1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs several transformations to transform natural loops into a 11 // simpler form, which makes subsequent analyses and transformations simpler and 12 // more effective. 13 // 14 // Loop pre-header insertion guarantees that there is a single, non-critical 15 // entry edge from outside of the loop to the loop header. This simplifies a 16 // number of analyses and transformations, such as LICM. 17 // 18 // Loop exit-block insertion guarantees that all exit blocks from the loop 19 // (blocks which are outside of the loop that have predecessors inside of the 20 // loop) only have predecessors from inside of the loop (and are thus dominated 21 // by the loop header). This simplifies transformations such as store-sinking 22 // that are built into LICM. 23 // 24 // This pass also guarantees that loops will have exactly one backedge. 25 // 26 // Indirectbr instructions introduce several complications. If the loop 27 // contains or is entered by an indirectbr instruction, it may not be possible 28 // to transform the loop and make these guarantees. Client code should check 29 // that these conditions are true before relying on them. 30 // 31 // Note that the simplifycfg pass will clean up blocks which are split out but 32 // end up being unnecessary, so usage of this pass should not pessimize 33 // generated code. 34 // 35 // This pass obviously modifies the CFG, but updates loop information and 36 // dominator information. 37 // 38 //===----------------------------------------------------------------------===// 39 40 #define DEBUG_TYPE "loopsimplify" 41 #include "llvm/Transforms/Scalar.h" 42 #include "llvm/Constants.h" 43 #include "llvm/Instructions.h" 44 #include "llvm/IntrinsicInst.h" 45 #include "llvm/Function.h" 46 #include "llvm/LLVMContext.h" 47 #include "llvm/Type.h" 48 #include "llvm/Analysis/AliasAnalysis.h" 49 #include "llvm/Analysis/DominanceFrontier.h" 50 #include "llvm/Analysis/InstructionSimplify.h" 51 #include "llvm/Analysis/LoopPass.h" 52 #include "llvm/Analysis/ScalarEvolution.h" 53 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 54 #include "llvm/Transforms/Utils/Local.h" 55 #include "llvm/Support/CFG.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/ADT/SetOperations.h" 58 #include "llvm/ADT/SetVector.h" 59 #include "llvm/ADT/Statistic.h" 60 #include "llvm/ADT/DepthFirstIterator.h" 61 using namespace llvm; 62 63 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted"); 64 STATISTIC(NumNested , "Number of nested loops split out"); 65 66 namespace { 67 struct LoopSimplify : public LoopPass { 68 static char ID; // Pass identification, replacement for typeid 69 LoopSimplify() : LoopPass(ID) { 70 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry()); 71 } 72 73 // AA - If we have an alias analysis object to update, this is it, otherwise 74 // this is null. 75 AliasAnalysis *AA; 76 LoopInfo *LI; 77 DominatorTree *DT; 78 ScalarEvolution *SE; 79 Loop *L; 80 virtual bool runOnLoop(Loop *L, LPPassManager &LPM); 81 82 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 83 // We need loop information to identify the loops... 84 AU.addRequired<DominatorTree>(); 85 AU.addPreserved<DominatorTree>(); 86 87 AU.addRequired<LoopInfo>(); 88 AU.addPreserved<LoopInfo>(); 89 90 AU.addPreserved<AliasAnalysis>(); 91 AU.addPreserved<ScalarEvolution>(); 92 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added. 93 AU.addPreserved<DominanceFrontier>(); 94 } 95 96 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees. 97 void verifyAnalysis() const; 98 99 private: 100 bool ProcessLoop(Loop *L, LPPassManager &LPM); 101 BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit); 102 BasicBlock *InsertPreheaderForLoop(Loop *L); 103 Loop *SeparateNestedLoop(Loop *L, LPPassManager &LPM); 104 BasicBlock *InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader); 105 void PlaceSplitBlockCarefully(BasicBlock *NewBB, 106 SmallVectorImpl<BasicBlock*> &SplitPreds, 107 Loop *L); 108 }; 109 } 110 111 char LoopSimplify::ID = 0; 112 INITIALIZE_PASS_BEGIN(LoopSimplify, "loopsimplify", 113 "Canonicalize natural loops", true, false) 114 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 115 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 116 INITIALIZE_PASS_END(LoopSimplify, "loopsimplify", 117 "Canonicalize natural loops", true, false) 118 119 // Publically exposed interface to pass... 120 char &llvm::LoopSimplifyID = LoopSimplify::ID; 121 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); } 122 123 /// runOnLoop - Run down all loops in the CFG (recursively, but we could do 124 /// it in any convenient order) inserting preheaders... 125 /// 126 bool LoopSimplify::runOnLoop(Loop *l, LPPassManager &LPM) { 127 L = l; 128 bool Changed = false; 129 LI = &getAnalysis<LoopInfo>(); 130 AA = getAnalysisIfAvailable<AliasAnalysis>(); 131 DT = &getAnalysis<DominatorTree>(); 132 SE = getAnalysisIfAvailable<ScalarEvolution>(); 133 134 Changed |= ProcessLoop(L, LPM); 135 136 return Changed; 137 } 138 139 /// ProcessLoop - Walk the loop structure in depth first order, ensuring that 140 /// all loops have preheaders. 141 /// 142 bool LoopSimplify::ProcessLoop(Loop *L, LPPassManager &LPM) { 143 bool Changed = false; 144 ReprocessLoop: 145 146 // Check to see that no blocks (other than the header) in this loop have 147 // predecessors that are not in the loop. This is not valid for natural 148 // loops, but can occur if the blocks are unreachable. Since they are 149 // unreachable we can just shamelessly delete those CFG edges! 150 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); 151 BB != E; ++BB) { 152 if (*BB == L->getHeader()) continue; 153 154 SmallPtrSet<BasicBlock*, 4> BadPreds; 155 for (pred_iterator PI = pred_begin(*BB), 156 PE = pred_end(*BB); PI != PE; ++PI) { 157 BasicBlock *P = *PI; 158 if (!L->contains(P)) 159 BadPreds.insert(P); 160 } 161 162 // Delete each unique out-of-loop (and thus dead) predecessor. 163 for (SmallPtrSet<BasicBlock*, 4>::iterator I = BadPreds.begin(), 164 E = BadPreds.end(); I != E; ++I) { 165 166 DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor " 167 << (*I)->getName() << "\n"); 168 169 // Inform each successor of each dead pred. 170 for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI) 171 (*SI)->removePredecessor(*I); 172 // Zap the dead pred's terminator and replace it with unreachable. 173 TerminatorInst *TI = (*I)->getTerminator(); 174 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 175 (*I)->getTerminator()->eraseFromParent(); 176 new UnreachableInst((*I)->getContext(), *I); 177 Changed = true; 178 } 179 } 180 181 // If there are exiting blocks with branches on undef, resolve the undef in 182 // the direction which will exit the loop. This will help simplify loop 183 // trip count computations. 184 SmallVector<BasicBlock*, 8> ExitingBlocks; 185 L->getExitingBlocks(ExitingBlocks); 186 for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(), 187 E = ExitingBlocks.end(); I != E; ++I) 188 if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator())) 189 if (BI->isConditional()) { 190 if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) { 191 192 DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in " 193 << (*I)->getName() << "\n"); 194 195 BI->setCondition(ConstantInt::get(Cond->getType(), 196 !L->contains(BI->getSuccessor(0)))); 197 Changed = true; 198 } 199 } 200 201 // Does the loop already have a preheader? If so, don't insert one. 202 BasicBlock *Preheader = L->getLoopPreheader(); 203 if (!Preheader) { 204 Preheader = InsertPreheaderForLoop(L); 205 if (Preheader) { 206 ++NumInserted; 207 Changed = true; 208 } 209 } 210 211 // Next, check to make sure that all exit nodes of the loop only have 212 // predecessors that are inside of the loop. This check guarantees that the 213 // loop preheader/header will dominate the exit blocks. If the exit block has 214 // predecessors from outside of the loop, split the edge now. 215 SmallVector<BasicBlock*, 8> ExitBlocks; 216 L->getExitBlocks(ExitBlocks); 217 218 SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(), 219 ExitBlocks.end()); 220 for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(), 221 E = ExitBlockSet.end(); I != E; ++I) { 222 BasicBlock *ExitBlock = *I; 223 for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock); 224 PI != PE; ++PI) 225 // Must be exactly this loop: no subloops, parent loops, or non-loop preds 226 // allowed. 227 if (!L->contains(*PI)) { 228 if (RewriteLoopExitBlock(L, ExitBlock)) { 229 ++NumInserted; 230 Changed = true; 231 } 232 break; 233 } 234 } 235 236 // If the header has more than two predecessors at this point (from the 237 // preheader and from multiple backedges), we must adjust the loop. 238 BasicBlock *LoopLatch = L->getLoopLatch(); 239 if (!LoopLatch) { 240 // If this is really a nested loop, rip it out into a child loop. Don't do 241 // this for loops with a giant number of backedges, just factor them into a 242 // common backedge instead. 243 if (L->getNumBackEdges() < 8) { 244 if (SeparateNestedLoop(L, LPM)) { 245 ++NumNested; 246 // This is a big restructuring change, reprocess the whole loop. 247 Changed = true; 248 // GCC doesn't tail recursion eliminate this. 249 goto ReprocessLoop; 250 } 251 } 252 253 // If we either couldn't, or didn't want to, identify nesting of the loops, 254 // insert a new block that all backedges target, then make it jump to the 255 // loop header. 256 LoopLatch = InsertUniqueBackedgeBlock(L, Preheader); 257 if (LoopLatch) { 258 ++NumInserted; 259 Changed = true; 260 } 261 } 262 263 // Scan over the PHI nodes in the loop header. Since they now have only two 264 // incoming values (the loop is canonicalized), we may have simplified the PHI 265 // down to 'X = phi [X, Y]', which should be replaced with 'Y'. 266 PHINode *PN; 267 for (BasicBlock::iterator I = L->getHeader()->begin(); 268 (PN = dyn_cast<PHINode>(I++)); ) 269 if (Value *V = SimplifyInstruction(PN, 0, DT)) { 270 if (AA) AA->deleteValue(PN); 271 if (SE) SE->forgetValue(PN); 272 PN->replaceAllUsesWith(V); 273 PN->eraseFromParent(); 274 } 275 276 // If this loop has multiple exits and the exits all go to the same 277 // block, attempt to merge the exits. This helps several passes, such 278 // as LoopRotation, which do not support loops with multiple exits. 279 // SimplifyCFG also does this (and this code uses the same utility 280 // function), however this code is loop-aware, where SimplifyCFG is 281 // not. That gives it the advantage of being able to hoist 282 // loop-invariant instructions out of the way to open up more 283 // opportunities, and the disadvantage of having the responsibility 284 // to preserve dominator information. 285 bool UniqueExit = true; 286 if (!ExitBlocks.empty()) 287 for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i) 288 if (ExitBlocks[i] != ExitBlocks[0]) { 289 UniqueExit = false; 290 break; 291 } 292 if (UniqueExit) { 293 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 294 BasicBlock *ExitingBlock = ExitingBlocks[i]; 295 if (!ExitingBlock->getSinglePredecessor()) continue; 296 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 297 if (!BI || !BI->isConditional()) continue; 298 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); 299 if (!CI || CI->getParent() != ExitingBlock) continue; 300 301 // Attempt to hoist out all instructions except for the 302 // comparison and the branch. 303 bool AllInvariant = true; 304 for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) { 305 Instruction *Inst = I++; 306 // Skip debug info intrinsics. 307 if (isa<DbgInfoIntrinsic>(Inst)) 308 continue; 309 if (Inst == CI) 310 continue; 311 if (!L->makeLoopInvariant(Inst, Changed, 312 Preheader ? Preheader->getTerminator() : 0)) { 313 AllInvariant = false; 314 break; 315 } 316 } 317 if (!AllInvariant) continue; 318 319 // The block has now been cleared of all instructions except for 320 // a comparison and a conditional branch. SimplifyCFG may be able 321 // to fold it now. 322 if (!FoldBranchToCommonDest(BI)) continue; 323 324 // Success. The block is now dead, so remove it from the loop, 325 // update the dominator tree and dominance frontier, and delete it. 326 DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block " 327 << ExitingBlock->getName() << "\n"); 328 329 assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock)); 330 Changed = true; 331 LI->removeBlock(ExitingBlock); 332 333 DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>(); 334 DomTreeNode *Node = DT->getNode(ExitingBlock); 335 const std::vector<DomTreeNodeBase<BasicBlock> *> &Children = 336 Node->getChildren(); 337 while (!Children.empty()) { 338 DomTreeNode *Child = Children.front(); 339 DT->changeImmediateDominator(Child, Node->getIDom()); 340 if (DF) DF->changeImmediateDominator(Child->getBlock(), 341 Node->getIDom()->getBlock(), 342 DT); 343 } 344 DT->eraseNode(ExitingBlock); 345 if (DF) DF->removeBlock(ExitingBlock); 346 347 BI->getSuccessor(0)->removePredecessor(ExitingBlock); 348 BI->getSuccessor(1)->removePredecessor(ExitingBlock); 349 ExitingBlock->eraseFromParent(); 350 } 351 } 352 353 return Changed; 354 } 355 356 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a 357 /// preheader, this method is called to insert one. This method has two phases: 358 /// preheader insertion and analysis updating. 359 /// 360 BasicBlock *LoopSimplify::InsertPreheaderForLoop(Loop *L) { 361 BasicBlock *Header = L->getHeader(); 362 363 // Compute the set of predecessors of the loop that are not in the loop. 364 SmallVector<BasicBlock*, 8> OutsideBlocks; 365 for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); 366 PI != PE; ++PI) { 367 BasicBlock *P = *PI; 368 if (!L->contains(P)) { // Coming in from outside the loop? 369 // If the loop is branched to from an indirect branch, we won't 370 // be able to fully transform the loop, because it prohibits 371 // edge splitting. 372 if (isa<IndirectBrInst>(P->getTerminator())) return 0; 373 374 // Keep track of it. 375 OutsideBlocks.push_back(P); 376 } 377 } 378 379 // Split out the loop pre-header. 380 BasicBlock *NewBB = 381 SplitBlockPredecessors(Header, &OutsideBlocks[0], OutsideBlocks.size(), 382 ".preheader", this); 383 384 DEBUG(dbgs() << "LoopSimplify: Creating pre-header " << NewBB->getName() 385 << "\n"); 386 387 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 388 // code layout too horribly. 389 PlaceSplitBlockCarefully(NewBB, OutsideBlocks, L); 390 391 return NewBB; 392 } 393 394 /// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit 395 /// blocks. This method is used to split exit blocks that have predecessors 396 /// outside of the loop. 397 BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) { 398 SmallVector<BasicBlock*, 8> LoopBlocks; 399 for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) { 400 BasicBlock *P = *I; 401 if (L->contains(P)) { 402 // Don't do this if the loop is exited via an indirect branch. 403 if (isa<IndirectBrInst>(P->getTerminator())) return 0; 404 405 LoopBlocks.push_back(P); 406 } 407 } 408 409 assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?"); 410 BasicBlock *NewBB = SplitBlockPredecessors(Exit, &LoopBlocks[0], 411 LoopBlocks.size(), ".loopexit", 412 this); 413 414 DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 415 << NewBB->getName() << "\n"); 416 return NewBB; 417 } 418 419 /// AddBlockAndPredsToSet - Add the specified block, and all of its 420 /// predecessors, to the specified set, if it's not already in there. Stop 421 /// predecessor traversal when we reach StopBlock. 422 static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, 423 std::set<BasicBlock*> &Blocks) { 424 std::vector<BasicBlock *> WorkList; 425 WorkList.push_back(InputBB); 426 do { 427 BasicBlock *BB = WorkList.back(); WorkList.pop_back(); 428 if (Blocks.insert(BB).second && BB != StopBlock) 429 // If BB is not already processed and it is not a stop block then 430 // insert its predecessor in the work list 431 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 432 BasicBlock *WBB = *I; 433 WorkList.push_back(WBB); 434 } 435 } while(!WorkList.empty()); 436 } 437 438 /// FindPHIToPartitionLoops - The first part of loop-nestification is to find a 439 /// PHI node that tells us how to partition the loops. 440 static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT, 441 AliasAnalysis *AA, LoopInfo *LI) { 442 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) { 443 PHINode *PN = cast<PHINode>(I); 444 ++I; 445 if (Value *V = SimplifyInstruction(PN, 0, DT)) { 446 // This is a degenerate PHI already, don't modify it! 447 PN->replaceAllUsesWith(V); 448 if (AA) AA->deleteValue(PN); 449 PN->eraseFromParent(); 450 continue; 451 } 452 453 // Scan this PHI node looking for a use of the PHI node by itself. 454 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 455 if (PN->getIncomingValue(i) == PN && 456 L->contains(PN->getIncomingBlock(i))) 457 // We found something tasty to remove. 458 return PN; 459 } 460 return 0; 461 } 462 463 // PlaceSplitBlockCarefully - If the block isn't already, move the new block to 464 // right after some 'outside block' block. This prevents the preheader from 465 // being placed inside the loop body, e.g. when the loop hasn't been rotated. 466 void LoopSimplify::PlaceSplitBlockCarefully(BasicBlock *NewBB, 467 SmallVectorImpl<BasicBlock*> &SplitPreds, 468 Loop *L) { 469 // Check to see if NewBB is already well placed. 470 Function::iterator BBI = NewBB; --BBI; 471 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 472 if (&*BBI == SplitPreds[i]) 473 return; 474 } 475 476 // If it isn't already after an outside block, move it after one. This is 477 // always good as it makes the uncond branch from the outside block into a 478 // fall-through. 479 480 // Figure out *which* outside block to put this after. Prefer an outside 481 // block that neighbors a BB actually in the loop. 482 BasicBlock *FoundBB = 0; 483 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 484 Function::iterator BBI = SplitPreds[i]; 485 if (++BBI != NewBB->getParent()->end() && 486 L->contains(BBI)) { 487 FoundBB = SplitPreds[i]; 488 break; 489 } 490 } 491 492 // If our heuristic for a *good* bb to place this after doesn't find 493 // anything, just pick something. It's likely better than leaving it within 494 // the loop. 495 if (!FoundBB) 496 FoundBB = SplitPreds[0]; 497 NewBB->moveAfter(FoundBB); 498 } 499 500 501 /// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of 502 /// them out into a nested loop. This is important for code that looks like 503 /// this: 504 /// 505 /// Loop: 506 /// ... 507 /// br cond, Loop, Next 508 /// ... 509 /// br cond2, Loop, Out 510 /// 511 /// To identify this common case, we look at the PHI nodes in the header of the 512 /// loop. PHI nodes with unchanging values on one backedge correspond to values 513 /// that change in the "outer" loop, but not in the "inner" loop. 514 /// 515 /// If we are able to separate out a loop, return the new outer loop that was 516 /// created. 517 /// 518 Loop *LoopSimplify::SeparateNestedLoop(Loop *L, LPPassManager &LPM) { 519 PHINode *PN = FindPHIToPartitionLoops(L, DT, AA, LI); 520 if (PN == 0) return 0; // No known way to partition. 521 522 // Pull out all predecessors that have varying values in the loop. This 523 // handles the case when a PHI node has multiple instances of itself as 524 // arguments. 525 SmallVector<BasicBlock*, 8> OuterLoopPreds; 526 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 527 if (PN->getIncomingValue(i) != PN || 528 !L->contains(PN->getIncomingBlock(i))) { 529 // We can't split indirectbr edges. 530 if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator())) 531 return 0; 532 533 OuterLoopPreds.push_back(PN->getIncomingBlock(i)); 534 } 535 536 DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n"); 537 538 // If ScalarEvolution is around and knows anything about values in 539 // this loop, tell it to forget them, because we're about to 540 // substantially change it. 541 if (SE) 542 SE->forgetLoop(L); 543 544 BasicBlock *Header = L->getHeader(); 545 BasicBlock *NewBB = SplitBlockPredecessors(Header, &OuterLoopPreds[0], 546 OuterLoopPreds.size(), 547 ".outer", this); 548 549 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 550 // code layout too horribly. 551 PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L); 552 553 // Create the new outer loop. 554 Loop *NewOuter = new Loop(); 555 556 // Change the parent loop to use the outer loop as its child now. 557 if (Loop *Parent = L->getParentLoop()) 558 Parent->replaceChildLoopWith(L, NewOuter); 559 else 560 LI->changeTopLevelLoop(L, NewOuter); 561 562 // L is now a subloop of our outer loop. 563 NewOuter->addChildLoop(L); 564 565 // Add the new loop to the pass manager queue. 566 LPM.insertLoopIntoQueue(NewOuter); 567 568 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 569 I != E; ++I) 570 NewOuter->addBlockEntry(*I); 571 572 // Now reset the header in L, which had been moved by 573 // SplitBlockPredecessors for the outer loop. 574 L->moveToHeader(Header); 575 576 // Determine which blocks should stay in L and which should be moved out to 577 // the Outer loop now. 578 std::set<BasicBlock*> BlocksInL; 579 for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) { 580 BasicBlock *P = *PI; 581 if (DT->dominates(Header, P)) 582 AddBlockAndPredsToSet(P, Header, BlocksInL); 583 } 584 585 // Scan all of the loop children of L, moving them to OuterLoop if they are 586 // not part of the inner loop. 587 const std::vector<Loop*> &SubLoops = L->getSubLoops(); 588 for (size_t I = 0; I != SubLoops.size(); ) 589 if (BlocksInL.count(SubLoops[I]->getHeader())) 590 ++I; // Loop remains in L 591 else 592 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I)); 593 594 // Now that we know which blocks are in L and which need to be moved to 595 // OuterLoop, move any blocks that need it. 596 for (unsigned i = 0; i != L->getBlocks().size(); ++i) { 597 BasicBlock *BB = L->getBlocks()[i]; 598 if (!BlocksInL.count(BB)) { 599 // Move this block to the parent, updating the exit blocks sets 600 L->removeBlockFromLoop(BB); 601 if ((*LI)[BB] == L) 602 LI->changeLoopFor(BB, NewOuter); 603 --i; 604 } 605 } 606 607 return NewOuter; 608 } 609 610 611 612 /// InsertUniqueBackedgeBlock - This method is called when the specified loop 613 /// has more than one backedge in it. If this occurs, revector all of these 614 /// backedges to target a new basic block and have that block branch to the loop 615 /// header. This ensures that loops have exactly one backedge. 616 /// 617 BasicBlock * 618 LoopSimplify::InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader) { 619 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!"); 620 621 // Get information about the loop 622 BasicBlock *Header = L->getHeader(); 623 Function *F = Header->getParent(); 624 625 // Unique backedge insertion currently depends on having a preheader. 626 if (!Preheader) 627 return 0; 628 629 // Figure out which basic blocks contain back-edges to the loop header. 630 std::vector<BasicBlock*> BackedgeBlocks; 631 for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){ 632 BasicBlock *P = *I; 633 634 // Indirectbr edges cannot be split, so we must fail if we find one. 635 if (isa<IndirectBrInst>(P->getTerminator())) 636 return 0; 637 638 if (P != Preheader) BackedgeBlocks.push_back(P); 639 } 640 641 // Create and insert the new backedge block... 642 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(), 643 Header->getName()+".backedge", F); 644 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock); 645 646 DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block " 647 << BEBlock->getName() << "\n"); 648 649 // Move the new backedge block to right after the last backedge block. 650 Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos; 651 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock); 652 653 // Now that the block has been inserted into the function, create PHI nodes in 654 // the backedge block which correspond to any PHI nodes in the header block. 655 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 656 PHINode *PN = cast<PHINode>(I); 657 PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName()+".be", 658 BETerminator); 659 NewPN->reserveOperandSpace(BackedgeBlocks.size()); 660 if (AA) AA->copyValue(PN, NewPN); 661 662 // Loop over the PHI node, moving all entries except the one for the 663 // preheader over to the new PHI node. 664 unsigned PreheaderIdx = ~0U; 665 bool HasUniqueIncomingValue = true; 666 Value *UniqueValue = 0; 667 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 668 BasicBlock *IBB = PN->getIncomingBlock(i); 669 Value *IV = PN->getIncomingValue(i); 670 if (IBB == Preheader) { 671 PreheaderIdx = i; 672 } else { 673 NewPN->addIncoming(IV, IBB); 674 if (HasUniqueIncomingValue) { 675 if (UniqueValue == 0) 676 UniqueValue = IV; 677 else if (UniqueValue != IV) 678 HasUniqueIncomingValue = false; 679 } 680 } 681 } 682 683 // Delete all of the incoming values from the old PN except the preheader's 684 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??"); 685 if (PreheaderIdx != 0) { 686 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx)); 687 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx)); 688 } 689 // Nuke all entries except the zero'th. 690 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i) 691 PN->removeIncomingValue(e-i, false); 692 693 // Finally, add the newly constructed PHI node as the entry for the BEBlock. 694 PN->addIncoming(NewPN, BEBlock); 695 696 // As an optimization, if all incoming values in the new PhiNode (which is a 697 // subset of the incoming values of the old PHI node) have the same value, 698 // eliminate the PHI Node. 699 if (HasUniqueIncomingValue) { 700 NewPN->replaceAllUsesWith(UniqueValue); 701 if (AA) AA->deleteValue(NewPN); 702 BEBlock->getInstList().erase(NewPN); 703 } 704 } 705 706 // Now that all of the PHI nodes have been inserted and adjusted, modify the 707 // backedge blocks to just to the BEBlock instead of the header. 708 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) { 709 TerminatorInst *TI = BackedgeBlocks[i]->getTerminator(); 710 for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op) 711 if (TI->getSuccessor(Op) == Header) 712 TI->setSuccessor(Op, BEBlock); 713 } 714 715 //===--- Update all analyses which we must preserve now -----------------===// 716 717 // Update Loop Information - we know that this block is now in the current 718 // loop and all parent loops. 719 L->addBasicBlockToLoop(BEBlock, LI->getBase()); 720 721 // Update dominator information 722 DT->splitBlock(BEBlock); 723 if (DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>()) 724 DF->splitBlock(BEBlock); 725 726 return BEBlock; 727 } 728 729 void LoopSimplify::verifyAnalysis() const { 730 // It used to be possible to just assert L->isLoopSimplifyForm(), however 731 // with the introduction of indirectbr, there are now cases where it's 732 // not possible to transform a loop as necessary. We can at least check 733 // that there is an indirectbr near any time there's trouble. 734 735 // Indirectbr can interfere with preheader and unique backedge insertion. 736 if (!L->getLoopPreheader() || !L->getLoopLatch()) { 737 bool HasIndBrPred = false; 738 for (pred_iterator PI = pred_begin(L->getHeader()), 739 PE = pred_end(L->getHeader()); PI != PE; ++PI) 740 if (isa<IndirectBrInst>((*PI)->getTerminator())) { 741 HasIndBrPred = true; 742 break; 743 } 744 assert(HasIndBrPred && 745 "LoopSimplify has no excuse for missing loop header info!"); 746 } 747 748 // Indirectbr can interfere with exit block canonicalization. 749 if (!L->hasDedicatedExits()) { 750 bool HasIndBrExiting = false; 751 SmallVector<BasicBlock*, 8> ExitingBlocks; 752 L->getExitingBlocks(ExitingBlocks); 753 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) 754 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) { 755 HasIndBrExiting = true; 756 break; 757 } 758 assert(HasIndBrExiting && 759 "LoopSimplify has no excuse for missing exit block info!"); 760 } 761 } 762