xref: /llvm-project/llvm/test/Transforms/InstCombine/atomic.ll (revision e00f189d392dd9bf95f6a98f05f2d341d06cd65c)
1; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
2; RUN: opt -S < %s -instcombine | FileCheck %s
3
4target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64"
5target triple = "x86_64-apple-macosx10.7.0"
6
7; Check transforms involving atomic operations
8
9define i32 @test1(i32* %p) {
10; CHECK-LABEL: @test1(
11; CHECK-NEXT:    [[X:%.*]] = load atomic i32, i32* [[P:%.*]] seq_cst, align 4
12; CHECK-NEXT:    [[Z:%.*]] = shl i32 [[X]], 1
13; CHECK-NEXT:    ret i32 [[Z]]
14;
15  %x = load atomic i32, i32* %p seq_cst, align 4
16  %y = load i32, i32* %p, align 4
17  %z = add i32 %x, %y
18  ret i32 %z
19}
20
21define i32 @test2(i32* %p) {
22; CHECK-LABEL: @test2(
23; CHECK-NEXT:    [[X:%.*]] = load volatile i32, i32* [[P:%.*]], align 4
24; CHECK-NEXT:    [[Y:%.*]] = load volatile i32, i32* [[P]], align 4
25; CHECK-NEXT:    [[Z:%.*]] = add i32 [[X]], [[Y]]
26; CHECK-NEXT:    ret i32 [[Z]]
27;
28  %x = load volatile i32, i32* %p, align 4
29  %y = load volatile i32, i32* %p, align 4
30  %z = add i32 %x, %y
31  ret i32 %z
32}
33
34; The exact semantics of mixing volatile and non-volatile on the same
35; memory location are a bit unclear, but conservatively, we know we don't
36; want to remove the volatile.
37define i32 @test3(i32* %p) {
38; CHECK-LABEL: @test3(
39; CHECK-NEXT:    [[X:%.*]] = load volatile i32, i32* [[P:%.*]], align 4
40; CHECK-NEXT:    [[Z:%.*]] = shl i32 [[X]], 1
41; CHECK-NEXT:    ret i32 [[Z]]
42;
43  %x = load volatile i32, i32* %p, align 4
44  %y = load i32, i32* %p, align 4
45  %z = add i32 %x, %y
46  ret i32 %z
47}
48
49; Forwarding from a stronger ordered atomic is fine
50define i32 @test4(i32* %p) {
51; CHECK-LABEL: @test4(
52; CHECK-NEXT:    [[X:%.*]] = load atomic i32, i32* [[P:%.*]] seq_cst, align 4
53; CHECK-NEXT:    [[Z:%.*]] = shl i32 [[X]], 1
54; CHECK-NEXT:    ret i32 [[Z]]
55;
56  %x = load atomic i32, i32* %p seq_cst, align 4
57  %y = load atomic i32, i32* %p unordered, align 4
58  %z = add i32 %x, %y
59  ret i32 %z
60}
61
62; Forwarding from a non-atomic is not.  (The earlier load
63; could in priciple be promoted to atomic and then forwarded,
64; but we can't just  drop the atomic from the load.)
65define i32 @test5(i32* %p) {
66; CHECK-LABEL: @test5(
67; CHECK-NEXT:    [[X:%.*]] = load atomic i32, i32* [[P:%.*]] unordered, align 4
68; CHECK-NEXT:    [[Z:%.*]] = shl i32 [[X]], 1
69; CHECK-NEXT:    ret i32 [[Z]]
70;
71  %x = load atomic i32, i32* %p unordered, align 4
72  %y = load i32, i32* %p, align 4
73  %z = add i32 %x, %y
74  ret i32 %z
75}
76
77; Forwarding atomic to atomic is fine
78define i32 @test6(i32* %p) {
79; CHECK-LABEL: @test6(
80; CHECK-NEXT:    [[X:%.*]] = load atomic i32, i32* [[P:%.*]] unordered, align 4
81; CHECK-NEXT:    [[Z:%.*]] = shl i32 [[X]], 1
82; CHECK-NEXT:    ret i32 [[Z]]
83;
84  %x = load atomic i32, i32* %p unordered, align 4
85  %y = load atomic i32, i32* %p unordered, align 4
86  %z = add i32 %x, %y
87  ret i32 %z
88}
89
90; FIXME: we currently don't do anything for monotonic
91define i32 @test7(i32* %p) {
92; CHECK-LABEL: @test7(
93; CHECK-NEXT:    [[X:%.*]] = load atomic i32, i32* [[P:%.*]] seq_cst, align 4
94; CHECK-NEXT:    [[Y:%.*]] = load atomic i32, i32* [[P]] monotonic, align 4
95; CHECK-NEXT:    [[Z:%.*]] = add i32 [[X]], [[Y]]
96; CHECK-NEXT:    ret i32 [[Z]]
97;
98  %x = load atomic i32, i32* %p seq_cst, align 4
99  %y = load atomic i32, i32* %p monotonic, align 4
100  %z = add i32 %x, %y
101  ret i32 %z
102}
103
104; FIXME: We could forward in racy code
105define i32 @test8(i32* %p) {
106; CHECK-LABEL: @test8(
107; CHECK-NEXT:    [[X:%.*]] = load atomic i32, i32* [[P:%.*]] seq_cst, align 4
108; CHECK-NEXT:    [[Y:%.*]] = load atomic i32, i32* [[P]] acquire, align 4
109; CHECK-NEXT:    [[Z:%.*]] = add i32 [[X]], [[Y]]
110; CHECK-NEXT:    ret i32 [[Z]]
111;
112  %x = load atomic i32, i32* %p seq_cst, align 4
113  %y = load atomic i32, i32* %p acquire, align 4
114  %z = add i32 %x, %y
115  ret i32 %z
116}
117
118; An unordered access to null is still unreachable.  There's no
119; ordering imposed.
120define i32 @test9() {
121; CHECK-LABEL: @test9(
122; CHECK-NEXT:    store i32 undef, i32* null, align 536870912
123; CHECK-NEXT:    ret i32 undef
124;
125  %x = load atomic i32, i32* null unordered, align 4
126  ret i32 %x
127}
128
129define i32 @test9_no_null_opt() #0 {
130; CHECK-LABEL: @test9_no_null_opt(
131; CHECK-NEXT:    [[X:%.*]] = load atomic i32, i32* null unordered, align 536870912
132; CHECK-NEXT:    ret i32 [[X]]
133;
134  %x = load atomic i32, i32* null unordered, align 4
135  ret i32 %x
136}
137
138; FIXME: Could also fold
139define i32 @test10() {
140; CHECK-LABEL: @test10(
141; CHECK-NEXT:    [[X:%.*]] = load atomic i32, i32* null monotonic, align 536870912
142; CHECK-NEXT:    ret i32 [[X]]
143;
144  %x = load atomic i32, i32* null monotonic, align 4
145  ret i32 %x
146}
147
148define i32 @test10_no_null_opt() #0 {
149; CHECK-LABEL: @test10_no_null_opt(
150; CHECK-NEXT:    [[X:%.*]] = load atomic i32, i32* null monotonic, align 536870912
151; CHECK-NEXT:    ret i32 [[X]]
152;
153  %x = load atomic i32, i32* null monotonic, align 4
154  ret i32 %x
155}
156
157; Would this be legal to fold?  Probably?
158define i32 @test11() {
159; CHECK-LABEL: @test11(
160; CHECK-NEXT:    [[X:%.*]] = load atomic i32, i32* null seq_cst, align 536870912
161; CHECK-NEXT:    ret i32 [[X]]
162;
163  %x = load atomic i32, i32* null seq_cst, align 4
164  ret i32 %x
165}
166
167define i32 @test11_no_null_opt() #0 {
168; CHECK-LABEL: @test11_no_null_opt(
169; CHECK-NEXT:    [[X:%.*]] = load atomic i32, i32* null seq_cst, align 536870912
170; CHECK-NEXT:    ret i32 [[X]]
171;
172  %x = load atomic i32, i32* null seq_cst, align 4
173  ret i32 %x
174}
175
176; An unordered access to null is still unreachable.  There's no
177; ordering imposed.
178define i32 @test12() {
179; CHECK-LABEL: @test12(
180; CHECK-NEXT:    store atomic i32 undef, i32* null unordered, align 536870912
181; CHECK-NEXT:    ret i32 0
182;
183  store atomic i32 0, i32* null unordered, align 4
184  ret i32 0
185}
186
187define i32 @test12_no_null_opt() #0 {
188; CHECK-LABEL: @test12_no_null_opt(
189; CHECK-NEXT:    store atomic i32 0, i32* null unordered, align 536870912
190; CHECK-NEXT:    ret i32 0
191;
192  store atomic i32 0, i32* null unordered, align 4
193  ret i32 0
194}
195
196; FIXME: Could also fold
197define i32 @test13() {
198; CHECK-LABEL: @test13(
199; CHECK-NEXT:    store atomic i32 0, i32* null monotonic, align 536870912
200; CHECK-NEXT:    ret i32 0
201;
202  store atomic i32 0, i32* null monotonic, align 4
203  ret i32 0
204}
205
206define i32 @test13_no_null_opt() #0 {
207; CHECK-LABEL: @test13_no_null_opt(
208; CHECK-NEXT:    store atomic i32 0, i32* null monotonic, align 536870912
209; CHECK-NEXT:    ret i32 0
210;
211  store atomic i32 0, i32* null monotonic, align 4
212  ret i32 0
213}
214
215; Would this be legal to fold?  Probably?
216define i32 @test14() {
217; CHECK-LABEL: @test14(
218; CHECK-NEXT:    store atomic i32 0, i32* null seq_cst, align 536870912
219; CHECK-NEXT:    ret i32 0
220;
221  store atomic i32 0, i32* null seq_cst, align 4
222  ret i32 0
223}
224
225define i32 @test14_no_null_opt() #0 {
226; CHECK-LABEL: @test14_no_null_opt(
227; CHECK-NEXT:    store atomic i32 0, i32* null seq_cst, align 536870912
228; CHECK-NEXT:    ret i32 0
229;
230  store atomic i32 0, i32* null seq_cst, align 4
231  ret i32 0
232}
233
234@a = external global i32
235@b = external global i32
236
237define i32 @test15(i1 %cnd) {
238; CHECK-LABEL: @test15(
239; CHECK-NEXT:    [[A_VAL:%.*]] = load atomic i32, i32* @a unordered, align 4
240; CHECK-NEXT:    [[B_VAL:%.*]] = load atomic i32, i32* @b unordered, align 4
241; CHECK-NEXT:    [[X:%.*]] = select i1 [[CND:%.*]], i32 [[A_VAL]], i32 [[B_VAL]]
242; CHECK-NEXT:    ret i32 [[X]]
243;
244  %addr = select i1 %cnd, i32* @a, i32* @b
245  %x = load atomic i32, i32* %addr unordered, align 4
246  ret i32 %x
247}
248
249; FIXME: This would be legal to transform
250define i32 @test16(i1 %cnd) {
251; CHECK-LABEL: @test16(
252; CHECK-NEXT:    [[ADDR:%.*]] = select i1 [[CND:%.*]], i32* @a, i32* @b
253; CHECK-NEXT:    [[X:%.*]] = load atomic i32, i32* [[ADDR]] monotonic, align 4
254; CHECK-NEXT:    ret i32 [[X]]
255;
256  %addr = select i1 %cnd, i32* @a, i32* @b
257  %x = load atomic i32, i32* %addr monotonic, align 4
258  ret i32 %x
259}
260
261; FIXME: This would be legal to transform
262define i32 @test17(i1 %cnd) {
263; CHECK-LABEL: @test17(
264; CHECK-NEXT:    [[ADDR:%.*]] = select i1 [[CND:%.*]], i32* @a, i32* @b
265; CHECK-NEXT:    [[X:%.*]] = load atomic i32, i32* [[ADDR]] seq_cst, align 4
266; CHECK-NEXT:    ret i32 [[X]]
267;
268  %addr = select i1 %cnd, i32* @a, i32* @b
269  %x = load atomic i32, i32* %addr seq_cst, align 4
270  ret i32 %x
271}
272
273define i32 @test22(i1 %cnd) {
274; CHECK-LABEL: @test22(
275; CHECK-NEXT:    br i1 [[CND:%.*]], label [[BLOCK1:%.*]], label [[BLOCK2:%.*]]
276; CHECK:       block1:
277; CHECK-NEXT:    br label [[MERGE:%.*]]
278; CHECK:       block2:
279; CHECK-NEXT:    br label [[MERGE]]
280; CHECK:       merge:
281; CHECK-NEXT:    [[STOREMERGE:%.*]] = phi i32 [ 2, [[BLOCK2]] ], [ 1, [[BLOCK1]] ]
282; CHECK-NEXT:    store atomic i32 [[STOREMERGE]], i32* @a unordered, align 4
283; CHECK-NEXT:    ret i32 0
284;
285  br i1 %cnd, label %block1, label %block2
286
287block1:
288  store atomic i32 1, i32* @a unordered, align 4
289  br label %merge
290block2:
291  store atomic i32 2, i32* @a unordered, align 4
292  br label %merge
293
294merge:
295  ret i32 0
296}
297
298; TODO: probably also legal here
299define i32 @test23(i1 %cnd) {
300; CHECK-LABEL: @test23(
301; CHECK-NEXT:    br i1 [[CND:%.*]], label [[BLOCK1:%.*]], label [[BLOCK2:%.*]]
302; CHECK:       block1:
303; CHECK-NEXT:    store atomic i32 1, i32* @a monotonic, align 4
304; CHECK-NEXT:    br label [[MERGE:%.*]]
305; CHECK:       block2:
306; CHECK-NEXT:    store atomic i32 2, i32* @a monotonic, align 4
307; CHECK-NEXT:    br label [[MERGE]]
308; CHECK:       merge:
309; CHECK-NEXT:    ret i32 0
310;
311  br i1 %cnd, label %block1, label %block2
312
313block1:
314  store atomic i32 1, i32* @a monotonic, align 4
315  br label %merge
316block2:
317  store atomic i32 2, i32* @a monotonic, align 4
318  br label %merge
319
320merge:
321  ret i32 0
322}
323
324declare void @clobber()
325
326define i32 @test18(float* %p) {
327; CHECK-LABEL: @test18(
328; CHECK-NEXT:    [[X:%.*]] = load atomic float, float* [[P:%.*]] unordered, align 4
329; CHECK-NEXT:    call void @clobber()
330; CHECK-NEXT:    store atomic float [[X]], float* [[P]] unordered, align 4
331; CHECK-NEXT:    ret i32 0
332;
333  %x = load atomic float, float* %p unordered, align 4
334  call void @clobber() ;; keep the load around
335  store atomic float %x, float* %p unordered, align 4
336  ret i32 0
337}
338
339; TODO: probably also legal in this case
340define i32 @test19(float* %p) {
341; CHECK-LABEL: @test19(
342; CHECK-NEXT:    [[X:%.*]] = load atomic float, float* [[P:%.*]] seq_cst, align 4
343; CHECK-NEXT:    call void @clobber()
344; CHECK-NEXT:    store atomic float [[X]], float* [[P]] seq_cst, align 4
345; CHECK-NEXT:    ret i32 0
346;
347  %x = load atomic float, float* %p seq_cst, align 4
348  call void @clobber() ;; keep the load around
349  store atomic float %x, float* %p seq_cst, align 4
350  ret i32 0
351}
352
353define i32 @test20(i32** %p, i8* %v) {
354; CHECK-LABEL: @test20(
355; CHECK-NEXT:    [[TMP1:%.*]] = bitcast i32** [[P:%.*]] to i8**
356; CHECK-NEXT:    store atomic i8* [[V:%.*]], i8** [[TMP1]] unordered, align 4
357; CHECK-NEXT:    ret i32 0
358;
359  %cast = bitcast i8* %v to i32*
360  store atomic i32* %cast, i32** %p unordered, align 4
361  ret i32 0
362}
363
364define i32 @test21(i32** %p, i8* %v) {
365; CHECK-LABEL: @test21(
366; CHECK-NEXT:    [[CAST:%.*]] = bitcast i8* [[V:%.*]] to i32*
367; CHECK-NEXT:    store atomic i32* [[CAST]], i32** [[P:%.*]] monotonic, align 4
368; CHECK-NEXT:    ret i32 0
369;
370  %cast = bitcast i8* %v to i32*
371  store atomic i32* %cast, i32** %p monotonic, align 4
372  ret i32 0
373}
374
375define void @pr27490a(i8** %p1, i8** %p2) {
376; CHECK-LABEL: @pr27490a(
377; CHECK-NEXT:    [[L:%.*]] = load i8*, i8** [[P1:%.*]], align 8
378; CHECK-NEXT:    store volatile i8* [[L]], i8** [[P2:%.*]], align 8
379; CHECK-NEXT:    ret void
380;
381  %l = load i8*, i8** %p1
382  store volatile i8* %l, i8** %p2
383  ret void
384}
385
386define void @pr27490b(i8** %p1, i8** %p2) {
387; CHECK-LABEL: @pr27490b(
388; CHECK-NEXT:    [[L:%.*]] = load i8*, i8** [[P1:%.*]], align 8
389; CHECK-NEXT:    store atomic i8* [[L]], i8** [[P2:%.*]] seq_cst, align 8
390; CHECK-NEXT:    ret void
391;
392  %l = load i8*, i8** %p1
393  store atomic i8* %l, i8** %p2 seq_cst, align 8
394  ret void
395}
396
397;; At the moment, we can't form atomic vectors by folding since these are
398;; not representable in the IR.  This was pr29121.  The right long term
399;; solution is to extend the IR to handle this case.
400define <2 x float> @no_atomic_vector_load(i64* %p) {
401; CHECK-LABEL: @no_atomic_vector_load(
402; CHECK-NEXT:    [[LOAD:%.*]] = load atomic i64, i64* [[P:%.*]] unordered, align 8
403; CHECK-NEXT:    [[DOTCAST:%.*]] = bitcast i64 [[LOAD]] to <2 x float>
404; CHECK-NEXT:    ret <2 x float> [[DOTCAST]]
405;
406  %load = load atomic i64, i64* %p unordered, align 8
407  %.cast = bitcast i64 %load to <2 x float>
408  ret <2 x float> %.cast
409}
410
411define void @no_atomic_vector_store(<2 x float> %p, i8* %p2) {
412; CHECK-LABEL: @no_atomic_vector_store(
413; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <2 x float> [[P:%.*]] to i64
414; CHECK-NEXT:    [[TMP2:%.*]] = bitcast i8* [[P2:%.*]] to i64*
415; CHECK-NEXT:    store atomic i64 [[TMP1]], i64* [[TMP2]] unordered, align 8
416; CHECK-NEXT:    ret void
417;
418  %1 = bitcast <2 x float> %p to i64
419  %2 = bitcast i8* %p2 to i64*
420  store atomic i64 %1, i64* %2 unordered, align 8
421  ret void
422}
423
424attributes #0 = { null_pointer_is_valid }
425