1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities for loops with run-time 11 // trip counts. See LoopUnroll.cpp for unrolling loops with compile-time 12 // trip counts. 13 // 14 // The functions in this file are used to generate extra code when the 15 // run-time trip count modulo the unroll factor is not 0. When this is the 16 // case, we need to generate code to execute these 'left over' iterations. 17 // 18 // The current strategy generates an if-then-else sequence prior to the 19 // unrolled loop to execute the 'left over' iterations before or after the 20 // unrolled loop. 21 // 22 //===----------------------------------------------------------------------===// 23 24 #include "llvm/Transforms/Utils/UnrollLoop.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/LoopIterator.h" 28 #include "llvm/Analysis/LoopPass.h" 29 #include "llvm/Analysis/ScalarEvolution.h" 30 #include "llvm/Analysis/ScalarEvolutionExpander.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Metadata.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Transforms/Scalar.h" 38 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 39 #include "llvm/Transforms/Utils/Cloning.h" 40 #include <algorithm> 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "loop-unroll" 45 46 STATISTIC(NumRuntimeUnrolled, 47 "Number of loops unrolled with run-time trip counts"); 48 49 /// Connect the unrolling prolog code to the original loop. 50 /// The unrolling prolog code contains code to execute the 51 /// 'extra' iterations if the run-time trip count modulo the 52 /// unroll count is non-zero. 53 /// 54 /// This function performs the following: 55 /// - Create PHI nodes at prolog end block to combine values 56 /// that exit the prolog code and jump around the prolog. 57 /// - Add a PHI operand to a PHI node at the loop exit block 58 /// for values that exit the prolog and go around the loop. 59 /// - Branch around the original loop if the trip count is less 60 /// than the unroll factor. 61 /// 62 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count, 63 BasicBlock *PrologExit, BasicBlock *PreHeader, 64 BasicBlock *NewPreHeader, ValueToValueMapTy &VMap, 65 DominatorTree *DT, LoopInfo *LI, bool PreserveLCSSA) { 66 BasicBlock *Latch = L->getLoopLatch(); 67 assert(Latch && "Loop must have a latch"); 68 BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]); 69 70 // Create a PHI node for each outgoing value from the original loop 71 // (which means it is an outgoing value from the prolog code too). 72 // The new PHI node is inserted in the prolog end basic block. 73 // The new PHI node value is added as an operand of a PHI node in either 74 // the loop header or the loop exit block. 75 for (BasicBlock *Succ : successors(Latch)) { 76 for (Instruction &BBI : *Succ) { 77 PHINode *PN = dyn_cast<PHINode>(&BBI); 78 // Exit when we passed all PHI nodes. 79 if (!PN) 80 break; 81 // Add a new PHI node to the prolog end block and add the 82 // appropriate incoming values. 83 PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr", 84 PrologExit->getFirstNonPHI()); 85 // Adding a value to the new PHI node from the original loop preheader. 86 // This is the value that skips all the prolog code. 87 if (L->contains(PN)) { 88 NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader), 89 PreHeader); 90 } else { 91 NewPN->addIncoming(UndefValue::get(PN->getType()), PreHeader); 92 } 93 94 Value *V = PN->getIncomingValueForBlock(Latch); 95 if (Instruction *I = dyn_cast<Instruction>(V)) { 96 if (L->contains(I)) { 97 V = VMap.lookup(I); 98 } 99 } 100 // Adding a value to the new PHI node from the last prolog block 101 // that was created. 102 NewPN->addIncoming(V, PrologLatch); 103 104 // Update the existing PHI node operand with the value from the 105 // new PHI node. How this is done depends on if the existing 106 // PHI node is in the original loop block, or the exit block. 107 if (L->contains(PN)) { 108 PN->setIncomingValue(PN->getBasicBlockIndex(NewPreHeader), NewPN); 109 } else { 110 PN->addIncoming(NewPN, PrologExit); 111 } 112 } 113 } 114 115 // Make sure that created prolog loop is in simplified form 116 SmallVector<BasicBlock *, 4> PrologExitPreds; 117 Loop *PrologLoop = LI->getLoopFor(PrologLatch); 118 if (PrologLoop) { 119 for (BasicBlock *PredBB : predecessors(PrologExit)) 120 if (PrologLoop->contains(PredBB)) 121 PrologExitPreds.push_back(PredBB); 122 123 SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI, 124 PreserveLCSSA); 125 } 126 127 // Create a branch around the original loop, which is taken if there are no 128 // iterations remaining to be executed after running the prologue. 129 Instruction *InsertPt = PrologExit->getTerminator(); 130 IRBuilder<> B(InsertPt); 131 132 assert(Count != 0 && "nonsensical Count!"); 133 134 // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1) 135 // This means %xtraiter is (BECount + 1) and all of the iterations of this 136 // loop were executed by the prologue. Note that if BECount <u (Count - 1) 137 // then (BECount + 1) cannot unsigned-overflow. 138 Value *BrLoopExit = 139 B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1)); 140 BasicBlock *Exit = L->getUniqueExitBlock(); 141 assert(Exit && "Loop must have a single exit block only"); 142 // Split the exit to maintain loop canonicalization guarantees 143 SmallVector<BasicBlock*, 4> Preds(predecessors(Exit)); 144 SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", DT, LI, 145 PreserveLCSSA); 146 // Add the branch to the exit block (around the unrolled loop) 147 B.CreateCondBr(BrLoopExit, Exit, NewPreHeader); 148 InsertPt->eraseFromParent(); 149 if (DT) 150 DT->changeImmediateDominator(Exit, PrologExit); 151 } 152 153 /// Connect the unrolling epilog code to the original loop. 154 /// The unrolling epilog code contains code to execute the 155 /// 'extra' iterations if the run-time trip count modulo the 156 /// unroll count is non-zero. 157 /// 158 /// This function performs the following: 159 /// - Update PHI nodes at the unrolling loop exit and epilog loop exit 160 /// - Create PHI nodes at the unrolling loop exit to combine 161 /// values that exit the unrolling loop code and jump around it. 162 /// - Update PHI operands in the epilog loop by the new PHI nodes 163 /// - Branch around the epilog loop if extra iters (ModVal) is zero. 164 /// 165 static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit, 166 BasicBlock *Exit, BasicBlock *PreHeader, 167 BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader, 168 ValueToValueMapTy &VMap, DominatorTree *DT, 169 LoopInfo *LI, bool PreserveLCSSA) { 170 BasicBlock *Latch = L->getLoopLatch(); 171 assert(Latch && "Loop must have a latch"); 172 BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]); 173 174 // Loop structure should be the following: 175 // 176 // PreHeader 177 // NewPreHeader 178 // Header 179 // ... 180 // Latch 181 // NewExit (PN) 182 // EpilogPreHeader 183 // EpilogHeader 184 // ... 185 // EpilogLatch 186 // Exit (EpilogPN) 187 188 // Update PHI nodes at NewExit and Exit. 189 for (Instruction &BBI : *NewExit) { 190 PHINode *PN = dyn_cast<PHINode>(&BBI); 191 // Exit when we passed all PHI nodes. 192 if (!PN) 193 break; 194 // PN should be used in another PHI located in Exit block as 195 // Exit was split by SplitBlockPredecessors into Exit and NewExit 196 // Basicaly it should look like: 197 // NewExit: 198 // PN = PHI [I, Latch] 199 // ... 200 // Exit: 201 // EpilogPN = PHI [PN, EpilogPreHeader] 202 // 203 // There is EpilogPreHeader incoming block instead of NewExit as 204 // NewExit was spilt 1 more time to get EpilogPreHeader. 205 assert(PN->hasOneUse() && "The phi should have 1 use"); 206 PHINode *EpilogPN = cast<PHINode> (PN->use_begin()->getUser()); 207 assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block"); 208 209 // Add incoming PreHeader from branch around the Loop 210 PN->addIncoming(UndefValue::get(PN->getType()), PreHeader); 211 212 Value *V = PN->getIncomingValueForBlock(Latch); 213 Instruction *I = dyn_cast<Instruction>(V); 214 if (I && L->contains(I)) 215 // If value comes from an instruction in the loop add VMap value. 216 V = VMap.lookup(I); 217 // For the instruction out of the loop, constant or undefined value 218 // insert value itself. 219 EpilogPN->addIncoming(V, EpilogLatch); 220 221 assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 && 222 "EpilogPN should have EpilogPreHeader incoming block"); 223 // Change EpilogPreHeader incoming block to NewExit. 224 EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader), 225 NewExit); 226 // Now PHIs should look like: 227 // NewExit: 228 // PN = PHI [I, Latch], [undef, PreHeader] 229 // ... 230 // Exit: 231 // EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch] 232 } 233 234 // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader). 235 // Update corresponding PHI nodes in epilog loop. 236 for (BasicBlock *Succ : successors(Latch)) { 237 // Skip this as we already updated phis in exit blocks. 238 if (!L->contains(Succ)) 239 continue; 240 for (Instruction &BBI : *Succ) { 241 PHINode *PN = dyn_cast<PHINode>(&BBI); 242 // Exit when we passed all PHI nodes. 243 if (!PN) 244 break; 245 // Add new PHI nodes to the loop exit block and update epilog 246 // PHIs with the new PHI values. 247 PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr", 248 NewExit->getFirstNonPHI()); 249 // Adding a value to the new PHI node from the unrolling loop preheader. 250 NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader), PreHeader); 251 // Adding a value to the new PHI node from the unrolling loop latch. 252 NewPN->addIncoming(PN->getIncomingValueForBlock(Latch), Latch); 253 254 // Update the existing PHI node operand with the value from the new PHI 255 // node. Corresponding instruction in epilog loop should be PHI. 256 PHINode *VPN = cast<PHINode>(VMap[&BBI]); 257 VPN->setIncomingValue(VPN->getBasicBlockIndex(EpilogPreHeader), NewPN); 258 } 259 } 260 261 Instruction *InsertPt = NewExit->getTerminator(); 262 IRBuilder<> B(InsertPt); 263 Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod"); 264 assert(Exit && "Loop must have a single exit block only"); 265 // Split the epilogue exit to maintain loop canonicalization guarantees 266 SmallVector<BasicBlock*, 4> Preds(predecessors(Exit)); 267 SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI, 268 PreserveLCSSA); 269 // Add the branch to the exit block (around the unrolling loop) 270 B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit); 271 InsertPt->eraseFromParent(); 272 if (DT) 273 DT->changeImmediateDominator(Exit, NewExit); 274 275 // Split the main loop exit to maintain canonicalization guarantees. 276 SmallVector<BasicBlock*, 4> NewExitPreds{Latch}; 277 SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI, 278 PreserveLCSSA); 279 } 280 281 /// Create a clone of the blocks in a loop and connect them together. 282 /// If CreateRemainderLoop is false, loop structure will not be cloned, 283 /// otherwise a new loop will be created including all cloned blocks, and the 284 /// iterator of it switches to count NewIter down to 0. 285 /// The cloned blocks should be inserted between InsertTop and InsertBot. 286 /// If loop structure is cloned InsertTop should be new preheader, InsertBot 287 /// new loop exit. 288 /// 289 static void CloneLoopBlocks(Loop *L, Value *NewIter, 290 const bool CreateRemainderLoop, 291 const bool UseEpilogRemainder, 292 BasicBlock *InsertTop, BasicBlock *InsertBot, 293 BasicBlock *Preheader, 294 std::vector<BasicBlock *> &NewBlocks, 295 LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap, 296 DominatorTree *DT, LoopInfo *LI) { 297 StringRef suffix = UseEpilogRemainder ? "epil" : "prol"; 298 BasicBlock *Header = L->getHeader(); 299 BasicBlock *Latch = L->getLoopLatch(); 300 Function *F = Header->getParent(); 301 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); 302 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); 303 Loop *NewLoop = nullptr; 304 Loop *ParentLoop = L->getParentLoop(); 305 if (CreateRemainderLoop) { 306 NewLoop = new Loop(); 307 if (ParentLoop) 308 ParentLoop->addChildLoop(NewLoop); 309 else 310 LI->addTopLevelLoop(NewLoop); 311 } 312 313 NewLoopsMap NewLoops; 314 NewLoops[L] = NewLoop; 315 // For each block in the original loop, create a new copy, 316 // and update the value map with the newly created values. 317 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 318 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F); 319 NewBlocks.push_back(NewBB); 320 321 if (NewLoop) { 322 addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops); 323 } else if (ParentLoop) 324 ParentLoop->addBasicBlockToLoop(NewBB, *LI); 325 326 VMap[*BB] = NewBB; 327 if (Header == *BB) { 328 // For the first block, add a CFG connection to this newly 329 // created block. 330 InsertTop->getTerminator()->setSuccessor(0, NewBB); 331 } 332 333 if (DT) { 334 if (Header == *BB) { 335 // The header is dominated by the preheader. 336 DT->addNewBlock(NewBB, InsertTop); 337 } else { 338 // Copy information from original loop to unrolled loop. 339 BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock(); 340 DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB])); 341 } 342 } 343 344 if (Latch == *BB) { 345 // For the last block, if CreateRemainderLoop is false, create a direct 346 // jump to InsertBot. If not, create a loop back to cloned head. 347 VMap.erase((*BB)->getTerminator()); 348 BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]); 349 BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator()); 350 IRBuilder<> Builder(LatchBR); 351 if (!CreateRemainderLoop) { 352 Builder.CreateBr(InsertBot); 353 } else { 354 PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2, 355 suffix + ".iter", 356 FirstLoopBB->getFirstNonPHI()); 357 Value *IdxSub = 358 Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1), 359 NewIdx->getName() + ".sub"); 360 Value *IdxCmp = 361 Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp"); 362 Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot); 363 NewIdx->addIncoming(NewIter, InsertTop); 364 NewIdx->addIncoming(IdxSub, NewBB); 365 } 366 LatchBR->eraseFromParent(); 367 } 368 } 369 370 // Change the incoming values to the ones defined in the preheader or 371 // cloned loop. 372 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 373 PHINode *NewPHI = cast<PHINode>(VMap[&*I]); 374 if (!CreateRemainderLoop) { 375 if (UseEpilogRemainder) { 376 unsigned idx = NewPHI->getBasicBlockIndex(Preheader); 377 NewPHI->setIncomingBlock(idx, InsertTop); 378 NewPHI->removeIncomingValue(Latch, false); 379 } else { 380 VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader); 381 cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI); 382 } 383 } else { 384 unsigned idx = NewPHI->getBasicBlockIndex(Preheader); 385 NewPHI->setIncomingBlock(idx, InsertTop); 386 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); 387 idx = NewPHI->getBasicBlockIndex(Latch); 388 Value *InVal = NewPHI->getIncomingValue(idx); 389 NewPHI->setIncomingBlock(idx, NewLatch); 390 if (Value *V = VMap.lookup(InVal)) 391 NewPHI->setIncomingValue(idx, V); 392 } 393 } 394 if (NewLoop) { 395 // Add unroll disable metadata to disable future unrolling for this loop. 396 SmallVector<Metadata *, 4> MDs; 397 // Reserve first location for self reference to the LoopID metadata node. 398 MDs.push_back(nullptr); 399 MDNode *LoopID = NewLoop->getLoopID(); 400 if (LoopID) { 401 // First remove any existing loop unrolling metadata. 402 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 403 bool IsUnrollMetadata = false; 404 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 405 if (MD) { 406 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 407 IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll."); 408 } 409 if (!IsUnrollMetadata) 410 MDs.push_back(LoopID->getOperand(i)); 411 } 412 } 413 414 LLVMContext &Context = NewLoop->getHeader()->getContext(); 415 SmallVector<Metadata *, 1> DisableOperands; 416 DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable")); 417 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 418 MDs.push_back(DisableNode); 419 420 MDNode *NewLoopID = MDNode::get(Context, MDs); 421 // Set operand 0 to refer to the loop id itself. 422 NewLoopID->replaceOperandWith(0, NewLoopID); 423 NewLoop->setLoopID(NewLoopID); 424 } 425 } 426 427 /// Insert code in the prolog/epilog code when unrolling a loop with a 428 /// run-time trip-count. 429 /// 430 /// This method assumes that the loop unroll factor is total number 431 /// of loop bodies in the loop after unrolling. (Some folks refer 432 /// to the unroll factor as the number of *extra* copies added). 433 /// We assume also that the loop unroll factor is a power-of-two. So, after 434 /// unrolling the loop, the number of loop bodies executed is 2, 435 /// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch 436 /// instruction in SimplifyCFG.cpp. Then, the backend decides how code for 437 /// the switch instruction is generated. 438 /// 439 /// ***Prolog case*** 440 /// extraiters = tripcount % loopfactor 441 /// if (extraiters == 0) jump Loop: 442 /// else jump Prol: 443 /// Prol: LoopBody; 444 /// extraiters -= 1 // Omitted if unroll factor is 2. 445 /// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2. 446 /// if (tripcount < loopfactor) jump End: 447 /// Loop: 448 /// ... 449 /// End: 450 /// 451 /// ***Epilog case*** 452 /// extraiters = tripcount % loopfactor 453 /// if (tripcount < loopfactor) jump LoopExit: 454 /// unroll_iters = tripcount - extraiters 455 /// Loop: LoopBody; (executes unroll_iter times); 456 /// unroll_iter -= 1 457 /// if (unroll_iter != 0) jump Loop: 458 /// LoopExit: 459 /// if (extraiters == 0) jump EpilExit: 460 /// Epil: LoopBody; (executes extraiters times) 461 /// extraiters -= 1 // Omitted if unroll factor is 2. 462 /// if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2. 463 /// EpilExit: 464 465 bool llvm::UnrollRuntimeLoopRemainder(Loop *L, unsigned Count, 466 bool AllowExpensiveTripCount, 467 bool UseEpilogRemainder, 468 LoopInfo *LI, ScalarEvolution *SE, 469 DominatorTree *DT, bool PreserveLCSSA) { 470 // for now, only unroll loops that contain a single exit 471 if (!L->getExitingBlock()) 472 return false; 473 474 // Make sure the loop is in canonical form, and there is a single 475 // exit block only. 476 if (!L->isLoopSimplifyForm()) 477 return false; 478 BasicBlock *Exit = L->getUniqueExitBlock(); // successor out of loop 479 if (!Exit) 480 return false; 481 482 // Use Scalar Evolution to compute the trip count. This allows more loops to 483 // be unrolled than relying on induction var simplification. 484 if (!SE) 485 return false; 486 487 // Only unroll loops with a computable trip count, and the trip count needs 488 // to be an int value (allowing a pointer type is a TODO item). 489 const SCEV *BECountSC = SE->getBackedgeTakenCount(L); 490 if (isa<SCEVCouldNotCompute>(BECountSC) || 491 !BECountSC->getType()->isIntegerTy()) 492 return false; 493 494 unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth(); 495 496 // Add 1 since the backedge count doesn't include the first loop iteration. 497 const SCEV *TripCountSC = 498 SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1)); 499 if (isa<SCEVCouldNotCompute>(TripCountSC)) 500 return false; 501 502 BasicBlock *Header = L->getHeader(); 503 BasicBlock *PreHeader = L->getLoopPreheader(); 504 BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); 505 const DataLayout &DL = Header->getModule()->getDataLayout(); 506 SCEVExpander Expander(*SE, DL, "loop-unroll"); 507 if (!AllowExpensiveTripCount && 508 Expander.isHighCostExpansion(TripCountSC, L, PreHeaderBR)) 509 return false; 510 511 // This constraint lets us deal with an overflowing trip count easily; see the 512 // comment on ModVal below. 513 if (Log2_32(Count) > BEWidth) 514 return false; 515 516 BasicBlock *Latch = L->getLoopLatch(); 517 518 // Loop structure is the following: 519 // 520 // PreHeader 521 // Header 522 // ... 523 // Latch 524 // Exit 525 526 BasicBlock *NewPreHeader; 527 BasicBlock *NewExit = nullptr; 528 BasicBlock *PrologExit = nullptr; 529 BasicBlock *EpilogPreHeader = nullptr; 530 BasicBlock *PrologPreHeader = nullptr; 531 532 if (UseEpilogRemainder) { 533 // If epilog remainder 534 // Split PreHeader to insert a branch around loop for unrolling. 535 NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI); 536 NewPreHeader->setName(PreHeader->getName() + ".new"); 537 // Split Exit to create phi nodes from branch above. 538 SmallVector<BasicBlock*, 4> Preds(predecessors(Exit)); 539 NewExit = SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", 540 DT, LI, PreserveLCSSA); 541 // Split NewExit to insert epilog remainder loop. 542 EpilogPreHeader = SplitBlock(NewExit, NewExit->getTerminator(), DT, LI); 543 EpilogPreHeader->setName(Header->getName() + ".epil.preheader"); 544 } else { 545 // If prolog remainder 546 // Split the original preheader twice to insert prolog remainder loop 547 PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI); 548 PrologPreHeader->setName(Header->getName() + ".prol.preheader"); 549 PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(), 550 DT, LI); 551 PrologExit->setName(Header->getName() + ".prol.loopexit"); 552 // Split PrologExit to get NewPreHeader. 553 NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI); 554 NewPreHeader->setName(PreHeader->getName() + ".new"); 555 } 556 // Loop structure should be the following: 557 // Epilog Prolog 558 // 559 // PreHeader PreHeader 560 // *NewPreHeader *PrologPreHeader 561 // Header *PrologExit 562 // ... *NewPreHeader 563 // Latch Header 564 // *NewExit ... 565 // *EpilogPreHeader Latch 566 // Exit Exit 567 568 // Calculate conditions for branch around loop for unrolling 569 // in epilog case and around prolog remainder loop in prolog case. 570 // Compute the number of extra iterations required, which is: 571 // extra iterations = run-time trip count % loop unroll factor 572 PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); 573 Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(), 574 PreHeaderBR); 575 Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(), 576 PreHeaderBR); 577 IRBuilder<> B(PreHeaderBR); 578 Value *ModVal; 579 // Calculate ModVal = (BECount + 1) % Count. 580 // Note that TripCount is BECount + 1. 581 if (isPowerOf2_32(Count)) { 582 // When Count is power of 2 we don't BECount for epilog case, however we'll 583 // need it for a branch around unrolling loop for prolog case. 584 ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter"); 585 // 1. There are no iterations to be run in the prolog/epilog loop. 586 // OR 587 // 2. The addition computing TripCount overflowed. 588 // 589 // If (2) is true, we know that TripCount really is (1 << BEWidth) and so 590 // the number of iterations that remain to be run in the original loop is a 591 // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we 592 // explicitly check this above). 593 } else { 594 // As (BECount + 1) can potentially unsigned overflow we count 595 // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count. 596 Value *ModValTmp = B.CreateURem(BECount, 597 ConstantInt::get(BECount->getType(), 598 Count)); 599 Value *ModValAdd = B.CreateAdd(ModValTmp, 600 ConstantInt::get(ModValTmp->getType(), 1)); 601 // At that point (BECount % Count) + 1 could be equal to Count. 602 // To handle this case we need to take mod by Count one more time. 603 ModVal = B.CreateURem(ModValAdd, 604 ConstantInt::get(BECount->getType(), Count), 605 "xtraiter"); 606 } 607 Value *BranchVal = 608 UseEpilogRemainder ? B.CreateICmpULT(BECount, 609 ConstantInt::get(BECount->getType(), 610 Count - 1)) : 611 B.CreateIsNotNull(ModVal, "lcmp.mod"); 612 BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader; 613 BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit; 614 // Branch to either remainder (extra iterations) loop or unrolling loop. 615 B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop); 616 PreHeaderBR->eraseFromParent(); 617 if (DT) { 618 if (UseEpilogRemainder) 619 DT->changeImmediateDominator(NewExit, PreHeader); 620 else 621 DT->changeImmediateDominator(PrologExit, PreHeader); 622 } 623 Function *F = Header->getParent(); 624 // Get an ordered list of blocks in the loop to help with the ordering of the 625 // cloned blocks in the prolog/epilog code 626 LoopBlocksDFS LoopBlocks(L); 627 LoopBlocks.perform(LI); 628 629 // 630 // For each extra loop iteration, create a copy of the loop's basic blocks 631 // and generate a condition that branches to the copy depending on the 632 // number of 'left over' iterations. 633 // 634 std::vector<BasicBlock *> NewBlocks; 635 ValueToValueMapTy VMap; 636 637 // For unroll factor 2 remainder loop will have 1 iterations. 638 // Do not create 1 iteration loop. 639 bool CreateRemainderLoop = (Count != 2); 640 641 // Clone all the basic blocks in the loop. If Count is 2, we don't clone 642 // the loop, otherwise we create a cloned loop to execute the extra 643 // iterations. This function adds the appropriate CFG connections. 644 BasicBlock *InsertBot = UseEpilogRemainder ? Exit : PrologExit; 645 BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader; 646 CloneLoopBlocks(L, ModVal, CreateRemainderLoop, UseEpilogRemainder, InsertTop, 647 InsertBot, NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI); 648 649 // Insert the cloned blocks into the function. 650 F->getBasicBlockList().splice(InsertBot->getIterator(), 651 F->getBasicBlockList(), 652 NewBlocks[0]->getIterator(), 653 F->end()); 654 655 // Loop structure should be the following: 656 // Epilog Prolog 657 // 658 // PreHeader PreHeader 659 // NewPreHeader PrologPreHeader 660 // Header PrologHeader 661 // ... ... 662 // Latch PrologLatch 663 // NewExit PrologExit 664 // EpilogPreHeader NewPreHeader 665 // EpilogHeader Header 666 // ... ... 667 // EpilogLatch Latch 668 // Exit Exit 669 670 // Rewrite the cloned instruction operands to use the values created when the 671 // clone is created. 672 for (BasicBlock *BB : NewBlocks) { 673 for (Instruction &I : *BB) { 674 RemapInstruction(&I, VMap, 675 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 676 } 677 } 678 679 if (UseEpilogRemainder) { 680 // Connect the epilog code to the original loop and update the 681 // PHI functions. 682 ConnectEpilog(L, ModVal, NewExit, Exit, PreHeader, 683 EpilogPreHeader, NewPreHeader, VMap, DT, LI, 684 PreserveLCSSA); 685 686 // Update counter in loop for unrolling. 687 // I should be multiply of Count. 688 IRBuilder<> B2(NewPreHeader->getTerminator()); 689 Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter"); 690 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); 691 B2.SetInsertPoint(LatchBR); 692 PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter", 693 Header->getFirstNonPHI()); 694 Value *IdxSub = 695 B2.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1), 696 NewIdx->getName() + ".nsub"); 697 Value *IdxCmp; 698 if (LatchBR->getSuccessor(0) == Header) 699 IdxCmp = B2.CreateIsNotNull(IdxSub, NewIdx->getName() + ".ncmp"); 700 else 701 IdxCmp = B2.CreateIsNull(IdxSub, NewIdx->getName() + ".ncmp"); 702 NewIdx->addIncoming(TestVal, NewPreHeader); 703 NewIdx->addIncoming(IdxSub, Latch); 704 LatchBR->setCondition(IdxCmp); 705 } else { 706 // Connect the prolog code to the original loop and update the 707 // PHI functions. 708 ConnectProlog(L, BECount, Count, PrologExit, PreHeader, NewPreHeader, 709 VMap, DT, LI, PreserveLCSSA); 710 } 711 712 // If this loop is nested, then the loop unroller changes the code in the 713 // parent loop, so the Scalar Evolution pass needs to be run again. 714 if (Loop *ParentLoop = L->getParentLoop()) 715 SE->forgetLoop(ParentLoop); 716 717 NumRuntimeUnrolled++; 718 return true; 719 } 720