xref: /llvm-project/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp (revision 70ffd65ca97bd7010108ad8c1369c105fb78714a)
1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities for loops with run-time
11 // trip counts.  See LoopUnroll.cpp for unrolling loops with compile-time
12 // trip counts.
13 //
14 // The functions in this file are used to generate extra code when the
15 // run-time trip count modulo the unroll factor is not 0.  When this is the
16 // case, we need to generate code to execute these 'left over' iterations.
17 //
18 // The current strategy generates an if-then-else sequence prior to the
19 // unrolled loop to execute the 'left over' iterations before or after the
20 // unrolled loop.
21 //
22 //===----------------------------------------------------------------------===//
23 
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Analysis/LoopIterator.h"
27 #include "llvm/Analysis/LoopPass.h"
28 #include "llvm/Analysis/ScalarEvolution.h"
29 #include "llvm/Analysis/ScalarEvolutionExpander.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Transforms/Scalar.h"
37 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
38 #include "llvm/Transforms/Utils/Cloning.h"
39 #include "llvm/Transforms/Utils/LoopUtils.h"
40 #include "llvm/Transforms/Utils/UnrollLoop.h"
41 #include <algorithm>
42 
43 using namespace llvm;
44 
45 #define DEBUG_TYPE "loop-unroll"
46 
47 STATISTIC(NumRuntimeUnrolled,
48           "Number of loops unrolled with run-time trip counts");
49 static cl::opt<bool> UnrollRuntimeMultiExit(
50     "unroll-runtime-multi-exit", cl::init(false), cl::Hidden,
51     cl::desc("Allow runtime unrolling for loops with multiple exits, when "
52              "epilog is generated"));
53 
54 /// Connect the unrolling prolog code to the original loop.
55 /// The unrolling prolog code contains code to execute the
56 /// 'extra' iterations if the run-time trip count modulo the
57 /// unroll count is non-zero.
58 ///
59 /// This function performs the following:
60 /// - Create PHI nodes at prolog end block to combine values
61 ///   that exit the prolog code and jump around the prolog.
62 /// - Add a PHI operand to a PHI node at the loop exit block
63 ///   for values that exit the prolog and go around the loop.
64 /// - Branch around the original loop if the trip count is less
65 ///   than the unroll factor.
66 ///
67 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
68                           BasicBlock *PrologExit,
69                           BasicBlock *OriginalLoopLatchExit,
70                           BasicBlock *PreHeader, BasicBlock *NewPreHeader,
71                           ValueToValueMapTy &VMap, DominatorTree *DT,
72                           LoopInfo *LI, bool PreserveLCSSA) {
73   BasicBlock *Latch = L->getLoopLatch();
74   assert(Latch && "Loop must have a latch");
75   BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]);
76 
77   // Create a PHI node for each outgoing value from the original loop
78   // (which means it is an outgoing value from the prolog code too).
79   // The new PHI node is inserted in the prolog end basic block.
80   // The new PHI node value is added as an operand of a PHI node in either
81   // the loop header or the loop exit block.
82   for (BasicBlock *Succ : successors(Latch)) {
83     for (Instruction &BBI : *Succ) {
84       PHINode *PN = dyn_cast<PHINode>(&BBI);
85       // Exit when we passed all PHI nodes.
86       if (!PN)
87         break;
88       // Add a new PHI node to the prolog end block and add the
89       // appropriate incoming values.
90       PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr",
91                                        PrologExit->getFirstNonPHI());
92       // Adding a value to the new PHI node from the original loop preheader.
93       // This is the value that skips all the prolog code.
94       if (L->contains(PN)) {
95         NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader),
96                            PreHeader);
97       } else {
98         NewPN->addIncoming(UndefValue::get(PN->getType()), PreHeader);
99       }
100 
101       Value *V = PN->getIncomingValueForBlock(Latch);
102       if (Instruction *I = dyn_cast<Instruction>(V)) {
103         if (L->contains(I)) {
104           V = VMap.lookup(I);
105         }
106       }
107       // Adding a value to the new PHI node from the last prolog block
108       // that was created.
109       NewPN->addIncoming(V, PrologLatch);
110 
111       // Update the existing PHI node operand with the value from the
112       // new PHI node.  How this is done depends on if the existing
113       // PHI node is in the original loop block, or the exit block.
114       if (L->contains(PN)) {
115         PN->setIncomingValue(PN->getBasicBlockIndex(NewPreHeader), NewPN);
116       } else {
117         PN->addIncoming(NewPN, PrologExit);
118       }
119     }
120   }
121 
122   // Make sure that created prolog loop is in simplified form
123   SmallVector<BasicBlock *, 4> PrologExitPreds;
124   Loop *PrologLoop = LI->getLoopFor(PrologLatch);
125   if (PrologLoop) {
126     for (BasicBlock *PredBB : predecessors(PrologExit))
127       if (PrologLoop->contains(PredBB))
128         PrologExitPreds.push_back(PredBB);
129 
130     SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI,
131                            PreserveLCSSA);
132   }
133 
134   // Create a branch around the original loop, which is taken if there are no
135   // iterations remaining to be executed after running the prologue.
136   Instruction *InsertPt = PrologExit->getTerminator();
137   IRBuilder<> B(InsertPt);
138 
139   assert(Count != 0 && "nonsensical Count!");
140 
141   // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1)
142   // This means %xtraiter is (BECount + 1) and all of the iterations of this
143   // loop were executed by the prologue.  Note that if BECount <u (Count - 1)
144   // then (BECount + 1) cannot unsigned-overflow.
145   Value *BrLoopExit =
146       B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1));
147   // Split the exit to maintain loop canonicalization guarantees
148   SmallVector<BasicBlock *, 4> Preds(predecessors(OriginalLoopLatchExit));
149   SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI,
150                          PreserveLCSSA);
151   // Add the branch to the exit block (around the unrolled loop)
152   B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader);
153   InsertPt->eraseFromParent();
154   if (DT)
155     DT->changeImmediateDominator(OriginalLoopLatchExit, PrologExit);
156 }
157 
158 /// Connect the unrolling epilog code to the original loop.
159 /// The unrolling epilog code contains code to execute the
160 /// 'extra' iterations if the run-time trip count modulo the
161 /// unroll count is non-zero.
162 ///
163 /// This function performs the following:
164 /// - Update PHI nodes at the unrolling loop exit and epilog loop exit
165 /// - Create PHI nodes at the unrolling loop exit to combine
166 ///   values that exit the unrolling loop code and jump around it.
167 /// - Update PHI operands in the epilog loop by the new PHI nodes
168 /// - Branch around the epilog loop if extra iters (ModVal) is zero.
169 ///
170 static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit,
171                           BasicBlock *Exit, BasicBlock *PreHeader,
172                           BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader,
173                           ValueToValueMapTy &VMap, DominatorTree *DT,
174                           LoopInfo *LI, bool PreserveLCSSA)  {
175   BasicBlock *Latch = L->getLoopLatch();
176   assert(Latch && "Loop must have a latch");
177   BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]);
178 
179   // Loop structure should be the following:
180   //
181   // PreHeader
182   // NewPreHeader
183   //   Header
184   //   ...
185   //   Latch
186   // NewExit (PN)
187   // EpilogPreHeader
188   //   EpilogHeader
189   //   ...
190   //   EpilogLatch
191   // Exit (EpilogPN)
192 
193   // Update PHI nodes at NewExit and Exit.
194   for (Instruction &BBI : *NewExit) {
195     PHINode *PN = dyn_cast<PHINode>(&BBI);
196     // Exit when we passed all PHI nodes.
197     if (!PN)
198       break;
199     // PN should be used in another PHI located in Exit block as
200     // Exit was split by SplitBlockPredecessors into Exit and NewExit
201     // Basicaly it should look like:
202     // NewExit:
203     //   PN = PHI [I, Latch]
204     // ...
205     // Exit:
206     //   EpilogPN = PHI [PN, EpilogPreHeader]
207     //
208     // There is EpilogPreHeader incoming block instead of NewExit as
209     // NewExit was spilt 1 more time to get EpilogPreHeader.
210     assert(PN->hasOneUse() && "The phi should have 1 use");
211     PHINode *EpilogPN = cast<PHINode> (PN->use_begin()->getUser());
212     assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block");
213 
214     // Add incoming PreHeader from branch around the Loop
215     PN->addIncoming(UndefValue::get(PN->getType()), PreHeader);
216 
217     Value *V = PN->getIncomingValueForBlock(Latch);
218     Instruction *I = dyn_cast<Instruction>(V);
219     if (I && L->contains(I))
220       // If value comes from an instruction in the loop add VMap value.
221       V = VMap.lookup(I);
222     // For the instruction out of the loop, constant or undefined value
223     // insert value itself.
224     EpilogPN->addIncoming(V, EpilogLatch);
225 
226     assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 &&
227           "EpilogPN should have EpilogPreHeader incoming block");
228     // Change EpilogPreHeader incoming block to NewExit.
229     EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader),
230                                NewExit);
231     // Now PHIs should look like:
232     // NewExit:
233     //   PN = PHI [I, Latch], [undef, PreHeader]
234     // ...
235     // Exit:
236     //   EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch]
237   }
238 
239   // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader).
240   // Update corresponding PHI nodes in epilog loop.
241   for (BasicBlock *Succ : successors(Latch)) {
242     // Skip this as we already updated phis in exit blocks.
243     if (!L->contains(Succ))
244       continue;
245     for (Instruction &BBI : *Succ) {
246       PHINode *PN = dyn_cast<PHINode>(&BBI);
247       // Exit when we passed all PHI nodes.
248       if (!PN)
249         break;
250       // Add new PHI nodes to the loop exit block and update epilog
251       // PHIs with the new PHI values.
252       PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr",
253                                        NewExit->getFirstNonPHI());
254       // Adding a value to the new PHI node from the unrolling loop preheader.
255       NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader), PreHeader);
256       // Adding a value to the new PHI node from the unrolling loop latch.
257       NewPN->addIncoming(PN->getIncomingValueForBlock(Latch), Latch);
258 
259       // Update the existing PHI node operand with the value from the new PHI
260       // node.  Corresponding instruction in epilog loop should be PHI.
261       PHINode *VPN = cast<PHINode>(VMap[&BBI]);
262       VPN->setIncomingValue(VPN->getBasicBlockIndex(EpilogPreHeader), NewPN);
263     }
264   }
265 
266   Instruction *InsertPt = NewExit->getTerminator();
267   IRBuilder<> B(InsertPt);
268   Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod");
269   assert(Exit && "Loop must have a single exit block only");
270   // Split the epilogue exit to maintain loop canonicalization guarantees
271   SmallVector<BasicBlock*, 4> Preds(predecessors(Exit));
272   SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI,
273                          PreserveLCSSA);
274   // Add the branch to the exit block (around the unrolling loop)
275   B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit);
276   InsertPt->eraseFromParent();
277   if (DT)
278     DT->changeImmediateDominator(Exit, NewExit);
279 
280   // Split the main loop exit to maintain canonicalization guarantees.
281   SmallVector<BasicBlock*, 4> NewExitPreds{Latch};
282   SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI,
283                          PreserveLCSSA);
284 }
285 
286 /// Create a clone of the blocks in a loop and connect them together.
287 /// If CreateRemainderLoop is false, loop structure will not be cloned,
288 /// otherwise a new loop will be created including all cloned blocks, and the
289 /// iterator of it switches to count NewIter down to 0.
290 /// The cloned blocks should be inserted between InsertTop and InsertBot.
291 /// If loop structure is cloned InsertTop should be new preheader, InsertBot
292 /// new loop exit.
293 /// Return the new cloned loop that is created when CreateRemainderLoop is true.
294 static Loop *
295 CloneLoopBlocks(Loop *L, Value *NewIter, const bool CreateRemainderLoop,
296                 const bool UseEpilogRemainder, BasicBlock *InsertTop,
297                 BasicBlock *InsertBot, BasicBlock *Preheader,
298                 std::vector<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
299                 ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI) {
300   StringRef suffix = UseEpilogRemainder ? "epil" : "prol";
301   BasicBlock *Header = L->getHeader();
302   BasicBlock *Latch = L->getLoopLatch();
303   Function *F = Header->getParent();
304   LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
305   LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
306   Loop *ParentLoop = L->getParentLoop();
307   NewLoopsMap NewLoops;
308   NewLoops[ParentLoop] = ParentLoop;
309   if (!CreateRemainderLoop)
310     NewLoops[L] = ParentLoop;
311 
312   // For each block in the original loop, create a new copy,
313   // and update the value map with the newly created values.
314   for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
315     BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F);
316     NewBlocks.push_back(NewBB);
317 
318     // If we're unrolling the outermost loop, there's no remainder loop,
319     // and this block isn't in a nested loop, then the new block is not
320     // in any loop. Otherwise, add it to loopinfo.
321     if (CreateRemainderLoop || LI->getLoopFor(*BB) != L || ParentLoop)
322       addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops);
323 
324     VMap[*BB] = NewBB;
325     if (Header == *BB) {
326       // For the first block, add a CFG connection to this newly
327       // created block.
328       InsertTop->getTerminator()->setSuccessor(0, NewBB);
329     }
330 
331     if (DT) {
332       if (Header == *BB) {
333         // The header is dominated by the preheader.
334         DT->addNewBlock(NewBB, InsertTop);
335       } else {
336         // Copy information from original loop to unrolled loop.
337         BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock();
338         DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB]));
339       }
340     }
341 
342     if (Latch == *BB) {
343       // For the last block, if CreateRemainderLoop is false, create a direct
344       // jump to InsertBot. If not, create a loop back to cloned head.
345       VMap.erase((*BB)->getTerminator());
346       BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
347       BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator());
348       IRBuilder<> Builder(LatchBR);
349       if (!CreateRemainderLoop) {
350         Builder.CreateBr(InsertBot);
351       } else {
352         PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2,
353                                           suffix + ".iter",
354                                           FirstLoopBB->getFirstNonPHI());
355         Value *IdxSub =
356             Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
357                               NewIdx->getName() + ".sub");
358         Value *IdxCmp =
359             Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp");
360         Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot);
361         NewIdx->addIncoming(NewIter, InsertTop);
362         NewIdx->addIncoming(IdxSub, NewBB);
363       }
364       LatchBR->eraseFromParent();
365     }
366   }
367 
368   // Change the incoming values to the ones defined in the preheader or
369   // cloned loop.
370   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
371     PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
372     if (!CreateRemainderLoop) {
373       if (UseEpilogRemainder) {
374         unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
375         NewPHI->setIncomingBlock(idx, InsertTop);
376         NewPHI->removeIncomingValue(Latch, false);
377       } else {
378         VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader);
379         cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
380       }
381     } else {
382       unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
383       NewPHI->setIncomingBlock(idx, InsertTop);
384       BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
385       idx = NewPHI->getBasicBlockIndex(Latch);
386       Value *InVal = NewPHI->getIncomingValue(idx);
387       NewPHI->setIncomingBlock(idx, NewLatch);
388       if (Value *V = VMap.lookup(InVal))
389         NewPHI->setIncomingValue(idx, V);
390     }
391   }
392   if (CreateRemainderLoop) {
393     Loop *NewLoop = NewLoops[L];
394     assert(NewLoop && "L should have been cloned");
395     // Add unroll disable metadata to disable future unrolling for this loop.
396     SmallVector<Metadata *, 4> MDs;
397     // Reserve first location for self reference to the LoopID metadata node.
398     MDs.push_back(nullptr);
399     MDNode *LoopID = NewLoop->getLoopID();
400     if (LoopID) {
401       // First remove any existing loop unrolling metadata.
402       for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
403         bool IsUnrollMetadata = false;
404         MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
405         if (MD) {
406           const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
407           IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
408         }
409         if (!IsUnrollMetadata)
410           MDs.push_back(LoopID->getOperand(i));
411       }
412     }
413 
414     LLVMContext &Context = NewLoop->getHeader()->getContext();
415     SmallVector<Metadata *, 1> DisableOperands;
416     DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
417     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
418     MDs.push_back(DisableNode);
419 
420     MDNode *NewLoopID = MDNode::get(Context, MDs);
421     // Set operand 0 to refer to the loop id itself.
422     NewLoopID->replaceOperandWith(0, NewLoopID);
423     NewLoop->setLoopID(NewLoopID);
424     return NewLoop;
425   }
426   else
427     return nullptr;
428 }
429 
430 /// Insert code in the prolog/epilog code when unrolling a loop with a
431 /// run-time trip-count.
432 ///
433 /// This method assumes that the loop unroll factor is total number
434 /// of loop bodies in the loop after unrolling. (Some folks refer
435 /// to the unroll factor as the number of *extra* copies added).
436 /// We assume also that the loop unroll factor is a power-of-two. So, after
437 /// unrolling the loop, the number of loop bodies executed is 2,
438 /// 4, 8, etc.  Note - LLVM converts the if-then-sequence to a switch
439 /// instruction in SimplifyCFG.cpp.  Then, the backend decides how code for
440 /// the switch instruction is generated.
441 ///
442 /// ***Prolog case***
443 ///        extraiters = tripcount % loopfactor
444 ///        if (extraiters == 0) jump Loop:
445 ///        else jump Prol:
446 /// Prol:  LoopBody;
447 ///        extraiters -= 1                 // Omitted if unroll factor is 2.
448 ///        if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
449 ///        if (tripcount < loopfactor) jump End:
450 /// Loop:
451 /// ...
452 /// End:
453 ///
454 /// ***Epilog case***
455 ///        extraiters = tripcount % loopfactor
456 ///        if (tripcount < loopfactor) jump LoopExit:
457 ///        unroll_iters = tripcount - extraiters
458 /// Loop:  LoopBody; (executes unroll_iter times);
459 ///        unroll_iter -= 1
460 ///        if (unroll_iter != 0) jump Loop:
461 /// LoopExit:
462 ///        if (extraiters == 0) jump EpilExit:
463 /// Epil:  LoopBody; (executes extraiters times)
464 ///        extraiters -= 1                 // Omitted if unroll factor is 2.
465 ///        if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2.
466 /// EpilExit:
467 
468 bool llvm::UnrollRuntimeLoopRemainder(Loop *L, unsigned Count,
469                                       bool AllowExpensiveTripCount,
470                                       bool UseEpilogRemainder,
471                                       LoopInfo *LI, ScalarEvolution *SE,
472                                       DominatorTree *DT, bool PreserveLCSSA) {
473   // for now, only unroll loops that contain a single exit
474   if (!UnrollRuntimeMultiExit && !L->getExitingBlock())
475     return false;
476 
477   // Make sure the loop is in canonical form.
478   if (!L->isLoopSimplifyForm())
479     return false;
480 
481   // Guaranteed by LoopSimplifyForm.
482   BasicBlock *Latch = L->getLoopLatch();
483   BasicBlock *Header = L->getHeader();
484 
485   BasicBlock *LatchExit = L->getUniqueExitBlock(); // successor out of loop
486   if (!LatchExit && !UnrollRuntimeMultiExit)
487     return false;
488   // These are exit blocks other than the target of the latch exiting block.
489   SmallVector<BasicBlock *, 4> OtherExits;
490   BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
491   unsigned int ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0;
492   // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the
493   // targets of the Latch be an exit block out of the loop. This needs
494   // to be guaranteed by the callers of UnrollRuntimeLoopRemainder.
495   assert(!L->contains(LatchBR->getSuccessor(ExitIndex)) &&
496          "one of the loop latch successors should be the exit block!");
497   // Support runtime unrolling for multiple exit blocks and multiple exiting
498   // blocks.
499   if (!LatchExit) {
500     LatchExit = LatchBR->getSuccessor(ExitIndex);
501     // We rely on LCSSA form being preserved when the exit blocks are
502     // transformed.
503     if (!PreserveLCSSA)
504       return false;
505     SmallVector<BasicBlock *, 4> Exits;
506     L->getUniqueExitBlocks(Exits);
507     for (auto *BB : Exits)
508       if (BB != LatchExit)
509         OtherExits.push_back(BB);
510   }
511 
512   assert(LatchExit && "Latch Exit should exist!");
513 
514   // TODO: Support multiple exiting blocks jumping to the `LatchExit` when
515   // UnrollRuntimeMultiExit is true. This will need updating the logic in
516   // connectEpilog.
517   if (!LatchExit->getSinglePredecessor())
518     return false;
519   // Use Scalar Evolution to compute the trip count. This allows more loops to
520   // be unrolled than relying on induction var simplification.
521   if (!SE)
522     return false;
523 
524   // Only unroll loops with a computable trip count, and the trip count needs
525   // to be an int value (allowing a pointer type is a TODO item).
526   // We calculate the backedge count by using getExitCount on the Latch block,
527   // which is proven to be the only exiting block in this loop. This is same as
528   // calculating getBackedgeTakenCount on the loop (which computes SCEV for all
529   // exiting blocks).
530   const SCEV *BECountSC = SE->getExitCount(L, Latch);
531   if (isa<SCEVCouldNotCompute>(BECountSC) ||
532       !BECountSC->getType()->isIntegerTy())
533     return false;
534 
535   unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth();
536 
537   // Add 1 since the backedge count doesn't include the first loop iteration.
538   const SCEV *TripCountSC =
539       SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1));
540   if (isa<SCEVCouldNotCompute>(TripCountSC))
541     return false;
542 
543   BasicBlock *PreHeader = L->getLoopPreheader();
544   BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
545   const DataLayout &DL = Header->getModule()->getDataLayout();
546   SCEVExpander Expander(*SE, DL, "loop-unroll");
547   if (!AllowExpensiveTripCount &&
548       Expander.isHighCostExpansion(TripCountSC, L, PreHeaderBR))
549     return false;
550 
551   // This constraint lets us deal with an overflowing trip count easily; see the
552   // comment on ModVal below.
553   if (Log2_32(Count) > BEWidth)
554     return false;
555 
556   // Loop structure is the following:
557   //
558   // PreHeader
559   //   Header
560   //   ...
561   //   Latch
562   // LatchExit
563 
564   BasicBlock *NewPreHeader;
565   BasicBlock *NewExit = nullptr;
566   BasicBlock *PrologExit = nullptr;
567   BasicBlock *EpilogPreHeader = nullptr;
568   BasicBlock *PrologPreHeader = nullptr;
569 
570   if (UseEpilogRemainder) {
571     // If epilog remainder
572     // Split PreHeader to insert a branch around loop for unrolling.
573     NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI);
574     NewPreHeader->setName(PreHeader->getName() + ".new");
575     // Split LatchExit to create phi nodes from branch above.
576     SmallVector<BasicBlock*, 4> Preds(predecessors(LatchExit));
577     NewExit = SplitBlockPredecessors(LatchExit, Preds, ".unr-lcssa",
578                                      DT, LI, PreserveLCSSA);
579     // Split NewExit to insert epilog remainder loop.
580     EpilogPreHeader = SplitBlock(NewExit, NewExit->getTerminator(), DT, LI);
581     EpilogPreHeader->setName(Header->getName() + ".epil.preheader");
582   } else {
583     // If prolog remainder
584     // Split the original preheader twice to insert prolog remainder loop
585     PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI);
586     PrologPreHeader->setName(Header->getName() + ".prol.preheader");
587     PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(),
588                             DT, LI);
589     PrologExit->setName(Header->getName() + ".prol.loopexit");
590     // Split PrologExit to get NewPreHeader.
591     NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI);
592     NewPreHeader->setName(PreHeader->getName() + ".new");
593   }
594   // Loop structure should be the following:
595   //  Epilog             Prolog
596   //
597   // PreHeader         PreHeader
598   // *NewPreHeader     *PrologPreHeader
599   //   Header          *PrologExit
600   //   ...             *NewPreHeader
601   //   Latch             Header
602   // *NewExit            ...
603   // *EpilogPreHeader    Latch
604   // LatchExit              LatchExit
605 
606   // Calculate conditions for branch around loop for unrolling
607   // in epilog case and around prolog remainder loop in prolog case.
608   // Compute the number of extra iterations required, which is:
609   //  extra iterations = run-time trip count % loop unroll factor
610   PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
611   Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
612                                             PreHeaderBR);
613   Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(),
614                                           PreHeaderBR);
615   IRBuilder<> B(PreHeaderBR);
616   Value *ModVal;
617   // Calculate ModVal = (BECount + 1) % Count.
618   // Note that TripCount is BECount + 1.
619   if (isPowerOf2_32(Count)) {
620     // When Count is power of 2 we don't BECount for epilog case, however we'll
621     // need it for a branch around unrolling loop for prolog case.
622     ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter");
623     //  1. There are no iterations to be run in the prolog/epilog loop.
624     // OR
625     //  2. The addition computing TripCount overflowed.
626     //
627     // If (2) is true, we know that TripCount really is (1 << BEWidth) and so
628     // the number of iterations that remain to be run in the original loop is a
629     // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we
630     // explicitly check this above).
631   } else {
632     // As (BECount + 1) can potentially unsigned overflow we count
633     // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count.
634     Value *ModValTmp = B.CreateURem(BECount,
635                                     ConstantInt::get(BECount->getType(),
636                                                      Count));
637     Value *ModValAdd = B.CreateAdd(ModValTmp,
638                                    ConstantInt::get(ModValTmp->getType(), 1));
639     // At that point (BECount % Count) + 1 could be equal to Count.
640     // To handle this case we need to take mod by Count one more time.
641     ModVal = B.CreateURem(ModValAdd,
642                           ConstantInt::get(BECount->getType(), Count),
643                           "xtraiter");
644   }
645   Value *BranchVal =
646       UseEpilogRemainder ? B.CreateICmpULT(BECount,
647                                            ConstantInt::get(BECount->getType(),
648                                                             Count - 1)) :
649                            B.CreateIsNotNull(ModVal, "lcmp.mod");
650   BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader;
651   BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit;
652   // Branch to either remainder (extra iterations) loop or unrolling loop.
653   B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop);
654   PreHeaderBR->eraseFromParent();
655   if (DT) {
656     if (UseEpilogRemainder)
657       DT->changeImmediateDominator(NewExit, PreHeader);
658     else
659       DT->changeImmediateDominator(PrologExit, PreHeader);
660   }
661   Function *F = Header->getParent();
662   // Get an ordered list of blocks in the loop to help with the ordering of the
663   // cloned blocks in the prolog/epilog code
664   LoopBlocksDFS LoopBlocks(L);
665   LoopBlocks.perform(LI);
666 
667   //
668   // For each extra loop iteration, create a copy of the loop's basic blocks
669   // and generate a condition that branches to the copy depending on the
670   // number of 'left over' iterations.
671   //
672   std::vector<BasicBlock *> NewBlocks;
673   ValueToValueMapTy VMap;
674 
675   // For unroll factor 2 remainder loop will have 1 iterations.
676   // Do not create 1 iteration loop.
677   bool CreateRemainderLoop = (Count != 2);
678 
679   // Clone all the basic blocks in the loop. If Count is 2, we don't clone
680   // the loop, otherwise we create a cloned loop to execute the extra
681   // iterations. This function adds the appropriate CFG connections.
682   BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit;
683   BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader;
684   Loop *remainderLoop = CloneLoopBlocks(
685       L, ModVal, CreateRemainderLoop, UseEpilogRemainder, InsertTop, InsertBot,
686       NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI);
687 
688   // Insert the cloned blocks into the function.
689   F->getBasicBlockList().splice(InsertBot->getIterator(),
690                                 F->getBasicBlockList(),
691                                 NewBlocks[0]->getIterator(),
692                                 F->end());
693 
694   // Now the loop blocks are cloned and the other exiting blocks from the
695   // remainder are connected to the original Loop's exit blocks. The remaining
696   // work is to update the phi nodes in the original loop, and take in the
697   // values from the cloned region. Also update the dominator info for
698   // OtherExits, since we have new edges into OtherExits.
699   for (auto *BB : OtherExits) {
700    for (auto &II : *BB) {
701 
702      // Given we preserve LCSSA form, we know that the values used outside the
703      // loop will be used through these phi nodes at the exit blocks that are
704      // transformed below.
705      if (!isa<PHINode>(II))
706        break;
707      PHINode *Phi = cast<PHINode>(&II);
708      unsigned oldNumOperands = Phi->getNumIncomingValues();
709      // Add the incoming values from the remainder code to the end of the phi
710      // node.
711      for (unsigned i =0; i < oldNumOperands; i++){
712        Value *newVal = VMap[Phi->getIncomingValue(i)];
713        // newVal can be a constant or derived from values outside the loop, and
714        // hence need not have a VMap value.
715        if (!newVal)
716          newVal = Phi->getIncomingValue(i);
717        Phi->addIncoming(newVal,
718                            cast<BasicBlock>(VMap[Phi->getIncomingBlock(i)]));
719      }
720    }
721    // Update the dominator info because the immediate dominator is no longer the
722    // header of the original Loop. BB has edges both from L and remainder code.
723    // Since the preheader determines which loop is run (L or directly jump to
724    // the remainder code), we set the immediate dominator as the preheader.
725    if (DT)
726      DT->changeImmediateDominator(BB, PreHeader);
727   }
728 
729   // Loop structure should be the following:
730   //  Epilog             Prolog
731   //
732   // PreHeader         PreHeader
733   // NewPreHeader      PrologPreHeader
734   //   Header            PrologHeader
735   //   ...               ...
736   //   Latch             PrologLatch
737   // NewExit           PrologExit
738   // EpilogPreHeader   NewPreHeader
739   //   EpilogHeader      Header
740   //   ...               ...
741   //   EpilogLatch       Latch
742   // LatchExit              LatchExit
743 
744   // Rewrite the cloned instruction operands to use the values created when the
745   // clone is created.
746   for (BasicBlock *BB : NewBlocks) {
747     for (Instruction &I : *BB) {
748       RemapInstruction(&I, VMap,
749                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
750     }
751   }
752 
753   if (UseEpilogRemainder) {
754     // Connect the epilog code to the original loop and update the
755     // PHI functions.
756     ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader,
757                   EpilogPreHeader, NewPreHeader, VMap, DT, LI,
758                   PreserveLCSSA);
759 
760     // Update counter in loop for unrolling.
761     // I should be multiply of Count.
762     IRBuilder<> B2(NewPreHeader->getTerminator());
763     Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter");
764     BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
765     B2.SetInsertPoint(LatchBR);
766     PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter",
767                                       Header->getFirstNonPHI());
768     Value *IdxSub =
769         B2.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
770                      NewIdx->getName() + ".nsub");
771     Value *IdxCmp;
772     if (LatchBR->getSuccessor(0) == Header)
773       IdxCmp = B2.CreateIsNotNull(IdxSub, NewIdx->getName() + ".ncmp");
774     else
775       IdxCmp = B2.CreateIsNull(IdxSub, NewIdx->getName() + ".ncmp");
776     NewIdx->addIncoming(TestVal, NewPreHeader);
777     NewIdx->addIncoming(IdxSub, Latch);
778     LatchBR->setCondition(IdxCmp);
779   } else {
780     // Connect the prolog code to the original loop and update the
781     // PHI functions.
782     ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader,
783                   NewPreHeader, VMap, DT, LI, PreserveLCSSA);
784   }
785 
786   // If this loop is nested, then the loop unroller changes the code in the
787   // parent loop, so the Scalar Evolution pass needs to be run again.
788   if (Loop *ParentLoop = L->getParentLoop())
789     SE->forgetLoop(ParentLoop);
790 
791   // Canonicalize to LoopSimplifyForm both original and remainder loops. We
792   // cannot rely on the LoopUnrollPass to do this because it only does
793   // canonicalization for parent/subloops and not the sibling loops.
794   if (OtherExits.size() > 0) {
795     // Generate dedicated exit blocks for the original loop, to preserve
796     // LoopSimplifyForm.
797     formDedicatedExitBlocks(L, DT, LI, PreserveLCSSA);
798     // Generate dedicated exit blocks for the remainder loop if one exists, to
799     // preserve LoopSimplifyForm.
800     if (remainderLoop)
801       formDedicatedExitBlocks(remainderLoop, DT, LI, PreserveLCSSA);
802   }
803 
804   NumRuntimeUnrolled++;
805   return true;
806 }
807