1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs several transformations to transform natural loops into a 11 // simpler form, which makes subsequent analyses and transformations simpler and 12 // more effective. 13 // 14 // Loop pre-header insertion guarantees that there is a single, non-critical 15 // entry edge from outside of the loop to the loop header. This simplifies a 16 // number of analyses and transformations, such as LICM. 17 // 18 // Loop exit-block insertion guarantees that all exit blocks from the loop 19 // (blocks which are outside of the loop that have predecessors inside of the 20 // loop) only have predecessors from inside of the loop (and are thus dominated 21 // by the loop header). This simplifies transformations such as store-sinking 22 // that are built into LICM. 23 // 24 // This pass also guarantees that loops will have exactly one backedge. 25 // 26 // Indirectbr instructions introduce several complications. If the loop 27 // contains or is entered by an indirectbr instruction, it may not be possible 28 // to transform the loop and make these guarantees. Client code should check 29 // that these conditions are true before relying on them. 30 // 31 // Note that the simplifycfg pass will clean up blocks which are split out but 32 // end up being unnecessary, so usage of this pass should not pessimize 33 // generated code. 34 // 35 // This pass obviously modifies the CFG, but updates loop information and 36 // dominator information. 37 // 38 //===----------------------------------------------------------------------===// 39 40 #define DEBUG_TYPE "loop-simplify" 41 #include "llvm/Transforms/Scalar.h" 42 #include "llvm/Constants.h" 43 #include "llvm/Instructions.h" 44 #include "llvm/IntrinsicInst.h" 45 #include "llvm/Function.h" 46 #include "llvm/LLVMContext.h" 47 #include "llvm/Type.h" 48 #include "llvm/Analysis/AliasAnalysis.h" 49 #include "llvm/Analysis/Dominators.h" 50 #include "llvm/Analysis/InstructionSimplify.h" 51 #include "llvm/Analysis/LoopPass.h" 52 #include "llvm/Analysis/ScalarEvolution.h" 53 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 54 #include "llvm/Transforms/Utils/Local.h" 55 #include "llvm/Support/CFG.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/ADT/SetOperations.h" 58 #include "llvm/ADT/SetVector.h" 59 #include "llvm/ADT/Statistic.h" 60 #include "llvm/ADT/DepthFirstIterator.h" 61 using namespace llvm; 62 63 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted"); 64 STATISTIC(NumNested , "Number of nested loops split out"); 65 66 namespace { 67 struct LoopSimplify : public LoopPass { 68 static char ID; // Pass identification, replacement for typeid 69 LoopSimplify() : LoopPass(ID) { 70 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry()); 71 } 72 73 // AA - If we have an alias analysis object to update, this is it, otherwise 74 // this is null. 75 AliasAnalysis *AA; 76 LoopInfo *LI; 77 DominatorTree *DT; 78 ScalarEvolution *SE; 79 Loop *L; 80 virtual bool runOnLoop(Loop *L, LPPassManager &LPM); 81 82 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 83 // We need loop information to identify the loops... 84 AU.addRequired<DominatorTree>(); 85 AU.addPreserved<DominatorTree>(); 86 87 AU.addRequired<LoopInfo>(); 88 AU.addPreserved<LoopInfo>(); 89 90 AU.addPreserved<AliasAnalysis>(); 91 AU.addPreserved<ScalarEvolution>(); 92 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added. 93 } 94 95 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees. 96 void verifyAnalysis() const; 97 98 private: 99 bool ProcessLoop(Loop *L, LPPassManager &LPM); 100 BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit); 101 BasicBlock *InsertPreheaderForLoop(Loop *L); 102 Loop *SeparateNestedLoop(Loop *L, LPPassManager &LPM, 103 BasicBlock *Preheader); 104 BasicBlock *InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader); 105 void PlaceSplitBlockCarefully(BasicBlock *NewBB, 106 SmallVectorImpl<BasicBlock*> &SplitPreds, 107 Loop *L); 108 }; 109 } 110 111 char LoopSimplify::ID = 0; 112 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify", 113 "Canonicalize natural loops", true, false) 114 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 115 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 116 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify", 117 "Canonicalize natural loops", true, false) 118 119 // Publicly exposed interface to pass... 120 char &llvm::LoopSimplifyID = LoopSimplify::ID; 121 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); } 122 123 /// runOnLoop - Run down all loops in the CFG (recursively, but we could do 124 /// it in any convenient order) inserting preheaders... 125 /// 126 bool LoopSimplify::runOnLoop(Loop *l, LPPassManager &LPM) { 127 L = l; 128 bool Changed = false; 129 LI = &getAnalysis<LoopInfo>(); 130 AA = getAnalysisIfAvailable<AliasAnalysis>(); 131 DT = &getAnalysis<DominatorTree>(); 132 SE = getAnalysisIfAvailable<ScalarEvolution>(); 133 134 Changed |= ProcessLoop(L, LPM); 135 136 return Changed; 137 } 138 139 /// ProcessLoop - Walk the loop structure in depth first order, ensuring that 140 /// all loops have preheaders. 141 /// 142 bool LoopSimplify::ProcessLoop(Loop *L, LPPassManager &LPM) { 143 bool Changed = false; 144 ReprocessLoop: 145 146 // Check to see that no blocks (other than the header) in this loop have 147 // predecessors that are not in the loop. This is not valid for natural 148 // loops, but can occur if the blocks are unreachable. Since they are 149 // unreachable we can just shamelessly delete those CFG edges! 150 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); 151 BB != E; ++BB) { 152 if (*BB == L->getHeader()) continue; 153 154 SmallPtrSet<BasicBlock*, 4> BadPreds; 155 for (pred_iterator PI = pred_begin(*BB), 156 PE = pred_end(*BB); PI != PE; ++PI) { 157 BasicBlock *P = *PI; 158 if (!L->contains(P)) 159 BadPreds.insert(P); 160 } 161 162 // Delete each unique out-of-loop (and thus dead) predecessor. 163 for (SmallPtrSet<BasicBlock*, 4>::iterator I = BadPreds.begin(), 164 E = BadPreds.end(); I != E; ++I) { 165 166 DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor " 167 << (*I)->getName() << "\n"); 168 169 // Inform each successor of each dead pred. 170 for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI) 171 (*SI)->removePredecessor(*I); 172 // Zap the dead pred's terminator and replace it with unreachable. 173 TerminatorInst *TI = (*I)->getTerminator(); 174 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 175 (*I)->getTerminator()->eraseFromParent(); 176 new UnreachableInst((*I)->getContext(), *I); 177 Changed = true; 178 } 179 } 180 181 // If there are exiting blocks with branches on undef, resolve the undef in 182 // the direction which will exit the loop. This will help simplify loop 183 // trip count computations. 184 SmallVector<BasicBlock*, 8> ExitingBlocks; 185 L->getExitingBlocks(ExitingBlocks); 186 for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(), 187 E = ExitingBlocks.end(); I != E; ++I) 188 if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator())) 189 if (BI->isConditional()) { 190 if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) { 191 192 DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in " 193 << (*I)->getName() << "\n"); 194 195 BI->setCondition(ConstantInt::get(Cond->getType(), 196 !L->contains(BI->getSuccessor(0)))); 197 198 // This may make the loop analyzable, force SCEV recomputation. 199 if (SE) 200 SE->forgetLoop(L); 201 202 Changed = true; 203 } 204 } 205 206 // Does the loop already have a preheader? If so, don't insert one. 207 BasicBlock *Preheader = L->getLoopPreheader(); 208 if (!Preheader) { 209 Preheader = InsertPreheaderForLoop(L); 210 if (Preheader) { 211 ++NumInserted; 212 Changed = true; 213 } 214 } 215 216 // Next, check to make sure that all exit nodes of the loop only have 217 // predecessors that are inside of the loop. This check guarantees that the 218 // loop preheader/header will dominate the exit blocks. If the exit block has 219 // predecessors from outside of the loop, split the edge now. 220 SmallVector<BasicBlock*, 8> ExitBlocks; 221 L->getExitBlocks(ExitBlocks); 222 223 SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(), 224 ExitBlocks.end()); 225 for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(), 226 E = ExitBlockSet.end(); I != E; ++I) { 227 BasicBlock *ExitBlock = *I; 228 for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock); 229 PI != PE; ++PI) 230 // Must be exactly this loop: no subloops, parent loops, or non-loop preds 231 // allowed. 232 if (!L->contains(*PI)) { 233 if (RewriteLoopExitBlock(L, ExitBlock)) { 234 ++NumInserted; 235 Changed = true; 236 } 237 break; 238 } 239 } 240 241 // If the header has more than two predecessors at this point (from the 242 // preheader and from multiple backedges), we must adjust the loop. 243 BasicBlock *LoopLatch = L->getLoopLatch(); 244 if (!LoopLatch) { 245 // If this is really a nested loop, rip it out into a child loop. Don't do 246 // this for loops with a giant number of backedges, just factor them into a 247 // common backedge instead. 248 if (L->getNumBackEdges() < 8) { 249 if (SeparateNestedLoop(L, LPM, Preheader)) { 250 ++NumNested; 251 // This is a big restructuring change, reprocess the whole loop. 252 Changed = true; 253 // GCC doesn't tail recursion eliminate this. 254 goto ReprocessLoop; 255 } 256 } 257 258 // If we either couldn't, or didn't want to, identify nesting of the loops, 259 // insert a new block that all backedges target, then make it jump to the 260 // loop header. 261 LoopLatch = InsertUniqueBackedgeBlock(L, Preheader); 262 if (LoopLatch) { 263 ++NumInserted; 264 Changed = true; 265 } 266 } 267 268 // Scan over the PHI nodes in the loop header. Since they now have only two 269 // incoming values (the loop is canonicalized), we may have simplified the PHI 270 // down to 'X = phi [X, Y]', which should be replaced with 'Y'. 271 PHINode *PN; 272 for (BasicBlock::iterator I = L->getHeader()->begin(); 273 (PN = dyn_cast<PHINode>(I++)); ) 274 if (Value *V = SimplifyInstruction(PN, 0, 0, DT)) { 275 if (AA) AA->deleteValue(PN); 276 if (SE) SE->forgetValue(PN); 277 PN->replaceAllUsesWith(V); 278 PN->eraseFromParent(); 279 } 280 281 // If this loop has multiple exits and the exits all go to the same 282 // block, attempt to merge the exits. This helps several passes, such 283 // as LoopRotation, which do not support loops with multiple exits. 284 // SimplifyCFG also does this (and this code uses the same utility 285 // function), however this code is loop-aware, where SimplifyCFG is 286 // not. That gives it the advantage of being able to hoist 287 // loop-invariant instructions out of the way to open up more 288 // opportunities, and the disadvantage of having the responsibility 289 // to preserve dominator information. 290 bool UniqueExit = true; 291 if (!ExitBlocks.empty()) 292 for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i) 293 if (ExitBlocks[i] != ExitBlocks[0]) { 294 UniqueExit = false; 295 break; 296 } 297 if (UniqueExit) { 298 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 299 BasicBlock *ExitingBlock = ExitingBlocks[i]; 300 if (!ExitingBlock->getSinglePredecessor()) continue; 301 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 302 if (!BI || !BI->isConditional()) continue; 303 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); 304 if (!CI || CI->getParent() != ExitingBlock) continue; 305 306 // Attempt to hoist out all instructions except for the 307 // comparison and the branch. 308 bool AllInvariant = true; 309 for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) { 310 Instruction *Inst = I++; 311 // Skip debug info intrinsics. 312 if (isa<DbgInfoIntrinsic>(Inst)) 313 continue; 314 if (Inst == CI) 315 continue; 316 if (!L->makeLoopInvariant(Inst, Changed, 317 Preheader ? Preheader->getTerminator() : 0)) { 318 AllInvariant = false; 319 break; 320 } 321 } 322 if (!AllInvariant) continue; 323 324 // The block has now been cleared of all instructions except for 325 // a comparison and a conditional branch. SimplifyCFG may be able 326 // to fold it now. 327 if (!FoldBranchToCommonDest(BI)) continue; 328 329 // Success. The block is now dead, so remove it from the loop, 330 // update the dominator tree and delete it. 331 DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block " 332 << ExitingBlock->getName() << "\n"); 333 334 // If any reachable control flow within this loop has changed, notify 335 // ScalarEvolution. Currently assume the parent loop doesn't change 336 // (spliting edges doesn't count). If blocks, CFG edges, or other values 337 // in the parent loop change, then we need call to forgetLoop() for the 338 // parent instead. 339 if (SE) 340 SE->forgetLoop(L); 341 342 assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock)); 343 Changed = true; 344 LI->removeBlock(ExitingBlock); 345 346 DomTreeNode *Node = DT->getNode(ExitingBlock); 347 const std::vector<DomTreeNodeBase<BasicBlock> *> &Children = 348 Node->getChildren(); 349 while (!Children.empty()) { 350 DomTreeNode *Child = Children.front(); 351 DT->changeImmediateDominator(Child, Node->getIDom()); 352 } 353 DT->eraseNode(ExitingBlock); 354 355 BI->getSuccessor(0)->removePredecessor(ExitingBlock); 356 BI->getSuccessor(1)->removePredecessor(ExitingBlock); 357 ExitingBlock->eraseFromParent(); 358 } 359 } 360 361 return Changed; 362 } 363 364 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a 365 /// preheader, this method is called to insert one. This method has two phases: 366 /// preheader insertion and analysis updating. 367 /// 368 BasicBlock *LoopSimplify::InsertPreheaderForLoop(Loop *L) { 369 BasicBlock *Header = L->getHeader(); 370 371 // Compute the set of predecessors of the loop that are not in the loop. 372 SmallVector<BasicBlock*, 8> OutsideBlocks; 373 for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); 374 PI != PE; ++PI) { 375 BasicBlock *P = *PI; 376 if (!L->contains(P)) { // Coming in from outside the loop? 377 // If the loop is branched to from an indirect branch, we won't 378 // be able to fully transform the loop, because it prohibits 379 // edge splitting. 380 if (isa<IndirectBrInst>(P->getTerminator())) return 0; 381 382 // Keep track of it. 383 OutsideBlocks.push_back(P); 384 } 385 } 386 387 // Split out the loop pre-header. 388 BasicBlock *PreheaderBB; 389 if (!Header->isLandingPad()) { 390 PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", 391 this); 392 } else { 393 SmallVector<BasicBlock*, 2> NewBBs; 394 SplitLandingPadPredecessors(Header, OutsideBlocks, ".preheader", 395 ".split-lp", this, NewBBs); 396 PreheaderBB = NewBBs[0]; 397 } 398 399 PreheaderBB->getTerminator()->setDebugLoc( 400 Header->getFirstNonPHI()->getDebugLoc()); 401 DEBUG(dbgs() << "LoopSimplify: Creating pre-header " 402 << PreheaderBB->getName() << "\n"); 403 404 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 405 // code layout too horribly. 406 PlaceSplitBlockCarefully(PreheaderBB, OutsideBlocks, L); 407 408 return PreheaderBB; 409 } 410 411 /// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit 412 /// blocks. This method is used to split exit blocks that have predecessors 413 /// outside of the loop. 414 BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) { 415 SmallVector<BasicBlock*, 8> LoopBlocks; 416 for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) { 417 BasicBlock *P = *I; 418 if (L->contains(P)) { 419 // Don't do this if the loop is exited via an indirect branch. 420 if (isa<IndirectBrInst>(P->getTerminator())) return 0; 421 422 LoopBlocks.push_back(P); 423 } 424 } 425 426 assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?"); 427 BasicBlock *NewExitBB = 0; 428 429 if (Exit->isLandingPad()) { 430 SmallVector<BasicBlock*, 2> NewBBs; 431 SplitLandingPadPredecessors(Exit, ArrayRef<BasicBlock*>(&LoopBlocks[0], 432 LoopBlocks.size()), 433 ".loopexit", ".nonloopexit", 434 this, NewBBs); 435 NewExitBB = NewBBs[0]; 436 } else { 437 NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", this); 438 } 439 440 DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 441 << NewExitBB->getName() << "\n"); 442 return NewExitBB; 443 } 444 445 /// AddBlockAndPredsToSet - Add the specified block, and all of its 446 /// predecessors, to the specified set, if it's not already in there. Stop 447 /// predecessor traversal when we reach StopBlock. 448 static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, 449 std::set<BasicBlock*> &Blocks) { 450 std::vector<BasicBlock *> WorkList; 451 WorkList.push_back(InputBB); 452 do { 453 BasicBlock *BB = WorkList.back(); WorkList.pop_back(); 454 if (Blocks.insert(BB).second && BB != StopBlock) 455 // If BB is not already processed and it is not a stop block then 456 // insert its predecessor in the work list 457 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 458 BasicBlock *WBB = *I; 459 WorkList.push_back(WBB); 460 } 461 } while(!WorkList.empty()); 462 } 463 464 /// FindPHIToPartitionLoops - The first part of loop-nestification is to find a 465 /// PHI node that tells us how to partition the loops. 466 static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT, 467 AliasAnalysis *AA, LoopInfo *LI) { 468 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) { 469 PHINode *PN = cast<PHINode>(I); 470 ++I; 471 if (Value *V = SimplifyInstruction(PN, 0, 0, DT)) { 472 // This is a degenerate PHI already, don't modify it! 473 PN->replaceAllUsesWith(V); 474 if (AA) AA->deleteValue(PN); 475 PN->eraseFromParent(); 476 continue; 477 } 478 479 // Scan this PHI node looking for a use of the PHI node by itself. 480 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 481 if (PN->getIncomingValue(i) == PN && 482 L->contains(PN->getIncomingBlock(i))) 483 // We found something tasty to remove. 484 return PN; 485 } 486 return 0; 487 } 488 489 // PlaceSplitBlockCarefully - If the block isn't already, move the new block to 490 // right after some 'outside block' block. This prevents the preheader from 491 // being placed inside the loop body, e.g. when the loop hasn't been rotated. 492 void LoopSimplify::PlaceSplitBlockCarefully(BasicBlock *NewBB, 493 SmallVectorImpl<BasicBlock*> &SplitPreds, 494 Loop *L) { 495 // Check to see if NewBB is already well placed. 496 Function::iterator BBI = NewBB; --BBI; 497 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 498 if (&*BBI == SplitPreds[i]) 499 return; 500 } 501 502 // If it isn't already after an outside block, move it after one. This is 503 // always good as it makes the uncond branch from the outside block into a 504 // fall-through. 505 506 // Figure out *which* outside block to put this after. Prefer an outside 507 // block that neighbors a BB actually in the loop. 508 BasicBlock *FoundBB = 0; 509 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 510 Function::iterator BBI = SplitPreds[i]; 511 if (++BBI != NewBB->getParent()->end() && 512 L->contains(BBI)) { 513 FoundBB = SplitPreds[i]; 514 break; 515 } 516 } 517 518 // If our heuristic for a *good* bb to place this after doesn't find 519 // anything, just pick something. It's likely better than leaving it within 520 // the loop. 521 if (!FoundBB) 522 FoundBB = SplitPreds[0]; 523 NewBB->moveAfter(FoundBB); 524 } 525 526 527 /// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of 528 /// them out into a nested loop. This is important for code that looks like 529 /// this: 530 /// 531 /// Loop: 532 /// ... 533 /// br cond, Loop, Next 534 /// ... 535 /// br cond2, Loop, Out 536 /// 537 /// To identify this common case, we look at the PHI nodes in the header of the 538 /// loop. PHI nodes with unchanging values on one backedge correspond to values 539 /// that change in the "outer" loop, but not in the "inner" loop. 540 /// 541 /// If we are able to separate out a loop, return the new outer loop that was 542 /// created. 543 /// 544 Loop *LoopSimplify::SeparateNestedLoop(Loop *L, LPPassManager &LPM, 545 BasicBlock *Preheader) { 546 // Don't try to separate loops without a preheader. 547 if (!Preheader) 548 return 0; 549 550 // The header is not a landing pad; preheader insertion should ensure this. 551 assert(!L->getHeader()->isLandingPad() && 552 "Can't insert backedge to landing pad"); 553 554 PHINode *PN = FindPHIToPartitionLoops(L, DT, AA, LI); 555 if (PN == 0) return 0; // No known way to partition. 556 557 // Pull out all predecessors that have varying values in the loop. This 558 // handles the case when a PHI node has multiple instances of itself as 559 // arguments. 560 SmallVector<BasicBlock*, 8> OuterLoopPreds; 561 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 562 if (PN->getIncomingValue(i) != PN || 563 !L->contains(PN->getIncomingBlock(i))) { 564 // We can't split indirectbr edges. 565 if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator())) 566 return 0; 567 OuterLoopPreds.push_back(PN->getIncomingBlock(i)); 568 } 569 } 570 DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n"); 571 572 // If ScalarEvolution is around and knows anything about values in 573 // this loop, tell it to forget them, because we're about to 574 // substantially change it. 575 if (SE) 576 SE->forgetLoop(L); 577 578 BasicBlock *Header = L->getHeader(); 579 BasicBlock *NewBB = 580 SplitBlockPredecessors(Header, OuterLoopPreds, ".outer", this); 581 582 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 583 // code layout too horribly. 584 PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L); 585 586 // Create the new outer loop. 587 Loop *NewOuter = new Loop(); 588 589 // Change the parent loop to use the outer loop as its child now. 590 if (Loop *Parent = L->getParentLoop()) 591 Parent->replaceChildLoopWith(L, NewOuter); 592 else 593 LI->changeTopLevelLoop(L, NewOuter); 594 595 // L is now a subloop of our outer loop. 596 NewOuter->addChildLoop(L); 597 598 // Add the new loop to the pass manager queue. 599 LPM.insertLoopIntoQueue(NewOuter); 600 601 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 602 I != E; ++I) 603 NewOuter->addBlockEntry(*I); 604 605 // Now reset the header in L, which had been moved by 606 // SplitBlockPredecessors for the outer loop. 607 L->moveToHeader(Header); 608 609 // Determine which blocks should stay in L and which should be moved out to 610 // the Outer loop now. 611 std::set<BasicBlock*> BlocksInL; 612 for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) { 613 BasicBlock *P = *PI; 614 if (DT->dominates(Header, P)) 615 AddBlockAndPredsToSet(P, Header, BlocksInL); 616 } 617 618 // Scan all of the loop children of L, moving them to OuterLoop if they are 619 // not part of the inner loop. 620 const std::vector<Loop*> &SubLoops = L->getSubLoops(); 621 for (size_t I = 0; I != SubLoops.size(); ) 622 if (BlocksInL.count(SubLoops[I]->getHeader())) 623 ++I; // Loop remains in L 624 else 625 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I)); 626 627 // Now that we know which blocks are in L and which need to be moved to 628 // OuterLoop, move any blocks that need it. 629 for (unsigned i = 0; i != L->getBlocks().size(); ++i) { 630 BasicBlock *BB = L->getBlocks()[i]; 631 if (!BlocksInL.count(BB)) { 632 // Move this block to the parent, updating the exit blocks sets 633 L->removeBlockFromLoop(BB); 634 if ((*LI)[BB] == L) 635 LI->changeLoopFor(BB, NewOuter); 636 --i; 637 } 638 } 639 640 return NewOuter; 641 } 642 643 644 645 /// InsertUniqueBackedgeBlock - This method is called when the specified loop 646 /// has more than one backedge in it. If this occurs, revector all of these 647 /// backedges to target a new basic block and have that block branch to the loop 648 /// header. This ensures that loops have exactly one backedge. 649 /// 650 BasicBlock * 651 LoopSimplify::InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader) { 652 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!"); 653 654 // Get information about the loop 655 BasicBlock *Header = L->getHeader(); 656 Function *F = Header->getParent(); 657 658 // Unique backedge insertion currently depends on having a preheader. 659 if (!Preheader) 660 return 0; 661 662 // The header is not a landing pad; preheader insertion should ensure this. 663 assert(!Header->isLandingPad() && "Can't insert backedge to landing pad"); 664 665 // Figure out which basic blocks contain back-edges to the loop header. 666 std::vector<BasicBlock*> BackedgeBlocks; 667 for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){ 668 BasicBlock *P = *I; 669 670 // Indirectbr edges cannot be split, so we must fail if we find one. 671 if (isa<IndirectBrInst>(P->getTerminator())) 672 return 0; 673 674 if (P != Preheader) BackedgeBlocks.push_back(P); 675 } 676 677 // Create and insert the new backedge block... 678 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(), 679 Header->getName()+".backedge", F); 680 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock); 681 682 DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block " 683 << BEBlock->getName() << "\n"); 684 685 // Move the new backedge block to right after the last backedge block. 686 Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos; 687 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock); 688 689 // Now that the block has been inserted into the function, create PHI nodes in 690 // the backedge block which correspond to any PHI nodes in the header block. 691 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 692 PHINode *PN = cast<PHINode>(I); 693 PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(), 694 PN->getName()+".be", BETerminator); 695 if (AA) AA->copyValue(PN, NewPN); 696 697 // Loop over the PHI node, moving all entries except the one for the 698 // preheader over to the new PHI node. 699 unsigned PreheaderIdx = ~0U; 700 bool HasUniqueIncomingValue = true; 701 Value *UniqueValue = 0; 702 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 703 BasicBlock *IBB = PN->getIncomingBlock(i); 704 Value *IV = PN->getIncomingValue(i); 705 if (IBB == Preheader) { 706 PreheaderIdx = i; 707 } else { 708 NewPN->addIncoming(IV, IBB); 709 if (HasUniqueIncomingValue) { 710 if (UniqueValue == 0) 711 UniqueValue = IV; 712 else if (UniqueValue != IV) 713 HasUniqueIncomingValue = false; 714 } 715 } 716 } 717 718 // Delete all of the incoming values from the old PN except the preheader's 719 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??"); 720 if (PreheaderIdx != 0) { 721 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx)); 722 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx)); 723 } 724 // Nuke all entries except the zero'th. 725 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i) 726 PN->removeIncomingValue(e-i, false); 727 728 // Finally, add the newly constructed PHI node as the entry for the BEBlock. 729 PN->addIncoming(NewPN, BEBlock); 730 731 // As an optimization, if all incoming values in the new PhiNode (which is a 732 // subset of the incoming values of the old PHI node) have the same value, 733 // eliminate the PHI Node. 734 if (HasUniqueIncomingValue) { 735 NewPN->replaceAllUsesWith(UniqueValue); 736 if (AA) AA->deleteValue(NewPN); 737 BEBlock->getInstList().erase(NewPN); 738 } 739 } 740 741 // Now that all of the PHI nodes have been inserted and adjusted, modify the 742 // backedge blocks to just to the BEBlock instead of the header. 743 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) { 744 TerminatorInst *TI = BackedgeBlocks[i]->getTerminator(); 745 for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op) 746 if (TI->getSuccessor(Op) == Header) 747 TI->setSuccessor(Op, BEBlock); 748 } 749 750 //===--- Update all analyses which we must preserve now -----------------===// 751 752 // Update Loop Information - we know that this block is now in the current 753 // loop and all parent loops. 754 L->addBasicBlockToLoop(BEBlock, LI->getBase()); 755 756 // Update dominator information 757 DT->splitBlock(BEBlock); 758 759 return BEBlock; 760 } 761 762 void LoopSimplify::verifyAnalysis() const { 763 // It used to be possible to just assert L->isLoopSimplifyForm(), however 764 // with the introduction of indirectbr, there are now cases where it's 765 // not possible to transform a loop as necessary. We can at least check 766 // that there is an indirectbr near any time there's trouble. 767 768 // Indirectbr can interfere with preheader and unique backedge insertion. 769 if (!L->getLoopPreheader() || !L->getLoopLatch()) { 770 bool HasIndBrPred = false; 771 for (pred_iterator PI = pred_begin(L->getHeader()), 772 PE = pred_end(L->getHeader()); PI != PE; ++PI) 773 if (isa<IndirectBrInst>((*PI)->getTerminator())) { 774 HasIndBrPred = true; 775 break; 776 } 777 assert(HasIndBrPred && 778 "LoopSimplify has no excuse for missing loop header info!"); 779 (void)HasIndBrPred; 780 } 781 782 // Indirectbr can interfere with exit block canonicalization. 783 if (!L->hasDedicatedExits()) { 784 bool HasIndBrExiting = false; 785 SmallVector<BasicBlock*, 8> ExitingBlocks; 786 L->getExitingBlocks(ExitingBlocks); 787 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 788 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) { 789 HasIndBrExiting = true; 790 break; 791 } 792 } 793 794 assert(HasIndBrExiting && 795 "LoopSimplify has no excuse for missing exit block info!"); 796 (void)HasIndBrExiting; 797 } 798 } 799