST 2379 && !(UniversalHeaders && MachOOpt) 2380 && !ArchiveHeaders 2381 && !(IndirectSymbols && MachOOpt) 2382 && !(DataInCode && MachOOpt) 2383 && !(LinkOptHints && MachOOpt) 2384 && !(InfoPlist && MachOOpt) 2385 && !(DylibsUsed && MachOOpt) 2386 && !(DylibId && MachOOpt) 2387 && !(ObjcMetaData && MachOOpt) 2388 && !(FilterSections.size() != 0 && MachOOpt) 2389 && !PrintFaultMaps 2390 && DwarfDumpType == DIDT_Null) { 2391 cl::PrintHelpMessage(); 2392 return 2; 2393 } 2394 2395 DisasmFuncsSet.insert(DisassembleFunctions.begin(), 2396 DisassembleFunctions.end()); 2397 2398 llvm::for_each(InputFilenames, DumpInput); 2399 2400 return EXIT_SUCCESS; 2401 } 2402