1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities for loops with run-time 11 // trip counts. See LoopUnroll.cpp for unrolling loops with compile-time 12 // trip counts. 13 // 14 // The functions in this file are used to generate extra code when the 15 // run-time trip count modulo the unroll factor is not 0. When this is the 16 // case, we need to generate code to execute these 'left over' iterations. 17 // 18 // The current strategy generates an if-then-else sequence prior to the 19 // unrolled loop to execute the 'left over' iterations before or after the 20 // unrolled loop. 21 // 22 //===----------------------------------------------------------------------===// 23 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/Analysis/LoopIterator.h" 27 #include "llvm/Analysis/LoopPass.h" 28 #include "llvm/Analysis/ScalarEvolution.h" 29 #include "llvm/Analysis/ScalarEvolutionExpander.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Metadata.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Transforms/Scalar.h" 37 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 38 #include "llvm/Transforms/Utils/Cloning.h" 39 #include "llvm/Transforms/Utils/LoopUtils.h" 40 #include "llvm/Transforms/Utils/UnrollLoop.h" 41 #include <algorithm> 42 43 using namespace llvm; 44 45 #define DEBUG_TYPE "loop-unroll" 46 47 STATISTIC(NumRuntimeUnrolled, 48 "Number of loops unrolled with run-time trip counts"); 49 static cl::opt<bool> UnrollRuntimeMultiExit( 50 "unroll-runtime-multi-exit", cl::init(false), cl::Hidden, 51 cl::desc("Allow runtime unrolling for loops with multiple exits, when " 52 "epilog is generated")); 53 54 /// Connect the unrolling prolog code to the original loop. 55 /// The unrolling prolog code contains code to execute the 56 /// 'extra' iterations if the run-time trip count modulo the 57 /// unroll count is non-zero. 58 /// 59 /// This function performs the following: 60 /// - Create PHI nodes at prolog end block to combine values 61 /// that exit the prolog code and jump around the prolog. 62 /// - Add a PHI operand to a PHI node at the loop exit block 63 /// for values that exit the prolog and go around the loop. 64 /// - Branch around the original loop if the trip count is less 65 /// than the unroll factor. 66 /// 67 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count, 68 BasicBlock *PrologExit, 69 BasicBlock *OriginalLoopLatchExit, 70 BasicBlock *PreHeader, BasicBlock *NewPreHeader, 71 ValueToValueMapTy &VMap, DominatorTree *DT, 72 LoopInfo *LI, bool PreserveLCSSA) { 73 BasicBlock *Latch = L->getLoopLatch(); 74 assert(Latch && "Loop must have a latch"); 75 BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]); 76 77 // Create a PHI node for each outgoing value from the original loop 78 // (which means it is an outgoing value from the prolog code too). 79 // The new PHI node is inserted in the prolog end basic block. 80 // The new PHI node value is added as an operand of a PHI node in either 81 // the loop header or the loop exit block. 82 for (BasicBlock *Succ : successors(Latch)) { 83 for (Instruction &BBI : *Succ) { 84 PHINode *PN = dyn_cast<PHINode>(&BBI); 85 // Exit when we passed all PHI nodes. 86 if (!PN) 87 break; 88 // Add a new PHI node to the prolog end block and add the 89 // appropriate incoming values. 90 PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr", 91 PrologExit->getFirstNonPHI()); 92 // Adding a value to the new PHI node from the original loop preheader. 93 // This is the value that skips all the prolog code. 94 if (L->contains(PN)) { 95 NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader), 96 PreHeader); 97 } else { 98 NewPN->addIncoming(UndefValue::get(PN->getType()), PreHeader); 99 } 100 101 Value *V = PN->getIncomingValueForBlock(Latch); 102 if (Instruction *I = dyn_cast<Instruction>(V)) { 103 if (L->contains(I)) { 104 V = VMap.lookup(I); 105 } 106 } 107 // Adding a value to the new PHI node from the last prolog block 108 // that was created. 109 NewPN->addIncoming(V, PrologLatch); 110 111 // Update the existing PHI node operand with the value from the 112 // new PHI node. How this is done depends on if the existing 113 // PHI node is in the original loop block, or the exit block. 114 if (L->contains(PN)) { 115 PN->setIncomingValue(PN->getBasicBlockIndex(NewPreHeader), NewPN); 116 } else { 117 PN->addIncoming(NewPN, PrologExit); 118 } 119 } 120 } 121 122 // Make sure that created prolog loop is in simplified form 123 SmallVector<BasicBlock *, 4> PrologExitPreds; 124 Loop *PrologLoop = LI->getLoopFor(PrologLatch); 125 if (PrologLoop) { 126 for (BasicBlock *PredBB : predecessors(PrologExit)) 127 if (PrologLoop->contains(PredBB)) 128 PrologExitPreds.push_back(PredBB); 129 130 SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI, 131 PreserveLCSSA); 132 } 133 134 // Create a branch around the original loop, which is taken if there are no 135 // iterations remaining to be executed after running the prologue. 136 Instruction *InsertPt = PrologExit->getTerminator(); 137 IRBuilder<> B(InsertPt); 138 139 assert(Count != 0 && "nonsensical Count!"); 140 141 // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1) 142 // This means %xtraiter is (BECount + 1) and all of the iterations of this 143 // loop were executed by the prologue. Note that if BECount <u (Count - 1) 144 // then (BECount + 1) cannot unsigned-overflow. 145 Value *BrLoopExit = 146 B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1)); 147 // Split the exit to maintain loop canonicalization guarantees 148 SmallVector<BasicBlock *, 4> Preds(predecessors(OriginalLoopLatchExit)); 149 SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI, 150 PreserveLCSSA); 151 // Add the branch to the exit block (around the unrolled loop) 152 B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader); 153 InsertPt->eraseFromParent(); 154 if (DT) 155 DT->changeImmediateDominator(OriginalLoopLatchExit, PrologExit); 156 } 157 158 /// Connect the unrolling epilog code to the original loop. 159 /// The unrolling epilog code contains code to execute the 160 /// 'extra' iterations if the run-time trip count modulo the 161 /// unroll count is non-zero. 162 /// 163 /// This function performs the following: 164 /// - Update PHI nodes at the unrolling loop exit and epilog loop exit 165 /// - Create PHI nodes at the unrolling loop exit to combine 166 /// values that exit the unrolling loop code and jump around it. 167 /// - Update PHI operands in the epilog loop by the new PHI nodes 168 /// - Branch around the epilog loop if extra iters (ModVal) is zero. 169 /// 170 static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit, 171 BasicBlock *Exit, BasicBlock *PreHeader, 172 BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader, 173 ValueToValueMapTy &VMap, DominatorTree *DT, 174 LoopInfo *LI, bool PreserveLCSSA) { 175 BasicBlock *Latch = L->getLoopLatch(); 176 assert(Latch && "Loop must have a latch"); 177 BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]); 178 179 // Loop structure should be the following: 180 // 181 // PreHeader 182 // NewPreHeader 183 // Header 184 // ... 185 // Latch 186 // NewExit (PN) 187 // EpilogPreHeader 188 // EpilogHeader 189 // ... 190 // EpilogLatch 191 // Exit (EpilogPN) 192 193 // Update PHI nodes at NewExit and Exit. 194 for (Instruction &BBI : *NewExit) { 195 PHINode *PN = dyn_cast<PHINode>(&BBI); 196 // Exit when we passed all PHI nodes. 197 if (!PN) 198 break; 199 // PN should be used in another PHI located in Exit block as 200 // Exit was split by SplitBlockPredecessors into Exit and NewExit 201 // Basicaly it should look like: 202 // NewExit: 203 // PN = PHI [I, Latch] 204 // ... 205 // Exit: 206 // EpilogPN = PHI [PN, EpilogPreHeader] 207 // 208 // There is EpilogPreHeader incoming block instead of NewExit as 209 // NewExit was spilt 1 more time to get EpilogPreHeader. 210 assert(PN->hasOneUse() && "The phi should have 1 use"); 211 PHINode *EpilogPN = cast<PHINode> (PN->use_begin()->getUser()); 212 assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block"); 213 214 // Add incoming PreHeader from branch around the Loop 215 PN->addIncoming(UndefValue::get(PN->getType()), PreHeader); 216 217 Value *V = PN->getIncomingValueForBlock(Latch); 218 Instruction *I = dyn_cast<Instruction>(V); 219 if (I && L->contains(I)) 220 // If value comes from an instruction in the loop add VMap value. 221 V = VMap.lookup(I); 222 // For the instruction out of the loop, constant or undefined value 223 // insert value itself. 224 EpilogPN->addIncoming(V, EpilogLatch); 225 226 assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 && 227 "EpilogPN should have EpilogPreHeader incoming block"); 228 // Change EpilogPreHeader incoming block to NewExit. 229 EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader), 230 NewExit); 231 // Now PHIs should look like: 232 // NewExit: 233 // PN = PHI [I, Latch], [undef, PreHeader] 234 // ... 235 // Exit: 236 // EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch] 237 } 238 239 // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader). 240 // Update corresponding PHI nodes in epilog loop. 241 for (BasicBlock *Succ : successors(Latch)) { 242 // Skip this as we already updated phis in exit blocks. 243 if (!L->contains(Succ)) 244 continue; 245 for (Instruction &BBI : *Succ) { 246 PHINode *PN = dyn_cast<PHINode>(&BBI); 247 // Exit when we passed all PHI nodes. 248 if (!PN) 249 break; 250 // Add new PHI nodes to the loop exit block and update epilog 251 // PHIs with the new PHI values. 252 PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr", 253 NewExit->getFirstNonPHI()); 254 // Adding a value to the new PHI node from the unrolling loop preheader. 255 NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader), PreHeader); 256 // Adding a value to the new PHI node from the unrolling loop latch. 257 NewPN->addIncoming(PN->getIncomingValueForBlock(Latch), Latch); 258 259 // Update the existing PHI node operand with the value from the new PHI 260 // node. Corresponding instruction in epilog loop should be PHI. 261 PHINode *VPN = cast<PHINode>(VMap[&BBI]); 262 VPN->setIncomingValue(VPN->getBasicBlockIndex(EpilogPreHeader), NewPN); 263 } 264 } 265 266 Instruction *InsertPt = NewExit->getTerminator(); 267 IRBuilder<> B(InsertPt); 268 Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod"); 269 assert(Exit && "Loop must have a single exit block only"); 270 // Split the epilogue exit to maintain loop canonicalization guarantees 271 SmallVector<BasicBlock*, 4> Preds(predecessors(Exit)); 272 SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI, 273 PreserveLCSSA); 274 // Add the branch to the exit block (around the unrolling loop) 275 B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit); 276 InsertPt->eraseFromParent(); 277 if (DT) 278 DT->changeImmediateDominator(Exit, NewExit); 279 280 // Split the main loop exit to maintain canonicalization guarantees. 281 SmallVector<BasicBlock*, 4> NewExitPreds{Latch}; 282 SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI, 283 PreserveLCSSA); 284 } 285 286 /// Create a clone of the blocks in a loop and connect them together. 287 /// If CreateRemainderLoop is false, loop structure will not be cloned, 288 /// otherwise a new loop will be created including all cloned blocks, and the 289 /// iterator of it switches to count NewIter down to 0. 290 /// The cloned blocks should be inserted between InsertTop and InsertBot. 291 /// If loop structure is cloned InsertTop should be new preheader, InsertBot 292 /// new loop exit. 293 /// Return the new cloned loop that is created when CreateRemainderLoop is true. 294 static Loop * 295 CloneLoopBlocks(Loop *L, Value *NewIter, const bool CreateRemainderLoop, 296 const bool UseEpilogRemainder, BasicBlock *InsertTop, 297 BasicBlock *InsertBot, BasicBlock *Preheader, 298 std::vector<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks, 299 ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI) { 300 StringRef suffix = UseEpilogRemainder ? "epil" : "prol"; 301 BasicBlock *Header = L->getHeader(); 302 BasicBlock *Latch = L->getLoopLatch(); 303 Function *F = Header->getParent(); 304 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); 305 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); 306 Loop *ParentLoop = L->getParentLoop(); 307 NewLoopsMap NewLoops; 308 NewLoops[ParentLoop] = ParentLoop; 309 if (!CreateRemainderLoop) 310 NewLoops[L] = ParentLoop; 311 312 // For each block in the original loop, create a new copy, 313 // and update the value map with the newly created values. 314 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 315 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F); 316 NewBlocks.push_back(NewBB); 317 318 // If we're unrolling the outermost loop, there's no remainder loop, 319 // and this block isn't in a nested loop, then the new block is not 320 // in any loop. Otherwise, add it to loopinfo. 321 if (CreateRemainderLoop || LI->getLoopFor(*BB) != L || ParentLoop) 322 addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops); 323 324 VMap[*BB] = NewBB; 325 if (Header == *BB) { 326 // For the first block, add a CFG connection to this newly 327 // created block. 328 InsertTop->getTerminator()->setSuccessor(0, NewBB); 329 } 330 331 if (DT) { 332 if (Header == *BB) { 333 // The header is dominated by the preheader. 334 DT->addNewBlock(NewBB, InsertTop); 335 } else { 336 // Copy information from original loop to unrolled loop. 337 BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock(); 338 DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB])); 339 } 340 } 341 342 if (Latch == *BB) { 343 // For the last block, if CreateRemainderLoop is false, create a direct 344 // jump to InsertBot. If not, create a loop back to cloned head. 345 VMap.erase((*BB)->getTerminator()); 346 BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]); 347 BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator()); 348 IRBuilder<> Builder(LatchBR); 349 if (!CreateRemainderLoop) { 350 Builder.CreateBr(InsertBot); 351 } else { 352 PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2, 353 suffix + ".iter", 354 FirstLoopBB->getFirstNonPHI()); 355 Value *IdxSub = 356 Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1), 357 NewIdx->getName() + ".sub"); 358 Value *IdxCmp = 359 Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp"); 360 Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot); 361 NewIdx->addIncoming(NewIter, InsertTop); 362 NewIdx->addIncoming(IdxSub, NewBB); 363 } 364 LatchBR->eraseFromParent(); 365 } 366 } 367 368 // Change the incoming values to the ones defined in the preheader or 369 // cloned loop. 370 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 371 PHINode *NewPHI = cast<PHINode>(VMap[&*I]); 372 if (!CreateRemainderLoop) { 373 if (UseEpilogRemainder) { 374 unsigned idx = NewPHI->getBasicBlockIndex(Preheader); 375 NewPHI->setIncomingBlock(idx, InsertTop); 376 NewPHI->removeIncomingValue(Latch, false); 377 } else { 378 VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader); 379 cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI); 380 } 381 } else { 382 unsigned idx = NewPHI->getBasicBlockIndex(Preheader); 383 NewPHI->setIncomingBlock(idx, InsertTop); 384 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); 385 idx = NewPHI->getBasicBlockIndex(Latch); 386 Value *InVal = NewPHI->getIncomingValue(idx); 387 NewPHI->setIncomingBlock(idx, NewLatch); 388 if (Value *V = VMap.lookup(InVal)) 389 NewPHI->setIncomingValue(idx, V); 390 } 391 } 392 if (CreateRemainderLoop) { 393 Loop *NewLoop = NewLoops[L]; 394 assert(NewLoop && "L should have been cloned"); 395 // Add unroll disable metadata to disable future unrolling for this loop. 396 SmallVector<Metadata *, 4> MDs; 397 // Reserve first location for self reference to the LoopID metadata node. 398 MDs.push_back(nullptr); 399 MDNode *LoopID = NewLoop->getLoopID(); 400 if (LoopID) { 401 // First remove any existing loop unrolling metadata. 402 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 403 bool IsUnrollMetadata = false; 404 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 405 if (MD) { 406 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 407 IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll."); 408 } 409 if (!IsUnrollMetadata) 410 MDs.push_back(LoopID->getOperand(i)); 411 } 412 } 413 414 LLVMContext &Context = NewLoop->getHeader()->getContext(); 415 SmallVector<Metadata *, 1> DisableOperands; 416 DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable")); 417 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 418 MDs.push_back(DisableNode); 419 420 MDNode *NewLoopID = MDNode::get(Context, MDs); 421 // Set operand 0 to refer to the loop id itself. 422 NewLoopID->replaceOperandWith(0, NewLoopID); 423 NewLoop->setLoopID(NewLoopID); 424 return NewLoop; 425 } 426 else 427 return nullptr; 428 } 429 430 /// Insert code in the prolog/epilog code when unrolling a loop with a 431 /// run-time trip-count. 432 /// 433 /// This method assumes that the loop unroll factor is total number 434 /// of loop bodies in the loop after unrolling. (Some folks refer 435 /// to the unroll factor as the number of *extra* copies added). 436 /// We assume also that the loop unroll factor is a power-of-two. So, after 437 /// unrolling the loop, the number of loop bodies executed is 2, 438 /// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch 439 /// instruction in SimplifyCFG.cpp. Then, the backend decides how code for 440 /// the switch instruction is generated. 441 /// 442 /// ***Prolog case*** 443 /// extraiters = tripcount % loopfactor 444 /// if (extraiters == 0) jump Loop: 445 /// else jump Prol: 446 /// Prol: LoopBody; 447 /// extraiters -= 1 // Omitted if unroll factor is 2. 448 /// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2. 449 /// if (tripcount < loopfactor) jump End: 450 /// Loop: 451 /// ... 452 /// End: 453 /// 454 /// ***Epilog case*** 455 /// extraiters = tripcount % loopfactor 456 /// if (tripcount < loopfactor) jump LoopExit: 457 /// unroll_iters = tripcount - extraiters 458 /// Loop: LoopBody; (executes unroll_iter times); 459 /// unroll_iter -= 1 460 /// if (unroll_iter != 0) jump Loop: 461 /// LoopExit: 462 /// if (extraiters == 0) jump EpilExit: 463 /// Epil: LoopBody; (executes extraiters times) 464 /// extraiters -= 1 // Omitted if unroll factor is 2. 465 /// if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2. 466 /// EpilExit: 467 468 bool llvm::UnrollRuntimeLoopRemainder(Loop *L, unsigned Count, 469 bool AllowExpensiveTripCount, 470 bool UseEpilogRemainder, 471 LoopInfo *LI, ScalarEvolution *SE, 472 DominatorTree *DT, bool PreserveLCSSA) { 473 // for now, only unroll loops that contain a single exit 474 if (!UnrollRuntimeMultiExit && !L->getExitingBlock()) 475 return false; 476 477 // Make sure the loop is in canonical form. 478 if (!L->isLoopSimplifyForm()) 479 return false; 480 481 // Guaranteed by LoopSimplifyForm. 482 BasicBlock *Latch = L->getLoopLatch(); 483 BasicBlock *Header = L->getHeader(); 484 485 BasicBlock *LatchExit = L->getUniqueExitBlock(); // successor out of loop 486 if (!LatchExit && !UnrollRuntimeMultiExit) 487 return false; 488 // These are exit blocks other than the target of the latch exiting block. 489 SmallVector<BasicBlock *, 4> OtherExits; 490 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); 491 unsigned int ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0; 492 // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the 493 // targets of the Latch be an exit block out of the loop. This needs 494 // to be guaranteed by the callers of UnrollRuntimeLoopRemainder. 495 assert(!L->contains(LatchBR->getSuccessor(ExitIndex)) && 496 "one of the loop latch successors should be the exit block!"); 497 // Support runtime unrolling for multiple exit blocks and multiple exiting 498 // blocks. 499 if (!LatchExit) { 500 LatchExit = LatchBR->getSuccessor(ExitIndex); 501 // We rely on LCSSA form being preserved when the exit blocks are 502 // transformed. 503 if (!PreserveLCSSA) 504 return false; 505 SmallVector<BasicBlock *, 4> Exits; 506 L->getUniqueExitBlocks(Exits); 507 for (auto *BB : Exits) 508 if (BB != LatchExit) 509 OtherExits.push_back(BB); 510 } 511 512 assert(LatchExit && "Latch Exit should exist!"); 513 514 // TODO: Support multiple exiting blocks jumping to the `LatchExit` when 515 // UnrollRuntimeMultiExit is true. This will need updating the logic in 516 // connectEpilog. 517 if (!LatchExit->getSinglePredecessor()) 518 return false; 519 // Use Scalar Evolution to compute the trip count. This allows more loops to 520 // be unrolled than relying on induction var simplification. 521 if (!SE) 522 return false; 523 524 // Only unroll loops with a computable trip count, and the trip count needs 525 // to be an int value (allowing a pointer type is a TODO item). 526 // We calculate the backedge count by using getExitCount on the Latch block, 527 // which is proven to be the only exiting block in this loop. This is same as 528 // calculating getBackedgeTakenCount on the loop (which computes SCEV for all 529 // exiting blocks). 530 const SCEV *BECountSC = SE->getExitCount(L, Latch); 531 if (isa<SCEVCouldNotCompute>(BECountSC) || 532 !BECountSC->getType()->isIntegerTy()) 533 return false; 534 535 unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth(); 536 537 // Add 1 since the backedge count doesn't include the first loop iteration. 538 const SCEV *TripCountSC = 539 SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1)); 540 if (isa<SCEVCouldNotCompute>(TripCountSC)) 541 return false; 542 543 BasicBlock *PreHeader = L->getLoopPreheader(); 544 BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); 545 const DataLayout &DL = Header->getModule()->getDataLayout(); 546 SCEVExpander Expander(*SE, DL, "loop-unroll"); 547 if (!AllowExpensiveTripCount && 548 Expander.isHighCostExpansion(TripCountSC, L, PreHeaderBR)) 549 return false; 550 551 // This constraint lets us deal with an overflowing trip count easily; see the 552 // comment on ModVal below. 553 if (Log2_32(Count) > BEWidth) 554 return false; 555 556 // Loop structure is the following: 557 // 558 // PreHeader 559 // Header 560 // ... 561 // Latch 562 // LatchExit 563 564 BasicBlock *NewPreHeader; 565 BasicBlock *NewExit = nullptr; 566 BasicBlock *PrologExit = nullptr; 567 BasicBlock *EpilogPreHeader = nullptr; 568 BasicBlock *PrologPreHeader = nullptr; 569 570 if (UseEpilogRemainder) { 571 // If epilog remainder 572 // Split PreHeader to insert a branch around loop for unrolling. 573 NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI); 574 NewPreHeader->setName(PreHeader->getName() + ".new"); 575 // Split LatchExit to create phi nodes from branch above. 576 SmallVector<BasicBlock*, 4> Preds(predecessors(LatchExit)); 577 NewExit = SplitBlockPredecessors(LatchExit, Preds, ".unr-lcssa", 578 DT, LI, PreserveLCSSA); 579 // Split NewExit to insert epilog remainder loop. 580 EpilogPreHeader = SplitBlock(NewExit, NewExit->getTerminator(), DT, LI); 581 EpilogPreHeader->setName(Header->getName() + ".epil.preheader"); 582 } else { 583 // If prolog remainder 584 // Split the original preheader twice to insert prolog remainder loop 585 PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI); 586 PrologPreHeader->setName(Header->getName() + ".prol.preheader"); 587 PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(), 588 DT, LI); 589 PrologExit->setName(Header->getName() + ".prol.loopexit"); 590 // Split PrologExit to get NewPreHeader. 591 NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI); 592 NewPreHeader->setName(PreHeader->getName() + ".new"); 593 } 594 // Loop structure should be the following: 595 // Epilog Prolog 596 // 597 // PreHeader PreHeader 598 // *NewPreHeader *PrologPreHeader 599 // Header *PrologExit 600 // ... *NewPreHeader 601 // Latch Header 602 // *NewExit ... 603 // *EpilogPreHeader Latch 604 // LatchExit LatchExit 605 606 // Calculate conditions for branch around loop for unrolling 607 // in epilog case and around prolog remainder loop in prolog case. 608 // Compute the number of extra iterations required, which is: 609 // extra iterations = run-time trip count % loop unroll factor 610 PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); 611 Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(), 612 PreHeaderBR); 613 Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(), 614 PreHeaderBR); 615 IRBuilder<> B(PreHeaderBR); 616 Value *ModVal; 617 // Calculate ModVal = (BECount + 1) % Count. 618 // Note that TripCount is BECount + 1. 619 if (isPowerOf2_32(Count)) { 620 // When Count is power of 2 we don't BECount for epilog case, however we'll 621 // need it for a branch around unrolling loop for prolog case. 622 ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter"); 623 // 1. There are no iterations to be run in the prolog/epilog loop. 624 // OR 625 // 2. The addition computing TripCount overflowed. 626 // 627 // If (2) is true, we know that TripCount really is (1 << BEWidth) and so 628 // the number of iterations that remain to be run in the original loop is a 629 // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we 630 // explicitly check this above). 631 } else { 632 // As (BECount + 1) can potentially unsigned overflow we count 633 // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count. 634 Value *ModValTmp = B.CreateURem(BECount, 635 ConstantInt::get(BECount->getType(), 636 Count)); 637 Value *ModValAdd = B.CreateAdd(ModValTmp, 638 ConstantInt::get(ModValTmp->getType(), 1)); 639 // At that point (BECount % Count) + 1 could be equal to Count. 640 // To handle this case we need to take mod by Count one more time. 641 ModVal = B.CreateURem(ModValAdd, 642 ConstantInt::get(BECount->getType(), Count), 643 "xtraiter"); 644 } 645 Value *BranchVal = 646 UseEpilogRemainder ? B.CreateICmpULT(BECount, 647 ConstantInt::get(BECount->getType(), 648 Count - 1)) : 649 B.CreateIsNotNull(ModVal, "lcmp.mod"); 650 BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader; 651 BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit; 652 // Branch to either remainder (extra iterations) loop or unrolling loop. 653 B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop); 654 PreHeaderBR->eraseFromParent(); 655 if (DT) { 656 if (UseEpilogRemainder) 657 DT->changeImmediateDominator(NewExit, PreHeader); 658 else 659 DT->changeImmediateDominator(PrologExit, PreHeader); 660 } 661 Function *F = Header->getParent(); 662 // Get an ordered list of blocks in the loop to help with the ordering of the 663 // cloned blocks in the prolog/epilog code 664 LoopBlocksDFS LoopBlocks(L); 665 LoopBlocks.perform(LI); 666 667 // 668 // For each extra loop iteration, create a copy of the loop's basic blocks 669 // and generate a condition that branches to the copy depending on the 670 // number of 'left over' iterations. 671 // 672 std::vector<BasicBlock *> NewBlocks; 673 ValueToValueMapTy VMap; 674 675 // For unroll factor 2 remainder loop will have 1 iterations. 676 // Do not create 1 iteration loop. 677 bool CreateRemainderLoop = (Count != 2); 678 679 // Clone all the basic blocks in the loop. If Count is 2, we don't clone 680 // the loop, otherwise we create a cloned loop to execute the extra 681 // iterations. This function adds the appropriate CFG connections. 682 BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit; 683 BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader; 684 Loop *remainderLoop = CloneLoopBlocks( 685 L, ModVal, CreateRemainderLoop, UseEpilogRemainder, InsertTop, InsertBot, 686 NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI); 687 688 // Insert the cloned blocks into the function. 689 F->getBasicBlockList().splice(InsertBot->getIterator(), 690 F->getBasicBlockList(), 691 NewBlocks[0]->getIterator(), 692 F->end()); 693 694 // Now the loop blocks are cloned and the other exiting blocks from the 695 // remainder are connected to the original Loop's exit blocks. The remaining 696 // work is to update the phi nodes in the original loop, and take in the 697 // values from the cloned region. Also update the dominator info for 698 // OtherExits, since we have new edges into OtherExits. 699 for (auto *BB : OtherExits) { 700 for (auto &II : *BB) { 701 702 // Given we preserve LCSSA form, we know that the values used outside the 703 // loop will be used through these phi nodes at the exit blocks that are 704 // transformed below. 705 if (!isa<PHINode>(II)) 706 break; 707 PHINode *Phi = cast<PHINode>(&II); 708 unsigned oldNumOperands = Phi->getNumIncomingValues(); 709 // Add the incoming values from the remainder code to the end of the phi 710 // node. 711 for (unsigned i =0; i < oldNumOperands; i++){ 712 Value *newVal = VMap[Phi->getIncomingValue(i)]; 713 // newVal can be a constant or derived from values outside the loop, and 714 // hence need not have a VMap value. 715 if (!newVal) 716 newVal = Phi->getIncomingValue(i); 717 Phi->addIncoming(newVal, 718 cast<BasicBlock>(VMap[Phi->getIncomingBlock(i)])); 719 } 720 } 721 // Update the dominator info because the immediate dominator is no longer the 722 // header of the original Loop. BB has edges both from L and remainder code. 723 // Since the preheader determines which loop is run (L or directly jump to 724 // the remainder code), we set the immediate dominator as the preheader. 725 if (DT) 726 DT->changeImmediateDominator(BB, PreHeader); 727 } 728 729 // Loop structure should be the following: 730 // Epilog Prolog 731 // 732 // PreHeader PreHeader 733 // NewPreHeader PrologPreHeader 734 // Header PrologHeader 735 // ... ... 736 // Latch PrologLatch 737 // NewExit PrologExit 738 // EpilogPreHeader NewPreHeader 739 // EpilogHeader Header 740 // ... ... 741 // EpilogLatch Latch 742 // LatchExit LatchExit 743 744 // Rewrite the cloned instruction operands to use the values created when the 745 // clone is created. 746 for (BasicBlock *BB : NewBlocks) { 747 for (Instruction &I : *BB) { 748 RemapInstruction(&I, VMap, 749 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 750 } 751 } 752 753 if (UseEpilogRemainder) { 754 // Connect the epilog code to the original loop and update the 755 // PHI functions. 756 ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader, 757 EpilogPreHeader, NewPreHeader, VMap, DT, LI, 758 PreserveLCSSA); 759 760 // Update counter in loop for unrolling. 761 // I should be multiply of Count. 762 IRBuilder<> B2(NewPreHeader->getTerminator()); 763 Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter"); 764 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); 765 B2.SetInsertPoint(LatchBR); 766 PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter", 767 Header->getFirstNonPHI()); 768 Value *IdxSub = 769 B2.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1), 770 NewIdx->getName() + ".nsub"); 771 Value *IdxCmp; 772 if (LatchBR->getSuccessor(0) == Header) 773 IdxCmp = B2.CreateIsNotNull(IdxSub, NewIdx->getName() + ".ncmp"); 774 else 775 IdxCmp = B2.CreateIsNull(IdxSub, NewIdx->getName() + ".ncmp"); 776 NewIdx->addIncoming(TestVal, NewPreHeader); 777 NewIdx->addIncoming(IdxSub, Latch); 778 LatchBR->setCondition(IdxCmp); 779 } else { 780 // Connect the prolog code to the original loop and update the 781 // PHI functions. 782 ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader, 783 NewPreHeader, VMap, DT, LI, PreserveLCSSA); 784 } 785 786 // If this loop is nested, then the loop unroller changes the code in the 787 // parent loop, so the Scalar Evolution pass needs to be run again. 788 if (Loop *ParentLoop = L->getParentLoop()) 789 SE->forgetLoop(ParentLoop); 790 791 // Canonicalize to LoopSimplifyForm both original and remainder loops. We 792 // cannot rely on the LoopUnrollPass to do this because it only does 793 // canonicalization for parent/subloops and not the sibling loops. 794 if (OtherExits.size() > 0) { 795 // Generate dedicated exit blocks for the original loop, to preserve 796 // LoopSimplifyForm. 797 formDedicatedExitBlocks(L, DT, LI, PreserveLCSSA); 798 // Generate dedicated exit blocks for the remainder loop if one exists, to 799 // preserve LoopSimplifyForm. 800 if (remainderLoop) 801 formDedicatedExitBlocks(remainderLoop, DT, LI, PreserveLCSSA); 802 } 803 804 NumRuntimeUnrolled++; 805 return true; 806 } 807