1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities for loops with run-time 11 // trip counts. See LoopUnroll.cpp for unrolling loops with compile-time 12 // trip counts. 13 // 14 // The functions in this file are used to generate extra code when the 15 // run-time trip count modulo the unroll factor is not 0. When this is the 16 // case, we need to generate code to execute these 'left over' iterations. 17 // 18 // The current strategy generates an if-then-else sequence prior to the 19 // unrolled loop to execute the 'left over' iterations before or after the 20 // unrolled loop. 21 // 22 //===----------------------------------------------------------------------===// 23 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/Analysis/LoopIterator.h" 27 #include "llvm/Analysis/LoopPass.h" 28 #include "llvm/Analysis/ScalarEvolution.h" 29 #include "llvm/Analysis/ScalarEvolutionExpander.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Metadata.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Transforms/Scalar.h" 37 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 38 #include "llvm/Transforms/Utils/Cloning.h" 39 #include "llvm/Transforms/Utils/LoopUtils.h" 40 #include "llvm/Transforms/Utils/UnrollLoop.h" 41 #include <algorithm> 42 43 using namespace llvm; 44 45 #define DEBUG_TYPE "loop-unroll" 46 47 STATISTIC(NumRuntimeUnrolled, 48 "Number of loops unrolled with run-time trip counts"); 49 static cl::opt<bool> UnrollRuntimeMultiExit( 50 "unroll-runtime-multi-exit", cl::init(false), cl::Hidden, 51 cl::desc("Allow runtime unrolling for loops with multiple exits, when " 52 "epilog is generated")); 53 54 /// Connect the unrolling prolog code to the original loop. 55 /// The unrolling prolog code contains code to execute the 56 /// 'extra' iterations if the run-time trip count modulo the 57 /// unroll count is non-zero. 58 /// 59 /// This function performs the following: 60 /// - Create PHI nodes at prolog end block to combine values 61 /// that exit the prolog code and jump around the prolog. 62 /// - Add a PHI operand to a PHI node at the loop exit block 63 /// for values that exit the prolog and go around the loop. 64 /// - Branch around the original loop if the trip count is less 65 /// than the unroll factor. 66 /// 67 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count, 68 BasicBlock *PrologExit, 69 BasicBlock *OriginalLoopLatchExit, 70 BasicBlock *PreHeader, BasicBlock *NewPreHeader, 71 ValueToValueMapTy &VMap, DominatorTree *DT, 72 LoopInfo *LI, bool PreserveLCSSA) { 73 BasicBlock *Latch = L->getLoopLatch(); 74 assert(Latch && "Loop must have a latch"); 75 BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]); 76 77 // Create a PHI node for each outgoing value from the original loop 78 // (which means it is an outgoing value from the prolog code too). 79 // The new PHI node is inserted in the prolog end basic block. 80 // The new PHI node value is added as an operand of a PHI node in either 81 // the loop header or the loop exit block. 82 for (BasicBlock *Succ : successors(Latch)) { 83 for (Instruction &BBI : *Succ) { 84 PHINode *PN = dyn_cast<PHINode>(&BBI); 85 // Exit when we passed all PHI nodes. 86 if (!PN) 87 break; 88 // Add a new PHI node to the prolog end block and add the 89 // appropriate incoming values. 90 PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr", 91 PrologExit->getFirstNonPHI()); 92 // Adding a value to the new PHI node from the original loop preheader. 93 // This is the value that skips all the prolog code. 94 if (L->contains(PN)) { 95 NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader), 96 PreHeader); 97 } else { 98 NewPN->addIncoming(UndefValue::get(PN->getType()), PreHeader); 99 } 100 101 Value *V = PN->getIncomingValueForBlock(Latch); 102 if (Instruction *I = dyn_cast<Instruction>(V)) { 103 if (L->contains(I)) { 104 V = VMap.lookup(I); 105 } 106 } 107 // Adding a value to the new PHI node from the last prolog block 108 // that was created. 109 NewPN->addIncoming(V, PrologLatch); 110 111 // Update the existing PHI node operand with the value from the 112 // new PHI node. How this is done depends on if the existing 113 // PHI node is in the original loop block, or the exit block. 114 if (L->contains(PN)) { 115 PN->setIncomingValue(PN->getBasicBlockIndex(NewPreHeader), NewPN); 116 } else { 117 PN->addIncoming(NewPN, PrologExit); 118 } 119 } 120 } 121 122 // Make sure that created prolog loop is in simplified form 123 SmallVector<BasicBlock *, 4> PrologExitPreds; 124 Loop *PrologLoop = LI->getLoopFor(PrologLatch); 125 if (PrologLoop) { 126 for (BasicBlock *PredBB : predecessors(PrologExit)) 127 if (PrologLoop->contains(PredBB)) 128 PrologExitPreds.push_back(PredBB); 129 130 SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI, 131 PreserveLCSSA); 132 } 133 134 // Create a branch around the original loop, which is taken if there are no 135 // iterations remaining to be executed after running the prologue. 136 Instruction *InsertPt = PrologExit->getTerminator(); 137 IRBuilder<> B(InsertPt); 138 139 assert(Count != 0 && "nonsensical Count!"); 140 141 // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1) 142 // This means %xtraiter is (BECount + 1) and all of the iterations of this 143 // loop were executed by the prologue. Note that if BECount <u (Count - 1) 144 // then (BECount + 1) cannot unsigned-overflow. 145 Value *BrLoopExit = 146 B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1)); 147 // Split the exit to maintain loop canonicalization guarantees 148 SmallVector<BasicBlock *, 4> Preds(predecessors(OriginalLoopLatchExit)); 149 SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI, 150 PreserveLCSSA); 151 // Add the branch to the exit block (around the unrolled loop) 152 B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader); 153 InsertPt->eraseFromParent(); 154 if (DT) 155 DT->changeImmediateDominator(OriginalLoopLatchExit, PrologExit); 156 } 157 158 /// Connect the unrolling epilog code to the original loop. 159 /// The unrolling epilog code contains code to execute the 160 /// 'extra' iterations if the run-time trip count modulo the 161 /// unroll count is non-zero. 162 /// 163 /// This function performs the following: 164 /// - Update PHI nodes at the unrolling loop exit and epilog loop exit 165 /// - Create PHI nodes at the unrolling loop exit to combine 166 /// values that exit the unrolling loop code and jump around it. 167 /// - Update PHI operands in the epilog loop by the new PHI nodes 168 /// - Branch around the epilog loop if extra iters (ModVal) is zero. 169 /// 170 static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit, 171 BasicBlock *Exit, BasicBlock *PreHeader, 172 BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader, 173 ValueToValueMapTy &VMap, DominatorTree *DT, 174 LoopInfo *LI, bool PreserveLCSSA) { 175 BasicBlock *Latch = L->getLoopLatch(); 176 assert(Latch && "Loop must have a latch"); 177 BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]); 178 179 // Loop structure should be the following: 180 // 181 // PreHeader 182 // NewPreHeader 183 // Header 184 // ... 185 // Latch 186 // NewExit (PN) 187 // EpilogPreHeader 188 // EpilogHeader 189 // ... 190 // EpilogLatch 191 // Exit (EpilogPN) 192 193 // Update PHI nodes at NewExit and Exit. 194 for (Instruction &BBI : *NewExit) { 195 PHINode *PN = dyn_cast<PHINode>(&BBI); 196 // Exit when we passed all PHI nodes. 197 if (!PN) 198 break; 199 // PN should be used in another PHI located in Exit block as 200 // Exit was split by SplitBlockPredecessors into Exit and NewExit 201 // Basicaly it should look like: 202 // NewExit: 203 // PN = PHI [I, Latch] 204 // ... 205 // Exit: 206 // EpilogPN = PHI [PN, EpilogPreHeader] 207 // 208 // There is EpilogPreHeader incoming block instead of NewExit as 209 // NewExit was spilt 1 more time to get EpilogPreHeader. 210 assert(PN->hasOneUse() && "The phi should have 1 use"); 211 PHINode *EpilogPN = cast<PHINode> (PN->use_begin()->getUser()); 212 assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block"); 213 214 // Add incoming PreHeader from branch around the Loop 215 PN->addIncoming(UndefValue::get(PN->getType()), PreHeader); 216 217 Value *V = PN->getIncomingValueForBlock(Latch); 218 Instruction *I = dyn_cast<Instruction>(V); 219 if (I && L->contains(I)) 220 // If value comes from an instruction in the loop add VMap value. 221 V = VMap.lookup(I); 222 // For the instruction out of the loop, constant or undefined value 223 // insert value itself. 224 EpilogPN->addIncoming(V, EpilogLatch); 225 226 assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 && 227 "EpilogPN should have EpilogPreHeader incoming block"); 228 // Change EpilogPreHeader incoming block to NewExit. 229 EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader), 230 NewExit); 231 // Now PHIs should look like: 232 // NewExit: 233 // PN = PHI [I, Latch], [undef, PreHeader] 234 // ... 235 // Exit: 236 // EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch] 237 } 238 239 // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader). 240 // Update corresponding PHI nodes in epilog loop. 241 for (BasicBlock *Succ : successors(Latch)) { 242 // Skip this as we already updated phis in exit blocks. 243 if (!L->contains(Succ)) 244 continue; 245 for (Instruction &BBI : *Succ) { 246 PHINode *PN = dyn_cast<PHINode>(&BBI); 247 // Exit when we passed all PHI nodes. 248 if (!PN) 249 break; 250 // Add new PHI nodes to the loop exit block and update epilog 251 // PHIs with the new PHI values. 252 PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr", 253 NewExit->getFirstNonPHI()); 254 // Adding a value to the new PHI node from the unrolling loop preheader. 255 NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader), PreHeader); 256 // Adding a value to the new PHI node from the unrolling loop latch. 257 NewPN->addIncoming(PN->getIncomingValueForBlock(Latch), Latch); 258 259 // Update the existing PHI node operand with the value from the new PHI 260 // node. Corresponding instruction in epilog loop should be PHI. 261 PHINode *VPN = cast<PHINode>(VMap[&BBI]); 262 VPN->setIncomingValue(VPN->getBasicBlockIndex(EpilogPreHeader), NewPN); 263 } 264 } 265 266 Instruction *InsertPt = NewExit->getTerminator(); 267 IRBuilder<> B(InsertPt); 268 Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod"); 269 assert(Exit && "Loop must have a single exit block only"); 270 // Split the epilogue exit to maintain loop canonicalization guarantees 271 SmallVector<BasicBlock*, 4> Preds(predecessors(Exit)); 272 SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI, 273 PreserveLCSSA); 274 // Add the branch to the exit block (around the unrolling loop) 275 B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit); 276 InsertPt->eraseFromParent(); 277 if (DT) 278 DT->changeImmediateDominator(Exit, NewExit); 279 280 // Split the main loop exit to maintain canonicalization guarantees. 281 SmallVector<BasicBlock*, 4> NewExitPreds{Latch}; 282 SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI, 283 PreserveLCSSA); 284 } 285 286 /// Create a clone of the blocks in a loop and connect them together. 287 /// If CreateRemainderLoop is false, loop structure will not be cloned, 288 /// otherwise a new loop will be created including all cloned blocks, and the 289 /// iterator of it switches to count NewIter down to 0. 290 /// The cloned blocks should be inserted between InsertTop and InsertBot. 291 /// If loop structure is cloned InsertTop should be new preheader, InsertBot 292 /// new loop exit. 293 /// Return the new cloned loop that is created when CreateRemainderLoop is true. 294 static Loop * 295 CloneLoopBlocks(Loop *L, Value *NewIter, const bool CreateRemainderLoop, 296 const bool UseEpilogRemainder, BasicBlock *InsertTop, 297 BasicBlock *InsertBot, BasicBlock *Preheader, 298 std::vector<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks, 299 ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI) { 300 StringRef suffix = UseEpilogRemainder ? "epil" : "prol"; 301 BasicBlock *Header = L->getHeader(); 302 BasicBlock *Latch = L->getLoopLatch(); 303 Function *F = Header->getParent(); 304 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); 305 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); 306 Loop *ParentLoop = L->getParentLoop(); 307 NewLoopsMap NewLoops; 308 NewLoops[ParentLoop] = ParentLoop; 309 if (!CreateRemainderLoop) 310 NewLoops[L] = ParentLoop; 311 312 // For each block in the original loop, create a new copy, 313 // and update the value map with the newly created values. 314 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 315 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F); 316 NewBlocks.push_back(NewBB); 317 318 // If we're unrolling the outermost loop, there's no remainder loop, 319 // and this block isn't in a nested loop, then the new block is not 320 // in any loop. Otherwise, add it to loopinfo. 321 if (CreateRemainderLoop || LI->getLoopFor(*BB) != L || ParentLoop) 322 addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops); 323 324 VMap[*BB] = NewBB; 325 if (Header == *BB) { 326 // For the first block, add a CFG connection to this newly 327 // created block. 328 InsertTop->getTerminator()->setSuccessor(0, NewBB); 329 } 330 331 if (DT) { 332 if (Header == *BB) { 333 // The header is dominated by the preheader. 334 DT->addNewBlock(NewBB, InsertTop); 335 } else { 336 // Copy information from original loop to unrolled loop. 337 BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock(); 338 DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB])); 339 } 340 } 341 342 if (Latch == *BB) { 343 // For the last block, if CreateRemainderLoop is false, create a direct 344 // jump to InsertBot. If not, create a loop back to cloned head. 345 VMap.erase((*BB)->getTerminator()); 346 BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]); 347 BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator()); 348 IRBuilder<> Builder(LatchBR); 349 if (!CreateRemainderLoop) { 350 Builder.CreateBr(InsertBot); 351 } else { 352 PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2, 353 suffix + ".iter", 354 FirstLoopBB->getFirstNonPHI()); 355 Value *IdxSub = 356 Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1), 357 NewIdx->getName() + ".sub"); 358 Value *IdxCmp = 359 Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp"); 360 Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot); 361 NewIdx->addIncoming(NewIter, InsertTop); 362 NewIdx->addIncoming(IdxSub, NewBB); 363 } 364 LatchBR->eraseFromParent(); 365 } 366 } 367 368 // Change the incoming values to the ones defined in the preheader or 369 // cloned loop. 370 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 371 PHINode *NewPHI = cast<PHINode>(VMap[&*I]); 372 if (!CreateRemainderLoop) { 373 if (UseEpilogRemainder) { 374 unsigned idx = NewPHI->getBasicBlockIndex(Preheader); 375 NewPHI->setIncomingBlock(idx, InsertTop); 376 NewPHI->removeIncomingValue(Latch, false); 377 } else { 378 VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader); 379 cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI); 380 } 381 } else { 382 unsigned idx = NewPHI->getBasicBlockIndex(Preheader); 383 NewPHI->setIncomingBlock(idx, InsertTop); 384 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); 385 idx = NewPHI->getBasicBlockIndex(Latch); 386 Value *InVal = NewPHI->getIncomingValue(idx); 387 NewPHI->setIncomingBlock(idx, NewLatch); 388 if (Value *V = VMap.lookup(InVal)) 389 NewPHI->setIncomingValue(idx, V); 390 } 391 } 392 if (CreateRemainderLoop) { 393 Loop *NewLoop = NewLoops[L]; 394 assert(NewLoop && "L should have been cloned"); 395 // Add unroll disable metadata to disable future unrolling for this loop. 396 SmallVector<Metadata *, 4> MDs; 397 // Reserve first location for self reference to the LoopID metadata node. 398 MDs.push_back(nullptr); 399 MDNode *LoopID = NewLoop->getLoopID(); 400 if (LoopID) { 401 // First remove any existing loop unrolling metadata. 402 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 403 bool IsUnrollMetadata = false; 404 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 405 if (MD) { 406 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 407 IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll."); 408 } 409 if (!IsUnrollMetadata) 410 MDs.push_back(LoopID->getOperand(i)); 411 } 412 } 413 414 LLVMContext &Context = NewLoop->getHeader()->getContext(); 415 SmallVector<Metadata *, 1> DisableOperands; 416 DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable")); 417 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 418 MDs.push_back(DisableNode); 419 420 MDNode *NewLoopID = MDNode::get(Context, MDs); 421 // Set operand 0 to refer to the loop id itself. 422 NewLoopID->replaceOperandWith(0, NewLoopID); 423 NewLoop->setLoopID(NewLoopID); 424 return NewLoop; 425 } 426 else 427 return nullptr; 428 } 429 430 /// Insert code in the prolog/epilog code when unrolling a loop with a 431 /// run-time trip-count. 432 /// 433 /// This method assumes that the loop unroll factor is total number 434 /// of loop bodies in the loop after unrolling. (Some folks refer 435 /// to the unroll factor as the number of *extra* copies added). 436 /// We assume also that the loop unroll factor is a power-of-two. So, after 437 /// unrolling the loop, the number of loop bodies executed is 2, 438 /// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch 439 /// instruction in SimplifyCFG.cpp. Then, the backend decides how code for 440 /// the switch instruction is generated. 441 /// 442 /// ***Prolog case*** 443 /// extraiters = tripcount % loopfactor 444 /// if (extraiters == 0) jump Loop: 445 /// else jump Prol: 446 /// Prol: LoopBody; 447 /// extraiters -= 1 // Omitted if unroll factor is 2. 448 /// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2. 449 /// if (tripcount < loopfactor) jump End: 450 /// Loop: 451 /// ... 452 /// End: 453 /// 454 /// ***Epilog case*** 455 /// extraiters = tripcount % loopfactor 456 /// if (tripcount < loopfactor) jump LoopExit: 457 /// unroll_iters = tripcount - extraiters 458 /// Loop: LoopBody; (executes unroll_iter times); 459 /// unroll_iter -= 1 460 /// if (unroll_iter != 0) jump Loop: 461 /// LoopExit: 462 /// if (extraiters == 0) jump EpilExit: 463 /// Epil: LoopBody; (executes extraiters times) 464 /// extraiters -= 1 // Omitted if unroll factor is 2. 465 /// if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2. 466 /// EpilExit: 467 468 bool llvm::UnrollRuntimeLoopRemainder(Loop *L, unsigned Count, 469 bool AllowExpensiveTripCount, 470 bool UseEpilogRemainder, 471 LoopInfo *LI, ScalarEvolution *SE, 472 DominatorTree *DT, bool PreserveLCSSA) { 473 bool hasMultipleExitingBlocks = !L->getExitingBlock(); 474 // Support only single exiting block unless UnrollRuntimeMultiExit is true. 475 if (!UnrollRuntimeMultiExit && hasMultipleExitingBlocks) 476 return false; 477 478 // Make sure the loop is in canonical form. 479 if (!L->isLoopSimplifyForm()) 480 return false; 481 482 // Guaranteed by LoopSimplifyForm. 483 BasicBlock *Latch = L->getLoopLatch(); 484 BasicBlock *Header = L->getHeader(); 485 486 BasicBlock *LatchExit = L->getUniqueExitBlock(); // successor out of loop 487 if (!LatchExit && !UnrollRuntimeMultiExit) 488 return false; 489 // These are exit blocks other than the target of the latch exiting block. 490 SmallVector<BasicBlock *, 4> OtherExits; 491 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); 492 unsigned int ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0; 493 // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the 494 // targets of the Latch be an exit block out of the loop. This needs 495 // to be guaranteed by the callers of UnrollRuntimeLoopRemainder. 496 assert(!L->contains(LatchBR->getSuccessor(ExitIndex)) && 497 "one of the loop latch successors should be the exit block!"); 498 // Support runtime unrolling for multiple exit blocks and multiple exiting 499 // blocks. 500 if (!LatchExit) { 501 LatchExit = LatchBR->getSuccessor(ExitIndex); 502 // We rely on LCSSA form being preserved when the exit blocks are 503 // transformed. 504 if (!PreserveLCSSA) 505 return false; 506 SmallVector<BasicBlock *, 4> Exits; 507 L->getUniqueExitBlocks(Exits); 508 for (auto *BB : Exits) 509 if (BB != LatchExit) 510 OtherExits.push_back(BB); 511 } 512 513 assert(LatchExit && "Latch Exit should exist!"); 514 515 // TODO: Support multiple exiting blocks jumping to the `LatchExit` when 516 // UnrollRuntimeMultiExit is true. This will need updating the logic in 517 // connectEpilog. 518 if (!LatchExit->getSinglePredecessor()) 519 return false; 520 // FIXME: We bail out of multi-exit unrolling when epilog loop is generated 521 // and L is an inner loop. This is because in presence of multiple exits, the 522 // outer loop is incorrect: we do not add the EpilogPreheader and exit to the 523 // outer loop. This is automatically handled in the prolog case, so we do not 524 // have that bug in prolog generation. 525 if (hasMultipleExitingBlocks && UseEpilogRemainder && L->getParentLoop()) 526 return false; 527 // Use Scalar Evolution to compute the trip count. This allows more loops to 528 // be unrolled than relying on induction var simplification. 529 if (!SE) 530 return false; 531 532 // Only unroll loops with a computable trip count, and the trip count needs 533 // to be an int value (allowing a pointer type is a TODO item). 534 // We calculate the backedge count by using getExitCount on the Latch block, 535 // which is proven to be the only exiting block in this loop. This is same as 536 // calculating getBackedgeTakenCount on the loop (which computes SCEV for all 537 // exiting blocks). 538 const SCEV *BECountSC = SE->getExitCount(L, Latch); 539 if (isa<SCEVCouldNotCompute>(BECountSC) || 540 !BECountSC->getType()->isIntegerTy()) 541 return false; 542 543 unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth(); 544 545 // Add 1 since the backedge count doesn't include the first loop iteration. 546 const SCEV *TripCountSC = 547 SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1)); 548 if (isa<SCEVCouldNotCompute>(TripCountSC)) 549 return false; 550 551 BasicBlock *PreHeader = L->getLoopPreheader(); 552 BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); 553 const DataLayout &DL = Header->getModule()->getDataLayout(); 554 SCEVExpander Expander(*SE, DL, "loop-unroll"); 555 if (!AllowExpensiveTripCount && 556 Expander.isHighCostExpansion(TripCountSC, L, PreHeaderBR)) 557 return false; 558 559 // This constraint lets us deal with an overflowing trip count easily; see the 560 // comment on ModVal below. 561 if (Log2_32(Count) > BEWidth) 562 return false; 563 564 // Loop structure is the following: 565 // 566 // PreHeader 567 // Header 568 // ... 569 // Latch 570 // LatchExit 571 572 BasicBlock *NewPreHeader; 573 BasicBlock *NewExit = nullptr; 574 BasicBlock *PrologExit = nullptr; 575 BasicBlock *EpilogPreHeader = nullptr; 576 BasicBlock *PrologPreHeader = nullptr; 577 578 if (UseEpilogRemainder) { 579 // If epilog remainder 580 // Split PreHeader to insert a branch around loop for unrolling. 581 NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI); 582 NewPreHeader->setName(PreHeader->getName() + ".new"); 583 // Split LatchExit to create phi nodes from branch above. 584 SmallVector<BasicBlock*, 4> Preds(predecessors(LatchExit)); 585 NewExit = SplitBlockPredecessors(LatchExit, Preds, ".unr-lcssa", 586 DT, LI, PreserveLCSSA); 587 // Split NewExit to insert epilog remainder loop. 588 EpilogPreHeader = SplitBlock(NewExit, NewExit->getTerminator(), DT, LI); 589 EpilogPreHeader->setName(Header->getName() + ".epil.preheader"); 590 } else { 591 // If prolog remainder 592 // Split the original preheader twice to insert prolog remainder loop 593 PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI); 594 PrologPreHeader->setName(Header->getName() + ".prol.preheader"); 595 PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(), 596 DT, LI); 597 PrologExit->setName(Header->getName() + ".prol.loopexit"); 598 // Split PrologExit to get NewPreHeader. 599 NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI); 600 NewPreHeader->setName(PreHeader->getName() + ".new"); 601 } 602 // Loop structure should be the following: 603 // Epilog Prolog 604 // 605 // PreHeader PreHeader 606 // *NewPreHeader *PrologPreHeader 607 // Header *PrologExit 608 // ... *NewPreHeader 609 // Latch Header 610 // *NewExit ... 611 // *EpilogPreHeader Latch 612 // LatchExit LatchExit 613 614 // Calculate conditions for branch around loop for unrolling 615 // in epilog case and around prolog remainder loop in prolog case. 616 // Compute the number of extra iterations required, which is: 617 // extra iterations = run-time trip count % loop unroll factor 618 PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); 619 Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(), 620 PreHeaderBR); 621 Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(), 622 PreHeaderBR); 623 IRBuilder<> B(PreHeaderBR); 624 Value *ModVal; 625 // Calculate ModVal = (BECount + 1) % Count. 626 // Note that TripCount is BECount + 1. 627 if (isPowerOf2_32(Count)) { 628 // When Count is power of 2 we don't BECount for epilog case, however we'll 629 // need it for a branch around unrolling loop for prolog case. 630 ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter"); 631 // 1. There are no iterations to be run in the prolog/epilog loop. 632 // OR 633 // 2. The addition computing TripCount overflowed. 634 // 635 // If (2) is true, we know that TripCount really is (1 << BEWidth) and so 636 // the number of iterations that remain to be run in the original loop is a 637 // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we 638 // explicitly check this above). 639 } else { 640 // As (BECount + 1) can potentially unsigned overflow we count 641 // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count. 642 Value *ModValTmp = B.CreateURem(BECount, 643 ConstantInt::get(BECount->getType(), 644 Count)); 645 Value *ModValAdd = B.CreateAdd(ModValTmp, 646 ConstantInt::get(ModValTmp->getType(), 1)); 647 // At that point (BECount % Count) + 1 could be equal to Count. 648 // To handle this case we need to take mod by Count one more time. 649 ModVal = B.CreateURem(ModValAdd, 650 ConstantInt::get(BECount->getType(), Count), 651 "xtraiter"); 652 } 653 Value *BranchVal = 654 UseEpilogRemainder ? B.CreateICmpULT(BECount, 655 ConstantInt::get(BECount->getType(), 656 Count - 1)) : 657 B.CreateIsNotNull(ModVal, "lcmp.mod"); 658 BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader; 659 BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit; 660 // Branch to either remainder (extra iterations) loop or unrolling loop. 661 B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop); 662 PreHeaderBR->eraseFromParent(); 663 if (DT) { 664 if (UseEpilogRemainder) 665 DT->changeImmediateDominator(NewExit, PreHeader); 666 else 667 DT->changeImmediateDominator(PrologExit, PreHeader); 668 } 669 Function *F = Header->getParent(); 670 // Get an ordered list of blocks in the loop to help with the ordering of the 671 // cloned blocks in the prolog/epilog code 672 LoopBlocksDFS LoopBlocks(L); 673 LoopBlocks.perform(LI); 674 675 // 676 // For each extra loop iteration, create a copy of the loop's basic blocks 677 // and generate a condition that branches to the copy depending on the 678 // number of 'left over' iterations. 679 // 680 std::vector<BasicBlock *> NewBlocks; 681 ValueToValueMapTy VMap; 682 683 // For unroll factor 2 remainder loop will have 1 iterations. 684 // Do not create 1 iteration loop. 685 bool CreateRemainderLoop = (Count != 2); 686 687 // Clone all the basic blocks in the loop. If Count is 2, we don't clone 688 // the loop, otherwise we create a cloned loop to execute the extra 689 // iterations. This function adds the appropriate CFG connections. 690 BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit; 691 BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader; 692 Loop *remainderLoop = CloneLoopBlocks( 693 L, ModVal, CreateRemainderLoop, UseEpilogRemainder, InsertTop, InsertBot, 694 NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI); 695 696 // Insert the cloned blocks into the function. 697 F->getBasicBlockList().splice(InsertBot->getIterator(), 698 F->getBasicBlockList(), 699 NewBlocks[0]->getIterator(), 700 F->end()); 701 702 // Now the loop blocks are cloned and the other exiting blocks from the 703 // remainder are connected to the original Loop's exit blocks. The remaining 704 // work is to update the phi nodes in the original loop, and take in the 705 // values from the cloned region. Also update the dominator info for 706 // OtherExits, since we have new edges into OtherExits. 707 for (auto *BB : OtherExits) { 708 for (auto &II : *BB) { 709 710 // Given we preserve LCSSA form, we know that the values used outside the 711 // loop will be used through these phi nodes at the exit blocks that are 712 // transformed below. 713 if (!isa<PHINode>(II)) 714 break; 715 PHINode *Phi = cast<PHINode>(&II); 716 unsigned oldNumOperands = Phi->getNumIncomingValues(); 717 // Add the incoming values from the remainder code to the end of the phi 718 // node. 719 for (unsigned i =0; i < oldNumOperands; i++){ 720 Value *newVal = VMap[Phi->getIncomingValue(i)]; 721 // newVal can be a constant or derived from values outside the loop, and 722 // hence need not have a VMap value. 723 if (!newVal) 724 newVal = Phi->getIncomingValue(i); 725 Phi->addIncoming(newVal, 726 cast<BasicBlock>(VMap[Phi->getIncomingBlock(i)])); 727 } 728 } 729 // Update the dominator info because the immediate dominator is no longer the 730 // header of the original Loop. BB has edges both from L and remainder code. 731 // Since the preheader determines which loop is run (L or directly jump to 732 // the remainder code), we set the immediate dominator as the preheader. 733 if (DT) 734 DT->changeImmediateDominator(BB, PreHeader); 735 } 736 737 // Loop structure should be the following: 738 // Epilog Prolog 739 // 740 // PreHeader PreHeader 741 // NewPreHeader PrologPreHeader 742 // Header PrologHeader 743 // ... ... 744 // Latch PrologLatch 745 // NewExit PrologExit 746 // EpilogPreHeader NewPreHeader 747 // EpilogHeader Header 748 // ... ... 749 // EpilogLatch Latch 750 // LatchExit LatchExit 751 752 // Rewrite the cloned instruction operands to use the values created when the 753 // clone is created. 754 for (BasicBlock *BB : NewBlocks) { 755 for (Instruction &I : *BB) { 756 RemapInstruction(&I, VMap, 757 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 758 } 759 } 760 761 if (UseEpilogRemainder) { 762 // Connect the epilog code to the original loop and update the 763 // PHI functions. 764 ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader, 765 EpilogPreHeader, NewPreHeader, VMap, DT, LI, 766 PreserveLCSSA); 767 768 // Update counter in loop for unrolling. 769 // I should be multiply of Count. 770 IRBuilder<> B2(NewPreHeader->getTerminator()); 771 Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter"); 772 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); 773 B2.SetInsertPoint(LatchBR); 774 PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter", 775 Header->getFirstNonPHI()); 776 Value *IdxSub = 777 B2.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1), 778 NewIdx->getName() + ".nsub"); 779 Value *IdxCmp; 780 if (LatchBR->getSuccessor(0) == Header) 781 IdxCmp = B2.CreateIsNotNull(IdxSub, NewIdx->getName() + ".ncmp"); 782 else 783 IdxCmp = B2.CreateIsNull(IdxSub, NewIdx->getName() + ".ncmp"); 784 NewIdx->addIncoming(TestVal, NewPreHeader); 785 NewIdx->addIncoming(IdxSub, Latch); 786 LatchBR->setCondition(IdxCmp); 787 } else { 788 // Connect the prolog code to the original loop and update the 789 // PHI functions. 790 ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader, 791 NewPreHeader, VMap, DT, LI, PreserveLCSSA); 792 } 793 794 // If this loop is nested, then the loop unroller changes the code in the 795 // parent loop, so the Scalar Evolution pass needs to be run again. 796 if (Loop *ParentLoop = L->getParentLoop()) 797 SE->forgetLoop(ParentLoop); 798 799 // Canonicalize to LoopSimplifyForm both original and remainder loops. We 800 // cannot rely on the LoopUnrollPass to do this because it only does 801 // canonicalization for parent/subloops and not the sibling loops. 802 if (OtherExits.size() > 0) { 803 // Generate dedicated exit blocks for the original loop, to preserve 804 // LoopSimplifyForm. 805 formDedicatedExitBlocks(L, DT, LI, PreserveLCSSA); 806 // Generate dedicated exit blocks for the remainder loop if one exists, to 807 // preserve LoopSimplifyForm. 808 if (remainderLoop) 809 formDedicatedExitBlocks(remainderLoop, DT, LI, PreserveLCSSA); 810 } 811 812 NumRuntimeUnrolled++; 813 return true; 814 } 815