1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities for loops with run-time 11 // trip counts. See LoopUnroll.cpp for unrolling loops with compile-time 12 // trip counts. 13 // 14 // The functions in this file are used to generate extra code when the 15 // run-time trip count modulo the unroll factor is not 0. When this is the 16 // case, we need to generate code to execute these 'left over' iterations. 17 // 18 // The current strategy generates an if-then-else sequence prior to the 19 // unrolled loop to execute the 'left over' iterations before or after the 20 // unrolled loop. 21 // 22 //===----------------------------------------------------------------------===// 23 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/Analysis/LoopIterator.h" 27 #include "llvm/Analysis/LoopPass.h" 28 #include "llvm/Analysis/ScalarEvolution.h" 29 #include "llvm/Analysis/ScalarEvolutionExpander.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Metadata.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Transforms/Scalar.h" 37 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 38 #include "llvm/Transforms/Utils/Cloning.h" 39 #include "llvm/Transforms/Utils/LoopUtils.h" 40 #include "llvm/Transforms/Utils/UnrollLoop.h" 41 #include <algorithm> 42 43 using namespace llvm; 44 45 #define DEBUG_TYPE "loop-unroll" 46 47 STATISTIC(NumRuntimeUnrolled, 48 "Number of loops unrolled with run-time trip counts"); 49 static cl::opt<bool> UnrollRuntimeMultiExit( 50 "unroll-runtime-multi-exit", cl::init(false), cl::Hidden, 51 cl::desc("Allow runtime unrolling for loops with multiple exits, when " 52 "epilog is generated")); 53 54 /// Connect the unrolling prolog code to the original loop. 55 /// The unrolling prolog code contains code to execute the 56 /// 'extra' iterations if the run-time trip count modulo the 57 /// unroll count is non-zero. 58 /// 59 /// This function performs the following: 60 /// - Create PHI nodes at prolog end block to combine values 61 /// that exit the prolog code and jump around the prolog. 62 /// - Add a PHI operand to a PHI node at the loop exit block 63 /// for values that exit the prolog and go around the loop. 64 /// - Branch around the original loop if the trip count is less 65 /// than the unroll factor. 66 /// 67 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count, 68 BasicBlock *PrologExit, BasicBlock *PreHeader, 69 BasicBlock *NewPreHeader, ValueToValueMapTy &VMap, 70 DominatorTree *DT, LoopInfo *LI, bool PreserveLCSSA) { 71 BasicBlock *Latch = L->getLoopLatch(); 72 assert(Latch && "Loop must have a latch"); 73 BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]); 74 75 // Create a PHI node for each outgoing value from the original loop 76 // (which means it is an outgoing value from the prolog code too). 77 // The new PHI node is inserted in the prolog end basic block. 78 // The new PHI node value is added as an operand of a PHI node in either 79 // the loop header or the loop exit block. 80 for (BasicBlock *Succ : successors(Latch)) { 81 for (Instruction &BBI : *Succ) { 82 PHINode *PN = dyn_cast<PHINode>(&BBI); 83 // Exit when we passed all PHI nodes. 84 if (!PN) 85 break; 86 // Add a new PHI node to the prolog end block and add the 87 // appropriate incoming values. 88 PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr", 89 PrologExit->getFirstNonPHI()); 90 // Adding a value to the new PHI node from the original loop preheader. 91 // This is the value that skips all the prolog code. 92 if (L->contains(PN)) { 93 NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader), 94 PreHeader); 95 } else { 96 NewPN->addIncoming(UndefValue::get(PN->getType()), PreHeader); 97 } 98 99 Value *V = PN->getIncomingValueForBlock(Latch); 100 if (Instruction *I = dyn_cast<Instruction>(V)) { 101 if (L->contains(I)) { 102 V = VMap.lookup(I); 103 } 104 } 105 // Adding a value to the new PHI node from the last prolog block 106 // that was created. 107 NewPN->addIncoming(V, PrologLatch); 108 109 // Update the existing PHI node operand with the value from the 110 // new PHI node. How this is done depends on if the existing 111 // PHI node is in the original loop block, or the exit block. 112 if (L->contains(PN)) { 113 PN->setIncomingValue(PN->getBasicBlockIndex(NewPreHeader), NewPN); 114 } else { 115 PN->addIncoming(NewPN, PrologExit); 116 } 117 } 118 } 119 120 // Make sure that created prolog loop is in simplified form 121 SmallVector<BasicBlock *, 4> PrologExitPreds; 122 Loop *PrologLoop = LI->getLoopFor(PrologLatch); 123 if (PrologLoop) { 124 for (BasicBlock *PredBB : predecessors(PrologExit)) 125 if (PrologLoop->contains(PredBB)) 126 PrologExitPreds.push_back(PredBB); 127 128 SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI, 129 PreserveLCSSA); 130 } 131 132 // Create a branch around the original loop, which is taken if there are no 133 // iterations remaining to be executed after running the prologue. 134 Instruction *InsertPt = PrologExit->getTerminator(); 135 IRBuilder<> B(InsertPt); 136 137 assert(Count != 0 && "nonsensical Count!"); 138 139 // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1) 140 // This means %xtraiter is (BECount + 1) and all of the iterations of this 141 // loop were executed by the prologue. Note that if BECount <u (Count - 1) 142 // then (BECount + 1) cannot unsigned-overflow. 143 Value *BrLoopExit = 144 B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1)); 145 BasicBlock *Exit = L->getUniqueExitBlock(); 146 assert(Exit && "Loop must have a single exit block only"); 147 // Split the exit to maintain loop canonicalization guarantees 148 SmallVector<BasicBlock*, 4> Preds(predecessors(Exit)); 149 SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", DT, LI, 150 PreserveLCSSA); 151 // Add the branch to the exit block (around the unrolled loop) 152 B.CreateCondBr(BrLoopExit, Exit, NewPreHeader); 153 InsertPt->eraseFromParent(); 154 if (DT) 155 DT->changeImmediateDominator(Exit, PrologExit); 156 } 157 158 /// Connect the unrolling epilog code to the original loop. 159 /// The unrolling epilog code contains code to execute the 160 /// 'extra' iterations if the run-time trip count modulo the 161 /// unroll count is non-zero. 162 /// 163 /// This function performs the following: 164 /// - Update PHI nodes at the unrolling loop exit and epilog loop exit 165 /// - Create PHI nodes at the unrolling loop exit to combine 166 /// values that exit the unrolling loop code and jump around it. 167 /// - Update PHI operands in the epilog loop by the new PHI nodes 168 /// - Branch around the epilog loop if extra iters (ModVal) is zero. 169 /// 170 static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit, 171 BasicBlock *Exit, BasicBlock *PreHeader, 172 BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader, 173 ValueToValueMapTy &VMap, DominatorTree *DT, 174 LoopInfo *LI, bool PreserveLCSSA) { 175 BasicBlock *Latch = L->getLoopLatch(); 176 assert(Latch && "Loop must have a latch"); 177 BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]); 178 179 // Loop structure should be the following: 180 // 181 // PreHeader 182 // NewPreHeader 183 // Header 184 // ... 185 // Latch 186 // NewExit (PN) 187 // EpilogPreHeader 188 // EpilogHeader 189 // ... 190 // EpilogLatch 191 // Exit (EpilogPN) 192 193 // Update PHI nodes at NewExit and Exit. 194 for (Instruction &BBI : *NewExit) { 195 PHINode *PN = dyn_cast<PHINode>(&BBI); 196 // Exit when we passed all PHI nodes. 197 if (!PN) 198 break; 199 // PN should be used in another PHI located in Exit block as 200 // Exit was split by SplitBlockPredecessors into Exit and NewExit 201 // Basicaly it should look like: 202 // NewExit: 203 // PN = PHI [I, Latch] 204 // ... 205 // Exit: 206 // EpilogPN = PHI [PN, EpilogPreHeader] 207 // 208 // There is EpilogPreHeader incoming block instead of NewExit as 209 // NewExit was spilt 1 more time to get EpilogPreHeader. 210 assert(PN->hasOneUse() && "The phi should have 1 use"); 211 PHINode *EpilogPN = cast<PHINode> (PN->use_begin()->getUser()); 212 assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block"); 213 214 // Add incoming PreHeader from branch around the Loop 215 PN->addIncoming(UndefValue::get(PN->getType()), PreHeader); 216 217 Value *V = PN->getIncomingValueForBlock(Latch); 218 Instruction *I = dyn_cast<Instruction>(V); 219 if (I && L->contains(I)) 220 // If value comes from an instruction in the loop add VMap value. 221 V = VMap.lookup(I); 222 // For the instruction out of the loop, constant or undefined value 223 // insert value itself. 224 EpilogPN->addIncoming(V, EpilogLatch); 225 226 assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 && 227 "EpilogPN should have EpilogPreHeader incoming block"); 228 // Change EpilogPreHeader incoming block to NewExit. 229 EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader), 230 NewExit); 231 // Now PHIs should look like: 232 // NewExit: 233 // PN = PHI [I, Latch], [undef, PreHeader] 234 // ... 235 // Exit: 236 // EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch] 237 } 238 239 // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader). 240 // Update corresponding PHI nodes in epilog loop. 241 for (BasicBlock *Succ : successors(Latch)) { 242 // Skip this as we already updated phis in exit blocks. 243 if (!L->contains(Succ)) 244 continue; 245 for (Instruction &BBI : *Succ) { 246 PHINode *PN = dyn_cast<PHINode>(&BBI); 247 // Exit when we passed all PHI nodes. 248 if (!PN) 249 break; 250 // Add new PHI nodes to the loop exit block and update epilog 251 // PHIs with the new PHI values. 252 PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr", 253 NewExit->getFirstNonPHI()); 254 // Adding a value to the new PHI node from the unrolling loop preheader. 255 NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader), PreHeader); 256 // Adding a value to the new PHI node from the unrolling loop latch. 257 NewPN->addIncoming(PN->getIncomingValueForBlock(Latch), Latch); 258 259 // Update the existing PHI node operand with the value from the new PHI 260 // node. Corresponding instruction in epilog loop should be PHI. 261 PHINode *VPN = cast<PHINode>(VMap[&BBI]); 262 VPN->setIncomingValue(VPN->getBasicBlockIndex(EpilogPreHeader), NewPN); 263 } 264 } 265 266 Instruction *InsertPt = NewExit->getTerminator(); 267 IRBuilder<> B(InsertPt); 268 Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod"); 269 assert(Exit && "Loop must have a single exit block only"); 270 // Split the epilogue exit to maintain loop canonicalization guarantees 271 SmallVector<BasicBlock*, 4> Preds(predecessors(Exit)); 272 SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI, 273 PreserveLCSSA); 274 // Add the branch to the exit block (around the unrolling loop) 275 B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit); 276 InsertPt->eraseFromParent(); 277 if (DT) 278 DT->changeImmediateDominator(Exit, NewExit); 279 280 // Split the main loop exit to maintain canonicalization guarantees. 281 SmallVector<BasicBlock*, 4> NewExitPreds{Latch}; 282 SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI, 283 PreserveLCSSA); 284 } 285 286 /// Create a clone of the blocks in a loop and connect them together. 287 /// If CreateRemainderLoop is false, loop structure will not be cloned, 288 /// otherwise a new loop will be created including all cloned blocks, and the 289 /// iterator of it switches to count NewIter down to 0. 290 /// The cloned blocks should be inserted between InsertTop and InsertBot. 291 /// If loop structure is cloned InsertTop should be new preheader, InsertBot 292 /// new loop exit. 293 /// Return the new cloned loop that is created when CreateRemainderLoop is true. 294 static Loop * 295 CloneLoopBlocks(Loop *L, Value *NewIter, const bool CreateRemainderLoop, 296 const bool UseEpilogRemainder, BasicBlock *InsertTop, 297 BasicBlock *InsertBot, BasicBlock *Preheader, 298 std::vector<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks, 299 ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI) { 300 StringRef suffix = UseEpilogRemainder ? "epil" : "prol"; 301 BasicBlock *Header = L->getHeader(); 302 BasicBlock *Latch = L->getLoopLatch(); 303 Function *F = Header->getParent(); 304 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); 305 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); 306 Loop *ParentLoop = L->getParentLoop(); 307 NewLoopsMap NewLoops; 308 NewLoops[ParentLoop] = ParentLoop; 309 if (!CreateRemainderLoop) 310 NewLoops[L] = ParentLoop; 311 312 // For each block in the original loop, create a new copy, 313 // and update the value map with the newly created values. 314 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 315 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F); 316 NewBlocks.push_back(NewBB); 317 318 // If we're unrolling the outermost loop, there's no remainder loop, 319 // and this block isn't in a nested loop, then the new block is not 320 // in any loop. Otherwise, add it to loopinfo. 321 if (CreateRemainderLoop || LI->getLoopFor(*BB) != L || ParentLoop) 322 addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops); 323 324 VMap[*BB] = NewBB; 325 if (Header == *BB) { 326 // For the first block, add a CFG connection to this newly 327 // created block. 328 InsertTop->getTerminator()->setSuccessor(0, NewBB); 329 } 330 331 if (DT) { 332 if (Header == *BB) { 333 // The header is dominated by the preheader. 334 DT->addNewBlock(NewBB, InsertTop); 335 } else { 336 // Copy information from original loop to unrolled loop. 337 BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock(); 338 DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB])); 339 } 340 } 341 342 if (Latch == *BB) { 343 // For the last block, if CreateRemainderLoop is false, create a direct 344 // jump to InsertBot. If not, create a loop back to cloned head. 345 VMap.erase((*BB)->getTerminator()); 346 BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]); 347 BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator()); 348 IRBuilder<> Builder(LatchBR); 349 if (!CreateRemainderLoop) { 350 Builder.CreateBr(InsertBot); 351 } else { 352 PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2, 353 suffix + ".iter", 354 FirstLoopBB->getFirstNonPHI()); 355 Value *IdxSub = 356 Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1), 357 NewIdx->getName() + ".sub"); 358 Value *IdxCmp = 359 Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp"); 360 Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot); 361 NewIdx->addIncoming(NewIter, InsertTop); 362 NewIdx->addIncoming(IdxSub, NewBB); 363 } 364 LatchBR->eraseFromParent(); 365 } 366 } 367 368 // Change the incoming values to the ones defined in the preheader or 369 // cloned loop. 370 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 371 PHINode *NewPHI = cast<PHINode>(VMap[&*I]); 372 if (!CreateRemainderLoop) { 373 if (UseEpilogRemainder) { 374 unsigned idx = NewPHI->getBasicBlockIndex(Preheader); 375 NewPHI->setIncomingBlock(idx, InsertTop); 376 NewPHI->removeIncomingValue(Latch, false); 377 } else { 378 VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader); 379 cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI); 380 } 381 } else { 382 unsigned idx = NewPHI->getBasicBlockIndex(Preheader); 383 NewPHI->setIncomingBlock(idx, InsertTop); 384 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); 385 idx = NewPHI->getBasicBlockIndex(Latch); 386 Value *InVal = NewPHI->getIncomingValue(idx); 387 NewPHI->setIncomingBlock(idx, NewLatch); 388 if (Value *V = VMap.lookup(InVal)) 389 NewPHI->setIncomingValue(idx, V); 390 } 391 } 392 if (CreateRemainderLoop) { 393 Loop *NewLoop = NewLoops[L]; 394 assert(NewLoop && "L should have been cloned"); 395 // Add unroll disable metadata to disable future unrolling for this loop. 396 SmallVector<Metadata *, 4> MDs; 397 // Reserve first location for self reference to the LoopID metadata node. 398 MDs.push_back(nullptr); 399 MDNode *LoopID = NewLoop->getLoopID(); 400 if (LoopID) { 401 // First remove any existing loop unrolling metadata. 402 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 403 bool IsUnrollMetadata = false; 404 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 405 if (MD) { 406 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 407 IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll."); 408 } 409 if (!IsUnrollMetadata) 410 MDs.push_back(LoopID->getOperand(i)); 411 } 412 } 413 414 LLVMContext &Context = NewLoop->getHeader()->getContext(); 415 SmallVector<Metadata *, 1> DisableOperands; 416 DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable")); 417 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 418 MDs.push_back(DisableNode); 419 420 MDNode *NewLoopID = MDNode::get(Context, MDs); 421 // Set operand 0 to refer to the loop id itself. 422 NewLoopID->replaceOperandWith(0, NewLoopID); 423 NewLoop->setLoopID(NewLoopID); 424 return NewLoop; 425 } 426 else 427 return nullptr; 428 } 429 430 /// Insert code in the prolog/epilog code when unrolling a loop with a 431 /// run-time trip-count. 432 /// 433 /// This method assumes that the loop unroll factor is total number 434 /// of loop bodies in the loop after unrolling. (Some folks refer 435 /// to the unroll factor as the number of *extra* copies added). 436 /// We assume also that the loop unroll factor is a power-of-two. So, after 437 /// unrolling the loop, the number of loop bodies executed is 2, 438 /// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch 439 /// instruction in SimplifyCFG.cpp. Then, the backend decides how code for 440 /// the switch instruction is generated. 441 /// 442 /// ***Prolog case*** 443 /// extraiters = tripcount % loopfactor 444 /// if (extraiters == 0) jump Loop: 445 /// else jump Prol: 446 /// Prol: LoopBody; 447 /// extraiters -= 1 // Omitted if unroll factor is 2. 448 /// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2. 449 /// if (tripcount < loopfactor) jump End: 450 /// Loop: 451 /// ... 452 /// End: 453 /// 454 /// ***Epilog case*** 455 /// extraiters = tripcount % loopfactor 456 /// if (tripcount < loopfactor) jump LoopExit: 457 /// unroll_iters = tripcount - extraiters 458 /// Loop: LoopBody; (executes unroll_iter times); 459 /// unroll_iter -= 1 460 /// if (unroll_iter != 0) jump Loop: 461 /// LoopExit: 462 /// if (extraiters == 0) jump EpilExit: 463 /// Epil: LoopBody; (executes extraiters times) 464 /// extraiters -= 1 // Omitted if unroll factor is 2. 465 /// if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2. 466 /// EpilExit: 467 468 bool llvm::UnrollRuntimeLoopRemainder(Loop *L, unsigned Count, 469 bool AllowExpensiveTripCount, 470 bool UseEpilogRemainder, 471 LoopInfo *LI, ScalarEvolution *SE, 472 DominatorTree *DT, bool PreserveLCSSA) { 473 // for now, only unroll loops that contain a single exit 474 if (!UnrollRuntimeMultiExit && !L->getExitingBlock()) 475 return false; 476 477 // Make sure the loop is in canonical form. 478 if (!L->isLoopSimplifyForm()) 479 return false; 480 481 // Guaranteed by LoopSimplifyForm. 482 BasicBlock *Latch = L->getLoopLatch(); 483 BasicBlock *Header = L->getHeader(); 484 485 BasicBlock *LatchExit = L->getUniqueExitBlock(); // successor out of loop 486 if (!LatchExit && !UnrollRuntimeMultiExit) 487 return false; 488 // These are exit blocks other than the target of the latch exiting block. 489 SmallVector<BasicBlock *, 4> OtherExits; 490 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); 491 unsigned int ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0; 492 // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the 493 // targets of the Latch be an exit block out of the loop. This needs 494 // to be guaranteed by the callers of UnrollRuntimeLoopRemainder. 495 assert(!L->contains(LatchBR->getSuccessor(ExitIndex)) && 496 "one of the loop latch successors should be the exit block!"); 497 // Support runtime unrolling for multiple exit blocks and multiple exiting 498 // blocks. 499 if (!LatchExit) { 500 assert(UseEpilogRemainder && "Multi exit unrolling is currently supported " 501 "unrolling with epilog remainder only!"); 502 LatchExit = LatchBR->getSuccessor(ExitIndex); 503 // We rely on LCSSA form being preserved when the exit blocks are 504 // transformed. 505 if (!PreserveLCSSA) 506 return false; 507 // TODO: Support multiple exiting blocks jumping to the `LatchExit`. This 508 // will need updating the logic in connectEpilog. 509 if (!LatchExit->getSinglePredecessor()) 510 return false; 511 SmallVector<BasicBlock *, 4> Exits; 512 L->getUniqueExitBlocks(Exits); 513 for (auto *BB : Exits) 514 if (BB != LatchExit) 515 OtherExits.push_back(BB); 516 } 517 518 assert(LatchExit && "Latch Exit should exist!"); 519 520 // Use Scalar Evolution to compute the trip count. This allows more loops to 521 // be unrolled than relying on induction var simplification. 522 if (!SE) 523 return false; 524 525 // Only unroll loops with a computable trip count, and the trip count needs 526 // to be an int value (allowing a pointer type is a TODO item). 527 // We calculate the backedge count by using getExitCount on the Latch block, 528 // which is proven to be the only exiting block in this loop. This is same as 529 // calculating getBackedgeTakenCount on the loop (which computes SCEV for all 530 // exiting blocks). 531 const SCEV *BECountSC = SE->getExitCount(L, Latch); 532 if (isa<SCEVCouldNotCompute>(BECountSC) || 533 !BECountSC->getType()->isIntegerTy()) 534 return false; 535 536 unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth(); 537 538 // Add 1 since the backedge count doesn't include the first loop iteration. 539 const SCEV *TripCountSC = 540 SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1)); 541 if (isa<SCEVCouldNotCompute>(TripCountSC)) 542 return false; 543 544 BasicBlock *PreHeader = L->getLoopPreheader(); 545 BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); 546 const DataLayout &DL = Header->getModule()->getDataLayout(); 547 SCEVExpander Expander(*SE, DL, "loop-unroll"); 548 if (!AllowExpensiveTripCount && 549 Expander.isHighCostExpansion(TripCountSC, L, PreHeaderBR)) 550 return false; 551 552 // This constraint lets us deal with an overflowing trip count easily; see the 553 // comment on ModVal below. 554 if (Log2_32(Count) > BEWidth) 555 return false; 556 557 // Loop structure is the following: 558 // 559 // PreHeader 560 // Header 561 // ... 562 // Latch 563 // LatchExit 564 565 BasicBlock *NewPreHeader; 566 BasicBlock *NewExit = nullptr; 567 BasicBlock *PrologExit = nullptr; 568 BasicBlock *EpilogPreHeader = nullptr; 569 BasicBlock *PrologPreHeader = nullptr; 570 571 if (UseEpilogRemainder) { 572 // If epilog remainder 573 // Split PreHeader to insert a branch around loop for unrolling. 574 NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI); 575 NewPreHeader->setName(PreHeader->getName() + ".new"); 576 // Split LatchExit to create phi nodes from branch above. 577 SmallVector<BasicBlock*, 4> Preds(predecessors(LatchExit)); 578 NewExit = SplitBlockPredecessors(LatchExit, Preds, ".unr-lcssa", 579 DT, LI, PreserveLCSSA); 580 // Split NewExit to insert epilog remainder loop. 581 EpilogPreHeader = SplitBlock(NewExit, NewExit->getTerminator(), DT, LI); 582 EpilogPreHeader->setName(Header->getName() + ".epil.preheader"); 583 } else { 584 // If prolog remainder 585 // Split the original preheader twice to insert prolog remainder loop 586 PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI); 587 PrologPreHeader->setName(Header->getName() + ".prol.preheader"); 588 PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(), 589 DT, LI); 590 PrologExit->setName(Header->getName() + ".prol.loopexit"); 591 // Split PrologExit to get NewPreHeader. 592 NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI); 593 NewPreHeader->setName(PreHeader->getName() + ".new"); 594 } 595 // Loop structure should be the following: 596 // Epilog Prolog 597 // 598 // PreHeader PreHeader 599 // *NewPreHeader *PrologPreHeader 600 // Header *PrologExit 601 // ... *NewPreHeader 602 // Latch Header 603 // *NewExit ... 604 // *EpilogPreHeader Latch 605 // LatchExit LatchExit 606 607 // Calculate conditions for branch around loop for unrolling 608 // in epilog case and around prolog remainder loop in prolog case. 609 // Compute the number of extra iterations required, which is: 610 // extra iterations = run-time trip count % loop unroll factor 611 PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); 612 Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(), 613 PreHeaderBR); 614 Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(), 615 PreHeaderBR); 616 IRBuilder<> B(PreHeaderBR); 617 Value *ModVal; 618 // Calculate ModVal = (BECount + 1) % Count. 619 // Note that TripCount is BECount + 1. 620 if (isPowerOf2_32(Count)) { 621 // When Count is power of 2 we don't BECount for epilog case, however we'll 622 // need it for a branch around unrolling loop for prolog case. 623 ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter"); 624 // 1. There are no iterations to be run in the prolog/epilog loop. 625 // OR 626 // 2. The addition computing TripCount overflowed. 627 // 628 // If (2) is true, we know that TripCount really is (1 << BEWidth) and so 629 // the number of iterations that remain to be run in the original loop is a 630 // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we 631 // explicitly check this above). 632 } else { 633 // As (BECount + 1) can potentially unsigned overflow we count 634 // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count. 635 Value *ModValTmp = B.CreateURem(BECount, 636 ConstantInt::get(BECount->getType(), 637 Count)); 638 Value *ModValAdd = B.CreateAdd(ModValTmp, 639 ConstantInt::get(ModValTmp->getType(), 1)); 640 // At that point (BECount % Count) + 1 could be equal to Count. 641 // To handle this case we need to take mod by Count one more time. 642 ModVal = B.CreateURem(ModValAdd, 643 ConstantInt::get(BECount->getType(), Count), 644 "xtraiter"); 645 } 646 Value *BranchVal = 647 UseEpilogRemainder ? B.CreateICmpULT(BECount, 648 ConstantInt::get(BECount->getType(), 649 Count - 1)) : 650 B.CreateIsNotNull(ModVal, "lcmp.mod"); 651 BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader; 652 BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit; 653 // Branch to either remainder (extra iterations) loop or unrolling loop. 654 B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop); 655 PreHeaderBR->eraseFromParent(); 656 if (DT) { 657 if (UseEpilogRemainder) 658 DT->changeImmediateDominator(NewExit, PreHeader); 659 else 660 DT->changeImmediateDominator(PrologExit, PreHeader); 661 } 662 Function *F = Header->getParent(); 663 // Get an ordered list of blocks in the loop to help with the ordering of the 664 // cloned blocks in the prolog/epilog code 665 LoopBlocksDFS LoopBlocks(L); 666 LoopBlocks.perform(LI); 667 668 // 669 // For each extra loop iteration, create a copy of the loop's basic blocks 670 // and generate a condition that branches to the copy depending on the 671 // number of 'left over' iterations. 672 // 673 std::vector<BasicBlock *> NewBlocks; 674 ValueToValueMapTy VMap; 675 676 // For unroll factor 2 remainder loop will have 1 iterations. 677 // Do not create 1 iteration loop. 678 bool CreateRemainderLoop = (Count != 2); 679 680 // Clone all the basic blocks in the loop. If Count is 2, we don't clone 681 // the loop, otherwise we create a cloned loop to execute the extra 682 // iterations. This function adds the appropriate CFG connections. 683 BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit; 684 BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader; 685 Loop *remainderLoop = CloneLoopBlocks( 686 L, ModVal, CreateRemainderLoop, UseEpilogRemainder, InsertTop, InsertBot, 687 NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI); 688 689 // Insert the cloned blocks into the function. 690 F->getBasicBlockList().splice(InsertBot->getIterator(), 691 F->getBasicBlockList(), 692 NewBlocks[0]->getIterator(), 693 F->end()); 694 695 // Now the loop blocks are cloned and the other exiting blocks from the 696 // remainder are connected to the original Loop's exit blocks. The remaining 697 // work is to update the phi nodes in the original loop, and take in the 698 // values from the cloned region. Also update the dominator info for 699 // OtherExits, since we have new edges into OtherExits. 700 for (auto *BB : OtherExits) { 701 for (auto &II : *BB) { 702 703 // Given we preserve LCSSA form, we know that the values used outside the 704 // loop will be used through these phi nodes at the exit blocks that are 705 // transformed below. 706 if (!isa<PHINode>(II)) 707 break; 708 PHINode *Phi = cast<PHINode>(&II); 709 unsigned oldNumOperands = Phi->getNumIncomingValues(); 710 // Add the incoming values from the remainder code to the end of the phi 711 // node. 712 for (unsigned i =0; i < oldNumOperands; i++){ 713 Value *newVal = VMap[Phi->getIncomingValue(i)]; 714 if (!newVal) { 715 assert(isa<Constant>(Phi->getIncomingValue(i)) && 716 "VMap should exist for all values except constants!"); 717 newVal = Phi->getIncomingValue(i); 718 } 719 Phi->addIncoming(newVal, 720 cast<BasicBlock>(VMap[Phi->getIncomingBlock(i)])); 721 } 722 } 723 // Update the dominator info because the immediate dominator is no longer the 724 // header of the original Loop. BB has edges both from L and remainder code. 725 // Since the preheader determines which loop is run (L or directly jump to 726 // the remainder code), we set the immediate dominator as the preheader. 727 if (DT) 728 DT->changeImmediateDominator(BB, PreHeader); 729 } 730 731 // Loop structure should be the following: 732 // Epilog Prolog 733 // 734 // PreHeader PreHeader 735 // NewPreHeader PrologPreHeader 736 // Header PrologHeader 737 // ... ... 738 // Latch PrologLatch 739 // NewExit PrologExit 740 // EpilogPreHeader NewPreHeader 741 // EpilogHeader Header 742 // ... ... 743 // EpilogLatch Latch 744 // LatchExit LatchExit 745 746 // Rewrite the cloned instruction operands to use the values created when the 747 // clone is created. 748 for (BasicBlock *BB : NewBlocks) { 749 for (Instruction &I : *BB) { 750 RemapInstruction(&I, VMap, 751 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 752 } 753 } 754 755 if (UseEpilogRemainder) { 756 // Connect the epilog code to the original loop and update the 757 // PHI functions. 758 ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader, 759 EpilogPreHeader, NewPreHeader, VMap, DT, LI, 760 PreserveLCSSA); 761 762 // Update counter in loop for unrolling. 763 // I should be multiply of Count. 764 IRBuilder<> B2(NewPreHeader->getTerminator()); 765 Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter"); 766 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); 767 B2.SetInsertPoint(LatchBR); 768 PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter", 769 Header->getFirstNonPHI()); 770 Value *IdxSub = 771 B2.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1), 772 NewIdx->getName() + ".nsub"); 773 Value *IdxCmp; 774 if (LatchBR->getSuccessor(0) == Header) 775 IdxCmp = B2.CreateIsNotNull(IdxSub, NewIdx->getName() + ".ncmp"); 776 else 777 IdxCmp = B2.CreateIsNull(IdxSub, NewIdx->getName() + ".ncmp"); 778 NewIdx->addIncoming(TestVal, NewPreHeader); 779 NewIdx->addIncoming(IdxSub, Latch); 780 LatchBR->setCondition(IdxCmp); 781 } else { 782 // Connect the prolog code to the original loop and update the 783 // PHI functions. 784 ConnectProlog(L, BECount, Count, PrologExit, PreHeader, NewPreHeader, 785 VMap, DT, LI, PreserveLCSSA); 786 } 787 788 // If this loop is nested, then the loop unroller changes the code in the 789 // parent loop, so the Scalar Evolution pass needs to be run again. 790 if (Loop *ParentLoop = L->getParentLoop()) 791 SE->forgetLoop(ParentLoop); 792 793 // Canonicalize to LoopSimplifyForm both original and remainder loops. We 794 // cannot rely on the LoopUnrollPass to do this because it only does 795 // canonicalization for parent/subloops and not the sibling loops. 796 if (OtherExits.size() > 0) { 797 // Generate dedicated exit blocks for the original loop, to preserve 798 // LoopSimplifyForm. 799 formDedicatedExitBlocks(L, DT, LI, PreserveLCSSA); 800 // Generate dedicated exit blocks for the remainder loop if one exists, to 801 // preserve LoopSimplifyForm. 802 if (remainderLoop) 803 formDedicatedExitBlocks(remainderLoop, DT, LI, PreserveLCSSA); 804 } 805 806 NumRuntimeUnrolled++; 807 return true; 808 } 809