1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This program is a utility that works like binutils "objdump", that is, it 11 // dumps out a plethora of information about an object file depending on the 12 // flags. 13 // 14 // The flags and output of this program should be near identical to those of 15 // binutils objdump. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm-objdump.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/ADT/StringSet.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/CodeGen/FaultMaps.h" 26 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 27 #include "llvm/DebugInfo/Symbolize/Symbolize.h" 28 #include "llvm/Demangle/Demangle.h" 29 #include "llvm/MC/MCAsmInfo.h" 30 #include "llvm/MC/MCContext.h" 31 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 32 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h" 33 #include "llvm/MC/MCInst.h" 34 #include "llvm/MC/MCInstPrinter.h" 35 #include "llvm/MC/MCInstrAnalysis.h" 36 #include "llvm/MC/MCInstrInfo.h" 37 #include "llvm/MC/MCObjectFileInfo.h" 38 #include "llvm/MC/MCRegisterInfo.h" 39 #include "llvm/MC/MCSubtargetInfo.h" 40 #include "llvm/Object/Archive.h" 41 #include "llvm/Object/COFF.h" 42 #include "llvm/Object/COFFImportFile.h" 43 #include "llvm/Object/ELFObjectFile.h" 44 #include "llvm/Object/MachO.h" 45 #include "llvm/Object/ObjectFile.h" 46 #include "llvm/Object/Wasm.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/Errc.h" 51 #include "llvm/Support/FileSystem.h" 52 #include "llvm/Support/Format.h" 53 #include "llvm/Support/GraphWriter.h" 54 #include "llvm/Support/Host.h" 55 #include "llvm/Support/InitLLVM.h" 56 #include "llvm/Support/MemoryBuffer.h" 57 #include "llvm/Support/SourceMgr.h" 58 #include "llvm/Support/TargetRegistry.h" 59 #include "llvm/Support/TargetSelect.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include <algorithm> 62 #include <cctype> 63 #include <cstring> 64 #include <system_error> 65 #include <unordered_map> 66 #include <utility> 67 68 using namespace llvm; 69 using namespace object; 70 71 cl::opt<bool> 72 llvm::AllHeaders("all-headers", 73 cl::desc("Display all available header information")); 74 static cl::alias AllHeadersShort("x", cl::desc("Alias for --all-headers"), 75 cl::aliasopt(AllHeaders)); 76 77 static cl::list<std::string> 78 InputFilenames(cl::Positional, cl::desc("<input object files>"),cl::ZeroOrMore); 79 80 cl::opt<bool> 81 llvm::Disassemble("disassemble", 82 cl::desc("Display assembler mnemonics for the machine instructions")); 83 static cl::alias 84 Disassembled("d", cl::desc("Alias for --disassemble"), 85 cl::aliasopt(Disassemble)); 86 87 cl::opt<bool> 88 llvm::DisassembleAll("disassemble-all", 89 cl::desc("Display assembler mnemonics for the machine instructions")); 90 static cl::alias 91 DisassembleAlld("D", cl::desc("Alias for --disassemble-all"), 92 cl::aliasopt(DisassembleAll)); 93 94 cl::opt<std::string> llvm::Demangle("demangle", 95 cl::desc("Demangle symbols names"), 96 cl::ValueOptional, cl::init("none")); 97 98 static cl::alias DemangleShort("C", cl::desc("Alias for --demangle"), 99 cl::aliasopt(Demangle)); 100 101 static cl::list<std::string> 102 DisassembleFunctions("df", 103 cl::CommaSeparated, 104 cl::desc("List of functions to disassemble")); 105 static StringSet<> DisasmFuncsSet; 106 107 cl::opt<bool> 108 llvm::Relocations("r", cl::desc("Display the relocation entries in the file")); 109 110 cl::opt<bool> 111 llvm::DynamicRelocations("dynamic-reloc", 112 cl::desc("Display the dynamic relocation entries in the file")); 113 static cl::alias 114 DynamicRelocationsd("R", cl::desc("Alias for --dynamic-reloc"), 115 cl::aliasopt(DynamicRelocations)); 116 117 cl::opt<bool> 118 llvm::SectionContents("s", cl::desc("Display the content of each section")); 119 120 cl::opt<bool> 121 llvm::SymbolTable("t", cl::desc("Display the symbol table")); 122 123 cl::opt<bool> 124 llvm::ExportsTrie("exports-trie", cl::desc("Display mach-o exported symbols")); 125 126 cl::opt<bool> 127 llvm::Rebase("rebase", cl::desc("Display mach-o rebasing info")); 128 129 cl::opt<bool> 130 llvm::Bind("bind", cl::desc("Display mach-o binding info")); 131 132 cl::opt<bool> 133 llvm::LazyBind("lazy-bind", cl::desc("Display mach-o lazy binding info")); 134 135 cl::opt<bool> 136 llvm::WeakBind("weak-bind", cl::desc("Display mach-o weak binding info")); 137 138 cl::opt<bool> 139 llvm::RawClangAST("raw-clang-ast", 140 cl::desc("Dump the raw binary contents of the clang AST section")); 141 142 static cl::opt<bool> 143 MachOOpt("macho", cl::desc("Use MachO specific object file parser")); 144 static cl::alias 145 MachOm("m", cl::desc("Alias for --macho"), cl::aliasopt(MachOOpt)); 146 147 cl::opt<std::string> 148 llvm::TripleName("triple", cl::desc("Target triple to disassemble for, " 149 "see -version for available targets")); 150 151 cl::opt<std::string> 152 llvm::MCPU("mcpu", 153 cl::desc("Target a specific cpu type (-mcpu=help for details)"), 154 cl::value_desc("cpu-name"), 155 cl::init("")); 156 157 cl::opt<std::string> 158 llvm::ArchName("arch-name", cl::desc("Target arch to disassemble for, " 159 "see -version for available targets")); 160 161 cl::opt<bool> 162 llvm::SectionHeaders("section-headers", cl::desc("Display summaries of the " 163 "headers for each section.")); 164 static cl::alias 165 SectionHeadersShort("headers", cl::desc("Alias for --section-headers"), 166 cl::aliasopt(SectionHeaders)); 167 static cl::alias 168 SectionHeadersShorter("h", cl::desc("Alias for --section-headers"), 169 cl::aliasopt(SectionHeaders)); 170 171 cl::list<std::string> 172 llvm::FilterSections("section", cl::desc("Operate on the specified sections only. " 173 "With -macho dump segment,section")); 174 cl::alias 175 static FilterSectionsj("j", cl::desc("Alias for --section"), 176 cl::aliasopt(llvm::FilterSections)); 177 178 cl::list<std::string> 179 llvm::MAttrs("mattr", 180 cl::CommaSeparated, 181 cl::desc("Target specific attributes"), 182 cl::value_desc("a1,+a2,-a3,...")); 183 184 cl::opt<bool> 185 llvm::NoShowRawInsn("no-show-raw-insn", cl::desc("When disassembling " 186 "instructions, do not print " 187 "the instruction bytes.")); 188 cl::opt<bool> 189 llvm::NoLeadingAddr("no-leading-addr", cl::desc("Print no leading address")); 190 191 cl::opt<bool> 192 llvm::UnwindInfo("unwind-info", cl::desc("Display unwind information")); 193 194 static cl::alias 195 UnwindInfoShort("u", cl::desc("Alias for --unwind-info"), 196 cl::aliasopt(UnwindInfo)); 197 198 cl::opt<bool> 199 llvm::PrivateHeaders("private-headers", 200 cl::desc("Display format specific file headers")); 201 202 cl::opt<bool> 203 llvm::FirstPrivateHeader("private-header", 204 cl::desc("Display only the first format specific file " 205 "header")); 206 207 static cl::alias 208 PrivateHeadersShort("p", cl::desc("Alias for --private-headers"), 209 cl::aliasopt(PrivateHeaders)); 210 211 cl::opt<bool> llvm::FileHeaders( 212 "file-headers", 213 cl::desc("Display the contents of the overall file header")); 214 215 static cl::alias FileHeadersShort("f", cl::desc("Alias for --file-headers"), 216 cl::aliasopt(FileHeaders)); 217 218 cl::opt<bool> 219 llvm::ArchiveHeaders("archive-headers", 220 cl::desc("Display archive header information")); 221 222 cl::alias 223 ArchiveHeadersShort("a", cl::desc("Alias for --archive-headers"), 224 cl::aliasopt(ArchiveHeaders)); 225 226 cl::opt<bool> 227 llvm::PrintImmHex("print-imm-hex", 228 cl::desc("Use hex format for immediate values")); 229 230 cl::opt<bool> PrintFaultMaps("fault-map-section", 231 cl::desc("Display contents of faultmap section")); 232 233 cl::opt<DIDumpType> llvm::DwarfDumpType( 234 "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"), 235 cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame"))); 236 237 cl::opt<bool> PrintSource( 238 "source", 239 cl::desc( 240 "Display source inlined with disassembly. Implies disassemble object")); 241 242 cl::alias PrintSourceShort("S", cl::desc("Alias for -source"), 243 cl::aliasopt(PrintSource)); 244 245 cl::opt<bool> PrintLines("line-numbers", 246 cl::desc("Display source line numbers with " 247 "disassembly. Implies disassemble object")); 248 249 cl::alias PrintLinesShort("l", cl::desc("Alias for -line-numbers"), 250 cl::aliasopt(PrintLines)); 251 252 cl::opt<unsigned long long> 253 StartAddress("start-address", cl::desc("Disassemble beginning at address"), 254 cl::value_desc("address"), cl::init(0)); 255 cl::opt<unsigned long long> 256 StopAddress("stop-address", cl::desc("Stop disassembly at address"), 257 cl::value_desc("address"), cl::init(UINT64_MAX)); 258 static StringRef ToolName; 259 260 typedef std::vector<std::tuple<uint64_t, StringRef, uint8_t>> SectionSymbolsTy; 261 262 namespace { 263 typedef std::function<bool(llvm::object::SectionRef const &)> FilterPredicate; 264 265 class SectionFilterIterator { 266 public: 267 SectionFilterIterator(FilterPredicate P, 268 llvm::object::section_iterator const &I, 269 llvm::object::section_iterator const &E) 270 : Predicate(std::move(P)), Iterator(I), End(E) { 271 ScanPredicate(); 272 } 273 const llvm::object::SectionRef &operator*() const { return *Iterator; } 274 SectionFilterIterator &operator++() { 275 ++Iterator; 276 ScanPredicate(); 277 return *this; 278 } 279 bool operator!=(SectionFilterIterator const &Other) const { 280 return Iterator != Other.Iterator; 281 } 282 283 private: 284 void ScanPredicate() { 285 while (Iterator != End && !Predicate(*Iterator)) { 286 ++Iterator; 287 } 288 } 289 FilterPredicate Predicate; 290 llvm::object::section_iterator Iterator; 291 llvm::object::section_iterator End; 292 }; 293 294 class SectionFilter { 295 public: 296 SectionFilter(FilterPredicate P, llvm::object::ObjectFile const &O) 297 : Predicate(std::move(P)), Object(O) {} 298 SectionFilterIterator begin() { 299 return SectionFilterIterator(Predicate, Object.section_begin(), 300 Object.section_end()); 301 } 302 SectionFilterIterator end() { 303 return SectionFilterIterator(Predicate, Object.section_end(), 304 Object.section_end()); 305 } 306 307 private: 308 FilterPredicate Predicate; 309 llvm::object::ObjectFile const &Object; 310 }; 311 SectionFilter ToolSectionFilter(llvm::object::ObjectFile const &O) { 312 return SectionFilter( 313 [](llvm::object::SectionRef const &S) { 314 if (FilterSections.empty()) 315 return true; 316 llvm::StringRef String; 317 std::error_code error = S.getName(String); 318 if (error) 319 return false; 320 return is_contained(FilterSections, String); 321 }, 322 O); 323 } 324 } 325 326 void llvm::error(std::error_code EC) { 327 if (!EC) 328 return; 329 330 errs() << ToolName << ": error reading file: " << EC.message() << ".\n"; 331 errs().flush(); 332 exit(1); 333 } 334 335 LLVM_ATTRIBUTE_NORETURN void llvm::error(Twine Message) { 336 errs() << ToolName << ": " << Message << ".\n"; 337 errs().flush(); 338 exit(1); 339 } 340 341 void llvm::warn(StringRef Message) { 342 errs() << ToolName << ": warning: " << Message << ".\n"; 343 errs().flush(); 344 } 345 346 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File, 347 Twine Message) { 348 errs() << ToolName << ": '" << File << "': " << Message << ".\n"; 349 exit(1); 350 } 351 352 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File, 353 std::error_code EC) { 354 assert(EC); 355 errs() << ToolName << ": '" << File << "': " << EC.message() << ".\n"; 356 exit(1); 357 } 358 359 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File, 360 llvm::Error E) { 361 assert(E); 362 std::string Buf; 363 raw_string_ostream OS(Buf); 364 logAllUnhandledErrors(std::move(E), OS, ""); 365 OS.flush(); 366 errs() << ToolName << ": '" << File << "': " << Buf; 367 exit(1); 368 } 369 370 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName, 371 StringRef FileName, 372 llvm::Error E, 373 StringRef ArchitectureName) { 374 assert(E); 375 errs() << ToolName << ": "; 376 if (ArchiveName != "") 377 errs() << ArchiveName << "(" << FileName << ")"; 378 else 379 errs() << "'" << FileName << "'"; 380 if (!ArchitectureName.empty()) 381 errs() << " (for architecture " << ArchitectureName << ")"; 382 std::string Buf; 383 raw_string_ostream OS(Buf); 384 logAllUnhandledErrors(std::move(E), OS, ""); 385 OS.flush(); 386 errs() << ": " << Buf; 387 exit(1); 388 } 389 390 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName, 391 const object::Archive::Child &C, 392 llvm::Error E, 393 StringRef ArchitectureName) { 394 Expected<StringRef> NameOrErr = C.getName(); 395 // TODO: if we have a error getting the name then it would be nice to print 396 // the index of which archive member this is and or its offset in the 397 // archive instead of "???" as the name. 398 if (!NameOrErr) { 399 consumeError(NameOrErr.takeError()); 400 llvm::report_error(ArchiveName, "???", std::move(E), ArchitectureName); 401 } else 402 llvm::report_error(ArchiveName, NameOrErr.get(), std::move(E), 403 ArchitectureName); 404 } 405 406 static const Target *getTarget(const ObjectFile *Obj = nullptr) { 407 // Figure out the target triple. 408 llvm::Triple TheTriple("unknown-unknown-unknown"); 409 if (TripleName.empty()) { 410 if (Obj) { 411 TheTriple = Obj->makeTriple(); 412 } 413 } else { 414 TheTriple.setTriple(Triple::normalize(TripleName)); 415 416 // Use the triple, but also try to combine with ARM build attributes. 417 if (Obj) { 418 auto Arch = Obj->getArch(); 419 if (Arch == Triple::arm || Arch == Triple::armeb) { 420 Obj->setARMSubArch(TheTriple); 421 } 422 } 423 } 424 425 // Get the target specific parser. 426 std::string Error; 427 const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple, 428 Error); 429 if (!TheTarget) { 430 if (Obj) 431 report_error(Obj->getFileName(), "can't find target: " + Error); 432 else 433 error("can't find target: " + Error); 434 } 435 436 // Update the triple name and return the found target. 437 TripleName = TheTriple.getTriple(); 438 return TheTarget; 439 } 440 441 bool llvm::RelocAddressLess(RelocationRef a, RelocationRef b) { 442 return a.getOffset() < b.getOffset(); 443 } 444 445 template <class ELFT> 446 static std::error_code getRelocationValueString(const ELFObjectFile<ELFT> *Obj, 447 const RelocationRef &RelRef, 448 SmallVectorImpl<char> &Result) { 449 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 450 451 typedef typename ELFObjectFile<ELFT>::Elf_Sym Elf_Sym; 452 typedef typename ELFObjectFile<ELFT>::Elf_Shdr Elf_Shdr; 453 typedef typename ELFObjectFile<ELFT>::Elf_Rela Elf_Rela; 454 455 const ELFFile<ELFT> &EF = *Obj->getELFFile(); 456 457 auto SecOrErr = EF.getSection(Rel.d.a); 458 if (!SecOrErr) 459 return errorToErrorCode(SecOrErr.takeError()); 460 const Elf_Shdr *Sec = *SecOrErr; 461 auto SymTabOrErr = EF.getSection(Sec->sh_link); 462 if (!SymTabOrErr) 463 return errorToErrorCode(SymTabOrErr.takeError()); 464 const Elf_Shdr *SymTab = *SymTabOrErr; 465 assert(SymTab->sh_type == ELF::SHT_SYMTAB || 466 SymTab->sh_type == ELF::SHT_DYNSYM); 467 auto StrTabSec = EF.getSection(SymTab->sh_link); 468 if (!StrTabSec) 469 return errorToErrorCode(StrTabSec.takeError()); 470 auto StrTabOrErr = EF.getStringTable(*StrTabSec); 471 if (!StrTabOrErr) 472 return errorToErrorCode(StrTabOrErr.takeError()); 473 StringRef StrTab = *StrTabOrErr; 474 int64_t addend = 0; 475 // If there is no Symbol associated with the relocation, we set the undef 476 // boolean value to 'true'. This will prevent us from calling functions that 477 // requires the relocation to be associated with a symbol. 478 bool undef = false; 479 switch (Sec->sh_type) { 480 default: 481 return object_error::parse_failed; 482 case ELF::SHT_REL: { 483 // TODO: Read implicit addend from section data. 484 break; 485 } 486 case ELF::SHT_RELA: { 487 const Elf_Rela *ERela = Obj->getRela(Rel); 488 addend = ERela->r_addend; 489 undef = ERela->getSymbol(false) == 0; 490 break; 491 } 492 } 493 StringRef Target; 494 if (!undef) { 495 symbol_iterator SI = RelRef.getSymbol(); 496 const Elf_Sym *symb = Obj->getSymbol(SI->getRawDataRefImpl()); 497 if (symb->getType() == ELF::STT_SECTION) { 498 Expected<section_iterator> SymSI = SI->getSection(); 499 if (!SymSI) 500 return errorToErrorCode(SymSI.takeError()); 501 const Elf_Shdr *SymSec = Obj->getSection((*SymSI)->getRawDataRefImpl()); 502 auto SecName = EF.getSectionName(SymSec); 503 if (!SecName) 504 return errorToErrorCode(SecName.takeError()); 505 Target = *SecName; 506 } else { 507 Expected<StringRef> SymName = symb->getName(StrTab); 508 if (!SymName) 509 return errorToErrorCode(SymName.takeError()); 510 Target = *SymName; 511 } 512 } else 513 Target = "*ABS*"; 514 515 // Default scheme is to print Target, as well as "+ <addend>" for nonzero 516 // addend. Should be acceptable for all normal purposes. 517 std::string fmtbuf; 518 raw_string_ostream fmt(fmtbuf); 519 fmt << Target; 520 if (addend != 0) 521 fmt << (addend < 0 ? "" : "+") << addend; 522 fmt.flush(); 523 Result.append(fmtbuf.begin(), fmtbuf.end()); 524 return std::error_code(); 525 } 526 527 static std::error_code getRelocationValueString(const ELFObjectFileBase *Obj, 528 const RelocationRef &Rel, 529 SmallVectorImpl<char> &Result) { 530 if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj)) 531 return getRelocationValueString(ELF32LE, Rel, Result); 532 if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj)) 533 return getRelocationValueString(ELF64LE, Rel, Result); 534 if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj)) 535 return getRelocationValueString(ELF32BE, Rel, Result); 536 auto *ELF64BE = cast<ELF64BEObjectFile>(Obj); 537 return getRelocationValueString(ELF64BE, Rel, Result); 538 } 539 540 static std::error_code getRelocationValueString(const COFFObjectFile *Obj, 541 const RelocationRef &Rel, 542 SmallVectorImpl<char> &Result) { 543 symbol_iterator SymI = Rel.getSymbol(); 544 Expected<StringRef> SymNameOrErr = SymI->getName(); 545 if (!SymNameOrErr) 546 return errorToErrorCode(SymNameOrErr.takeError()); 547 StringRef SymName = *SymNameOrErr; 548 Result.append(SymName.begin(), SymName.end()); 549 return std::error_code(); 550 } 551 552 static void printRelocationTargetName(const MachOObjectFile *O, 553 const MachO::any_relocation_info &RE, 554 raw_string_ostream &fmt) { 555 bool IsScattered = O->isRelocationScattered(RE); 556 557 // Target of a scattered relocation is an address. In the interest of 558 // generating pretty output, scan through the symbol table looking for a 559 // symbol that aligns with that address. If we find one, print it. 560 // Otherwise, we just print the hex address of the target. 561 if (IsScattered) { 562 uint32_t Val = O->getPlainRelocationSymbolNum(RE); 563 564 for (const SymbolRef &Symbol : O->symbols()) { 565 std::error_code ec; 566 Expected<uint64_t> Addr = Symbol.getAddress(); 567 if (!Addr) 568 report_error(O->getFileName(), Addr.takeError()); 569 if (*Addr != Val) 570 continue; 571 Expected<StringRef> Name = Symbol.getName(); 572 if (!Name) 573 report_error(O->getFileName(), Name.takeError()); 574 fmt << *Name; 575 return; 576 } 577 578 // If we couldn't find a symbol that this relocation refers to, try 579 // to find a section beginning instead. 580 for (const SectionRef &Section : ToolSectionFilter(*O)) { 581 std::error_code ec; 582 583 StringRef Name; 584 uint64_t Addr = Section.getAddress(); 585 if (Addr != Val) 586 continue; 587 if ((ec = Section.getName(Name))) 588 report_error(O->getFileName(), ec); 589 fmt << Name; 590 return; 591 } 592 593 fmt << format("0x%x", Val); 594 return; 595 } 596 597 StringRef S; 598 bool isExtern = O->getPlainRelocationExternal(RE); 599 uint64_t Val = O->getPlainRelocationSymbolNum(RE); 600 601 if (O->getAnyRelocationType(RE) == MachO::ARM64_RELOC_ADDEND) { 602 fmt << format("0x%0" PRIx64, Val); 603 return; 604 } else if (isExtern) { 605 symbol_iterator SI = O->symbol_begin(); 606 advance(SI, Val); 607 Expected<StringRef> SOrErr = SI->getName(); 608 if (!SOrErr) 609 report_error(O->getFileName(), SOrErr.takeError()); 610 S = *SOrErr; 611 } else { 612 section_iterator SI = O->section_begin(); 613 // Adjust for the fact that sections are 1-indexed. 614 if (Val == 0) { 615 fmt << "0 (?,?)"; 616 return; 617 } 618 uint32_t i = Val - 1; 619 while (i != 0 && SI != O->section_end()) { 620 i--; 621 advance(SI, 1); 622 } 623 if (SI == O->section_end()) 624 fmt << Val << " (?,?)"; 625 else 626 SI->getName(S); 627 } 628 629 fmt << S; 630 } 631 632 static std::error_code getRelocationValueString(const WasmObjectFile *Obj, 633 const RelocationRef &RelRef, 634 SmallVectorImpl<char> &Result) { 635 const wasm::WasmRelocation& Rel = Obj->getWasmRelocation(RelRef); 636 symbol_iterator SI = RelRef.getSymbol(); 637 std::string fmtbuf; 638 raw_string_ostream fmt(fmtbuf); 639 if (SI == Obj->symbol_end()) { 640 // Not all wasm relocations have symbols associated with them. 641 // In particular R_WEBASSEMBLY_TYPE_INDEX_LEB. 642 fmt << Rel.Index; 643 } else { 644 Expected<StringRef> SymNameOrErr = SI->getName(); 645 if (!SymNameOrErr) 646 return errorToErrorCode(SymNameOrErr.takeError()); 647 StringRef SymName = *SymNameOrErr; 648 Result.append(SymName.begin(), SymName.end()); 649 } 650 fmt << (Rel.Addend < 0 ? "" : "+") << Rel.Addend; 651 fmt.flush(); 652 Result.append(fmtbuf.begin(), fmtbuf.end()); 653 return std::error_code(); 654 } 655 656 static std::error_code getRelocationValueString(const MachOObjectFile *Obj, 657 const RelocationRef &RelRef, 658 SmallVectorImpl<char> &Result) { 659 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 660 MachO::any_relocation_info RE = Obj->getRelocation(Rel); 661 662 unsigned Arch = Obj->getArch(); 663 664 std::string fmtbuf; 665 raw_string_ostream fmt(fmtbuf); 666 unsigned Type = Obj->getAnyRelocationType(RE); 667 bool IsPCRel = Obj->getAnyRelocationPCRel(RE); 668 669 // Determine any addends that should be displayed with the relocation. 670 // These require decoding the relocation type, which is triple-specific. 671 672 // X86_64 has entirely custom relocation types. 673 if (Arch == Triple::x86_64) { 674 bool isPCRel = Obj->getAnyRelocationPCRel(RE); 675 676 switch (Type) { 677 case MachO::X86_64_RELOC_GOT_LOAD: 678 case MachO::X86_64_RELOC_GOT: { 679 printRelocationTargetName(Obj, RE, fmt); 680 fmt << "@GOT"; 681 if (isPCRel) 682 fmt << "PCREL"; 683 break; 684 } 685 case MachO::X86_64_RELOC_SUBTRACTOR: { 686 DataRefImpl RelNext = Rel; 687 Obj->moveRelocationNext(RelNext); 688 MachO::any_relocation_info RENext = Obj->getRelocation(RelNext); 689 690 // X86_64_RELOC_SUBTRACTOR must be followed by a relocation of type 691 // X86_64_RELOC_UNSIGNED. 692 // NOTE: Scattered relocations don't exist on x86_64. 693 unsigned RType = Obj->getAnyRelocationType(RENext); 694 if (RType != MachO::X86_64_RELOC_UNSIGNED) 695 report_error(Obj->getFileName(), "Expected X86_64_RELOC_UNSIGNED after " 696 "X86_64_RELOC_SUBTRACTOR."); 697 698 // The X86_64_RELOC_UNSIGNED contains the minuend symbol; 699 // X86_64_RELOC_SUBTRACTOR contains the subtrahend. 700 printRelocationTargetName(Obj, RENext, fmt); 701 fmt << "-"; 702 printRelocationTargetName(Obj, RE, fmt); 703 break; 704 } 705 case MachO::X86_64_RELOC_TLV: 706 printRelocationTargetName(Obj, RE, fmt); 707 fmt << "@TLV"; 708 if (isPCRel) 709 fmt << "P"; 710 break; 711 case MachO::X86_64_RELOC_SIGNED_1: 712 printRelocationTargetName(Obj, RE, fmt); 713 fmt << "-1"; 714 break; 715 case MachO::X86_64_RELOC_SIGNED_2: 716 printRelocationTargetName(Obj, RE, fmt); 717 fmt << "-2"; 718 break; 719 case MachO::X86_64_RELOC_SIGNED_4: 720 printRelocationTargetName(Obj, RE, fmt); 721 fmt << "-4"; 722 break; 723 default: 724 printRelocationTargetName(Obj, RE, fmt); 725 break; 726 } 727 // X86 and ARM share some relocation types in common. 728 } else if (Arch == Triple::x86 || Arch == Triple::arm || 729 Arch == Triple::ppc) { 730 // Generic relocation types... 731 switch (Type) { 732 case MachO::GENERIC_RELOC_PAIR: // prints no info 733 return std::error_code(); 734 case MachO::GENERIC_RELOC_SECTDIFF: { 735 DataRefImpl RelNext = Rel; 736 Obj->moveRelocationNext(RelNext); 737 MachO::any_relocation_info RENext = Obj->getRelocation(RelNext); 738 739 // X86 sect diff's must be followed by a relocation of type 740 // GENERIC_RELOC_PAIR. 741 unsigned RType = Obj->getAnyRelocationType(RENext); 742 743 if (RType != MachO::GENERIC_RELOC_PAIR) 744 report_error(Obj->getFileName(), "Expected GENERIC_RELOC_PAIR after " 745 "GENERIC_RELOC_SECTDIFF."); 746 747 printRelocationTargetName(Obj, RE, fmt); 748 fmt << "-"; 749 printRelocationTargetName(Obj, RENext, fmt); 750 break; 751 } 752 } 753 754 if (Arch == Triple::x86 || Arch == Triple::ppc) { 755 switch (Type) { 756 case MachO::GENERIC_RELOC_LOCAL_SECTDIFF: { 757 DataRefImpl RelNext = Rel; 758 Obj->moveRelocationNext(RelNext); 759 MachO::any_relocation_info RENext = Obj->getRelocation(RelNext); 760 761 // X86 sect diff's must be followed by a relocation of type 762 // GENERIC_RELOC_PAIR. 763 unsigned RType = Obj->getAnyRelocationType(RENext); 764 if (RType != MachO::GENERIC_RELOC_PAIR) 765 report_error(Obj->getFileName(), "Expected GENERIC_RELOC_PAIR after " 766 "GENERIC_RELOC_LOCAL_SECTDIFF."); 767 768 printRelocationTargetName(Obj, RE, fmt); 769 fmt << "-"; 770 printRelocationTargetName(Obj, RENext, fmt); 771 break; 772 } 773 case MachO::GENERIC_RELOC_TLV: { 774 printRelocationTargetName(Obj, RE, fmt); 775 fmt << "@TLV"; 776 if (IsPCRel) 777 fmt << "P"; 778 break; 779 } 780 default: 781 printRelocationTargetName(Obj, RE, fmt); 782 } 783 } else { // ARM-specific relocations 784 switch (Type) { 785 case MachO::ARM_RELOC_HALF: 786 case MachO::ARM_RELOC_HALF_SECTDIFF: { 787 // Half relocations steal a bit from the length field to encode 788 // whether this is an upper16 or a lower16 relocation. 789 bool isUpper = (Obj->getAnyRelocationLength(RE) & 0x1) == 1; 790 791 if (isUpper) 792 fmt << ":upper16:("; 793 else 794 fmt << ":lower16:("; 795 printRelocationTargetName(Obj, RE, fmt); 796 797 DataRefImpl RelNext = Rel; 798 Obj->moveRelocationNext(RelNext); 799 MachO::any_relocation_info RENext = Obj->getRelocation(RelNext); 800 801 // ARM half relocs must be followed by a relocation of type 802 // ARM_RELOC_PAIR. 803 unsigned RType = Obj->getAnyRelocationType(RENext); 804 if (RType != MachO::ARM_RELOC_PAIR) 805 report_error(Obj->getFileName(), "Expected ARM_RELOC_PAIR after " 806 "ARM_RELOC_HALF"); 807 808 // NOTE: The half of the target virtual address is stashed in the 809 // address field of the secondary relocation, but we can't reverse 810 // engineer the constant offset from it without decoding the movw/movt 811 // instruction to find the other half in its immediate field. 812 813 // ARM_RELOC_HALF_SECTDIFF encodes the second section in the 814 // symbol/section pointer of the follow-on relocation. 815 if (Type == MachO::ARM_RELOC_HALF_SECTDIFF) { 816 fmt << "-"; 817 printRelocationTargetName(Obj, RENext, fmt); 818 } 819 820 fmt << ")"; 821 break; 822 } 823 default: { printRelocationTargetName(Obj, RE, fmt); } 824 } 825 } 826 } else 827 printRelocationTargetName(Obj, RE, fmt); 828 829 fmt.flush(); 830 Result.append(fmtbuf.begin(), fmtbuf.end()); 831 return std::error_code(); 832 } 833 834 static std::error_code getRelocationValueString(const RelocationRef &Rel, 835 SmallVectorImpl<char> &Result) { 836 const ObjectFile *Obj = Rel.getObject(); 837 if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj)) 838 return getRelocationValueString(ELF, Rel, Result); 839 if (auto *COFF = dyn_cast<COFFObjectFile>(Obj)) 840 return getRelocationValueString(COFF, Rel, Result); 841 if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj)) 842 return getRelocationValueString(Wasm, Rel, Result); 843 if (auto *MachO = dyn_cast<MachOObjectFile>(Obj)) 844 return getRelocationValueString(MachO, Rel, Result); 845 llvm_unreachable("unknown object file format"); 846 } 847 848 /// Indicates whether this relocation should hidden when listing 849 /// relocations, usually because it is the trailing part of a multipart 850 /// relocation that will be printed as part of the leading relocation. 851 static bool getHidden(RelocationRef RelRef) { 852 const ObjectFile *Obj = RelRef.getObject(); 853 auto *MachO = dyn_cast<MachOObjectFile>(Obj); 854 if (!MachO) 855 return false; 856 857 unsigned Arch = MachO->getArch(); 858 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 859 uint64_t Type = MachO->getRelocationType(Rel); 860 861 // On arches that use the generic relocations, GENERIC_RELOC_PAIR 862 // is always hidden. 863 if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) { 864 if (Type == MachO::GENERIC_RELOC_PAIR) 865 return true; 866 } else if (Arch == Triple::x86_64) { 867 // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows 868 // an X86_64_RELOC_SUBTRACTOR. 869 if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) { 870 DataRefImpl RelPrev = Rel; 871 RelPrev.d.a--; 872 uint64_t PrevType = MachO->getRelocationType(RelPrev); 873 if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR) 874 return true; 875 } 876 } 877 878 return false; 879 } 880 881 namespace { 882 class SourcePrinter { 883 protected: 884 DILineInfo OldLineInfo; 885 const ObjectFile *Obj = nullptr; 886 std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer; 887 // File name to file contents of source 888 std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache; 889 // Mark the line endings of the cached source 890 std::unordered_map<std::string, std::vector<StringRef>> LineCache; 891 892 private: 893 bool cacheSource(const DILineInfo& LineInfoFile); 894 895 public: 896 SourcePrinter() = default; 897 SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch) : Obj(Obj) { 898 symbolize::LLVMSymbolizer::Options SymbolizerOpts( 899 DILineInfoSpecifier::FunctionNameKind::None, true, false, false, 900 DefaultArch); 901 Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts)); 902 } 903 virtual ~SourcePrinter() = default; 904 virtual void printSourceLine(raw_ostream &OS, uint64_t Address, 905 StringRef Delimiter = "; "); 906 }; 907 908 bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) { 909 std::unique_ptr<MemoryBuffer> Buffer; 910 if (LineInfo.Source) { 911 Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source); 912 } else { 913 auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName); 914 if (!BufferOrError) 915 return false; 916 Buffer = std::move(*BufferOrError); 917 } 918 // Chomp the file to get lines 919 size_t BufferSize = Buffer->getBufferSize(); 920 const char *BufferStart = Buffer->getBufferStart(); 921 for (const char *Start = BufferStart, *End = BufferStart; 922 End < BufferStart + BufferSize; End++) 923 if (*End == '\n' || End == BufferStart + BufferSize - 1 || 924 (*End == '\r' && *(End + 1) == '\n')) { 925 LineCache[LineInfo.FileName].push_back(StringRef(Start, End - Start)); 926 if (*End == '\r') 927 End++; 928 Start = End + 1; 929 } 930 SourceCache[LineInfo.FileName] = std::move(Buffer); 931 return true; 932 } 933 934 void SourcePrinter::printSourceLine(raw_ostream &OS, uint64_t Address, 935 StringRef Delimiter) { 936 if (!Symbolizer) 937 return; 938 DILineInfo LineInfo = DILineInfo(); 939 auto ExpectecLineInfo = 940 Symbolizer->symbolizeCode(Obj->getFileName(), Address); 941 if (!ExpectecLineInfo) 942 consumeError(ExpectecLineInfo.takeError()); 943 else 944 LineInfo = *ExpectecLineInfo; 945 946 if ((LineInfo.FileName == "<invalid>") || OldLineInfo.Line == LineInfo.Line || 947 LineInfo.Line == 0) 948 return; 949 950 if (PrintLines) 951 OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line << "\n"; 952 if (PrintSource) { 953 if (SourceCache.find(LineInfo.FileName) == SourceCache.end()) 954 if (!cacheSource(LineInfo)) 955 return; 956 auto FileBuffer = SourceCache.find(LineInfo.FileName); 957 if (FileBuffer != SourceCache.end()) { 958 auto LineBuffer = LineCache.find(LineInfo.FileName); 959 if (LineBuffer != LineCache.end()) { 960 if (LineInfo.Line > LineBuffer->second.size()) 961 return; 962 // Vector begins at 0, line numbers are non-zero 963 OS << Delimiter << LineBuffer->second[LineInfo.Line - 1].ltrim() 964 << "\n"; 965 } 966 } 967 } 968 OldLineInfo = LineInfo; 969 } 970 971 static bool isArmElf(const ObjectFile *Obj) { 972 return (Obj->isELF() && 973 (Obj->getArch() == Triple::aarch64 || 974 Obj->getArch() == Triple::aarch64_be || 975 Obj->getArch() == Triple::arm || Obj->getArch() == Triple::armeb || 976 Obj->getArch() == Triple::thumb || 977 Obj->getArch() == Triple::thumbeb)); 978 } 979 980 class PrettyPrinter { 981 public: 982 virtual ~PrettyPrinter() = default; 983 virtual void printInst(MCInstPrinter &IP, const MCInst *MI, 984 ArrayRef<uint8_t> Bytes, uint64_t Address, 985 raw_ostream &OS, StringRef Annot, 986 MCSubtargetInfo const &STI, SourcePrinter *SP, 987 std::vector<RelocationRef> *Rels = nullptr) { 988 if (SP && (PrintSource || PrintLines)) 989 SP->printSourceLine(OS, Address); 990 if (!NoLeadingAddr) 991 OS << format("%8" PRIx64 ":", Address); 992 if (!NoShowRawInsn) { 993 OS << "\t"; 994 dumpBytes(Bytes, OS); 995 } 996 if (MI) 997 IP.printInst(MI, OS, "", STI); 998 else 999 OS << " <unknown>"; 1000 } 1001 }; 1002 PrettyPrinter PrettyPrinterInst; 1003 class HexagonPrettyPrinter : public PrettyPrinter { 1004 public: 1005 void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address, 1006 raw_ostream &OS) { 1007 uint32_t opcode = 1008 (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0]; 1009 if (!NoLeadingAddr) 1010 OS << format("%8" PRIx64 ":", Address); 1011 if (!NoShowRawInsn) { 1012 OS << "\t"; 1013 dumpBytes(Bytes.slice(0, 4), OS); 1014 OS << format("%08" PRIx32, opcode); 1015 } 1016 } 1017 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 1018 uint64_t Address, raw_ostream &OS, StringRef Annot, 1019 MCSubtargetInfo const &STI, SourcePrinter *SP, 1020 std::vector<RelocationRef> *Rels) override { 1021 if (SP && (PrintSource || PrintLines)) 1022 SP->printSourceLine(OS, Address, ""); 1023 if (!MI) { 1024 printLead(Bytes, Address, OS); 1025 OS << " <unknown>"; 1026 return; 1027 } 1028 std::string Buffer; 1029 { 1030 raw_string_ostream TempStream(Buffer); 1031 IP.printInst(MI, TempStream, "", STI); 1032 } 1033 StringRef Contents(Buffer); 1034 // Split off bundle attributes 1035 auto PacketBundle = Contents.rsplit('\n'); 1036 // Split off first instruction from the rest 1037 auto HeadTail = PacketBundle.first.split('\n'); 1038 auto Preamble = " { "; 1039 auto Separator = ""; 1040 StringRef Fmt = "\t\t\t%08" PRIx64 ": "; 1041 std::vector<RelocationRef>::const_iterator rel_cur = Rels->begin(); 1042 std::vector<RelocationRef>::const_iterator rel_end = Rels->end(); 1043 1044 // Hexagon's packets require relocations to be inline rather than 1045 // clustered at the end of the packet. 1046 auto PrintReloc = [&]() -> void { 1047 while ((rel_cur != rel_end) && (rel_cur->getOffset() <= Address)) { 1048 if (rel_cur->getOffset() == Address) { 1049 SmallString<16> name; 1050 SmallString<32> val; 1051 rel_cur->getTypeName(name); 1052 error(getRelocationValueString(*rel_cur, val)); 1053 OS << Separator << format(Fmt.data(), Address) << name << "\t" << val 1054 << "\n"; 1055 return; 1056 } 1057 rel_cur++; 1058 } 1059 }; 1060 1061 while(!HeadTail.first.empty()) { 1062 OS << Separator; 1063 Separator = "\n"; 1064 if (SP && (PrintSource || PrintLines)) 1065 SP->printSourceLine(OS, Address, ""); 1066 printLead(Bytes, Address, OS); 1067 OS << Preamble; 1068 Preamble = " "; 1069 StringRef Inst; 1070 auto Duplex = HeadTail.first.split('\v'); 1071 if(!Duplex.second.empty()){ 1072 OS << Duplex.first; 1073 OS << "; "; 1074 Inst = Duplex.second; 1075 } 1076 else 1077 Inst = HeadTail.first; 1078 OS << Inst; 1079 HeadTail = HeadTail.second.split('\n'); 1080 if (HeadTail.first.empty()) 1081 OS << " } " << PacketBundle.second; 1082 PrintReloc(); 1083 Bytes = Bytes.slice(4); 1084 Address += 4; 1085 } 1086 } 1087 }; 1088 HexagonPrettyPrinter HexagonPrettyPrinterInst; 1089 1090 class AMDGCNPrettyPrinter : public PrettyPrinter { 1091 public: 1092 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 1093 uint64_t Address, raw_ostream &OS, StringRef Annot, 1094 MCSubtargetInfo const &STI, SourcePrinter *SP, 1095 std::vector<RelocationRef> *Rels) override { 1096 if (SP && (PrintSource || PrintLines)) 1097 SP->printSourceLine(OS, Address); 1098 1099 typedef support::ulittle32_t U32; 1100 1101 if (MI) { 1102 SmallString<40> InstStr; 1103 raw_svector_ostream IS(InstStr); 1104 1105 IP.printInst(MI, IS, "", STI); 1106 1107 OS << left_justify(IS.str(), 60); 1108 } else { 1109 // an unrecognized encoding - this is probably data so represent it 1110 // using the .long directive, or .byte directive if fewer than 4 bytes 1111 // remaining 1112 if (Bytes.size() >= 4) { 1113 OS << format("\t.long 0x%08" PRIx32 " ", 1114 static_cast<uint32_t>(*reinterpret_cast<const U32*>(Bytes.data()))); 1115 OS.indent(42); 1116 } else { 1117 OS << format("\t.byte 0x%02" PRIx8, Bytes[0]); 1118 for (unsigned int i = 1; i < Bytes.size(); i++) 1119 OS << format(", 0x%02" PRIx8, Bytes[i]); 1120 OS.indent(55 - (6 * Bytes.size())); 1121 } 1122 } 1123 1124 OS << format("// %012" PRIX64 ": ", Address); 1125 if (Bytes.size() >=4) { 1126 for (auto D : makeArrayRef(reinterpret_cast<const U32*>(Bytes.data()), 1127 Bytes.size() / sizeof(U32))) 1128 // D should be explicitly casted to uint32_t here as it is passed 1129 // by format to snprintf as vararg. 1130 OS << format("%08" PRIX32 " ", static_cast<uint32_t>(D)); 1131 } else { 1132 for (unsigned int i = 0; i < Bytes.size(); i++) 1133 OS << format("%02" PRIX8 " ", Bytes[i]); 1134 } 1135 1136 if (!Annot.empty()) 1137 OS << "// " << Annot; 1138 } 1139 }; 1140 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst; 1141 1142 class BPFPrettyPrinter : public PrettyPrinter { 1143 public: 1144 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 1145 uint64_t Address, raw_ostream &OS, StringRef Annot, 1146 MCSubtargetInfo const &STI, SourcePrinter *SP, 1147 std::vector<RelocationRef> *Rels) override { 1148 if (SP && (PrintSource || PrintLines)) 1149 SP->printSourceLine(OS, Address); 1150 if (!NoLeadingAddr) 1151 OS << format("%8" PRId64 ":", Address / 8); 1152 if (!NoShowRawInsn) { 1153 OS << "\t"; 1154 dumpBytes(Bytes, OS); 1155 } 1156 if (MI) 1157 IP.printInst(MI, OS, "", STI); 1158 else 1159 OS << " <unknown>"; 1160 } 1161 }; 1162 BPFPrettyPrinter BPFPrettyPrinterInst; 1163 1164 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) { 1165 switch(Triple.getArch()) { 1166 default: 1167 return PrettyPrinterInst; 1168 case Triple::hexagon: 1169 return HexagonPrettyPrinterInst; 1170 case Triple::amdgcn: 1171 return AMDGCNPrettyPrinterInst; 1172 case Triple::bpfel: 1173 case Triple::bpfeb: 1174 return BPFPrettyPrinterInst; 1175 } 1176 } 1177 } 1178 1179 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) { 1180 assert(Obj->isELF()); 1181 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj)) 1182 return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType(); 1183 if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj)) 1184 return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType(); 1185 if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj)) 1186 return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType(); 1187 if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj)) 1188 return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType(); 1189 llvm_unreachable("Unsupported binary format"); 1190 } 1191 1192 template <class ELFT> static void 1193 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj, 1194 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 1195 for (auto Symbol : Obj->getDynamicSymbolIterators()) { 1196 uint8_t SymbolType = Symbol.getELFType(); 1197 if (SymbolType != ELF::STT_FUNC || Symbol.getSize() == 0) 1198 continue; 1199 1200 Expected<uint64_t> AddressOrErr = Symbol.getAddress(); 1201 if (!AddressOrErr) 1202 report_error(Obj->getFileName(), AddressOrErr.takeError()); 1203 uint64_t Address = *AddressOrErr; 1204 1205 Expected<StringRef> Name = Symbol.getName(); 1206 if (!Name) 1207 report_error(Obj->getFileName(), Name.takeError()); 1208 if (Name->empty()) 1209 continue; 1210 1211 Expected<section_iterator> SectionOrErr = Symbol.getSection(); 1212 if (!SectionOrErr) 1213 report_error(Obj->getFileName(), SectionOrErr.takeError()); 1214 section_iterator SecI = *SectionOrErr; 1215 if (SecI == Obj->section_end()) 1216 continue; 1217 1218 AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType); 1219 } 1220 } 1221 1222 static void 1223 addDynamicElfSymbols(const ObjectFile *Obj, 1224 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 1225 assert(Obj->isELF()); 1226 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj)) 1227 addDynamicElfSymbols(Elf32LEObj, AllSymbols); 1228 else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj)) 1229 addDynamicElfSymbols(Elf64LEObj, AllSymbols); 1230 else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj)) 1231 addDynamicElfSymbols(Elf32BEObj, AllSymbols); 1232 else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj)) 1233 addDynamicElfSymbols(Elf64BEObj, AllSymbols); 1234 else 1235 llvm_unreachable("Unsupported binary format"); 1236 } 1237 1238 static void DisassembleObject(const ObjectFile *Obj, bool InlineRelocs) { 1239 if (StartAddress > StopAddress) 1240 error("Start address should be less than stop address"); 1241 1242 const Target *TheTarget = getTarget(Obj); 1243 1244 // Package up features to be passed to target/subtarget 1245 SubtargetFeatures Features = Obj->getFeatures(); 1246 if (MAttrs.size()) { 1247 for (unsigned i = 0; i != MAttrs.size(); ++i) 1248 Features.AddFeature(MAttrs[i]); 1249 } 1250 1251 std::unique_ptr<const MCRegisterInfo> MRI( 1252 TheTarget->createMCRegInfo(TripleName)); 1253 if (!MRI) 1254 report_error(Obj->getFileName(), "no register info for target " + 1255 TripleName); 1256 1257 // Set up disassembler. 1258 std::unique_ptr<const MCAsmInfo> AsmInfo( 1259 TheTarget->createMCAsmInfo(*MRI, TripleName)); 1260 if (!AsmInfo) 1261 report_error(Obj->getFileName(), "no assembly info for target " + 1262 TripleName); 1263 std::unique_ptr<const MCSubtargetInfo> STI( 1264 TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString())); 1265 if (!STI) 1266 report_error(Obj->getFileName(), "no subtarget info for target " + 1267 TripleName); 1268 std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo()); 1269 if (!MII) 1270 report_error(Obj->getFileName(), "no instruction info for target " + 1271 TripleName); 1272 MCObjectFileInfo MOFI; 1273 MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI); 1274 // FIXME: for now initialize MCObjectFileInfo with default values 1275 MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx); 1276 1277 std::unique_ptr<MCDisassembler> DisAsm( 1278 TheTarget->createMCDisassembler(*STI, Ctx)); 1279 if (!DisAsm) 1280 report_error(Obj->getFileName(), "no disassembler for target " + 1281 TripleName); 1282 1283 std::unique_ptr<const MCInstrAnalysis> MIA( 1284 TheTarget->createMCInstrAnalysis(MII.get())); 1285 1286 int AsmPrinterVariant = AsmInfo->getAssemblerDialect(); 1287 std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter( 1288 Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI)); 1289 if (!IP) 1290 report_error(Obj->getFileName(), "no instruction printer for target " + 1291 TripleName); 1292 IP->setPrintImmHex(PrintImmHex); 1293 PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName)); 1294 1295 StringRef Fmt = Obj->getBytesInAddress() > 4 ? "\t\t%016" PRIx64 ": " : 1296 "\t\t\t%08" PRIx64 ": "; 1297 1298 SourcePrinter SP(Obj, TheTarget->getName()); 1299 1300 // Create a mapping, RelocSecs = SectionRelocMap[S], where sections 1301 // in RelocSecs contain the relocations for section S. 1302 std::error_code EC; 1303 std::map<SectionRef, SmallVector<SectionRef, 1>> SectionRelocMap; 1304 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 1305 section_iterator Sec2 = Section.getRelocatedSection(); 1306 if (Sec2 != Obj->section_end()) 1307 SectionRelocMap[*Sec2].push_back(Section); 1308 } 1309 1310 // Create a mapping from virtual address to symbol name. This is used to 1311 // pretty print the symbols while disassembling. 1312 std::map<SectionRef, SectionSymbolsTy> AllSymbols; 1313 SectionSymbolsTy AbsoluteSymbols; 1314 for (const SymbolRef &Symbol : Obj->symbols()) { 1315 Expected<uint64_t> AddressOrErr = Symbol.getAddress(); 1316 if (!AddressOrErr) 1317 report_error(Obj->getFileName(), AddressOrErr.takeError()); 1318 uint64_t Address = *AddressOrErr; 1319 1320 Expected<StringRef> Name = Symbol.getName(); 1321 if (!Name) 1322 report_error(Obj->getFileName(), Name.takeError()); 1323 if (Name->empty()) 1324 continue; 1325 1326 Expected<section_iterator> SectionOrErr = Symbol.getSection(); 1327 if (!SectionOrErr) 1328 report_error(Obj->getFileName(), SectionOrErr.takeError()); 1329 1330 uint8_t SymbolType = ELF::STT_NOTYPE; 1331 if (Obj->isELF()) 1332 SymbolType = getElfSymbolType(Obj, Symbol); 1333 1334 section_iterator SecI = *SectionOrErr; 1335 if (SecI != Obj->section_end()) 1336 AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType); 1337 else 1338 AbsoluteSymbols.emplace_back(Address, *Name, SymbolType); 1339 1340 1341 } 1342 if (AllSymbols.empty() && Obj->isELF()) 1343 addDynamicElfSymbols(Obj, AllSymbols); 1344 1345 // Create a mapping from virtual address to section. 1346 std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses; 1347 for (SectionRef Sec : Obj->sections()) 1348 SectionAddresses.emplace_back(Sec.getAddress(), Sec); 1349 array_pod_sort(SectionAddresses.begin(), SectionAddresses.end()); 1350 1351 // Linked executables (.exe and .dll files) typically don't include a real 1352 // symbol table but they might contain an export table. 1353 if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) { 1354 for (const auto &ExportEntry : COFFObj->export_directories()) { 1355 StringRef Name; 1356 error(ExportEntry.getSymbolName(Name)); 1357 if (Name.empty()) 1358 continue; 1359 uint32_t RVA; 1360 error(ExportEntry.getExportRVA(RVA)); 1361 1362 uint64_t VA = COFFObj->getImageBase() + RVA; 1363 auto Sec = std::upper_bound( 1364 SectionAddresses.begin(), SectionAddresses.end(), VA, 1365 [](uint64_t LHS, const std::pair<uint64_t, SectionRef> &RHS) { 1366 return LHS < RHS.first; 1367 }); 1368 if (Sec != SectionAddresses.begin()) 1369 --Sec; 1370 else 1371 Sec = SectionAddresses.end(); 1372 1373 if (Sec != SectionAddresses.end()) 1374 AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE); 1375 else 1376 AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE); 1377 } 1378 } 1379 1380 // Sort all the symbols, this allows us to use a simple binary search to find 1381 // a symbol near an address. 1382 for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols) 1383 array_pod_sort(SecSyms.second.begin(), SecSyms.second.end()); 1384 array_pod_sort(AbsoluteSymbols.begin(), AbsoluteSymbols.end()); 1385 1386 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 1387 if (!DisassembleAll && (!Section.isText() || Section.isVirtual())) 1388 continue; 1389 1390 uint64_t SectionAddr = Section.getAddress(); 1391 uint64_t SectSize = Section.getSize(); 1392 if (!SectSize) 1393 continue; 1394 1395 // Get the list of all the symbols in this section. 1396 SectionSymbolsTy &Symbols = AllSymbols[Section]; 1397 std::vector<uint64_t> DataMappingSymsAddr; 1398 std::vector<uint64_t> TextMappingSymsAddr; 1399 if (isArmElf(Obj)) { 1400 for (const auto &Symb : Symbols) { 1401 uint64_t Address = std::get<0>(Symb); 1402 StringRef Name = std::get<1>(Symb); 1403 if (Name.startswith("$d")) 1404 DataMappingSymsAddr.push_back(Address - SectionAddr); 1405 if (Name.startswith("$x")) 1406 TextMappingSymsAddr.push_back(Address - SectionAddr); 1407 if (Name.startswith("$a")) 1408 TextMappingSymsAddr.push_back(Address - SectionAddr); 1409 if (Name.startswith("$t")) 1410 TextMappingSymsAddr.push_back(Address - SectionAddr); 1411 } 1412 } 1413 1414 llvm::sort(DataMappingSymsAddr.begin(), DataMappingSymsAddr.end()); 1415 llvm::sort(TextMappingSymsAddr.begin(), TextMappingSymsAddr.end()); 1416 1417 if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) { 1418 // AMDGPU disassembler uses symbolizer for printing labels 1419 std::unique_ptr<MCRelocationInfo> RelInfo( 1420 TheTarget->createMCRelocationInfo(TripleName, Ctx)); 1421 if (RelInfo) { 1422 std::unique_ptr<MCSymbolizer> Symbolizer( 1423 TheTarget->createMCSymbolizer( 1424 TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo))); 1425 DisAsm->setSymbolizer(std::move(Symbolizer)); 1426 } 1427 } 1428 1429 // Make a list of all the relocations for this section. 1430 std::vector<RelocationRef> Rels; 1431 if (InlineRelocs) { 1432 for (const SectionRef &RelocSec : SectionRelocMap[Section]) { 1433 for (const RelocationRef &Reloc : RelocSec.relocations()) { 1434 Rels.push_back(Reloc); 1435 } 1436 } 1437 } 1438 1439 // Sort relocations by address. 1440 llvm::sort(Rels.begin(), Rels.end(), RelocAddressLess); 1441 1442 StringRef SegmentName = ""; 1443 if (const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj)) { 1444 DataRefImpl DR = Section.getRawDataRefImpl(); 1445 SegmentName = MachO->getSectionFinalSegmentName(DR); 1446 } 1447 StringRef SectionName; 1448 error(Section.getName(SectionName)); 1449 1450 // If the section has no symbol at the start, just insert a dummy one. 1451 if (Symbols.empty() || std::get<0>(Symbols[0]) != 0) { 1452 Symbols.insert( 1453 Symbols.begin(), 1454 std::make_tuple(SectionAddr, SectionName, 1455 Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT)); 1456 } 1457 1458 SmallString<40> Comments; 1459 raw_svector_ostream CommentStream(Comments); 1460 1461 StringRef BytesStr; 1462 error(Section.getContents(BytesStr)); 1463 ArrayRef<uint8_t> Bytes(reinterpret_cast<const uint8_t *>(BytesStr.data()), 1464 BytesStr.size()); 1465 1466 uint64_t Size; 1467 uint64_t Index; 1468 bool PrintedSection = false; 1469 1470 std::vector<RelocationRef>::const_iterator rel_cur = Rels.begin(); 1471 std::vector<RelocationRef>::const_iterator rel_end = Rels.end(); 1472 // Disassemble symbol by symbol. 1473 for (unsigned si = 0, se = Symbols.size(); si != se; ++si) { 1474 uint64_t Start = std::get<0>(Symbols[si]) - SectionAddr; 1475 // The end is either the section end or the beginning of the next 1476 // symbol. 1477 uint64_t End = 1478 (si == se - 1) ? SectSize : std::get<0>(Symbols[si + 1]) - SectionAddr; 1479 // Don't try to disassemble beyond the end of section contents. 1480 if (End > SectSize) 1481 End = SectSize; 1482 // If this symbol has the same address as the next symbol, then skip it. 1483 if (Start >= End) 1484 continue; 1485 1486 // Check if we need to skip symbol 1487 // Skip if the symbol's data is not between StartAddress and StopAddress 1488 if (End + SectionAddr < StartAddress || 1489 Start + SectionAddr > StopAddress) { 1490 continue; 1491 } 1492 1493 /// Skip if user requested specific symbols and this is not in the list 1494 if (!DisasmFuncsSet.empty() && 1495 !DisasmFuncsSet.count(std::get<1>(Symbols[si]))) 1496 continue; 1497 1498 if (!PrintedSection) { 1499 PrintedSection = true; 1500 outs() << "Disassembly of section "; 1501 if (!SegmentName.empty()) 1502 outs() << SegmentName << ","; 1503 outs() << SectionName << ':'; 1504 } 1505 1506 // Stop disassembly at the stop address specified 1507 if (End + SectionAddr > StopAddress) 1508 End = StopAddress - SectionAddr; 1509 1510 if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) { 1511 if (std::get<2>(Symbols[si]) == ELF::STT_AMDGPU_HSA_KERNEL) { 1512 // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes) 1513 Start += 256; 1514 } 1515 if (si == se - 1 || 1516 std::get<2>(Symbols[si + 1]) == ELF::STT_AMDGPU_HSA_KERNEL) { 1517 // cut trailing zeroes at the end of kernel 1518 // cut up to 256 bytes 1519 const uint64_t EndAlign = 256; 1520 const auto Limit = End - (std::min)(EndAlign, End - Start); 1521 while (End > Limit && 1522 *reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0) 1523 End -= 4; 1524 } 1525 } 1526 1527 auto PrintSymbol = [](StringRef Name) { 1528 outs() << '\n' << Name << ":\n"; 1529 }; 1530 StringRef SymbolName = std::get<1>(Symbols[si]); 1531 if (Demangle.getValue() == "" || Demangle.getValue() == "itanium") { 1532 char *DemangledSymbol = nullptr; 1533 size_t Size = 0; 1534 int Status; 1535 DemangledSymbol = 1536 itaniumDemangle(SymbolName.data(), DemangledSymbol, &Size, &Status); 1537 if (Status == 0) 1538 PrintSymbol(StringRef(DemangledSymbol)); 1539 else 1540 PrintSymbol(SymbolName); 1541 1542 if (Size != 0) 1543 free(DemangledSymbol); 1544 } else 1545 PrintSymbol(SymbolName); 1546 1547 // Don't print raw contents of a virtual section. A virtual section 1548 // doesn't have any contents in the file. 1549 if (Section.isVirtual()) { 1550 outs() << "...\n"; 1551 continue; 1552 } 1553 1554 #ifndef NDEBUG 1555 raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls(); 1556 #else 1557 raw_ostream &DebugOut = nulls(); 1558 #endif 1559 1560 for (Index = Start; Index < End; Index += Size) { 1561 MCInst Inst; 1562 1563 if (Index + SectionAddr < StartAddress || 1564 Index + SectionAddr > StopAddress) { 1565 // skip byte by byte till StartAddress is reached 1566 Size = 1; 1567 continue; 1568 } 1569 // AArch64 ELF binaries can interleave data and text in the 1570 // same section. We rely on the markers introduced to 1571 // understand what we need to dump. If the data marker is within a 1572 // function, it is denoted as a word/short etc 1573 if (isArmElf(Obj) && std::get<2>(Symbols[si]) != ELF::STT_OBJECT && 1574 !DisassembleAll) { 1575 uint64_t Stride = 0; 1576 1577 auto DAI = std::lower_bound(DataMappingSymsAddr.begin(), 1578 DataMappingSymsAddr.end(), Index); 1579 if (DAI != DataMappingSymsAddr.end() && *DAI == Index) { 1580 // Switch to data. 1581 while (Index < End) { 1582 outs() << format("%8" PRIx64 ":", SectionAddr + Index); 1583 outs() << "\t"; 1584 if (Index + 4 <= End) { 1585 Stride = 4; 1586 dumpBytes(Bytes.slice(Index, 4), outs()); 1587 outs() << "\t.word\t"; 1588 uint32_t Data = 0; 1589 if (Obj->isLittleEndian()) { 1590 const auto Word = 1591 reinterpret_cast<const support::ulittle32_t *>( 1592 Bytes.data() + Index); 1593 Data = *Word; 1594 } else { 1595 const auto Word = reinterpret_cast<const support::ubig32_t *>( 1596 Bytes.data() + Index); 1597 Data = *Word; 1598 } 1599 outs() << "0x" << format("%08" PRIx32, Data); 1600 } else if (Index + 2 <= End) { 1601 Stride = 2; 1602 dumpBytes(Bytes.slice(Index, 2), outs()); 1603 outs() << "\t\t.short\t"; 1604 uint16_t Data = 0; 1605 if (Obj->isLittleEndian()) { 1606 const auto Short = 1607 reinterpret_cast<const support::ulittle16_t *>( 1608 Bytes.data() + Index); 1609 Data = *Short; 1610 } else { 1611 const auto Short = 1612 reinterpret_cast<const support::ubig16_t *>(Bytes.data() + 1613 Index); 1614 Data = *Short; 1615 } 1616 outs() << "0x" << format("%04" PRIx16, Data); 1617 } else { 1618 Stride = 1; 1619 dumpBytes(Bytes.slice(Index, 1), outs()); 1620 outs() << "\t\t.byte\t"; 1621 outs() << "0x" << format("%02" PRIx8, Bytes.slice(Index, 1)[0]); 1622 } 1623 Index += Stride; 1624 outs() << "\n"; 1625 auto TAI = std::lower_bound(TextMappingSymsAddr.begin(), 1626 TextMappingSymsAddr.end(), Index); 1627 if (TAI != TextMappingSymsAddr.end() && *TAI == Index) 1628 break; 1629 } 1630 } 1631 } 1632 1633 // If there is a data symbol inside an ELF text section and we are only 1634 // disassembling text (applicable all architectures), 1635 // we are in a situation where we must print the data and not 1636 // disassemble it. 1637 if (Obj->isELF() && std::get<2>(Symbols[si]) == ELF::STT_OBJECT && 1638 !DisassembleAll && Section.isText()) { 1639 // print out data up to 8 bytes at a time in hex and ascii 1640 uint8_t AsciiData[9] = {'\0'}; 1641 uint8_t Byte; 1642 int NumBytes = 0; 1643 1644 for (Index = Start; Index < End; Index += 1) { 1645 if (((SectionAddr + Index) < StartAddress) || 1646 ((SectionAddr + Index) > StopAddress)) 1647 continue; 1648 if (NumBytes == 0) { 1649 outs() << format("%8" PRIx64 ":", SectionAddr + Index); 1650 outs() << "\t"; 1651 } 1652 Byte = Bytes.slice(Index)[0]; 1653 outs() << format(" %02x", Byte); 1654 AsciiData[NumBytes] = isprint(Byte) ? Byte : '.'; 1655 1656 uint8_t IndentOffset = 0; 1657 NumBytes++; 1658 if (Index == End - 1 || NumBytes > 8) { 1659 // Indent the space for less than 8 bytes data. 1660 // 2 spaces for byte and one for space between bytes 1661 IndentOffset = 3 * (8 - NumBytes); 1662 for (int Excess = 8 - NumBytes; Excess < 8; Excess++) 1663 AsciiData[Excess] = '\0'; 1664 NumBytes = 8; 1665 } 1666 if (NumBytes == 8) { 1667 AsciiData[8] = '\0'; 1668 outs() << std::string(IndentOffset, ' ') << " "; 1669 outs() << reinterpret_cast<char *>(AsciiData); 1670 outs() << '\n'; 1671 NumBytes = 0; 1672 } 1673 } 1674 } 1675 if (Index >= End) 1676 break; 1677 1678 // Disassemble a real instruction or a data when disassemble all is 1679 // provided 1680 bool Disassembled = DisAsm->getInstruction(Inst, Size, Bytes.slice(Index), 1681 SectionAddr + Index, DebugOut, 1682 CommentStream); 1683 if (Size == 0) 1684 Size = 1; 1685 1686 PIP.printInst(*IP, Disassembled ? &Inst : nullptr, 1687 Bytes.slice(Index, Size), SectionAddr + Index, outs(), "", 1688 *STI, &SP, &Rels); 1689 outs() << CommentStream.str(); 1690 Comments.clear(); 1691 1692 // Try to resolve the target of a call, tail call, etc. to a specific 1693 // symbol. 1694 if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) || 1695 MIA->isConditionalBranch(Inst))) { 1696 uint64_t Target; 1697 if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) { 1698 // In a relocatable object, the target's section must reside in 1699 // the same section as the call instruction or it is accessed 1700 // through a relocation. 1701 // 1702 // In a non-relocatable object, the target may be in any section. 1703 // 1704 // N.B. We don't walk the relocations in the relocatable case yet. 1705 auto *TargetSectionSymbols = &Symbols; 1706 if (!Obj->isRelocatableObject()) { 1707 auto SectionAddress = std::upper_bound( 1708 SectionAddresses.begin(), SectionAddresses.end(), Target, 1709 [](uint64_t LHS, 1710 const std::pair<uint64_t, SectionRef> &RHS) { 1711 return LHS < RHS.first; 1712 }); 1713 if (SectionAddress != SectionAddresses.begin()) { 1714 --SectionAddress; 1715 TargetSectionSymbols = &AllSymbols[SectionAddress->second]; 1716 } else { 1717 TargetSectionSymbols = &AbsoluteSymbols; 1718 } 1719 } 1720 1721 // Find the first symbol in the section whose offset is less than 1722 // or equal to the target. If there isn't a section that contains 1723 // the target, find the nearest preceding absolute symbol. 1724 auto TargetSym = std::upper_bound( 1725 TargetSectionSymbols->begin(), TargetSectionSymbols->end(), 1726 Target, [](uint64_t LHS, 1727 const std::tuple<uint64_t, StringRef, uint8_t> &RHS) { 1728 return LHS < std::get<0>(RHS); 1729 }); 1730 if (TargetSym == TargetSectionSymbols->begin()) { 1731 TargetSectionSymbols = &AbsoluteSymbols; 1732 TargetSym = std::upper_bound( 1733 AbsoluteSymbols.begin(), AbsoluteSymbols.end(), 1734 Target, [](uint64_t LHS, 1735 const std::tuple<uint64_t, StringRef, uint8_t> &RHS) { 1736 return LHS < std::get<0>(RHS); 1737 }); 1738 } 1739 if (TargetSym != TargetSectionSymbols->begin()) { 1740 --TargetSym; 1741 uint64_t TargetAddress = std::get<0>(*TargetSym); 1742 StringRef TargetName = std::get<1>(*TargetSym); 1743 outs() << " <" << TargetName; 1744 uint64_t Disp = Target - TargetAddress; 1745 if (Disp) 1746 outs() << "+0x" << Twine::utohexstr(Disp); 1747 outs() << '>'; 1748 } 1749 } 1750 } 1751 outs() << "\n"; 1752 1753 // Hexagon does this in pretty printer 1754 if (Obj->getArch() != Triple::hexagon) 1755 // Print relocation for instruction. 1756 while (rel_cur != rel_end) { 1757 bool hidden = getHidden(*rel_cur); 1758 uint64_t addr = rel_cur->getOffset(); 1759 SmallString<16> name; 1760 SmallString<32> val; 1761 1762 // If this relocation is hidden, skip it. 1763 if (hidden || ((SectionAddr + addr) < StartAddress)) { 1764 ++rel_cur; 1765 continue; 1766 } 1767 1768 // Stop when rel_cur's address is past the current instruction. 1769 if (addr >= Index + Size) break; 1770 rel_cur->getTypeName(name); 1771 error(getRelocationValueString(*rel_cur, val)); 1772 outs() << format(Fmt.data(), SectionAddr + addr) << name 1773 << "\t" << val << "\n"; 1774 ++rel_cur; 1775 } 1776 } 1777 } 1778 } 1779 } 1780 1781 void llvm::PrintRelocations(const ObjectFile *Obj) { 1782 StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : 1783 "%08" PRIx64; 1784 // Regular objdump doesn't print relocations in non-relocatable object 1785 // files. 1786 if (!Obj->isRelocatableObject()) 1787 return; 1788 1789 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 1790 if (Section.relocation_begin() == Section.relocation_end()) 1791 continue; 1792 StringRef secname; 1793 error(Section.getName(secname)); 1794 outs() << "RELOCATION RECORDS FOR [" << secname << "]:\n"; 1795 for (const RelocationRef &Reloc : Section.relocations()) { 1796 bool hidden = getHidden(Reloc); 1797 uint64_t address = Reloc.getOffset(); 1798 SmallString<32> relocname; 1799 SmallString<32> valuestr; 1800 if (address < StartAddress || address > StopAddress || hidden) 1801 continue; 1802 Reloc.getTypeName(relocname); 1803 error(getRelocationValueString(Reloc, valuestr)); 1804 outs() << format(Fmt.data(), address) << " " << relocname << " " 1805 << valuestr << "\n"; 1806 } 1807 outs() << "\n"; 1808 } 1809 } 1810 1811 void llvm::PrintDynamicRelocations(const ObjectFile *Obj) { 1812 1813 // For the moment, this option is for ELF only 1814 if (!Obj->isELF()) 1815 return; 1816 1817 const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj); 1818 1819 if (!Elf || Elf->getEType() != ELF::ET_DYN) { 1820 error("not a dynamic object"); 1821 return; 1822 } 1823 1824 StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 1825 1826 std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections(); 1827 if (DynRelSec.empty()) 1828 return; 1829 1830 outs() << "DYNAMIC RELOCATION RECORDS\n"; 1831 for (const SectionRef &Section : DynRelSec) { 1832 if (Section.relocation_begin() == Section.relocation_end()) 1833 continue; 1834 for (const RelocationRef &Reloc : Section.relocations()) { 1835 uint64_t address = Reloc.getOffset(); 1836 SmallString<32> relocname; 1837 SmallString<32> valuestr; 1838 Reloc.getTypeName(relocname); 1839 error(getRelocationValueString(Reloc, valuestr)); 1840 outs() << format(Fmt.data(), address) << " " << relocname << " " 1841 << valuestr << "\n"; 1842 } 1843 } 1844 } 1845 1846 void llvm::PrintSectionHeaders(const ObjectFile *Obj) { 1847 outs() << "Sections:\n" 1848 "Idx Name Size Address Type\n"; 1849 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 1850 StringRef Name; 1851 error(Section.getName(Name)); 1852 uint64_t Address = Section.getAddress(); 1853 uint64_t Size = Section.getSize(); 1854 bool Text = Section.isText(); 1855 bool Data = Section.isData(); 1856 bool BSS = Section.isBSS(); 1857 std::string Type = (std::string(Text ? "TEXT " : "") + 1858 (Data ? "DATA " : "") + (BSS ? "BSS" : "")); 1859 outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %s\n", 1860 (unsigned)Section.getIndex(), Name.str().c_str(), Size, 1861 Address, Type.c_str()); 1862 } 1863 } 1864 1865 void llvm::PrintSectionContents(const ObjectFile *Obj) { 1866 std::error_code EC; 1867 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 1868 StringRef Name; 1869 StringRef Contents; 1870 error(Section.getName(Name)); 1871 uint64_t BaseAddr = Section.getAddress(); 1872 uint64_t Size = Section.getSize(); 1873 if (!Size) 1874 continue; 1875 1876 outs() << "Contents of section " << Name << ":\n"; 1877 if (Section.isBSS()) { 1878 outs() << format("<skipping contents of bss section at [%04" PRIx64 1879 ", %04" PRIx64 ")>\n", 1880 BaseAddr, BaseAddr + Size); 1881 continue; 1882 } 1883 1884 error(Section.getContents(Contents)); 1885 1886 // Dump out the content as hex and printable ascii characters. 1887 for (std::size_t addr = 0, end = Contents.size(); addr < end; addr += 16) { 1888 outs() << format(" %04" PRIx64 " ", BaseAddr + addr); 1889 // Dump line of hex. 1890 for (std::size_t i = 0; i < 16; ++i) { 1891 if (i != 0 && i % 4 == 0) 1892 outs() << ' '; 1893 if (addr + i < end) 1894 outs() << hexdigit((Contents[addr + i] >> 4) & 0xF, true) 1895 << hexdigit(Contents[addr + i] & 0xF, true); 1896 else 1897 outs() << " "; 1898 } 1899 // Print ascii. 1900 outs() << " "; 1901 for (std::size_t i = 0; i < 16 && addr + i < end; ++i) { 1902 if (std::isprint(static_cast<unsigned char>(Contents[addr + i]) & 0xFF)) 1903 outs() << Contents[addr + i]; 1904 else 1905 outs() << "."; 1906 } 1907 outs() << "\n"; 1908 } 1909 } 1910 } 1911 1912 void llvm::PrintSymbolTable(const ObjectFile *o, StringRef ArchiveName, 1913 StringRef ArchitectureName) { 1914 outs() << "SYMBOL TABLE:\n"; 1915 1916 if (const COFFObjectFile *coff = dyn_cast<const COFFObjectFile>(o)) { 1917 printCOFFSymbolTable(coff); 1918 return; 1919 } 1920 for (const SymbolRef &Symbol : o->symbols()) { 1921 Expected<uint64_t> AddressOrError = Symbol.getAddress(); 1922 if (!AddressOrError) 1923 report_error(ArchiveName, o->getFileName(), AddressOrError.takeError(), 1924 ArchitectureName); 1925 uint64_t Address = *AddressOrError; 1926 if ((Address < StartAddress) || (Address > StopAddress)) 1927 continue; 1928 Expected<SymbolRef::Type> TypeOrError = Symbol.getType(); 1929 if (!TypeOrError) 1930 report_error(ArchiveName, o->getFileName(), TypeOrError.takeError(), 1931 ArchitectureName); 1932 SymbolRef::Type Type = *TypeOrError; 1933 uint32_t Flags = Symbol.getFlags(); 1934 Expected<section_iterator> SectionOrErr = Symbol.getSection(); 1935 if (!SectionOrErr) 1936 report_error(ArchiveName, o->getFileName(), SectionOrErr.takeError(), 1937 ArchitectureName); 1938 section_iterator Section = *SectionOrErr; 1939 StringRef Name; 1940 if (Type == SymbolRef::ST_Debug && Section != o->section_end()) { 1941 Section->getName(Name); 1942 } else { 1943 Expected<StringRef> NameOrErr = Symbol.getName(); 1944 if (!NameOrErr) 1945 report_error(ArchiveName, o->getFileName(), NameOrErr.takeError(), 1946 ArchitectureName); 1947 Name = *NameOrErr; 1948 } 1949 1950 bool Global = Flags & SymbolRef::SF_Global; 1951 bool Weak = Flags & SymbolRef::SF_Weak; 1952 bool Absolute = Flags & SymbolRef::SF_Absolute; 1953 bool Common = Flags & SymbolRef::SF_Common; 1954 bool Hidden = Flags & SymbolRef::SF_Hidden; 1955 1956 char GlobLoc = ' '; 1957 if (Type != SymbolRef::ST_Unknown) 1958 GlobLoc = Global ? 'g' : 'l'; 1959 char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File) 1960 ? 'd' : ' '; 1961 char FileFunc = ' '; 1962 if (Type == SymbolRef::ST_File) 1963 FileFunc = 'f'; 1964 else if (Type == SymbolRef::ST_Function) 1965 FileFunc = 'F'; 1966 1967 const char *Fmt = o->getBytesInAddress() > 4 ? "%016" PRIx64 : 1968 "%08" PRIx64; 1969 1970 outs() << format(Fmt, Address) << " " 1971 << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' ' 1972 << (Weak ? 'w' : ' ') // Weak? 1973 << ' ' // Constructor. Not supported yet. 1974 << ' ' // Warning. Not supported yet. 1975 << ' ' // Indirect reference to another symbol. 1976 << Debug // Debugging (d) or dynamic (D) symbol. 1977 << FileFunc // Name of function (F), file (f) or object (O). 1978 << ' '; 1979 if (Absolute) { 1980 outs() << "*ABS*"; 1981 } else if (Common) { 1982 outs() << "*COM*"; 1983 } else if (Section == o->section_end()) { 1984 outs() << "*UND*"; 1985 } else { 1986 if (const MachOObjectFile *MachO = 1987 dyn_cast<const MachOObjectFile>(o)) { 1988 DataRefImpl DR = Section->getRawDataRefImpl(); 1989 StringRef SegmentName = MachO->getSectionFinalSegmentName(DR); 1990 outs() << SegmentName << ","; 1991 } 1992 StringRef SectionName; 1993 error(Section->getName(SectionName)); 1994 outs() << SectionName; 1995 } 1996 1997 outs() << '\t'; 1998 if (Common || isa<ELFObjectFileBase>(o)) { 1999 uint64_t Val = 2000 Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize(); 2001 outs() << format("\t %08" PRIx64 " ", Val); 2002 } 2003 2004 if (Hidden) { 2005 outs() << ".hidden "; 2006 } 2007 outs() << Name 2008 << '\n'; 2009 } 2010 } 2011 2012 static void PrintUnwindInfo(const ObjectFile *o) { 2013 outs() << "Unwind info:\n\n"; 2014 2015 if (const COFFObjectFile *coff = dyn_cast<COFFObjectFile>(o)) { 2016 printCOFFUnwindInfo(coff); 2017 } else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o)) 2018 printMachOUnwindInfo(MachO); 2019 else { 2020 // TODO: Extract DWARF dump tool to objdump. 2021 errs() << "This operation is only currently supported " 2022 "for COFF and MachO object files.\n"; 2023 return; 2024 } 2025 } 2026 2027 void llvm::printExportsTrie(const ObjectFile *o) { 2028 outs() << "Exports trie:\n"; 2029 if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o)) 2030 printMachOExportsTrie(MachO); 2031 else { 2032 errs() << "This operation is only currently supported " 2033 "for Mach-O executable files.\n"; 2034 return; 2035 } 2036 } 2037 2038 void llvm::printRebaseTable(ObjectFile *o) { 2039 outs() << "Rebase table:\n"; 2040 if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o)) 2041 printMachORebaseTable(MachO); 2042 else { 2043 errs() << "This operation is only currently supported " 2044 "for Mach-O executable files.\n"; 2045 return; 2046 } 2047 } 2048 2049 void llvm::printBindTable(ObjectFile *o) { 2050 outs() << "Bind table:\n"; 2051 if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o)) 2052 printMachOBindTable(MachO); 2053 else { 2054 errs() << "This operation is only currently supported " 2055 "for Mach-O executable files.\n"; 2056 return; 2057 } 2058 } 2059 2060 void llvm::printLazyBindTable(ObjectFile *o) { 2061 outs() << "Lazy bind table:\n"; 2062 if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o)) 2063 printMachOLazyBindTable(MachO); 2064 else { 2065 errs() << "This operation is only currently supported " 2066 "for Mach-O executable files.\n"; 2067 return; 2068 } 2069 } 2070 2071 void llvm::printWeakBindTable(ObjectFile *o) { 2072 outs() << "Weak bind table:\n"; 2073 if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o)) 2074 printMachOWeakBindTable(MachO); 2075 else { 2076 errs() << "This operation is only currently supported " 2077 "for Mach-O executable files.\n"; 2078 return; 2079 } 2080 } 2081 2082 /// Dump the raw contents of the __clangast section so the output can be piped 2083 /// into llvm-bcanalyzer. 2084 void llvm::printRawClangAST(const ObjectFile *Obj) { 2085 if (outs().is_displayed()) { 2086 errs() << "The -raw-clang-ast option will dump the raw binary contents of " 2087 "the clang ast section.\n" 2088 "Please redirect the output to a file or another program such as " 2089 "llvm-bcanalyzer.\n"; 2090 return; 2091 } 2092 2093 StringRef ClangASTSectionName("__clangast"); 2094 if (isa<COFFObjectFile>(Obj)) { 2095 ClangASTSectionName = "clangast"; 2096 } 2097 2098 Optional<object::SectionRef> ClangASTSection; 2099 for (auto Sec : ToolSectionFilter(*Obj)) { 2100 StringRef Name; 2101 Sec.getName(Name); 2102 if (Name == ClangASTSectionName) { 2103 ClangASTSection = Sec; 2104 break; 2105 } 2106 } 2107 if (!ClangASTSection) 2108 return; 2109 2110 StringRef ClangASTContents; 2111 error(ClangASTSection.getValue().getContents(ClangASTContents)); 2112 outs().write(ClangASTContents.data(), ClangASTContents.size()); 2113 } 2114 2115 static void printFaultMaps(const ObjectFile *Obj) { 2116 const char *FaultMapSectionName = nullptr; 2117 2118 if (isa<ELFObjectFileBase>(Obj)) { 2119 FaultMapSectionName = ".llvm_faultmaps"; 2120 } else if (isa<MachOObjectFile>(Obj)) { 2121 FaultMapSectionName = "__llvm_faultmaps"; 2122 } else { 2123 errs() << "This operation is only currently supported " 2124 "for ELF and Mach-O executable files.\n"; 2125 return; 2126 } 2127 2128 Optional<object::SectionRef> FaultMapSection; 2129 2130 for (auto Sec : ToolSectionFilter(*Obj)) { 2131 StringRef Name; 2132 Sec.getName(Name); 2133 if (Name == FaultMapSectionName) { 2134 FaultMapSection = Sec; 2135 break; 2136 } 2137 } 2138 2139 outs() << "FaultMap table:\n"; 2140 2141 if (!FaultMapSection.hasValue()) { 2142 outs() << "<not found>\n"; 2143 return; 2144 } 2145 2146 StringRef FaultMapContents; 2147 error(FaultMapSection.getValue().getContents(FaultMapContents)); 2148 2149 FaultMapParser FMP(FaultMapContents.bytes_begin(), 2150 FaultMapContents.bytes_end()); 2151 2152 outs() << FMP; 2153 } 2154 2155 static void printPrivateFileHeaders(const ObjectFile *o, bool onlyFirst) { 2156 if (o->isELF()) 2157 return printELFFileHeader(o); 2158 if (o->isCOFF()) 2159 return printCOFFFileHeader(o); 2160 if (o->isWasm()) 2161 return printWasmFileHeader(o); 2162 if (o->isMachO()) { 2163 printMachOFileHeader(o); 2164 if (!onlyFirst) 2165 printMachOLoadCommands(o); 2166 return; 2167 } 2168 report_error(o->getFileName(), "Invalid/Unsupported object file format"); 2169 } 2170 2171 static void printFileHeaders(const ObjectFile *o) { 2172 if (!o->isELF() && !o->isCOFF()) 2173 report_error(o->getFileName(), "Invalid/Unsupported object file format"); 2174 2175 Triple::ArchType AT = o->getArch(); 2176 outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n"; 2177 Expected<uint64_t> StartAddrOrErr = o->getStartAddress(); 2178 if (!StartAddrOrErr) 2179 report_error(o->getFileName(), StartAddrOrErr.takeError()); 2180 outs() << "start address: " 2181 << format("0x%0*x", o->getBytesInAddress(), StartAddrOrErr.get()) 2182 << "\n"; 2183 } 2184 2185 static void printArchiveChild(StringRef Filename, const Archive::Child &C) { 2186 Expected<sys::fs::perms> ModeOrErr = C.getAccessMode(); 2187 if (!ModeOrErr) { 2188 errs() << "ill-formed archive entry.\n"; 2189 consumeError(ModeOrErr.takeError()); 2190 return; 2191 } 2192 sys::fs::perms Mode = ModeOrErr.get(); 2193 outs() << ((Mode & sys::fs::owner_read) ? "r" : "-"); 2194 outs() << ((Mode & sys::fs::owner_write) ? "w" : "-"); 2195 outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-"); 2196 outs() << ((Mode & sys::fs::group_read) ? "r" : "-"); 2197 outs() << ((Mode & sys::fs::group_write) ? "w" : "-"); 2198 outs() << ((Mode & sys::fs::group_exe) ? "x" : "-"); 2199 outs() << ((Mode & sys::fs::others_read) ? "r" : "-"); 2200 outs() << ((Mode & sys::fs::others_write) ? "w" : "-"); 2201 outs() << ((Mode & sys::fs::others_exe) ? "x" : "-"); 2202 2203 outs() << " "; 2204 2205 Expected<unsigned> UIDOrErr = C.getUID(); 2206 if (!UIDOrErr) 2207 report_error(Filename, UIDOrErr.takeError()); 2208 unsigned UID = UIDOrErr.get(); 2209 outs() << format("%d/", UID); 2210 2211 Expected<unsigned> GIDOrErr = C.getGID(); 2212 if (!GIDOrErr) 2213 report_error(Filename, GIDOrErr.takeError()); 2214 unsigned GID = GIDOrErr.get(); 2215 outs() << format("%-d ", GID); 2216 2217 Expected<uint64_t> Size = C.getRawSize(); 2218 if (!Size) 2219 report_error(Filename, Size.takeError()); 2220 outs() << format("%6" PRId64, Size.get()) << " "; 2221 2222 StringRef RawLastModified = C.getRawLastModified(); 2223 unsigned Seconds; 2224 if (RawLastModified.getAsInteger(10, Seconds)) 2225 outs() << "(date: \"" << RawLastModified 2226 << "\" contains non-decimal chars) "; 2227 else { 2228 // Since ctime(3) returns a 26 character string of the form: 2229 // "Sun Sep 16 01:03:52 1973\n\0" 2230 // just print 24 characters. 2231 time_t t = Seconds; 2232 outs() << format("%.24s ", ctime(&t)); 2233 } 2234 2235 StringRef Name = ""; 2236 Expected<StringRef> NameOrErr = C.getName(); 2237 if (!NameOrErr) { 2238 consumeError(NameOrErr.takeError()); 2239 Expected<StringRef> RawNameOrErr = C.getRawName(); 2240 if (!RawNameOrErr) 2241 report_error(Filename, NameOrErr.takeError()); 2242 Name = RawNameOrErr.get(); 2243 } else { 2244 Name = NameOrErr.get(); 2245 } 2246 outs() << Name << "\n"; 2247 } 2248 2249 static void DumpObject(ObjectFile *o, const Archive *a = nullptr, 2250 const Archive::Child *c = nullptr) { 2251 StringRef ArchiveName = a != nullptr ? a->getFileName() : ""; 2252 // Avoid other output when using a raw option. 2253 if (!RawClangAST) { 2254 outs() << '\n'; 2255 if (a) 2256 outs() << a->getFileName() << "(" << o->getFileName() << ")"; 2257 else 2258 outs() << o->getFileName(); 2259 outs() << ":\tfile format " << o->getFileFormatName() << "\n\n"; 2260 } 2261 2262 if (ArchiveHeaders && !MachOOpt) 2263 printArchiveChild(a->getFileName(), *c); 2264 if (Disassemble) 2265 DisassembleObject(o, Relocations); 2266 if (Relocations && !Disassemble) 2267 PrintRelocations(o); 2268 if (DynamicRelocations) 2269 PrintDynamicRelocations(o); 2270 if (SectionHeaders) 2271 PrintSectionHeaders(o); 2272 if (SectionContents) 2273 PrintSectionContents(o); 2274 if (SymbolTable) 2275 PrintSymbolTable(o, ArchiveName); 2276 if (UnwindInfo) 2277 PrintUnwindInfo(o); 2278 if (PrivateHeaders || FirstPrivateHeader) 2279 printPrivateFileHeaders(o, FirstPrivateHeader); 2280 if (FileHeaders) 2281 printFileHeaders(o); 2282 if (ExportsTrie) 2283 printExportsTrie(o); 2284 if (Rebase) 2285 printRebaseTable(o); 2286 if (Bind) 2287 printBindTable(o); 2288 if (LazyBind) 2289 printLazyBindTable(o); 2290 if (WeakBind) 2291 printWeakBindTable(o); 2292 if (RawClangAST) 2293 printRawClangAST(o); 2294 if (PrintFaultMaps) 2295 printFaultMaps(o); 2296 if (DwarfDumpType != DIDT_Null) { 2297 std::unique_ptr<DIContext> DICtx = DWARFContext::create(*o); 2298 // Dump the complete DWARF structure. 2299 DIDumpOptions DumpOpts; 2300 DumpOpts.DumpType = DwarfDumpType; 2301 DICtx->dump(outs(), DumpOpts); 2302 } 2303 } 2304 2305 static void DumpObject(const COFFImportFile *I, const Archive *A, 2306 const Archive::Child *C = nullptr) { 2307 StringRef ArchiveName = A ? A->getFileName() : ""; 2308 2309 // Avoid other output when using a raw option. 2310 if (!RawClangAST) 2311 outs() << '\n' 2312 << ArchiveName << "(" << I->getFileName() << ")" 2313 << ":\tfile format COFF-import-file" 2314 << "\n\n"; 2315 2316 if (ArchiveHeaders && !MachOOpt) 2317 printArchiveChild(A->getFileName(), *C); 2318 if (SymbolTable) 2319 printCOFFSymbolTable(I); 2320 } 2321 2322 /// Dump each object file in \a a; 2323 static void DumpArchive(const Archive *a) { 2324 Error Err = Error::success(); 2325 for (auto &C : a->children(Err)) { 2326 Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary(); 2327 if (!ChildOrErr) { 2328 if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError())) 2329 report_error(a->getFileName(), C, std::move(E)); 2330 continue; 2331 } 2332 if (ObjectFile *o = dyn_cast<ObjectFile>(&*ChildOrErr.get())) 2333 DumpObject(o, a, &C); 2334 else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get())) 2335 DumpObject(I, a, &C); 2336 else 2337 report_error(a->getFileName(), object_error::invalid_file_type); 2338 } 2339 if (Err) 2340 report_error(a->getFileName(), std::move(Err)); 2341 } 2342 2343 /// Open file and figure out how to dump it. 2344 static void DumpInput(StringRef file) { 2345 2346 // If we are using the Mach-O specific object file parser, then let it parse 2347 // the file and process the command line options. So the -arch flags can 2348 // be used to select specific slices, etc. 2349 if (MachOOpt) { 2350 ParseInputMachO(file); 2351 return; 2352 } 2353 2354 // Attempt to open the binary. 2355 Expected<OwningBinary<Binary>> BinaryOrErr = createBinary(file); 2356 if (!BinaryOrErr) 2357 report_error(file, BinaryOrErr.takeError()); 2358 Binary &Binary = *BinaryOrErr.get().getBinary(); 2359 2360 if (Archive *a = dyn_cast<Archive>(&Binary)) 2361 DumpArchive(a); 2362 else if (ObjectFile *o = dyn_cast<ObjectFile>(&Binary)) 2363 DumpObject(o); 2364 else 2365 report_error(file, object_error::invalid_file_type); 2366 } 2367 2368 int main(int argc, char **argv) { 2369 InitLLVM X(argc, argv); 2370 2371 // Initialize targets and assembly printers/parsers. 2372 llvm::InitializeAllTargetInfos(); 2373 llvm::InitializeAllTargetMCs(); 2374 llvm::InitializeAllDisassemblers(); 2375 2376 // Register the target printer for --version. 2377 cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion); 2378 2379 cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n"); 2380 TripleName = Triple::normalize(TripleName); 2381 2382 ToolName = argv[0]; 2383 2384 // Defaults to a.out if no filenames specified. 2385 if (InputFilenames.size() == 0) 2386 InputFilenames.push_back("a.out"); 2387 2388 if (AllHeaders) 2389 PrivateHeaders = Relocations = SectionHeaders = SymbolTable = true; 2390 2391 if (DisassembleAll || PrintSource || PrintLines) 2392 Disassemble = true; 2393 2394 if (Demangle.getValue() != "none" && Demangle.getValue() != "" && 2395 Demangle.getValue() != "itanium") 2396 warn("Unsupported demangling style"); 2397 2398 if (!Disassemble 2399 && !Relocations 2400 && !DynamicRelocations 2401 && !SectionHeaders 2402 && !SectionContents 2403 && !SymbolTable 2404 && !UnwindInfo 2405 && !PrivateHeaders 2406 && !FileHeaders 2407 && !FirstPrivateHeader 2408 && !ExportsTrie 2409 && !Rebase 2410 && !Bind 2411 && !LazyBind 2412 && !WeakBind 2413 && !RawClangAST 2414 && !(UniversalHeaders && MachOOpt) 2415 && !ArchiveHeaders 2416 && !(IndirectSymbols && MachOOpt) 2417 && !(DataInCode && MachOOpt) 2418 && !(LinkOptHints && MachOOpt) 2419 && !(InfoPlist && MachOOpt) 2420 && !(DylibsUsed && MachOOpt) 2421 && !(DylibId && MachOOpt) 2422 && !(ObjcMetaData && MachOOpt) 2423 && !(FilterSections.size() != 0 && MachOOpt) 2424 && !PrintFaultMaps 2425 && DwarfDumpType == DIDT_Null) { 2426 cl::PrintHelpMessage(); 2427 return 2; 2428 } 2429 2430 DisasmFuncsSet.insert(DisassembleFunctions.begin(), 2431 DisassembleFunctions.end()); 2432 2433 llvm::for_each(InputFilenames, DumpInput); 2434 2435 return EXIT_SUCCESS; 2436 } 2437