xref: /llvm-project/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp (revision 0a2174533e1743446a59625ca318c424bfaf0bf2)
1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities for loops with run-time
11 // trip counts.  See LoopUnroll.cpp for unrolling loops with compile-time
12 // trip counts.
13 //
14 // The functions in this file are used to generate extra code when the
15 // run-time trip count modulo the unroll factor is not 0.  When this is the
16 // case, we need to generate code to execute these 'left over' iterations.
17 //
18 // The current strategy generates an if-then-else sequence prior to the
19 // unrolled loop to execute the 'left over' iterations before or after the
20 // unrolled loop.
21 //
22 //===----------------------------------------------------------------------===//
23 
24 #include "llvm/Transforms/Utils/UnrollLoop.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/LoopIterator.h"
28 #include "llvm/Analysis/LoopPass.h"
29 #include "llvm/Analysis/ScalarEvolution.h"
30 #include "llvm/Analysis/ScalarEvolutionExpander.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Metadata.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Transforms/Scalar.h"
38 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
39 #include "llvm/Transforms/Utils/Cloning.h"
40 #include <algorithm>
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "loop-unroll"
45 
46 STATISTIC(NumRuntimeUnrolled,
47           "Number of loops unrolled with run-time trip counts");
48 
49 /// Connect the unrolling prolog code to the original loop.
50 /// The unrolling prolog code contains code to execute the
51 /// 'extra' iterations if the run-time trip count modulo the
52 /// unroll count is non-zero.
53 ///
54 /// This function performs the following:
55 /// - Create PHI nodes at prolog end block to combine values
56 ///   that exit the prolog code and jump around the prolog.
57 /// - Add a PHI operand to a PHI node at the loop exit block
58 ///   for values that exit the prolog and go around the loop.
59 /// - Branch around the original loop if the trip count is less
60 ///   than the unroll factor.
61 ///
62 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
63                           BasicBlock *PrologExit, BasicBlock *PreHeader,
64                           BasicBlock *NewPreHeader, ValueToValueMapTy &VMap,
65                           DominatorTree *DT, LoopInfo *LI, bool PreserveLCSSA) {
66   BasicBlock *Latch = L->getLoopLatch();
67   assert(Latch && "Loop must have a latch");
68   BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]);
69 
70   // Create a PHI node for each outgoing value from the original loop
71   // (which means it is an outgoing value from the prolog code too).
72   // The new PHI node is inserted in the prolog end basic block.
73   // The new PHI node value is added as an operand of a PHI node in either
74   // the loop header or the loop exit block.
75   for (BasicBlock *Succ : successors(Latch)) {
76     for (Instruction &BBI : *Succ) {
77       PHINode *PN = dyn_cast<PHINode>(&BBI);
78       // Exit when we passed all PHI nodes.
79       if (!PN)
80         break;
81       // Add a new PHI node to the prolog end block and add the
82       // appropriate incoming values.
83       PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr",
84                                        PrologExit->getFirstNonPHI());
85       // Adding a value to the new PHI node from the original loop preheader.
86       // This is the value that skips all the prolog code.
87       if (L->contains(PN)) {
88         NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader),
89                            PreHeader);
90       } else {
91         NewPN->addIncoming(UndefValue::get(PN->getType()), PreHeader);
92       }
93 
94       Value *V = PN->getIncomingValueForBlock(Latch);
95       if (Instruction *I = dyn_cast<Instruction>(V)) {
96         if (L->contains(I)) {
97           V = VMap.lookup(I);
98         }
99       }
100       // Adding a value to the new PHI node from the last prolog block
101       // that was created.
102       NewPN->addIncoming(V, PrologLatch);
103 
104       // Update the existing PHI node operand with the value from the
105       // new PHI node.  How this is done depends on if the existing
106       // PHI node is in the original loop block, or the exit block.
107       if (L->contains(PN)) {
108         PN->setIncomingValue(PN->getBasicBlockIndex(NewPreHeader), NewPN);
109       } else {
110         PN->addIncoming(NewPN, PrologExit);
111       }
112     }
113   }
114 
115   // Make sure that created prolog loop is in simplified form
116   SmallVector<BasicBlock *, 4> PrologExitPreds;
117   Loop *PrologLoop = LI->getLoopFor(PrologLatch);
118   if (PrologLoop) {
119     for (BasicBlock *PredBB : predecessors(PrologExit))
120       if (PrologLoop->contains(PredBB))
121         PrologExitPreds.push_back(PredBB);
122 
123     SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI,
124                            PreserveLCSSA);
125   }
126 
127   // Create a branch around the original loop, which is taken if there are no
128   // iterations remaining to be executed after running the prologue.
129   Instruction *InsertPt = PrologExit->getTerminator();
130   IRBuilder<> B(InsertPt);
131 
132   assert(Count != 0 && "nonsensical Count!");
133 
134   // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1)
135   // This means %xtraiter is (BECount + 1) and all of the iterations of this
136   // loop were executed by the prologue.  Note that if BECount <u (Count - 1)
137   // then (BECount + 1) cannot unsigned-overflow.
138   Value *BrLoopExit =
139       B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1));
140   BasicBlock *Exit = L->getUniqueExitBlock();
141   assert(Exit && "Loop must have a single exit block only");
142   // Split the exit to maintain loop canonicalization guarantees
143   SmallVector<BasicBlock*, 4> Preds(predecessors(Exit));
144   SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", DT, LI,
145                          PreserveLCSSA);
146   // Add the branch to the exit block (around the unrolled loop)
147   B.CreateCondBr(BrLoopExit, Exit, NewPreHeader);
148   InsertPt->eraseFromParent();
149   if (DT)
150     DT->changeImmediateDominator(Exit, PrologExit);
151 }
152 
153 /// Connect the unrolling epilog code to the original loop.
154 /// The unrolling epilog code contains code to execute the
155 /// 'extra' iterations if the run-time trip count modulo the
156 /// unroll count is non-zero.
157 ///
158 /// This function performs the following:
159 /// - Update PHI nodes at the unrolling loop exit and epilog loop exit
160 /// - Create PHI nodes at the unrolling loop exit to combine
161 ///   values that exit the unrolling loop code and jump around it.
162 /// - Update PHI operands in the epilog loop by the new PHI nodes
163 /// - Branch around the epilog loop if extra iters (ModVal) is zero.
164 ///
165 static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit,
166                           BasicBlock *Exit, BasicBlock *PreHeader,
167                           BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader,
168                           ValueToValueMapTy &VMap, DominatorTree *DT,
169                           LoopInfo *LI, bool PreserveLCSSA)  {
170   BasicBlock *Latch = L->getLoopLatch();
171   assert(Latch && "Loop must have a latch");
172   BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]);
173 
174   // Loop structure should be the following:
175   //
176   // PreHeader
177   // NewPreHeader
178   //   Header
179   //   ...
180   //   Latch
181   // NewExit (PN)
182   // EpilogPreHeader
183   //   EpilogHeader
184   //   ...
185   //   EpilogLatch
186   // Exit (EpilogPN)
187 
188   // Update PHI nodes at NewExit and Exit.
189   for (Instruction &BBI : *NewExit) {
190     PHINode *PN = dyn_cast<PHINode>(&BBI);
191     // Exit when we passed all PHI nodes.
192     if (!PN)
193       break;
194     // PN should be used in another PHI located in Exit block as
195     // Exit was split by SplitBlockPredecessors into Exit and NewExit
196     // Basicaly it should look like:
197     // NewExit:
198     //   PN = PHI [I, Latch]
199     // ...
200     // Exit:
201     //   EpilogPN = PHI [PN, EpilogPreHeader]
202     //
203     // There is EpilogPreHeader incoming block instead of NewExit as
204     // NewExit was spilt 1 more time to get EpilogPreHeader.
205     assert(PN->hasOneUse() && "The phi should have 1 use");
206     PHINode *EpilogPN = cast<PHINode> (PN->use_begin()->getUser());
207     assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block");
208 
209     // Add incoming PreHeader from branch around the Loop
210     PN->addIncoming(UndefValue::get(PN->getType()), PreHeader);
211 
212     Value *V = PN->getIncomingValueForBlock(Latch);
213     Instruction *I = dyn_cast<Instruction>(V);
214     if (I && L->contains(I))
215       // If value comes from an instruction in the loop add VMap value.
216       V = VMap.lookup(I);
217     // For the instruction out of the loop, constant or undefined value
218     // insert value itself.
219     EpilogPN->addIncoming(V, EpilogLatch);
220 
221     assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 &&
222           "EpilogPN should have EpilogPreHeader incoming block");
223     // Change EpilogPreHeader incoming block to NewExit.
224     EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader),
225                                NewExit);
226     // Now PHIs should look like:
227     // NewExit:
228     //   PN = PHI [I, Latch], [undef, PreHeader]
229     // ...
230     // Exit:
231     //   EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch]
232   }
233 
234   // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader).
235   // Update corresponding PHI nodes in epilog loop.
236   for (BasicBlock *Succ : successors(Latch)) {
237     // Skip this as we already updated phis in exit blocks.
238     if (!L->contains(Succ))
239       continue;
240     for (Instruction &BBI : *Succ) {
241       PHINode *PN = dyn_cast<PHINode>(&BBI);
242       // Exit when we passed all PHI nodes.
243       if (!PN)
244         break;
245       // Add new PHI nodes to the loop exit block and update epilog
246       // PHIs with the new PHI values.
247       PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr",
248                                        NewExit->getFirstNonPHI());
249       // Adding a value to the new PHI node from the unrolling loop preheader.
250       NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader), PreHeader);
251       // Adding a value to the new PHI node from the unrolling loop latch.
252       NewPN->addIncoming(PN->getIncomingValueForBlock(Latch), Latch);
253 
254       // Update the existing PHI node operand with the value from the new PHI
255       // node.  Corresponding instruction in epilog loop should be PHI.
256       PHINode *VPN = cast<PHINode>(VMap[&BBI]);
257       VPN->setIncomingValue(VPN->getBasicBlockIndex(EpilogPreHeader), NewPN);
258     }
259   }
260 
261   Instruction *InsertPt = NewExit->getTerminator();
262   IRBuilder<> B(InsertPt);
263   Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod");
264   assert(Exit && "Loop must have a single exit block only");
265   // Split the epilogue exit to maintain loop canonicalization guarantees
266   SmallVector<BasicBlock*, 4> Preds(predecessors(Exit));
267   SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI,
268                          PreserveLCSSA);
269   // Add the branch to the exit block (around the unrolling loop)
270   B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit);
271   InsertPt->eraseFromParent();
272   if (DT)
273     DT->changeImmediateDominator(Exit, NewExit);
274 
275   // Split the main loop exit to maintain canonicalization guarantees.
276   SmallVector<BasicBlock*, 4> NewExitPreds{Latch};
277   SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI,
278                          PreserveLCSSA);
279 }
280 
281 /// Create a clone of the blocks in a loop and connect them together.
282 /// If CreateRemainderLoop is false, loop structure will not be cloned,
283 /// otherwise a new loop will be created including all cloned blocks, and the
284 /// iterator of it switches to count NewIter down to 0.
285 /// The cloned blocks should be inserted between InsertTop and InsertBot.
286 /// If loop structure is cloned InsertTop should be new preheader, InsertBot
287 /// new loop exit.
288 ///
289 static void CloneLoopBlocks(Loop *L, Value *NewIter,
290                             const bool CreateRemainderLoop,
291                             const bool UseEpilogRemainder,
292                             BasicBlock *InsertTop, BasicBlock *InsertBot,
293                             BasicBlock *Preheader,
294                             std::vector<BasicBlock *> &NewBlocks,
295                             LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap,
296                             DominatorTree *DT, LoopInfo *LI) {
297   StringRef suffix = UseEpilogRemainder ? "epil" : "prol";
298   BasicBlock *Header = L->getHeader();
299   BasicBlock *Latch = L->getLoopLatch();
300   Function *F = Header->getParent();
301   LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
302   LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
303   Loop *NewLoop = nullptr;
304   Loop *ParentLoop = L->getParentLoop();
305   if (CreateRemainderLoop) {
306     NewLoop = new Loop();
307     if (ParentLoop)
308       ParentLoop->addChildLoop(NewLoop);
309     else
310       LI->addTopLevelLoop(NewLoop);
311   }
312 
313   NewLoopsMap NewLoops;
314   NewLoops[L] = NewLoop;
315   // For each block in the original loop, create a new copy,
316   // and update the value map with the newly created values.
317   for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
318     BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F);
319     NewBlocks.push_back(NewBB);
320 
321     if (NewLoop) {
322       addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops);
323     } else if (ParentLoop)
324       ParentLoop->addBasicBlockToLoop(NewBB, *LI);
325 
326     VMap[*BB] = NewBB;
327     if (Header == *BB) {
328       // For the first block, add a CFG connection to this newly
329       // created block.
330       InsertTop->getTerminator()->setSuccessor(0, NewBB);
331     }
332 
333     if (DT) {
334       if (Header == *BB) {
335         // The header is dominated by the preheader.
336         DT->addNewBlock(NewBB, InsertTop);
337       } else {
338         // Copy information from original loop to unrolled loop.
339         BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock();
340         DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB]));
341       }
342     }
343 
344     if (Latch == *BB) {
345       // For the last block, if CreateRemainderLoop is false, create a direct
346       // jump to InsertBot. If not, create a loop back to cloned head.
347       VMap.erase((*BB)->getTerminator());
348       BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
349       BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator());
350       IRBuilder<> Builder(LatchBR);
351       if (!CreateRemainderLoop) {
352         Builder.CreateBr(InsertBot);
353       } else {
354         PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2,
355                                           suffix + ".iter",
356                                           FirstLoopBB->getFirstNonPHI());
357         Value *IdxSub =
358             Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
359                               NewIdx->getName() + ".sub");
360         Value *IdxCmp =
361             Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp");
362         Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot);
363         NewIdx->addIncoming(NewIter, InsertTop);
364         NewIdx->addIncoming(IdxSub, NewBB);
365       }
366       LatchBR->eraseFromParent();
367     }
368   }
369 
370   // Change the incoming values to the ones defined in the preheader or
371   // cloned loop.
372   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
373     PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
374     if (!CreateRemainderLoop) {
375       if (UseEpilogRemainder) {
376         unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
377         NewPHI->setIncomingBlock(idx, InsertTop);
378         NewPHI->removeIncomingValue(Latch, false);
379       } else {
380         VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader);
381         cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
382       }
383     } else {
384       unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
385       NewPHI->setIncomingBlock(idx, InsertTop);
386       BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
387       idx = NewPHI->getBasicBlockIndex(Latch);
388       Value *InVal = NewPHI->getIncomingValue(idx);
389       NewPHI->setIncomingBlock(idx, NewLatch);
390       if (Value *V = VMap.lookup(InVal))
391         NewPHI->setIncomingValue(idx, V);
392     }
393   }
394   if (NewLoop) {
395     // Add unroll disable metadata to disable future unrolling for this loop.
396     SmallVector<Metadata *, 4> MDs;
397     // Reserve first location for self reference to the LoopID metadata node.
398     MDs.push_back(nullptr);
399     MDNode *LoopID = NewLoop->getLoopID();
400     if (LoopID) {
401       // First remove any existing loop unrolling metadata.
402       for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
403         bool IsUnrollMetadata = false;
404         MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
405         if (MD) {
406           const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
407           IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
408         }
409         if (!IsUnrollMetadata)
410           MDs.push_back(LoopID->getOperand(i));
411       }
412     }
413 
414     LLVMContext &Context = NewLoop->getHeader()->getContext();
415     SmallVector<Metadata *, 1> DisableOperands;
416     DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
417     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
418     MDs.push_back(DisableNode);
419 
420     MDNode *NewLoopID = MDNode::get(Context, MDs);
421     // Set operand 0 to refer to the loop id itself.
422     NewLoopID->replaceOperandWith(0, NewLoopID);
423     NewLoop->setLoopID(NewLoopID);
424   }
425 }
426 
427 /// Insert code in the prolog/epilog code when unrolling a loop with a
428 /// run-time trip-count.
429 ///
430 /// This method assumes that the loop unroll factor is total number
431 /// of loop bodies in the loop after unrolling. (Some folks refer
432 /// to the unroll factor as the number of *extra* copies added).
433 /// We assume also that the loop unroll factor is a power-of-two. So, after
434 /// unrolling the loop, the number of loop bodies executed is 2,
435 /// 4, 8, etc.  Note - LLVM converts the if-then-sequence to a switch
436 /// instruction in SimplifyCFG.cpp.  Then, the backend decides how code for
437 /// the switch instruction is generated.
438 ///
439 /// ***Prolog case***
440 ///        extraiters = tripcount % loopfactor
441 ///        if (extraiters == 0) jump Loop:
442 ///        else jump Prol:
443 /// Prol:  LoopBody;
444 ///        extraiters -= 1                 // Omitted if unroll factor is 2.
445 ///        if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
446 ///        if (tripcount < loopfactor) jump End:
447 /// Loop:
448 /// ...
449 /// End:
450 ///
451 /// ***Epilog case***
452 ///        extraiters = tripcount % loopfactor
453 ///        if (tripcount < loopfactor) jump LoopExit:
454 ///        unroll_iters = tripcount - extraiters
455 /// Loop:  LoopBody; (executes unroll_iter times);
456 ///        unroll_iter -= 1
457 ///        if (unroll_iter != 0) jump Loop:
458 /// LoopExit:
459 ///        if (extraiters == 0) jump EpilExit:
460 /// Epil:  LoopBody; (executes extraiters times)
461 ///        extraiters -= 1                 // Omitted if unroll factor is 2.
462 ///        if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2.
463 /// EpilExit:
464 
465 bool llvm::UnrollRuntimeLoopRemainder(Loop *L, unsigned Count,
466                                       bool AllowExpensiveTripCount,
467                                       bool UseEpilogRemainder,
468                                       LoopInfo *LI, ScalarEvolution *SE,
469                                       DominatorTree *DT, bool PreserveLCSSA) {
470   // for now, only unroll loops that contain a single exit
471   if (!L->getExitingBlock())
472     return false;
473 
474   // Make sure the loop is in canonical form, and there is a single
475   // exit block only.
476   if (!L->isLoopSimplifyForm())
477     return false;
478   BasicBlock *Exit = L->getUniqueExitBlock(); // successor out of loop
479   if (!Exit)
480     return false;
481 
482   // Use Scalar Evolution to compute the trip count. This allows more loops to
483   // be unrolled than relying on induction var simplification.
484   if (!SE)
485     return false;
486 
487   // Only unroll loops with a computable trip count, and the trip count needs
488   // to be an int value (allowing a pointer type is a TODO item).
489   const SCEV *BECountSC = SE->getBackedgeTakenCount(L);
490   if (isa<SCEVCouldNotCompute>(BECountSC) ||
491       !BECountSC->getType()->isIntegerTy())
492     return false;
493 
494   unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth();
495 
496   // Add 1 since the backedge count doesn't include the first loop iteration.
497   const SCEV *TripCountSC =
498       SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1));
499   if (isa<SCEVCouldNotCompute>(TripCountSC))
500     return false;
501 
502   BasicBlock *Header = L->getHeader();
503   BasicBlock *PreHeader = L->getLoopPreheader();
504   BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
505   const DataLayout &DL = Header->getModule()->getDataLayout();
506   SCEVExpander Expander(*SE, DL, "loop-unroll");
507   if (!AllowExpensiveTripCount &&
508       Expander.isHighCostExpansion(TripCountSC, L, PreHeaderBR))
509     return false;
510 
511   // This constraint lets us deal with an overflowing trip count easily; see the
512   // comment on ModVal below.
513   if (Log2_32(Count) > BEWidth)
514     return false;
515 
516   BasicBlock *Latch = L->getLoopLatch();
517 
518   // Loop structure is the following:
519   //
520   // PreHeader
521   //   Header
522   //   ...
523   //   Latch
524   // Exit
525 
526   BasicBlock *NewPreHeader;
527   BasicBlock *NewExit = nullptr;
528   BasicBlock *PrologExit = nullptr;
529   BasicBlock *EpilogPreHeader = nullptr;
530   BasicBlock *PrologPreHeader = nullptr;
531 
532   if (UseEpilogRemainder) {
533     // If epilog remainder
534     // Split PreHeader to insert a branch around loop for unrolling.
535     NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI);
536     NewPreHeader->setName(PreHeader->getName() + ".new");
537     // Split Exit to create phi nodes from branch above.
538     SmallVector<BasicBlock*, 4> Preds(predecessors(Exit));
539     NewExit = SplitBlockPredecessors(Exit, Preds, ".unr-lcssa",
540                                      DT, LI, PreserveLCSSA);
541     // Split NewExit to insert epilog remainder loop.
542     EpilogPreHeader = SplitBlock(NewExit, NewExit->getTerminator(), DT, LI);
543     EpilogPreHeader->setName(Header->getName() + ".epil.preheader");
544   } else {
545     // If prolog remainder
546     // Split the original preheader twice to insert prolog remainder loop
547     PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI);
548     PrologPreHeader->setName(Header->getName() + ".prol.preheader");
549     PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(),
550                             DT, LI);
551     PrologExit->setName(Header->getName() + ".prol.loopexit");
552     // Split PrologExit to get NewPreHeader.
553     NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI);
554     NewPreHeader->setName(PreHeader->getName() + ".new");
555   }
556   // Loop structure should be the following:
557   //  Epilog             Prolog
558   //
559   // PreHeader         PreHeader
560   // *NewPreHeader     *PrologPreHeader
561   //   Header          *PrologExit
562   //   ...             *NewPreHeader
563   //   Latch             Header
564   // *NewExit            ...
565   // *EpilogPreHeader    Latch
566   // Exit              Exit
567 
568   // Calculate conditions for branch around loop for unrolling
569   // in epilog case and around prolog remainder loop in prolog case.
570   // Compute the number of extra iterations required, which is:
571   //  extra iterations = run-time trip count % loop unroll factor
572   PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
573   Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
574                                             PreHeaderBR);
575   Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(),
576                                           PreHeaderBR);
577   IRBuilder<> B(PreHeaderBR);
578   Value *ModVal;
579   // Calculate ModVal = (BECount + 1) % Count.
580   // Note that TripCount is BECount + 1.
581   if (isPowerOf2_32(Count)) {
582     // When Count is power of 2 we don't BECount for epilog case, however we'll
583     // need it for a branch around unrolling loop for prolog case.
584     ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter");
585     //  1. There are no iterations to be run in the prolog/epilog loop.
586     // OR
587     //  2. The addition computing TripCount overflowed.
588     //
589     // If (2) is true, we know that TripCount really is (1 << BEWidth) and so
590     // the number of iterations that remain to be run in the original loop is a
591     // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we
592     // explicitly check this above).
593   } else {
594     // As (BECount + 1) can potentially unsigned overflow we count
595     // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count.
596     Value *ModValTmp = B.CreateURem(BECount,
597                                     ConstantInt::get(BECount->getType(),
598                                                      Count));
599     Value *ModValAdd = B.CreateAdd(ModValTmp,
600                                    ConstantInt::get(ModValTmp->getType(), 1));
601     // At that point (BECount % Count) + 1 could be equal to Count.
602     // To handle this case we need to take mod by Count one more time.
603     ModVal = B.CreateURem(ModValAdd,
604                           ConstantInt::get(BECount->getType(), Count),
605                           "xtraiter");
606   }
607   Value *BranchVal =
608       UseEpilogRemainder ? B.CreateICmpULT(BECount,
609                                            ConstantInt::get(BECount->getType(),
610                                                             Count - 1)) :
611                            B.CreateIsNotNull(ModVal, "lcmp.mod");
612   BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader;
613   BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit;
614   // Branch to either remainder (extra iterations) loop or unrolling loop.
615   B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop);
616   PreHeaderBR->eraseFromParent();
617   if (DT) {
618     if (UseEpilogRemainder)
619       DT->changeImmediateDominator(NewExit, PreHeader);
620     else
621       DT->changeImmediateDominator(PrologExit, PreHeader);
622   }
623   Function *F = Header->getParent();
624   // Get an ordered list of blocks in the loop to help with the ordering of the
625   // cloned blocks in the prolog/epilog code
626   LoopBlocksDFS LoopBlocks(L);
627   LoopBlocks.perform(LI);
628 
629   //
630   // For each extra loop iteration, create a copy of the loop's basic blocks
631   // and generate a condition that branches to the copy depending on the
632   // number of 'left over' iterations.
633   //
634   std::vector<BasicBlock *> NewBlocks;
635   ValueToValueMapTy VMap;
636 
637   // For unroll factor 2 remainder loop will have 1 iterations.
638   // Do not create 1 iteration loop.
639   bool CreateRemainderLoop = (Count != 2);
640 
641   // Clone all the basic blocks in the loop. If Count is 2, we don't clone
642   // the loop, otherwise we create a cloned loop to execute the extra
643   // iterations. This function adds the appropriate CFG connections.
644   BasicBlock *InsertBot = UseEpilogRemainder ? Exit : PrologExit;
645   BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader;
646   CloneLoopBlocks(L, ModVal, CreateRemainderLoop, UseEpilogRemainder, InsertTop,
647                   InsertBot, NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI);
648 
649   // Insert the cloned blocks into the function.
650   F->getBasicBlockList().splice(InsertBot->getIterator(),
651                                 F->getBasicBlockList(),
652                                 NewBlocks[0]->getIterator(),
653                                 F->end());
654 
655   // Loop structure should be the following:
656   //  Epilog             Prolog
657   //
658   // PreHeader         PreHeader
659   // NewPreHeader      PrologPreHeader
660   //   Header            PrologHeader
661   //   ...               ...
662   //   Latch             PrologLatch
663   // NewExit           PrologExit
664   // EpilogPreHeader   NewPreHeader
665   //   EpilogHeader      Header
666   //   ...               ...
667   //   EpilogLatch       Latch
668   // Exit              Exit
669 
670   // Rewrite the cloned instruction operands to use the values created when the
671   // clone is created.
672   for (BasicBlock *BB : NewBlocks) {
673     for (Instruction &I : *BB) {
674       RemapInstruction(&I, VMap,
675                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
676     }
677   }
678 
679   if (UseEpilogRemainder) {
680     // Connect the epilog code to the original loop and update the
681     // PHI functions.
682     ConnectEpilog(L, ModVal, NewExit, Exit, PreHeader,
683                   EpilogPreHeader, NewPreHeader, VMap, DT, LI,
684                   PreserveLCSSA);
685 
686     // Update counter in loop for unrolling.
687     // I should be multiply of Count.
688     IRBuilder<> B2(NewPreHeader->getTerminator());
689     Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter");
690     BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
691     B2.SetInsertPoint(LatchBR);
692     PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter",
693                                       Header->getFirstNonPHI());
694     Value *IdxSub =
695         B2.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
696                      NewIdx->getName() + ".nsub");
697     Value *IdxCmp;
698     if (LatchBR->getSuccessor(0) == Header)
699       IdxCmp = B2.CreateIsNotNull(IdxSub, NewIdx->getName() + ".ncmp");
700     else
701       IdxCmp = B2.CreateIsNull(IdxSub, NewIdx->getName() + ".ncmp");
702     NewIdx->addIncoming(TestVal, NewPreHeader);
703     NewIdx->addIncoming(IdxSub, Latch);
704     LatchBR->setCondition(IdxCmp);
705   } else {
706     // Connect the prolog code to the original loop and update the
707     // PHI functions.
708     ConnectProlog(L, BECount, Count, PrologExit, PreHeader, NewPreHeader,
709                   VMap, DT, LI, PreserveLCSSA);
710   }
711 
712   // If this loop is nested, then the loop unroller changes the code in the
713   // parent loop, so the Scalar Evolution pass needs to be run again.
714   if (Loop *ParentLoop = L->getParentLoop())
715     SE->forgetLoop(ParentLoop);
716 
717   NumRuntimeUnrolled++;
718   return true;
719 }
720