1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities for loops with run-time 11 // trip counts. See LoopUnroll.cpp for unrolling loops with compile-time 12 // trip counts. 13 // 14 // The functions in this file are used to generate extra code when the 15 // run-time trip count modulo the unroll factor is not 0. When this is the 16 // case, we need to generate code to execute these 'left over' iterations. 17 // 18 // The current strategy generates an if-then-else sequence prior to the 19 // unrolled loop to execute the 'left over' iterations before or after the 20 // unrolled loop. 21 // 22 //===----------------------------------------------------------------------===// 23 24 #include "llvm/Transforms/Utils/UnrollLoop.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/LoopIterator.h" 28 #include "llvm/Analysis/LoopPass.h" 29 #include "llvm/Analysis/ScalarEvolution.h" 30 #include "llvm/Analysis/ScalarEvolutionExpander.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Metadata.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Transforms/Scalar.h" 38 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 39 #include "llvm/Transforms/Utils/Cloning.h" 40 #include <algorithm> 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "loop-unroll" 45 46 STATISTIC(NumRuntimeUnrolled, 47 "Number of loops unrolled with run-time trip counts"); 48 49 /// Connect the unrolling prolog code to the original loop. 50 /// The unrolling prolog code contains code to execute the 51 /// 'extra' iterations if the run-time trip count modulo the 52 /// unroll count is non-zero. 53 /// 54 /// This function performs the following: 55 /// - Create PHI nodes at prolog end block to combine values 56 /// that exit the prolog code and jump around the prolog. 57 /// - Add a PHI operand to a PHI node at the loop exit block 58 /// for values that exit the prolog and go around the loop. 59 /// - Branch around the original loop if the trip count is less 60 /// than the unroll factor. 61 /// 62 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count, 63 BasicBlock *PrologExit, BasicBlock *PreHeader, 64 BasicBlock *NewPreHeader, ValueToValueMapTy &VMap, 65 DominatorTree *DT, LoopInfo *LI, bool PreserveLCSSA) { 66 BasicBlock *Latch = L->getLoopLatch(); 67 assert(Latch && "Loop must have a latch"); 68 BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]); 69 70 // Create a PHI node for each outgoing value from the original loop 71 // (which means it is an outgoing value from the prolog code too). 72 // The new PHI node is inserted in the prolog end basic block. 73 // The new PHI node value is added as an operand of a PHI node in either 74 // the loop header or the loop exit block. 75 for (BasicBlock *Succ : successors(Latch)) { 76 for (Instruction &BBI : *Succ) { 77 PHINode *PN = dyn_cast<PHINode>(&BBI); 78 // Exit when we passed all PHI nodes. 79 if (!PN) 80 break; 81 // Add a new PHI node to the prolog end block and add the 82 // appropriate incoming values. 83 PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr", 84 PrologExit->getFirstNonPHI()); 85 // Adding a value to the new PHI node from the original loop preheader. 86 // This is the value that skips all the prolog code. 87 if (L->contains(PN)) { 88 NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader), 89 PreHeader); 90 } else { 91 NewPN->addIncoming(UndefValue::get(PN->getType()), PreHeader); 92 } 93 94 Value *V = PN->getIncomingValueForBlock(Latch); 95 if (Instruction *I = dyn_cast<Instruction>(V)) { 96 if (L->contains(I)) { 97 V = VMap.lookup(I); 98 } 99 } 100 // Adding a value to the new PHI node from the last prolog block 101 // that was created. 102 NewPN->addIncoming(V, PrologLatch); 103 104 // Update the existing PHI node operand with the value from the 105 // new PHI node. How this is done depends on if the existing 106 // PHI node is in the original loop block, or the exit block. 107 if (L->contains(PN)) { 108 PN->setIncomingValue(PN->getBasicBlockIndex(NewPreHeader), NewPN); 109 } else { 110 PN->addIncoming(NewPN, PrologExit); 111 } 112 } 113 } 114 115 // Make sure that created prolog loop is in simplified form 116 SmallVector<BasicBlock *, 4> PrologExitPreds; 117 Loop *PrologLoop = LI->getLoopFor(PrologLatch); 118 if (PrologLoop) { 119 for (BasicBlock *PredBB : predecessors(PrologExit)) 120 if (PrologLoop->contains(PredBB)) 121 PrologExitPreds.push_back(PredBB); 122 123 SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI, 124 PreserveLCSSA); 125 } 126 127 // Create a branch around the original loop, which is taken if there are no 128 // iterations remaining to be executed after running the prologue. 129 Instruction *InsertPt = PrologExit->getTerminator(); 130 IRBuilder<> B(InsertPt); 131 132 assert(Count != 0 && "nonsensical Count!"); 133 134 // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1) 135 // This means %xtraiter is (BECount + 1) and all of the iterations of this 136 // loop were executed by the prologue. Note that if BECount <u (Count - 1) 137 // then (BECount + 1) cannot unsigned-overflow. 138 Value *BrLoopExit = 139 B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1)); 140 BasicBlock *Exit = L->getUniqueExitBlock(); 141 assert(Exit && "Loop must have a single exit block only"); 142 // Split the exit to maintain loop canonicalization guarantees 143 SmallVector<BasicBlock*, 4> Preds(predecessors(Exit)); 144 SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", DT, LI, 145 PreserveLCSSA); 146 // Add the branch to the exit block (around the unrolled loop) 147 B.CreateCondBr(BrLoopExit, Exit, NewPreHeader); 148 InsertPt->eraseFromParent(); 149 } 150 151 /// Connect the unrolling epilog code to the original loop. 152 /// The unrolling epilog code contains code to execute the 153 /// 'extra' iterations if the run-time trip count modulo the 154 /// unroll count is non-zero. 155 /// 156 /// This function performs the following: 157 /// - Update PHI nodes at the unrolling loop exit and epilog loop exit 158 /// - Create PHI nodes at the unrolling loop exit to combine 159 /// values that exit the unrolling loop code and jump around it. 160 /// - Update PHI operands in the epilog loop by the new PHI nodes 161 /// - Branch around the epilog loop if extra iters (ModVal) is zero. 162 /// 163 static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit, 164 BasicBlock *Exit, BasicBlock *PreHeader, 165 BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader, 166 ValueToValueMapTy &VMap, DominatorTree *DT, 167 LoopInfo *LI, bool PreserveLCSSA) { 168 BasicBlock *Latch = L->getLoopLatch(); 169 assert(Latch && "Loop must have a latch"); 170 BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]); 171 172 // Loop structure should be the following: 173 // 174 // PreHeader 175 // NewPreHeader 176 // Header 177 // ... 178 // Latch 179 // NewExit (PN) 180 // EpilogPreHeader 181 // EpilogHeader 182 // ... 183 // EpilogLatch 184 // Exit (EpilogPN) 185 186 // Update PHI nodes at NewExit and Exit. 187 for (Instruction &BBI : *NewExit) { 188 PHINode *PN = dyn_cast<PHINode>(&BBI); 189 // Exit when we passed all PHI nodes. 190 if (!PN) 191 break; 192 // PN should be used in another PHI located in Exit block as 193 // Exit was split by SplitBlockPredecessors into Exit and NewExit 194 // Basicaly it should look like: 195 // NewExit: 196 // PN = PHI [I, Latch] 197 // ... 198 // Exit: 199 // EpilogPN = PHI [PN, EpilogPreHeader] 200 // 201 // There is EpilogPreHeader incoming block instead of NewExit as 202 // NewExit was spilt 1 more time to get EpilogPreHeader. 203 assert(PN->hasOneUse() && "The phi should have 1 use"); 204 PHINode *EpilogPN = cast<PHINode> (PN->use_begin()->getUser()); 205 assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block"); 206 207 // Add incoming PreHeader from branch around the Loop 208 PN->addIncoming(UndefValue::get(PN->getType()), PreHeader); 209 210 Value *V = PN->getIncomingValueForBlock(Latch); 211 Instruction *I = dyn_cast<Instruction>(V); 212 if (I && L->contains(I)) 213 // If value comes from an instruction in the loop add VMap value. 214 V = VMap.lookup(I); 215 // For the instruction out of the loop, constant or undefined value 216 // insert value itself. 217 EpilogPN->addIncoming(V, EpilogLatch); 218 219 assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 && 220 "EpilogPN should have EpilogPreHeader incoming block"); 221 // Change EpilogPreHeader incoming block to NewExit. 222 EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader), 223 NewExit); 224 // Now PHIs should look like: 225 // NewExit: 226 // PN = PHI [I, Latch], [undef, PreHeader] 227 // ... 228 // Exit: 229 // EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch] 230 } 231 232 // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader). 233 // Update corresponding PHI nodes in epilog loop. 234 for (BasicBlock *Succ : successors(Latch)) { 235 // Skip this as we already updated phis in exit blocks. 236 if (!L->contains(Succ)) 237 continue; 238 for (Instruction &BBI : *Succ) { 239 PHINode *PN = dyn_cast<PHINode>(&BBI); 240 // Exit when we passed all PHI nodes. 241 if (!PN) 242 break; 243 // Add new PHI nodes to the loop exit block and update epilog 244 // PHIs with the new PHI values. 245 PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr", 246 NewExit->getFirstNonPHI()); 247 // Adding a value to the new PHI node from the unrolling loop preheader. 248 NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader), PreHeader); 249 // Adding a value to the new PHI node from the unrolling loop latch. 250 NewPN->addIncoming(PN->getIncomingValueForBlock(Latch), Latch); 251 252 // Update the existing PHI node operand with the value from the new PHI 253 // node. Corresponding instruction in epilog loop should be PHI. 254 PHINode *VPN = cast<PHINode>(VMap[&BBI]); 255 VPN->setIncomingValue(VPN->getBasicBlockIndex(EpilogPreHeader), NewPN); 256 } 257 } 258 259 Instruction *InsertPt = NewExit->getTerminator(); 260 IRBuilder<> B(InsertPt); 261 Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod"); 262 assert(Exit && "Loop must have a single exit block only"); 263 // Split the exit to maintain loop canonicalization guarantees 264 SmallVector<BasicBlock*, 4> Preds(predecessors(Exit)); 265 SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI, 266 PreserveLCSSA); 267 // Add the branch to the exit block (around the unrolling loop) 268 B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit); 269 InsertPt->eraseFromParent(); 270 } 271 272 /// Create a clone of the blocks in a loop and connect them together. 273 /// If CreateRemainderLoop is false, loop structure will not be cloned, 274 /// otherwise a new loop will be created including all cloned blocks, and the 275 /// iterator of it switches to count NewIter down to 0. 276 /// The cloned blocks should be inserted between InsertTop and InsertBot. 277 /// If loop structure is cloned InsertTop should be new preheader, InsertBot 278 /// new loop exit. 279 /// 280 static void CloneLoopBlocks(Loop *L, Value *NewIter, 281 const bool CreateRemainderLoop, 282 const bool UseEpilogRemainder, 283 BasicBlock *InsertTop, BasicBlock *InsertBot, 284 BasicBlock *Preheader, 285 std::vector<BasicBlock *> &NewBlocks, 286 LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap, 287 LoopInfo *LI) { 288 StringRef suffix = UseEpilogRemainder ? "epil" : "prol"; 289 BasicBlock *Header = L->getHeader(); 290 BasicBlock *Latch = L->getLoopLatch(); 291 Function *F = Header->getParent(); 292 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); 293 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); 294 Loop *NewLoop = nullptr; 295 Loop *ParentLoop = L->getParentLoop(); 296 if (CreateRemainderLoop) { 297 NewLoop = new Loop(); 298 if (ParentLoop) 299 ParentLoop->addChildLoop(NewLoop); 300 else 301 LI->addTopLevelLoop(NewLoop); 302 } 303 304 // For each block in the original loop, create a new copy, 305 // and update the value map with the newly created values. 306 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 307 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F); 308 NewBlocks.push_back(NewBB); 309 310 if (NewLoop) 311 NewLoop->addBasicBlockToLoop(NewBB, *LI); 312 else if (ParentLoop) 313 ParentLoop->addBasicBlockToLoop(NewBB, *LI); 314 315 VMap[*BB] = NewBB; 316 if (Header == *BB) { 317 // For the first block, add a CFG connection to this newly 318 // created block. 319 InsertTop->getTerminator()->setSuccessor(0, NewBB); 320 } 321 322 if (Latch == *BB) { 323 // For the last block, if CreateRemainderLoop is false, create a direct 324 // jump to InsertBot. If not, create a loop back to cloned head. 325 VMap.erase((*BB)->getTerminator()); 326 BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]); 327 BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator()); 328 IRBuilder<> Builder(LatchBR); 329 if (!CreateRemainderLoop) { 330 Builder.CreateBr(InsertBot); 331 } else { 332 PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2, 333 suffix + ".iter", 334 FirstLoopBB->getFirstNonPHI()); 335 Value *IdxSub = 336 Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1), 337 NewIdx->getName() + ".sub"); 338 Value *IdxCmp = 339 Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp"); 340 Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot); 341 NewIdx->addIncoming(NewIter, InsertTop); 342 NewIdx->addIncoming(IdxSub, NewBB); 343 } 344 LatchBR->eraseFromParent(); 345 } 346 } 347 348 // Change the incoming values to the ones defined in the preheader or 349 // cloned loop. 350 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 351 PHINode *NewPHI = cast<PHINode>(VMap[&*I]); 352 if (!CreateRemainderLoop) { 353 if (UseEpilogRemainder) { 354 unsigned idx = NewPHI->getBasicBlockIndex(Preheader); 355 NewPHI->setIncomingBlock(idx, InsertTop); 356 NewPHI->removeIncomingValue(Latch, false); 357 } else { 358 VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader); 359 cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI); 360 } 361 } else { 362 unsigned idx = NewPHI->getBasicBlockIndex(Preheader); 363 NewPHI->setIncomingBlock(idx, InsertTop); 364 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); 365 idx = NewPHI->getBasicBlockIndex(Latch); 366 Value *InVal = NewPHI->getIncomingValue(idx); 367 NewPHI->setIncomingBlock(idx, NewLatch); 368 if (Value *V = VMap.lookup(InVal)) 369 NewPHI->setIncomingValue(idx, V); 370 } 371 } 372 if (NewLoop) { 373 // Add unroll disable metadata to disable future unrolling for this loop. 374 SmallVector<Metadata *, 4> MDs; 375 // Reserve first location for self reference to the LoopID metadata node. 376 MDs.push_back(nullptr); 377 MDNode *LoopID = NewLoop->getLoopID(); 378 if (LoopID) { 379 // First remove any existing loop unrolling metadata. 380 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 381 bool IsUnrollMetadata = false; 382 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 383 if (MD) { 384 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 385 IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll."); 386 } 387 if (!IsUnrollMetadata) 388 MDs.push_back(LoopID->getOperand(i)); 389 } 390 } 391 392 LLVMContext &Context = NewLoop->getHeader()->getContext(); 393 SmallVector<Metadata *, 1> DisableOperands; 394 DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable")); 395 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 396 MDs.push_back(DisableNode); 397 398 MDNode *NewLoopID = MDNode::get(Context, MDs); 399 // Set operand 0 to refer to the loop id itself. 400 NewLoopID->replaceOperandWith(0, NewLoopID); 401 NewLoop->setLoopID(NewLoopID); 402 } 403 } 404 405 /// Insert code in the prolog/epilog code when unrolling a loop with a 406 /// run-time trip-count. 407 /// 408 /// This method assumes that the loop unroll factor is total number 409 /// of loop bodies in the loop after unrolling. (Some folks refer 410 /// to the unroll factor as the number of *extra* copies added). 411 /// We assume also that the loop unroll factor is a power-of-two. So, after 412 /// unrolling the loop, the number of loop bodies executed is 2, 413 /// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch 414 /// instruction in SimplifyCFG.cpp. Then, the backend decides how code for 415 /// the switch instruction is generated. 416 /// 417 /// ***Prolog case*** 418 /// extraiters = tripcount % loopfactor 419 /// if (extraiters == 0) jump Loop: 420 /// else jump Prol: 421 /// Prol: LoopBody; 422 /// extraiters -= 1 // Omitted if unroll factor is 2. 423 /// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2. 424 /// if (tripcount < loopfactor) jump End: 425 /// Loop: 426 /// ... 427 /// End: 428 /// 429 /// ***Epilog case*** 430 /// extraiters = tripcount % loopfactor 431 /// if (tripcount < loopfactor) jump LoopExit: 432 /// unroll_iters = tripcount - extraiters 433 /// Loop: LoopBody; (executes unroll_iter times); 434 /// unroll_iter -= 1 435 /// if (unroll_iter != 0) jump Loop: 436 /// LoopExit: 437 /// if (extraiters == 0) jump EpilExit: 438 /// Epil: LoopBody; (executes extraiters times) 439 /// extraiters -= 1 // Omitted if unroll factor is 2. 440 /// if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2. 441 /// EpilExit: 442 443 bool llvm::UnrollRuntimeLoopRemainder(Loop *L, unsigned Count, 444 bool AllowExpensiveTripCount, 445 bool UseEpilogRemainder, 446 LoopInfo *LI, ScalarEvolution *SE, 447 DominatorTree *DT, bool PreserveLCSSA) { 448 // for now, only unroll loops that contain a single exit 449 if (!L->getExitingBlock()) 450 return false; 451 452 // Make sure the loop is in canonical form, and there is a single 453 // exit block only. 454 if (!L->isLoopSimplifyForm()) 455 return false; 456 BasicBlock *Exit = L->getUniqueExitBlock(); // successor out of loop 457 if (!Exit) 458 return false; 459 460 // Use Scalar Evolution to compute the trip count. This allows more loops to 461 // be unrolled than relying on induction var simplification. 462 if (!SE) 463 return false; 464 465 // Only unroll loops with a computable trip count, and the trip count needs 466 // to be an int value (allowing a pointer type is a TODO item). 467 const SCEV *BECountSC = SE->getBackedgeTakenCount(L); 468 if (isa<SCEVCouldNotCompute>(BECountSC) || 469 !BECountSC->getType()->isIntegerTy()) 470 return false; 471 472 unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth(); 473 474 // Add 1 since the backedge count doesn't include the first loop iteration. 475 const SCEV *TripCountSC = 476 SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1)); 477 if (isa<SCEVCouldNotCompute>(TripCountSC)) 478 return false; 479 480 BasicBlock *Header = L->getHeader(); 481 BasicBlock *PreHeader = L->getLoopPreheader(); 482 BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); 483 const DataLayout &DL = Header->getModule()->getDataLayout(); 484 SCEVExpander Expander(*SE, DL, "loop-unroll"); 485 if (!AllowExpensiveTripCount && 486 Expander.isHighCostExpansion(TripCountSC, L, PreHeaderBR)) 487 return false; 488 489 // This constraint lets us deal with an overflowing trip count easily; see the 490 // comment on ModVal below. 491 if (Log2_32(Count) > BEWidth) 492 return false; 493 494 // If this loop is nested, then the loop unroller changes the code in the 495 // parent loop, so the Scalar Evolution pass needs to be run again. 496 if (Loop *ParentLoop = L->getParentLoop()) 497 SE->forgetLoop(ParentLoop); 498 499 BasicBlock *Latch = L->getLoopLatch(); 500 501 // Loop structure is the following: 502 // 503 // PreHeader 504 // Header 505 // ... 506 // Latch 507 // Exit 508 509 BasicBlock *NewPreHeader; 510 BasicBlock *NewExit = nullptr; 511 BasicBlock *PrologExit = nullptr; 512 BasicBlock *EpilogPreHeader = nullptr; 513 BasicBlock *PrologPreHeader = nullptr; 514 515 if (UseEpilogRemainder) { 516 // If epilog remainder 517 // Split PreHeader to insert a branch around loop for unrolling. 518 NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI); 519 NewPreHeader->setName(PreHeader->getName() + ".new"); 520 // Split Exit to create phi nodes from branch above. 521 SmallVector<BasicBlock*, 4> Preds(predecessors(Exit)); 522 NewExit = SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", 523 DT, LI, PreserveLCSSA); 524 // Split NewExit to insert epilog remainder loop. 525 EpilogPreHeader = SplitBlock(NewExit, NewExit->getTerminator(), DT, LI); 526 EpilogPreHeader->setName(Header->getName() + ".epil.preheader"); 527 } else { 528 // If prolog remainder 529 // Split the original preheader twice to insert prolog remainder loop 530 PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI); 531 PrologPreHeader->setName(Header->getName() + ".prol.preheader"); 532 PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(), 533 DT, LI); 534 PrologExit->setName(Header->getName() + ".prol.loopexit"); 535 // Split PrologExit to get NewPreHeader. 536 NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI); 537 NewPreHeader->setName(PreHeader->getName() + ".new"); 538 } 539 // Loop structure should be the following: 540 // Epilog Prolog 541 // 542 // PreHeader PreHeader 543 // *NewPreHeader *PrologPreHeader 544 // Header *PrologExit 545 // ... *NewPreHeader 546 // Latch Header 547 // *NewExit ... 548 // *EpilogPreHeader Latch 549 // Exit Exit 550 551 // Calculate conditions for branch around loop for unrolling 552 // in epilog case and around prolog remainder loop in prolog case. 553 // Compute the number of extra iterations required, which is: 554 // extra iterations = run-time trip count % loop unroll factor 555 PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); 556 Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(), 557 PreHeaderBR); 558 Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(), 559 PreHeaderBR); 560 IRBuilder<> B(PreHeaderBR); 561 Value *ModVal; 562 // Calculate ModVal = (BECount + 1) % Count. 563 // Note that TripCount is BECount + 1. 564 if (isPowerOf2_32(Count)) { 565 // When Count is power of 2 we don't BECount for epilog case, however we'll 566 // need it for a branch around unrolling loop for prolog case. 567 ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter"); 568 // 1. There are no iterations to be run in the prolog/epilog loop. 569 // OR 570 // 2. The addition computing TripCount overflowed. 571 // 572 // If (2) is true, we know that TripCount really is (1 << BEWidth) and so 573 // the number of iterations that remain to be run in the original loop is a 574 // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we 575 // explicitly check this above). 576 } else { 577 // As (BECount + 1) can potentially unsigned overflow we count 578 // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count. 579 Value *ModValTmp = B.CreateURem(BECount, 580 ConstantInt::get(BECount->getType(), 581 Count)); 582 Value *ModValAdd = B.CreateAdd(ModValTmp, 583 ConstantInt::get(ModValTmp->getType(), 1)); 584 // At that point (BECount % Count) + 1 could be equal to Count. 585 // To handle this case we need to take mod by Count one more time. 586 ModVal = B.CreateURem(ModValAdd, 587 ConstantInt::get(BECount->getType(), Count), 588 "xtraiter"); 589 } 590 Value *BranchVal = 591 UseEpilogRemainder ? B.CreateICmpULT(BECount, 592 ConstantInt::get(BECount->getType(), 593 Count - 1)) : 594 B.CreateIsNotNull(ModVal, "lcmp.mod"); 595 BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader; 596 BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit; 597 // Branch to either remainder (extra iterations) loop or unrolling loop. 598 B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop); 599 PreHeaderBR->eraseFromParent(); 600 Function *F = Header->getParent(); 601 // Get an ordered list of blocks in the loop to help with the ordering of the 602 // cloned blocks in the prolog/epilog code 603 LoopBlocksDFS LoopBlocks(L); 604 LoopBlocks.perform(LI); 605 606 // 607 // For each extra loop iteration, create a copy of the loop's basic blocks 608 // and generate a condition that branches to the copy depending on the 609 // number of 'left over' iterations. 610 // 611 std::vector<BasicBlock *> NewBlocks; 612 ValueToValueMapTy VMap; 613 614 // For unroll factor 2 remainder loop will have 1 iterations. 615 // Do not create 1 iteration loop. 616 bool CreateRemainderLoop = (Count != 2); 617 618 // Clone all the basic blocks in the loop. If Count is 2, we don't clone 619 // the loop, otherwise we create a cloned loop to execute the extra 620 // iterations. This function adds the appropriate CFG connections. 621 BasicBlock *InsertBot = UseEpilogRemainder ? Exit : PrologExit; 622 BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader; 623 CloneLoopBlocks(L, ModVal, CreateRemainderLoop, UseEpilogRemainder, InsertTop, 624 InsertBot, NewPreHeader, NewBlocks, LoopBlocks, VMap, LI); 625 626 // Insert the cloned blocks into the function. 627 F->getBasicBlockList().splice(InsertBot->getIterator(), 628 F->getBasicBlockList(), 629 NewBlocks[0]->getIterator(), 630 F->end()); 631 632 // Loop structure should be the following: 633 // Epilog Prolog 634 // 635 // PreHeader PreHeader 636 // NewPreHeader PrologPreHeader 637 // Header PrologHeader 638 // ... ... 639 // Latch PrologLatch 640 // NewExit PrologExit 641 // EpilogPreHeader NewPreHeader 642 // EpilogHeader Header 643 // ... ... 644 // EpilogLatch Latch 645 // Exit Exit 646 647 // Rewrite the cloned instruction operands to use the values created when the 648 // clone is created. 649 for (BasicBlock *BB : NewBlocks) { 650 for (Instruction &I : *BB) { 651 RemapInstruction(&I, VMap, 652 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 653 } 654 } 655 656 if (UseEpilogRemainder) { 657 // Connect the epilog code to the original loop and update the 658 // PHI functions. 659 ConnectEpilog(L, ModVal, NewExit, Exit, PreHeader, 660 EpilogPreHeader, NewPreHeader, VMap, DT, LI, 661 PreserveLCSSA); 662 663 // Update counter in loop for unrolling. 664 // I should be multiply of Count. 665 IRBuilder<> B2(NewPreHeader->getTerminator()); 666 Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter"); 667 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); 668 B2.SetInsertPoint(LatchBR); 669 PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter", 670 Header->getFirstNonPHI()); 671 Value *IdxSub = 672 B2.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1), 673 NewIdx->getName() + ".nsub"); 674 Value *IdxCmp; 675 if (LatchBR->getSuccessor(0) == Header) 676 IdxCmp = B2.CreateIsNotNull(IdxSub, NewIdx->getName() + ".ncmp"); 677 else 678 IdxCmp = B2.CreateIsNull(IdxSub, NewIdx->getName() + ".ncmp"); 679 NewIdx->addIncoming(TestVal, NewPreHeader); 680 NewIdx->addIncoming(IdxSub, Latch); 681 LatchBR->setCondition(IdxCmp); 682 } else { 683 // Connect the prolog code to the original loop and update the 684 // PHI functions. 685 ConnectProlog(L, BECount, Count, PrologExit, PreHeader, NewPreHeader, 686 VMap, DT, LI, PreserveLCSSA); 687 } 688 NumRuntimeUnrolled++; 689 return true; 690 } 691