xref: /llvm-project/llvm/test/Analysis/ScalarEvolution/decrementing_addrecs.ll (revision 8b5b294ec2cf876bc5eb5bd5fcb56ef487e36d60)
1273cbb58SMax Kazantsev; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py UTC_ARGS: --version 2
263df77d9SMax Kazantsev; RUN: opt -disable-output "-passes=print<scalar-evolution>" < %s 2>&1 | FileCheck %s --check-prefix=DEFAULT
363df77d9SMax Kazantsev; RUN: opt -disable-output "-passes=print<scalar-evolution>" -scalar-evolution-use-expensive-range-sharpening < %s 2>&1 | FileCheck %s  --check-prefix=EXPENSIVE_SHARPENING
4273cbb58SMax Kazantsev
5273cbb58SMax Kazantsev; This test exercises the following scenario:
6273cbb58SMax Kazantsev; given: n > 0
7273cbb58SMax Kazantsev; for (i = 0, j = n - 1; i < n; i++, j--) {
8273cbb58SMax Kazantsev;   a = n - i;
9273cbb58SMax Kazantsev;   b = (n - 1) - i;
10273cbb58SMax Kazantsev;   c = 2147483647 - 1;
11273cbb58SMax Kazantsev; }
12273cbb58SMax Kazantsev;
13273cbb58SMax Kazantsev; Note that value ranges of 'i' and 'j' are the same, just inverted. It means that
14273cbb58SMax Kazantsev; they have same ranges and same no-wrap properties. 'b' is just an alternative
15273cbb58SMax Kazantsev; way to compute the same value as 'j'. 'a' is effectively 'j + 1' and 'c' is a
16273cbb58SMax Kazantsev; a positive value. All involved addrecs for 'i', 'j', 'a', 'b', 'c' should have
17273cbb58SMax Kazantsev; no-sign-wrap flag.
18273cbb58SMax Kazantsev;
19273cbb58SMax Kazantsev;        i's AddRec is expected to be proven no-sign-wrap
20273cbb58SMax Kazantsev;        j's AddRec is expected to be proven no-sign-wrap
21273cbb58SMax Kazantsev; FIXME: a's AddRec is expected to be no-sign-wrap
22273cbb58SMax Kazantsev;        b's AddRec is expected to be no-sign-wrap
23273cbb58SMax Kazantsev; FIXME: c's AddRec is expected to be no-sign-wrap
24273cbb58SMax Kazantsev;        i is expected to be non-negative
25273cbb58SMax Kazantsev;        j is expected to be non-negative
265b96b13fSMax Kazantsev;        a is expected to be positive
275b96b13fSMax Kazantsev;        b is expected to be non-negative
28273cbb58SMax Kazantsev;        c is expected to be positive
29273cbb58SMax Kazantsevdefine i32 @test_step_1_flags(i32 %n) {
3063df77d9SMax Kazantsev; DEFAULT-LABEL: 'test_step_1_flags'
3163df77d9SMax Kazantsev; DEFAULT-NEXT:  Classifying expressions for: @test_step_1_flags
3263df77d9SMax Kazantsev; DEFAULT-NEXT:    %n.minus.1 = sub nsw i32 %n, 1
3363df77d9SMax Kazantsev; DEFAULT-NEXT:    --> (-1 + %n) U: full-set S: full-set
3463df77d9SMax Kazantsev; DEFAULT-NEXT:    %i = phi i32 [ 0, %entry ], [ %i.next, %loop ]
3563df77d9SMax Kazantsev; DEFAULT-NEXT:    --> {0,+,1}<nuw><nsw><%loop> U: [0,2147483647) S: [0,2147483647) Exits: (-1 + %n) LoopDispositions: { %loop: Computable }
3663df77d9SMax Kazantsev; DEFAULT-NEXT:    %j = phi i32 [ %n.minus.1, %entry ], [ %j.next, %loop ]
3763df77d9SMax Kazantsev; DEFAULT-NEXT:    --> {(-1 + %n),+,-1}<nsw><%loop> U: full-set S: full-set Exits: 0 LoopDispositions: { %loop: Computable }
3863df77d9SMax Kazantsev; DEFAULT-NEXT:    %a = sub i32 %n, %i
3963df77d9SMax Kazantsev; DEFAULT-NEXT:    --> {%n,+,-1}<nw><%loop> U: full-set S: full-set Exits: 1 LoopDispositions: { %loop: Computable }
4063df77d9SMax Kazantsev; DEFAULT-NEXT:    %b = sub i32 %n.minus.1, %i
4163df77d9SMax Kazantsev; DEFAULT-NEXT:    --> {(-1 + %n),+,-1}<nsw><%loop> U: full-set S: full-set Exits: 0 LoopDispositions: { %loop: Computable }
4263df77d9SMax Kazantsev; DEFAULT-NEXT:    %c = sub i32 2147483647, %i
43e08f9894SDmitry Makogon; DEFAULT-NEXT:    --> {2147483647,+,-1}<nsw><%loop> U: [1,-2147483648) S: [1,-2147483648) Exits: (-2147483648 + (-1 * %n)) LoopDispositions: { %loop: Computable }
4463df77d9SMax Kazantsev; DEFAULT-NEXT:    %i.next = add nuw nsw i32 %i, 1
4563df77d9SMax Kazantsev; DEFAULT-NEXT:    --> {1,+,1}<nuw><nsw><%loop> U: [1,-2147483648) S: [1,-2147483648) Exits: %n LoopDispositions: { %loop: Computable }
4663df77d9SMax Kazantsev; DEFAULT-NEXT:    %j.next = add nsw i32 %j, -1
4763df77d9SMax Kazantsev; DEFAULT-NEXT:    --> {(-2 + %n),+,-1}<nw><%loop> U: full-set S: full-set Exits: -1 LoopDispositions: { %loop: Computable }
4863df77d9SMax Kazantsev; DEFAULT-NEXT:  Determining loop execution counts for: @test_step_1_flags
4963df77d9SMax Kazantsev; DEFAULT-NEXT:  Loop %loop: backedge-taken count is (-1 + %n)
50*7755c261SPhilip Reames; DEFAULT-NEXT:  Loop %loop: constant max backedge-taken count is i32 2147483646
5163df77d9SMax Kazantsev; DEFAULT-NEXT:  Loop %loop: symbolic max backedge-taken count is (-1 + %n)
5288f7dc17SNikita Popov; DEFAULT-NEXT:  Loop %loop: Trip multiple is 1
5363df77d9SMax Kazantsev;
5463df77d9SMax Kazantsev; EXPENSIVE_SHARPENING-LABEL: 'test_step_1_flags'
5563df77d9SMax Kazantsev; EXPENSIVE_SHARPENING-NEXT:  Classifying expressions for: @test_step_1_flags
5663df77d9SMax Kazantsev; EXPENSIVE_SHARPENING-NEXT:    %n.minus.1 = sub nsw i32 %n, 1
5763df77d9SMax Kazantsev; EXPENSIVE_SHARPENING-NEXT:    --> (-1 + %n) U: full-set S: full-set
5863df77d9SMax Kazantsev; EXPENSIVE_SHARPENING-NEXT:    %i = phi i32 [ 0, %entry ], [ %i.next, %loop ]
5963df77d9SMax Kazantsev; EXPENSIVE_SHARPENING-NEXT:    --> {0,+,1}<nuw><nsw><%loop> U: [0,2147483647) S: [0,2147483647) Exits: (-1 + %n) LoopDispositions: { %loop: Computable }
6063df77d9SMax Kazantsev; EXPENSIVE_SHARPENING-NEXT:    %j = phi i32 [ %n.minus.1, %entry ], [ %j.next, %loop ]
615b96b13fSMax Kazantsev; EXPENSIVE_SHARPENING-NEXT:    --> {(-1 + %n),+,-1}<nsw><%loop> U: [0,2147483647) S: [0,2147483647) Exits: 0 LoopDispositions: { %loop: Computable }
6263df77d9SMax Kazantsev; EXPENSIVE_SHARPENING-NEXT:    %a = sub i32 %n, %i
635b96b13fSMax Kazantsev; EXPENSIVE_SHARPENING-NEXT:    --> {%n,+,-1}<nw><%loop> U: [1,-2147483648) S: [1,-2147483648) Exits: 1 LoopDispositions: { %loop: Computable }
6463df77d9SMax Kazantsev; EXPENSIVE_SHARPENING-NEXT:    %b = sub i32 %n.minus.1, %i
655b96b13fSMax Kazantsev; EXPENSIVE_SHARPENING-NEXT:    --> {(-1 + %n),+,-1}<nsw><%loop> U: [0,2147483647) S: [0,2147483647) Exits: 0 LoopDispositions: { %loop: Computable }
6663df77d9SMax Kazantsev; EXPENSIVE_SHARPENING-NEXT:    %c = sub i32 2147483647, %i
67e08f9894SDmitry Makogon; EXPENSIVE_SHARPENING-NEXT:    --> {2147483647,+,-1}<nsw><%loop> U: [1,-2147483648) S: [1,-2147483648) Exits: (-2147483648 + (-1 * %n)) LoopDispositions: { %loop: Computable }
6863df77d9SMax Kazantsev; EXPENSIVE_SHARPENING-NEXT:    %i.next = add nuw nsw i32 %i, 1
6963df77d9SMax Kazantsev; EXPENSIVE_SHARPENING-NEXT:    --> {1,+,1}<nuw><nsw><%loop> U: [1,-2147483648) S: [1,-2147483648) Exits: %n LoopDispositions: { %loop: Computable }
7063df77d9SMax Kazantsev; EXPENSIVE_SHARPENING-NEXT:    %j.next = add nsw i32 %j, -1
715b96b13fSMax Kazantsev; EXPENSIVE_SHARPENING-NEXT:    --> {(-2 + %n),+,-1}<nsw><%loop> U: full-set S: [-1,2147483646) Exits: -1 LoopDispositions: { %loop: Computable }
7263df77d9SMax Kazantsev; EXPENSIVE_SHARPENING-NEXT:  Determining loop execution counts for: @test_step_1_flags
7363df77d9SMax Kazantsev; EXPENSIVE_SHARPENING-NEXT:  Loop %loop: backedge-taken count is (-1 + %n)
74*7755c261SPhilip Reames; EXPENSIVE_SHARPENING-NEXT:  Loop %loop: constant max backedge-taken count is i32 2147483646
7563df77d9SMax Kazantsev; EXPENSIVE_SHARPENING-NEXT:  Loop %loop: symbolic max backedge-taken count is (-1 + %n)
7688f7dc17SNikita Popov; EXPENSIVE_SHARPENING-NEXT:  Loop %loop: Trip multiple is 1
77273cbb58SMax Kazantsev;
78273cbb58SMax Kazantseventry:
79273cbb58SMax Kazantsev  %n.minus.1 = sub nsw i32 %n, 1
80273cbb58SMax Kazantsev  %precond = icmp sgt i32 %n, 0
81273cbb58SMax Kazantsev  br i1 %precond, label %loop, label %fail
82273cbb58SMax Kazantsev
83273cbb58SMax Kazantsevloop:
84273cbb58SMax Kazantsev  %i = phi i32 [0, %entry], [%i.next, %loop]                      ; 0...n-1
85273cbb58SMax Kazantsev  %j = phi i32 [%n.minus.1, %entry], [%j.next, %loop]             ; n-1...0
86273cbb58SMax Kazantsev  %a = sub i32 %n, %i                                             ; n...1
87273cbb58SMax Kazantsev  %b = sub i32 %n.minus.1, %i                                     ; n-1...0
88273cbb58SMax Kazantsev  %c = sub i32 2147483647, %i                                     ; 2147483647...1
89273cbb58SMax Kazantsev  %i.next = add nuw nsw i32 %i, 1
90273cbb58SMax Kazantsev  %j.next = add nsw i32 %j, -1
91273cbb58SMax Kazantsev  %cond = icmp slt i32 %i.next, %n
92273cbb58SMax Kazantsev  br i1 %cond, label %loop, label %exit
93273cbb58SMax Kazantsev
94273cbb58SMax Kazantsevfail:
95273cbb58SMax Kazantsev  ret i32 -1
96273cbb58SMax Kazantsev
97273cbb58SMax Kazantsevexit:
98273cbb58SMax Kazantsev  ret i32 0
99273cbb58SMax Kazantsev}
100