1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs several transformations to transform natural loops into a 11 // simpler form, which makes subsequent analyses and transformations simpler and 12 // more effective. 13 // 14 // Loop pre-header insertion guarantees that there is a single, non-critical 15 // entry edge from outside of the loop to the loop header. This simplifies a 16 // number of analyses and transformations, such as LICM. 17 // 18 // Loop exit-block insertion guarantees that all exit blocks from the loop 19 // (blocks which are outside of the loop that have predecessors inside of the 20 // loop) only have predecessors from inside of the loop (and are thus dominated 21 // by the loop header). This simplifies transformations such as store-sinking 22 // that are built into LICM. 23 // 24 // This pass also guarantees that loops will have exactly one backedge. 25 // 26 // Indirectbr instructions introduce several complications. If the loop 27 // contains or is entered by an indirectbr instruction, it may not be possible 28 // to transform the loop and make these guarantees. Client code should check 29 // that these conditions are true before relying on them. 30 // 31 // Note that the simplifycfg pass will clean up blocks which are split out but 32 // end up being unnecessary, so usage of this pass should not pessimize 33 // generated code. 34 // 35 // This pass obviously modifies the CFG, but updates loop information and 36 // dominator information. 37 // 38 //===----------------------------------------------------------------------===// 39 40 #define DEBUG_TYPE "loopsimplify" 41 #include "llvm/Transforms/Scalar.h" 42 #include "llvm/Constants.h" 43 #include "llvm/Instructions.h" 44 #include "llvm/IntrinsicInst.h" 45 #include "llvm/Function.h" 46 #include "llvm/LLVMContext.h" 47 #include "llvm/Type.h" 48 #include "llvm/Analysis/AliasAnalysis.h" 49 #include "llvm/Analysis/DominanceFrontier.h" 50 #include "llvm/Analysis/InstructionSimplify.h" 51 #include "llvm/Analysis/LoopPass.h" 52 #include "llvm/Analysis/ScalarEvolution.h" 53 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 54 #include "llvm/Transforms/Utils/Local.h" 55 #include "llvm/Support/CFG.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/ADT/SetOperations.h" 58 #include "llvm/ADT/SetVector.h" 59 #include "llvm/ADT/Statistic.h" 60 #include "llvm/ADT/DepthFirstIterator.h" 61 using namespace llvm; 62 63 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted"); 64 STATISTIC(NumNested , "Number of nested loops split out"); 65 66 namespace { 67 struct LoopSimplify : public LoopPass { 68 static char ID; // Pass identification, replacement for typeid 69 LoopSimplify() : LoopPass(ID) { 70 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry()); 71 } 72 73 // AA - If we have an alias analysis object to update, this is it, otherwise 74 // this is null. 75 AliasAnalysis *AA; 76 LoopInfo *LI; 77 DominatorTree *DT; 78 ScalarEvolution *SE; 79 Loop *L; 80 virtual bool runOnLoop(Loop *L, LPPassManager &LPM); 81 82 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 83 // We need loop information to identify the loops... 84 AU.addRequired<DominatorTree>(); 85 AU.addPreserved<DominatorTree>(); 86 87 AU.addRequired<LoopInfo>(); 88 AU.addPreserved<LoopInfo>(); 89 90 AU.addPreserved<AliasAnalysis>(); 91 AU.addPreserved<ScalarEvolution>(); 92 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added. 93 AU.addPreserved<DominanceFrontier>(); 94 } 95 96 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees. 97 void verifyAnalysis() const; 98 99 private: 100 bool ProcessLoop(Loop *L, LPPassManager &LPM); 101 BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit); 102 BasicBlock *InsertPreheaderForLoop(Loop *L); 103 Loop *SeparateNestedLoop(Loop *L, LPPassManager &LPM); 104 BasicBlock *InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader); 105 void PlaceSplitBlockCarefully(BasicBlock *NewBB, 106 SmallVectorImpl<BasicBlock*> &SplitPreds, 107 Loop *L); 108 }; 109 } 110 111 char LoopSimplify::ID = 0; 112 INITIALIZE_PASS_BEGIN(LoopSimplify, "loopsimplify", 113 "Canonicalize natural loops", true, false) 114 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 115 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 116 INITIALIZE_PASS_END(LoopSimplify, "loopsimplify", 117 "Canonicalize natural loops", true, false) 118 119 // Publically exposed interface to pass... 120 char &llvm::LoopSimplifyID = LoopSimplify::ID; 121 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); } 122 123 /// runOnLoop - Run down all loops in the CFG (recursively, but we could do 124 /// it in any convenient order) inserting preheaders... 125 /// 126 bool LoopSimplify::runOnLoop(Loop *l, LPPassManager &LPM) { 127 L = l; 128 bool Changed = false; 129 LI = &getAnalysis<LoopInfo>(); 130 AA = getAnalysisIfAvailable<AliasAnalysis>(); 131 DT = &getAnalysis<DominatorTree>(); 132 SE = getAnalysisIfAvailable<ScalarEvolution>(); 133 134 Changed |= ProcessLoop(L, LPM); 135 136 return Changed; 137 } 138 139 /// ProcessLoop - Walk the loop structure in depth first order, ensuring that 140 /// all loops have preheaders. 141 /// 142 bool LoopSimplify::ProcessLoop(Loop *L, LPPassManager &LPM) { 143 bool Changed = false; 144 ReprocessLoop: 145 146 // Check to see that no blocks (other than the header) in this loop have 147 // predecessors that are not in the loop. This is not valid for natural 148 // loops, but can occur if the blocks are unreachable. Since they are 149 // unreachable we can just shamelessly delete those CFG edges! 150 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); 151 BB != E; ++BB) { 152 if (*BB == L->getHeader()) continue; 153 154 SmallPtrSet<BasicBlock*, 4> BadPreds; 155 for (pred_iterator PI = pred_begin(*BB), 156 PE = pred_end(*BB); PI != PE; ++PI) { 157 BasicBlock *P = *PI; 158 if (!L->contains(P)) 159 BadPreds.insert(P); 160 } 161 162 // Delete each unique out-of-loop (and thus dead) predecessor. 163 for (SmallPtrSet<BasicBlock*, 4>::iterator I = BadPreds.begin(), 164 E = BadPreds.end(); I != E; ++I) { 165 166 DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor " 167 << (*I)->getName() << "\n"); 168 169 // Inform each successor of each dead pred. 170 for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI) 171 (*SI)->removePredecessor(*I); 172 // Zap the dead pred's terminator and replace it with unreachable. 173 TerminatorInst *TI = (*I)->getTerminator(); 174 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 175 (*I)->getTerminator()->eraseFromParent(); 176 new UnreachableInst((*I)->getContext(), *I); 177 Changed = true; 178 } 179 } 180 181 // If there are exiting blocks with branches on undef, resolve the undef in 182 // the direction which will exit the loop. This will help simplify loop 183 // trip count computations. 184 SmallVector<BasicBlock*, 8> ExitingBlocks; 185 L->getExitingBlocks(ExitingBlocks); 186 for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(), 187 E = ExitingBlocks.end(); I != E; ++I) 188 if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator())) 189 if (BI->isConditional()) { 190 if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) { 191 192 DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in " 193 << (*I)->getName() << "\n"); 194 195 BI->setCondition(ConstantInt::get(Cond->getType(), 196 !L->contains(BI->getSuccessor(0)))); 197 Changed = true; 198 } 199 } 200 201 // Does the loop already have a preheader? If so, don't insert one. 202 BasicBlock *Preheader = L->getLoopPreheader(); 203 if (!Preheader) { 204 Preheader = InsertPreheaderForLoop(L); 205 if (Preheader) { 206 ++NumInserted; 207 Changed = true; 208 } 209 } 210 211 // Next, check to make sure that all exit nodes of the loop only have 212 // predecessors that are inside of the loop. This check guarantees that the 213 // loop preheader/header will dominate the exit blocks. If the exit block has 214 // predecessors from outside of the loop, split the edge now. 215 SmallVector<BasicBlock*, 8> ExitBlocks; 216 L->getExitBlocks(ExitBlocks); 217 218 SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(), 219 ExitBlocks.end()); 220 for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(), 221 E = ExitBlockSet.end(); I != E; ++I) { 222 BasicBlock *ExitBlock = *I; 223 for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock); 224 PI != PE; ++PI) 225 // Must be exactly this loop: no subloops, parent loops, or non-loop preds 226 // allowed. 227 if (!L->contains(*PI)) { 228 if (RewriteLoopExitBlock(L, ExitBlock)) { 229 ++NumInserted; 230 Changed = true; 231 } 232 break; 233 } 234 } 235 236 // If the header has more than two predecessors at this point (from the 237 // preheader and from multiple backedges), we must adjust the loop. 238 BasicBlock *LoopLatch = L->getLoopLatch(); 239 if (!LoopLatch) { 240 // If this is really a nested loop, rip it out into a child loop. Don't do 241 // this for loops with a giant number of backedges, just factor them into a 242 // common backedge instead. 243 if (L->getNumBackEdges() < 8) { 244 if (SeparateNestedLoop(L, LPM)) { 245 ++NumNested; 246 // This is a big restructuring change, reprocess the whole loop. 247 Changed = true; 248 // GCC doesn't tail recursion eliminate this. 249 goto ReprocessLoop; 250 } 251 } 252 253 // If we either couldn't, or didn't want to, identify nesting of the loops, 254 // insert a new block that all backedges target, then make it jump to the 255 // loop header. 256 LoopLatch = InsertUniqueBackedgeBlock(L, Preheader); 257 if (LoopLatch) { 258 ++NumInserted; 259 Changed = true; 260 } 261 } 262 263 // Scan over the PHI nodes in the loop header. Since they now have only two 264 // incoming values (the loop is canonicalized), we may have simplified the PHI 265 // down to 'X = phi [X, Y]', which should be replaced with 'Y'. 266 PHINode *PN; 267 for (BasicBlock::iterator I = L->getHeader()->begin(); 268 (PN = dyn_cast<PHINode>(I++)); ) 269 if (Value *V = SimplifyInstruction(PN, 0, DT)) { 270 if (AA) AA->deleteValue(PN); 271 PN->replaceAllUsesWith(V); 272 PN->eraseFromParent(); 273 } 274 275 // If this loop has multiple exits and the exits all go to the same 276 // block, attempt to merge the exits. This helps several passes, such 277 // as LoopRotation, which do not support loops with multiple exits. 278 // SimplifyCFG also does this (and this code uses the same utility 279 // function), however this code is loop-aware, where SimplifyCFG is 280 // not. That gives it the advantage of being able to hoist 281 // loop-invariant instructions out of the way to open up more 282 // opportunities, and the disadvantage of having the responsibility 283 // to preserve dominator information. 284 bool UniqueExit = true; 285 if (!ExitBlocks.empty()) 286 for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i) 287 if (ExitBlocks[i] != ExitBlocks[0]) { 288 UniqueExit = false; 289 break; 290 } 291 if (UniqueExit) { 292 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 293 BasicBlock *ExitingBlock = ExitingBlocks[i]; 294 if (!ExitingBlock->getSinglePredecessor()) continue; 295 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 296 if (!BI || !BI->isConditional()) continue; 297 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); 298 if (!CI || CI->getParent() != ExitingBlock) continue; 299 300 // Attempt to hoist out all instructions except for the 301 // comparison and the branch. 302 bool AllInvariant = true; 303 for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) { 304 Instruction *Inst = I++; 305 // Skip debug info intrinsics. 306 if (isa<DbgInfoIntrinsic>(Inst)) 307 continue; 308 if (Inst == CI) 309 continue; 310 if (!L->makeLoopInvariant(Inst, Changed, 311 Preheader ? Preheader->getTerminator() : 0)) { 312 AllInvariant = false; 313 break; 314 } 315 } 316 if (!AllInvariant) continue; 317 318 // The block has now been cleared of all instructions except for 319 // a comparison and a conditional branch. SimplifyCFG may be able 320 // to fold it now. 321 if (!FoldBranchToCommonDest(BI)) continue; 322 323 // Success. The block is now dead, so remove it from the loop, 324 // update the dominator tree and dominance frontier, and delete it. 325 DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block " 326 << ExitingBlock->getName() << "\n"); 327 328 assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock)); 329 Changed = true; 330 LI->removeBlock(ExitingBlock); 331 332 DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>(); 333 DomTreeNode *Node = DT->getNode(ExitingBlock); 334 const std::vector<DomTreeNodeBase<BasicBlock> *> &Children = 335 Node->getChildren(); 336 while (!Children.empty()) { 337 DomTreeNode *Child = Children.front(); 338 DT->changeImmediateDominator(Child, Node->getIDom()); 339 if (DF) DF->changeImmediateDominator(Child->getBlock(), 340 Node->getIDom()->getBlock(), 341 DT); 342 } 343 DT->eraseNode(ExitingBlock); 344 if (DF) DF->removeBlock(ExitingBlock); 345 346 BI->getSuccessor(0)->removePredecessor(ExitingBlock); 347 BI->getSuccessor(1)->removePredecessor(ExitingBlock); 348 ExitingBlock->eraseFromParent(); 349 } 350 } 351 352 return Changed; 353 } 354 355 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a 356 /// preheader, this method is called to insert one. This method has two phases: 357 /// preheader insertion and analysis updating. 358 /// 359 BasicBlock *LoopSimplify::InsertPreheaderForLoop(Loop *L) { 360 BasicBlock *Header = L->getHeader(); 361 362 // Compute the set of predecessors of the loop that are not in the loop. 363 SmallVector<BasicBlock*, 8> OutsideBlocks; 364 for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); 365 PI != PE; ++PI) { 366 BasicBlock *P = *PI; 367 if (!L->contains(P)) { // Coming in from outside the loop? 368 // If the loop is branched to from an indirect branch, we won't 369 // be able to fully transform the loop, because it prohibits 370 // edge splitting. 371 if (isa<IndirectBrInst>(P->getTerminator())) return 0; 372 373 // Keep track of it. 374 OutsideBlocks.push_back(P); 375 } 376 } 377 378 // Split out the loop pre-header. 379 BasicBlock *NewBB = 380 SplitBlockPredecessors(Header, &OutsideBlocks[0], OutsideBlocks.size(), 381 ".preheader", this); 382 383 DEBUG(dbgs() << "LoopSimplify: Creating pre-header " << NewBB->getName() 384 << "\n"); 385 386 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 387 // code layout too horribly. 388 PlaceSplitBlockCarefully(NewBB, OutsideBlocks, L); 389 390 return NewBB; 391 } 392 393 /// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit 394 /// blocks. This method is used to split exit blocks that have predecessors 395 /// outside of the loop. 396 BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) { 397 SmallVector<BasicBlock*, 8> LoopBlocks; 398 for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) { 399 BasicBlock *P = *I; 400 if (L->contains(P)) { 401 // Don't do this if the loop is exited via an indirect branch. 402 if (isa<IndirectBrInst>(P->getTerminator())) return 0; 403 404 LoopBlocks.push_back(P); 405 } 406 } 407 408 assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?"); 409 BasicBlock *NewBB = SplitBlockPredecessors(Exit, &LoopBlocks[0], 410 LoopBlocks.size(), ".loopexit", 411 this); 412 413 DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 414 << NewBB->getName() << "\n"); 415 return NewBB; 416 } 417 418 /// AddBlockAndPredsToSet - Add the specified block, and all of its 419 /// predecessors, to the specified set, if it's not already in there. Stop 420 /// predecessor traversal when we reach StopBlock. 421 static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, 422 std::set<BasicBlock*> &Blocks) { 423 std::vector<BasicBlock *> WorkList; 424 WorkList.push_back(InputBB); 425 do { 426 BasicBlock *BB = WorkList.back(); WorkList.pop_back(); 427 if (Blocks.insert(BB).second && BB != StopBlock) 428 // If BB is not already processed and it is not a stop block then 429 // insert its predecessor in the work list 430 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 431 BasicBlock *WBB = *I; 432 WorkList.push_back(WBB); 433 } 434 } while(!WorkList.empty()); 435 } 436 437 /// FindPHIToPartitionLoops - The first part of loop-nestification is to find a 438 /// PHI node that tells us how to partition the loops. 439 static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT, 440 AliasAnalysis *AA, LoopInfo *LI) { 441 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) { 442 PHINode *PN = cast<PHINode>(I); 443 ++I; 444 if (Value *V = SimplifyInstruction(PN, 0, DT)) { 445 // This is a degenerate PHI already, don't modify it! 446 PN->replaceAllUsesWith(V); 447 if (AA) AA->deleteValue(PN); 448 PN->eraseFromParent(); 449 continue; 450 } 451 452 // Scan this PHI node looking for a use of the PHI node by itself. 453 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 454 if (PN->getIncomingValue(i) == PN && 455 L->contains(PN->getIncomingBlock(i))) 456 // We found something tasty to remove. 457 return PN; 458 } 459 return 0; 460 } 461 462 // PlaceSplitBlockCarefully - If the block isn't already, move the new block to 463 // right after some 'outside block' block. This prevents the preheader from 464 // being placed inside the loop body, e.g. when the loop hasn't been rotated. 465 void LoopSimplify::PlaceSplitBlockCarefully(BasicBlock *NewBB, 466 SmallVectorImpl<BasicBlock*> &SplitPreds, 467 Loop *L) { 468 // Check to see if NewBB is already well placed. 469 Function::iterator BBI = NewBB; --BBI; 470 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 471 if (&*BBI == SplitPreds[i]) 472 return; 473 } 474 475 // If it isn't already after an outside block, move it after one. This is 476 // always good as it makes the uncond branch from the outside block into a 477 // fall-through. 478 479 // Figure out *which* outside block to put this after. Prefer an outside 480 // block that neighbors a BB actually in the loop. 481 BasicBlock *FoundBB = 0; 482 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 483 Function::iterator BBI = SplitPreds[i]; 484 if (++BBI != NewBB->getParent()->end() && 485 L->contains(BBI)) { 486 FoundBB = SplitPreds[i]; 487 break; 488 } 489 } 490 491 // If our heuristic for a *good* bb to place this after doesn't find 492 // anything, just pick something. It's likely better than leaving it within 493 // the loop. 494 if (!FoundBB) 495 FoundBB = SplitPreds[0]; 496 NewBB->moveAfter(FoundBB); 497 } 498 499 500 /// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of 501 /// them out into a nested loop. This is important for code that looks like 502 /// this: 503 /// 504 /// Loop: 505 /// ... 506 /// br cond, Loop, Next 507 /// ... 508 /// br cond2, Loop, Out 509 /// 510 /// To identify this common case, we look at the PHI nodes in the header of the 511 /// loop. PHI nodes with unchanging values on one backedge correspond to values 512 /// that change in the "outer" loop, but not in the "inner" loop. 513 /// 514 /// If we are able to separate out a loop, return the new outer loop that was 515 /// created. 516 /// 517 Loop *LoopSimplify::SeparateNestedLoop(Loop *L, LPPassManager &LPM) { 518 PHINode *PN = FindPHIToPartitionLoops(L, DT, AA, LI); 519 if (PN == 0) return 0; // No known way to partition. 520 521 // Pull out all predecessors that have varying values in the loop. This 522 // handles the case when a PHI node has multiple instances of itself as 523 // arguments. 524 SmallVector<BasicBlock*, 8> OuterLoopPreds; 525 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 526 if (PN->getIncomingValue(i) != PN || 527 !L->contains(PN->getIncomingBlock(i))) { 528 // We can't split indirectbr edges. 529 if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator())) 530 return 0; 531 532 OuterLoopPreds.push_back(PN->getIncomingBlock(i)); 533 } 534 535 DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n"); 536 537 // If ScalarEvolution is around and knows anything about values in 538 // this loop, tell it to forget them, because we're about to 539 // substantially change it. 540 if (SE) 541 SE->forgetLoop(L); 542 543 BasicBlock *Header = L->getHeader(); 544 BasicBlock *NewBB = SplitBlockPredecessors(Header, &OuterLoopPreds[0], 545 OuterLoopPreds.size(), 546 ".outer", this); 547 548 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 549 // code layout too horribly. 550 PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L); 551 552 // Create the new outer loop. 553 Loop *NewOuter = new Loop(); 554 555 // Change the parent loop to use the outer loop as its child now. 556 if (Loop *Parent = L->getParentLoop()) 557 Parent->replaceChildLoopWith(L, NewOuter); 558 else 559 LI->changeTopLevelLoop(L, NewOuter); 560 561 // L is now a subloop of our outer loop. 562 NewOuter->addChildLoop(L); 563 564 // Add the new loop to the pass manager queue. 565 LPM.insertLoopIntoQueue(NewOuter); 566 567 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 568 I != E; ++I) 569 NewOuter->addBlockEntry(*I); 570 571 // Now reset the header in L, which had been moved by 572 // SplitBlockPredecessors for the outer loop. 573 L->moveToHeader(Header); 574 575 // Determine which blocks should stay in L and which should be moved out to 576 // the Outer loop now. 577 std::set<BasicBlock*> BlocksInL; 578 for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) { 579 BasicBlock *P = *PI; 580 if (DT->dominates(Header, P)) 581 AddBlockAndPredsToSet(P, Header, BlocksInL); 582 } 583 584 // Scan all of the loop children of L, moving them to OuterLoop if they are 585 // not part of the inner loop. 586 const std::vector<Loop*> &SubLoops = L->getSubLoops(); 587 for (size_t I = 0; I != SubLoops.size(); ) 588 if (BlocksInL.count(SubLoops[I]->getHeader())) 589 ++I; // Loop remains in L 590 else 591 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I)); 592 593 // Now that we know which blocks are in L and which need to be moved to 594 // OuterLoop, move any blocks that need it. 595 for (unsigned i = 0; i != L->getBlocks().size(); ++i) { 596 BasicBlock *BB = L->getBlocks()[i]; 597 if (!BlocksInL.count(BB)) { 598 // Move this block to the parent, updating the exit blocks sets 599 L->removeBlockFromLoop(BB); 600 if ((*LI)[BB] == L) 601 LI->changeLoopFor(BB, NewOuter); 602 --i; 603 } 604 } 605 606 return NewOuter; 607 } 608 609 610 611 /// InsertUniqueBackedgeBlock - This method is called when the specified loop 612 /// has more than one backedge in it. If this occurs, revector all of these 613 /// backedges to target a new basic block and have that block branch to the loop 614 /// header. This ensures that loops have exactly one backedge. 615 /// 616 BasicBlock * 617 LoopSimplify::InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader) { 618 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!"); 619 620 // Get information about the loop 621 BasicBlock *Header = L->getHeader(); 622 Function *F = Header->getParent(); 623 624 // Unique backedge insertion currently depends on having a preheader. 625 if (!Preheader) 626 return 0; 627 628 // Figure out which basic blocks contain back-edges to the loop header. 629 std::vector<BasicBlock*> BackedgeBlocks; 630 for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){ 631 BasicBlock *P = *I; 632 633 // Indirectbr edges cannot be split, so we must fail if we find one. 634 if (isa<IndirectBrInst>(P->getTerminator())) 635 return 0; 636 637 if (P != Preheader) BackedgeBlocks.push_back(P); 638 } 639 640 // Create and insert the new backedge block... 641 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(), 642 Header->getName()+".backedge", F); 643 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock); 644 645 DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block " 646 << BEBlock->getName() << "\n"); 647 648 // Move the new backedge block to right after the last backedge block. 649 Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos; 650 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock); 651 652 // Now that the block has been inserted into the function, create PHI nodes in 653 // the backedge block which correspond to any PHI nodes in the header block. 654 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 655 PHINode *PN = cast<PHINode>(I); 656 PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName()+".be", 657 BETerminator); 658 NewPN->reserveOperandSpace(BackedgeBlocks.size()); 659 if (AA) AA->copyValue(PN, NewPN); 660 661 // Loop over the PHI node, moving all entries except the one for the 662 // preheader over to the new PHI node. 663 unsigned PreheaderIdx = ~0U; 664 bool HasUniqueIncomingValue = true; 665 Value *UniqueValue = 0; 666 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 667 BasicBlock *IBB = PN->getIncomingBlock(i); 668 Value *IV = PN->getIncomingValue(i); 669 if (IBB == Preheader) { 670 PreheaderIdx = i; 671 } else { 672 NewPN->addIncoming(IV, IBB); 673 if (HasUniqueIncomingValue) { 674 if (UniqueValue == 0) 675 UniqueValue = IV; 676 else if (UniqueValue != IV) 677 HasUniqueIncomingValue = false; 678 } 679 } 680 } 681 682 // Delete all of the incoming values from the old PN except the preheader's 683 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??"); 684 if (PreheaderIdx != 0) { 685 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx)); 686 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx)); 687 } 688 // Nuke all entries except the zero'th. 689 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i) 690 PN->removeIncomingValue(e-i, false); 691 692 // Finally, add the newly constructed PHI node as the entry for the BEBlock. 693 PN->addIncoming(NewPN, BEBlock); 694 695 // As an optimization, if all incoming values in the new PhiNode (which is a 696 // subset of the incoming values of the old PHI node) have the same value, 697 // eliminate the PHI Node. 698 if (HasUniqueIncomingValue) { 699 NewPN->replaceAllUsesWith(UniqueValue); 700 if (AA) AA->deleteValue(NewPN); 701 BEBlock->getInstList().erase(NewPN); 702 } 703 } 704 705 // Now that all of the PHI nodes have been inserted and adjusted, modify the 706 // backedge blocks to just to the BEBlock instead of the header. 707 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) { 708 TerminatorInst *TI = BackedgeBlocks[i]->getTerminator(); 709 for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op) 710 if (TI->getSuccessor(Op) == Header) 711 TI->setSuccessor(Op, BEBlock); 712 } 713 714 //===--- Update all analyses which we must preserve now -----------------===// 715 716 // Update Loop Information - we know that this block is now in the current 717 // loop and all parent loops. 718 L->addBasicBlockToLoop(BEBlock, LI->getBase()); 719 720 // Update dominator information 721 DT->splitBlock(BEBlock); 722 if (DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>()) 723 DF->splitBlock(BEBlock); 724 725 return BEBlock; 726 } 727 728 void LoopSimplify::verifyAnalysis() const { 729 // It used to be possible to just assert L->isLoopSimplifyForm(), however 730 // with the introduction of indirectbr, there are now cases where it's 731 // not possible to transform a loop as necessary. We can at least check 732 // that there is an indirectbr near any time there's trouble. 733 734 // Indirectbr can interfere with preheader and unique backedge insertion. 735 if (!L->getLoopPreheader() || !L->getLoopLatch()) { 736 bool HasIndBrPred = false; 737 for (pred_iterator PI = pred_begin(L->getHeader()), 738 PE = pred_end(L->getHeader()); PI != PE; ++PI) 739 if (isa<IndirectBrInst>((*PI)->getTerminator())) { 740 HasIndBrPred = true; 741 break; 742 } 743 assert(HasIndBrPred && 744 "LoopSimplify has no excuse for missing loop header info!"); 745 } 746 747 // Indirectbr can interfere with exit block canonicalization. 748 if (!L->hasDedicatedExits()) { 749 bool HasIndBrExiting = false; 750 SmallVector<BasicBlock*, 8> ExitingBlocks; 751 L->getExitingBlocks(ExitingBlocks); 752 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) 753 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) { 754 HasIndBrExiting = true; 755 break; 756 } 757 assert(HasIndBrExiting && 758 "LoopSimplify has no excuse for missing exit block info!"); 759 } 760 } 761