1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs several transformations to transform natural loops into a 11 // simpler form, which makes subsequent analyses and transformations simpler and 12 // more effective. 13 // 14 // Loop pre-header insertion guarantees that there is a single, non-critical 15 // entry edge from outside of the loop to the loop header. This simplifies a 16 // number of analyses and transformations, such as LICM. 17 // 18 // Loop exit-block insertion guarantees that all exit blocks from the loop 19 // (blocks which are outside of the loop that have predecessors inside of the 20 // loop) only have predecessors from inside of the loop (and are thus dominated 21 // by the loop header). This simplifies transformations such as store-sinking 22 // that are built into LICM. 23 // 24 // This pass also guarantees that loops will have exactly one backedge. 25 // 26 // Indirectbr instructions introduce several complications. If the loop 27 // contains or is entered by an indirectbr instruction, it may not be possible 28 // to transform the loop and make these guarantees. Client code should check 29 // that these conditions are true before relying on them. 30 // 31 // Note that the simplifycfg pass will clean up blocks which are split out but 32 // end up being unnecessary, so usage of this pass should not pessimize 33 // generated code. 34 // 35 // This pass obviously modifies the CFG, but updates loop information and 36 // dominator information. 37 // 38 //===----------------------------------------------------------------------===// 39 40 #include "llvm/Transforms/Scalar.h" 41 #include "llvm/ADT/DepthFirstIterator.h" 42 #include "llvm/ADT/SetOperations.h" 43 #include "llvm/ADT/SetVector.h" 44 #include "llvm/ADT/SmallVector.h" 45 #include "llvm/ADT/Statistic.h" 46 #include "llvm/Analysis/AliasAnalysis.h" 47 #include "llvm/Analysis/DependenceAnalysis.h" 48 #include "llvm/Analysis/InstructionSimplify.h" 49 #include "llvm/Analysis/LoopInfo.h" 50 #include "llvm/Analysis/ScalarEvolution.h" 51 #include "llvm/IR/CFG.h" 52 #include "llvm/IR/Constants.h" 53 #include "llvm/IR/Dominators.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/Instructions.h" 56 #include "llvm/IR/IntrinsicInst.h" 57 #include "llvm/IR/LLVMContext.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 61 #include "llvm/Transforms/Utils/Local.h" 62 #include "llvm/Transforms/Utils/LoopUtils.h" 63 using namespace llvm; 64 65 #define DEBUG_TYPE "loop-simplify" 66 67 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted"); 68 STATISTIC(NumNested , "Number of nested loops split out"); 69 70 // If the block isn't already, move the new block to right after some 'outside 71 // block' block. This prevents the preheader from being placed inside the loop 72 // body, e.g. when the loop hasn't been rotated. 73 static void placeSplitBlockCarefully(BasicBlock *NewBB, 74 SmallVectorImpl<BasicBlock *> &SplitPreds, 75 Loop *L) { 76 // Check to see if NewBB is already well placed. 77 Function::iterator BBI = NewBB; --BBI; 78 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 79 if (&*BBI == SplitPreds[i]) 80 return; 81 } 82 83 // If it isn't already after an outside block, move it after one. This is 84 // always good as it makes the uncond branch from the outside block into a 85 // fall-through. 86 87 // Figure out *which* outside block to put this after. Prefer an outside 88 // block that neighbors a BB actually in the loop. 89 BasicBlock *FoundBB = 0; 90 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 91 Function::iterator BBI = SplitPreds[i]; 92 if (++BBI != NewBB->getParent()->end() && 93 L->contains(BBI)) { 94 FoundBB = SplitPreds[i]; 95 break; 96 } 97 } 98 99 // If our heuristic for a *good* bb to place this after doesn't find 100 // anything, just pick something. It's likely better than leaving it within 101 // the loop. 102 if (!FoundBB) 103 FoundBB = SplitPreds[0]; 104 NewBB->moveAfter(FoundBB); 105 } 106 107 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a 108 /// preheader, this method is called to insert one. This method has two phases: 109 /// preheader insertion and analysis updating. 110 /// 111 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, Pass *PP) { 112 BasicBlock *Header = L->getHeader(); 113 114 // Compute the set of predecessors of the loop that are not in the loop. 115 SmallVector<BasicBlock*, 8> OutsideBlocks; 116 for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); 117 PI != PE; ++PI) { 118 BasicBlock *P = *PI; 119 if (!L->contains(P)) { // Coming in from outside the loop? 120 // If the loop is branched to from an indirect branch, we won't 121 // be able to fully transform the loop, because it prohibits 122 // edge splitting. 123 if (isa<IndirectBrInst>(P->getTerminator())) return 0; 124 125 // Keep track of it. 126 OutsideBlocks.push_back(P); 127 } 128 } 129 130 // Split out the loop pre-header. 131 BasicBlock *PreheaderBB; 132 if (!Header->isLandingPad()) { 133 PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", 134 PP); 135 } else { 136 SmallVector<BasicBlock*, 2> NewBBs; 137 SplitLandingPadPredecessors(Header, OutsideBlocks, ".preheader", 138 ".split-lp", PP, NewBBs); 139 PreheaderBB = NewBBs[0]; 140 } 141 142 PreheaderBB->getTerminator()->setDebugLoc( 143 Header->getFirstNonPHI()->getDebugLoc()); 144 DEBUG(dbgs() << "LoopSimplify: Creating pre-header " 145 << PreheaderBB->getName() << "\n"); 146 147 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 148 // code layout too horribly. 149 placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L); 150 151 return PreheaderBB; 152 } 153 154 /// \brief Ensure that the loop preheader dominates all exit blocks. 155 /// 156 /// This method is used to split exit blocks that have predecessors outside of 157 /// the loop. 158 static BasicBlock *rewriteLoopExitBlock(Loop *L, BasicBlock *Exit, Pass *PP) { 159 SmallVector<BasicBlock*, 8> LoopBlocks; 160 for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) { 161 BasicBlock *P = *I; 162 if (L->contains(P)) { 163 // Don't do this if the loop is exited via an indirect branch. 164 if (isa<IndirectBrInst>(P->getTerminator())) return 0; 165 166 LoopBlocks.push_back(P); 167 } 168 } 169 170 assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?"); 171 BasicBlock *NewExitBB = 0; 172 173 if (Exit->isLandingPad()) { 174 SmallVector<BasicBlock*, 2> NewBBs; 175 SplitLandingPadPredecessors(Exit, ArrayRef<BasicBlock*>(&LoopBlocks[0], 176 LoopBlocks.size()), 177 ".loopexit", ".nonloopexit", 178 PP, NewBBs); 179 NewExitBB = NewBBs[0]; 180 } else { 181 NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", PP); 182 } 183 184 DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 185 << NewExitBB->getName() << "\n"); 186 return NewExitBB; 187 } 188 189 /// Add the specified block, and all of its predecessors, to the specified set, 190 /// if it's not already in there. Stop predecessor traversal when we reach 191 /// StopBlock. 192 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, 193 std::set<BasicBlock*> &Blocks) { 194 SmallVector<BasicBlock *, 8> Worklist; 195 Worklist.push_back(InputBB); 196 do { 197 BasicBlock *BB = Worklist.pop_back_val(); 198 if (Blocks.insert(BB).second && BB != StopBlock) 199 // If BB is not already processed and it is not a stop block then 200 // insert its predecessor in the work list 201 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 202 BasicBlock *WBB = *I; 203 Worklist.push_back(WBB); 204 } 205 } while (!Worklist.empty()); 206 } 207 208 /// \brief The first part of loop-nestification is to find a PHI node that tells 209 /// us how to partition the loops. 210 static PHINode *findPHIToPartitionLoops(Loop *L, AliasAnalysis *AA, 211 DominatorTree *DT) { 212 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) { 213 PHINode *PN = cast<PHINode>(I); 214 ++I; 215 if (Value *V = SimplifyInstruction(PN, 0, 0, DT)) { 216 // This is a degenerate PHI already, don't modify it! 217 PN->replaceAllUsesWith(V); 218 if (AA) AA->deleteValue(PN); 219 PN->eraseFromParent(); 220 continue; 221 } 222 223 // Scan this PHI node looking for a use of the PHI node by itself. 224 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 225 if (PN->getIncomingValue(i) == PN && 226 L->contains(PN->getIncomingBlock(i))) 227 // We found something tasty to remove. 228 return PN; 229 } 230 return 0; 231 } 232 233 /// \brief If this loop has multiple backedges, try to pull one of them out into 234 /// a nested loop. 235 /// 236 /// This is important for code that looks like 237 /// this: 238 /// 239 /// Loop: 240 /// ... 241 /// br cond, Loop, Next 242 /// ... 243 /// br cond2, Loop, Out 244 /// 245 /// To identify this common case, we look at the PHI nodes in the header of the 246 /// loop. PHI nodes with unchanging values on one backedge correspond to values 247 /// that change in the "outer" loop, but not in the "inner" loop. 248 /// 249 /// If we are able to separate out a loop, return the new outer loop that was 250 /// created. 251 /// 252 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader, 253 AliasAnalysis *AA, DominatorTree *DT, 254 LoopInfo *LI, ScalarEvolution *SE, Pass *PP) { 255 // Don't try to separate loops without a preheader. 256 if (!Preheader) 257 return 0; 258 259 // The header is not a landing pad; preheader insertion should ensure this. 260 assert(!L->getHeader()->isLandingPad() && 261 "Can't insert backedge to landing pad"); 262 263 PHINode *PN = findPHIToPartitionLoops(L, AA, DT); 264 if (PN == 0) return 0; // No known way to partition. 265 266 // Pull out all predecessors that have varying values in the loop. This 267 // handles the case when a PHI node has multiple instances of itself as 268 // arguments. 269 SmallVector<BasicBlock*, 8> OuterLoopPreds; 270 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 271 if (PN->getIncomingValue(i) != PN || 272 !L->contains(PN->getIncomingBlock(i))) { 273 // We can't split indirectbr edges. 274 if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator())) 275 return 0; 276 OuterLoopPreds.push_back(PN->getIncomingBlock(i)); 277 } 278 } 279 DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n"); 280 281 // If ScalarEvolution is around and knows anything about values in 282 // this loop, tell it to forget them, because we're about to 283 // substantially change it. 284 if (SE) 285 SE->forgetLoop(L); 286 287 BasicBlock *Header = L->getHeader(); 288 BasicBlock *NewBB = 289 SplitBlockPredecessors(Header, OuterLoopPreds, ".outer", PP); 290 291 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 292 // code layout too horribly. 293 placeSplitBlockCarefully(NewBB, OuterLoopPreds, L); 294 295 // Create the new outer loop. 296 Loop *NewOuter = new Loop(); 297 298 // Change the parent loop to use the outer loop as its child now. 299 if (Loop *Parent = L->getParentLoop()) 300 Parent->replaceChildLoopWith(L, NewOuter); 301 else 302 LI->changeTopLevelLoop(L, NewOuter); 303 304 // L is now a subloop of our outer loop. 305 NewOuter->addChildLoop(L); 306 307 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 308 I != E; ++I) 309 NewOuter->addBlockEntry(*I); 310 311 // Now reset the header in L, which had been moved by 312 // SplitBlockPredecessors for the outer loop. 313 L->moveToHeader(Header); 314 315 // Determine which blocks should stay in L and which should be moved out to 316 // the Outer loop now. 317 std::set<BasicBlock*> BlocksInL; 318 for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) { 319 BasicBlock *P = *PI; 320 if (DT->dominates(Header, P)) 321 addBlockAndPredsToSet(P, Header, BlocksInL); 322 } 323 324 // Scan all of the loop children of L, moving them to OuterLoop if they are 325 // not part of the inner loop. 326 const std::vector<Loop*> &SubLoops = L->getSubLoops(); 327 for (size_t I = 0; I != SubLoops.size(); ) 328 if (BlocksInL.count(SubLoops[I]->getHeader())) 329 ++I; // Loop remains in L 330 else 331 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I)); 332 333 // Now that we know which blocks are in L and which need to be moved to 334 // OuterLoop, move any blocks that need it. 335 for (unsigned i = 0; i != L->getBlocks().size(); ++i) { 336 BasicBlock *BB = L->getBlocks()[i]; 337 if (!BlocksInL.count(BB)) { 338 // Move this block to the parent, updating the exit blocks sets 339 L->removeBlockFromLoop(BB); 340 if ((*LI)[BB] == L) 341 LI->changeLoopFor(BB, NewOuter); 342 --i; 343 } 344 } 345 346 return NewOuter; 347 } 348 349 /// \brief This method is called when the specified loop has more than one 350 /// backedge in it. 351 /// 352 /// If this occurs, revector all of these backedges to target a new basic block 353 /// and have that block branch to the loop header. This ensures that loops 354 /// have exactly one backedge. 355 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader, 356 AliasAnalysis *AA, 357 DominatorTree *DT, LoopInfo *LI) { 358 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!"); 359 360 // Get information about the loop 361 BasicBlock *Header = L->getHeader(); 362 Function *F = Header->getParent(); 363 364 // Unique backedge insertion currently depends on having a preheader. 365 if (!Preheader) 366 return 0; 367 368 // The header is not a landing pad; preheader insertion should ensure this. 369 assert(!Header->isLandingPad() && "Can't insert backedge to landing pad"); 370 371 // Figure out which basic blocks contain back-edges to the loop header. 372 std::vector<BasicBlock*> BackedgeBlocks; 373 for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){ 374 BasicBlock *P = *I; 375 376 // Indirectbr edges cannot be split, so we must fail if we find one. 377 if (isa<IndirectBrInst>(P->getTerminator())) 378 return 0; 379 380 if (P != Preheader) BackedgeBlocks.push_back(P); 381 } 382 383 // Create and insert the new backedge block... 384 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(), 385 Header->getName()+".backedge", F); 386 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock); 387 388 DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block " 389 << BEBlock->getName() << "\n"); 390 391 // Move the new backedge block to right after the last backedge block. 392 Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos; 393 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock); 394 395 // Now that the block has been inserted into the function, create PHI nodes in 396 // the backedge block which correspond to any PHI nodes in the header block. 397 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 398 PHINode *PN = cast<PHINode>(I); 399 PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(), 400 PN->getName()+".be", BETerminator); 401 if (AA) AA->copyValue(PN, NewPN); 402 403 // Loop over the PHI node, moving all entries except the one for the 404 // preheader over to the new PHI node. 405 unsigned PreheaderIdx = ~0U; 406 bool HasUniqueIncomingValue = true; 407 Value *UniqueValue = 0; 408 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 409 BasicBlock *IBB = PN->getIncomingBlock(i); 410 Value *IV = PN->getIncomingValue(i); 411 if (IBB == Preheader) { 412 PreheaderIdx = i; 413 } else { 414 NewPN->addIncoming(IV, IBB); 415 if (HasUniqueIncomingValue) { 416 if (UniqueValue == 0) 417 UniqueValue = IV; 418 else if (UniqueValue != IV) 419 HasUniqueIncomingValue = false; 420 } 421 } 422 } 423 424 // Delete all of the incoming values from the old PN except the preheader's 425 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??"); 426 if (PreheaderIdx != 0) { 427 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx)); 428 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx)); 429 } 430 // Nuke all entries except the zero'th. 431 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i) 432 PN->removeIncomingValue(e-i, false); 433 434 // Finally, add the newly constructed PHI node as the entry for the BEBlock. 435 PN->addIncoming(NewPN, BEBlock); 436 437 // As an optimization, if all incoming values in the new PhiNode (which is a 438 // subset of the incoming values of the old PHI node) have the same value, 439 // eliminate the PHI Node. 440 if (HasUniqueIncomingValue) { 441 NewPN->replaceAllUsesWith(UniqueValue); 442 if (AA) AA->deleteValue(NewPN); 443 BEBlock->getInstList().erase(NewPN); 444 } 445 } 446 447 // Now that all of the PHI nodes have been inserted and adjusted, modify the 448 // backedge blocks to just to the BEBlock instead of the header. 449 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) { 450 TerminatorInst *TI = BackedgeBlocks[i]->getTerminator(); 451 for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op) 452 if (TI->getSuccessor(Op) == Header) 453 TI->setSuccessor(Op, BEBlock); 454 } 455 456 //===--- Update all analyses which we must preserve now -----------------===// 457 458 // Update Loop Information - we know that this block is now in the current 459 // loop and all parent loops. 460 L->addBasicBlockToLoop(BEBlock, LI->getBase()); 461 462 // Update dominator information 463 DT->splitBlock(BEBlock); 464 465 return BEBlock; 466 } 467 468 /// \brief Simplify one loop and queue further loops for simplification. 469 /// 470 /// FIXME: Currently this accepts both lots of analyses that it uses and a raw 471 /// Pass pointer. The Pass pointer is used by numerous utilities to update 472 /// specific analyses. Rather than a pass it would be much cleaner and more 473 /// explicit if they accepted the analysis directly and then updated it. 474 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist, 475 AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI, 476 ScalarEvolution *SE, Pass *PP) { 477 bool Changed = false; 478 ReprocessLoop: 479 480 // Check to see that no blocks (other than the header) in this loop have 481 // predecessors that are not in the loop. This is not valid for natural 482 // loops, but can occur if the blocks are unreachable. Since they are 483 // unreachable we can just shamelessly delete those CFG edges! 484 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); 485 BB != E; ++BB) { 486 if (*BB == L->getHeader()) continue; 487 488 SmallPtrSet<BasicBlock*, 4> BadPreds; 489 for (pred_iterator PI = pred_begin(*BB), 490 PE = pred_end(*BB); PI != PE; ++PI) { 491 BasicBlock *P = *PI; 492 if (!L->contains(P)) 493 BadPreds.insert(P); 494 } 495 496 // Delete each unique out-of-loop (and thus dead) predecessor. 497 for (SmallPtrSet<BasicBlock*, 4>::iterator I = BadPreds.begin(), 498 E = BadPreds.end(); I != E; ++I) { 499 500 DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor " 501 << (*I)->getName() << "\n"); 502 503 // Inform each successor of each dead pred. 504 for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI) 505 (*SI)->removePredecessor(*I); 506 // Zap the dead pred's terminator and replace it with unreachable. 507 TerminatorInst *TI = (*I)->getTerminator(); 508 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 509 (*I)->getTerminator()->eraseFromParent(); 510 new UnreachableInst((*I)->getContext(), *I); 511 Changed = true; 512 } 513 } 514 515 // If there are exiting blocks with branches on undef, resolve the undef in 516 // the direction which will exit the loop. This will help simplify loop 517 // trip count computations. 518 SmallVector<BasicBlock*, 8> ExitingBlocks; 519 L->getExitingBlocks(ExitingBlocks); 520 for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(), 521 E = ExitingBlocks.end(); I != E; ++I) 522 if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator())) 523 if (BI->isConditional()) { 524 if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) { 525 526 DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in " 527 << (*I)->getName() << "\n"); 528 529 BI->setCondition(ConstantInt::get(Cond->getType(), 530 !L->contains(BI->getSuccessor(0)))); 531 532 // This may make the loop analyzable, force SCEV recomputation. 533 if (SE) 534 SE->forgetLoop(L); 535 536 Changed = true; 537 } 538 } 539 540 // Does the loop already have a preheader? If so, don't insert one. 541 BasicBlock *Preheader = L->getLoopPreheader(); 542 if (!Preheader) { 543 Preheader = InsertPreheaderForLoop(L, PP); 544 if (Preheader) { 545 ++NumInserted; 546 Changed = true; 547 } 548 } 549 550 // Next, check to make sure that all exit nodes of the loop only have 551 // predecessors that are inside of the loop. This check guarantees that the 552 // loop preheader/header will dominate the exit blocks. If the exit block has 553 // predecessors from outside of the loop, split the edge now. 554 SmallVector<BasicBlock*, 8> ExitBlocks; 555 L->getExitBlocks(ExitBlocks); 556 557 SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(), 558 ExitBlocks.end()); 559 for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(), 560 E = ExitBlockSet.end(); I != E; ++I) { 561 BasicBlock *ExitBlock = *I; 562 for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock); 563 PI != PE; ++PI) 564 // Must be exactly this loop: no subloops, parent loops, or non-loop preds 565 // allowed. 566 if (!L->contains(*PI)) { 567 if (rewriteLoopExitBlock(L, ExitBlock, PP)) { 568 ++NumInserted; 569 Changed = true; 570 } 571 break; 572 } 573 } 574 575 // If the header has more than two predecessors at this point (from the 576 // preheader and from multiple backedges), we must adjust the loop. 577 BasicBlock *LoopLatch = L->getLoopLatch(); 578 if (!LoopLatch) { 579 // If this is really a nested loop, rip it out into a child loop. Don't do 580 // this for loops with a giant number of backedges, just factor them into a 581 // common backedge instead. 582 if (L->getNumBackEdges() < 8) { 583 if (Loop *OuterL = separateNestedLoop(L, Preheader, AA, DT, LI, SE, PP)) { 584 ++NumNested; 585 // Enqueue the outer loop as it should be processed next in our 586 // depth-first nest walk. 587 Worklist.push_back(OuterL); 588 589 // This is a big restructuring change, reprocess the whole loop. 590 Changed = true; 591 // GCC doesn't tail recursion eliminate this. 592 // FIXME: It isn't clear we can't rely on LLVM to TRE this. 593 goto ReprocessLoop; 594 } 595 } 596 597 // If we either couldn't, or didn't want to, identify nesting of the loops, 598 // insert a new block that all backedges target, then make it jump to the 599 // loop header. 600 LoopLatch = insertUniqueBackedgeBlock(L, Preheader, AA, DT, LI); 601 if (LoopLatch) { 602 ++NumInserted; 603 Changed = true; 604 } 605 } 606 607 // Scan over the PHI nodes in the loop header. Since they now have only two 608 // incoming values (the loop is canonicalized), we may have simplified the PHI 609 // down to 'X = phi [X, Y]', which should be replaced with 'Y'. 610 PHINode *PN; 611 for (BasicBlock::iterator I = L->getHeader()->begin(); 612 (PN = dyn_cast<PHINode>(I++)); ) 613 if (Value *V = SimplifyInstruction(PN, 0, 0, DT)) { 614 if (AA) AA->deleteValue(PN); 615 if (SE) SE->forgetValue(PN); 616 PN->replaceAllUsesWith(V); 617 PN->eraseFromParent(); 618 } 619 620 // If this loop has multiple exits and the exits all go to the same 621 // block, attempt to merge the exits. This helps several passes, such 622 // as LoopRotation, which do not support loops with multiple exits. 623 // SimplifyCFG also does this (and this code uses the same utility 624 // function), however this code is loop-aware, where SimplifyCFG is 625 // not. That gives it the advantage of being able to hoist 626 // loop-invariant instructions out of the way to open up more 627 // opportunities, and the disadvantage of having the responsibility 628 // to preserve dominator information. 629 bool UniqueExit = true; 630 if (!ExitBlocks.empty()) 631 for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i) 632 if (ExitBlocks[i] != ExitBlocks[0]) { 633 UniqueExit = false; 634 break; 635 } 636 if (UniqueExit) { 637 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 638 BasicBlock *ExitingBlock = ExitingBlocks[i]; 639 if (!ExitingBlock->getSinglePredecessor()) continue; 640 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 641 if (!BI || !BI->isConditional()) continue; 642 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); 643 if (!CI || CI->getParent() != ExitingBlock) continue; 644 645 // Attempt to hoist out all instructions except for the 646 // comparison and the branch. 647 bool AllInvariant = true; 648 bool AnyInvariant = false; 649 for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) { 650 Instruction *Inst = I++; 651 // Skip debug info intrinsics. 652 if (isa<DbgInfoIntrinsic>(Inst)) 653 continue; 654 if (Inst == CI) 655 continue; 656 if (!L->makeLoopInvariant(Inst, AnyInvariant, 657 Preheader ? Preheader->getTerminator() : 0)) { 658 AllInvariant = false; 659 break; 660 } 661 } 662 if (AnyInvariant) { 663 Changed = true; 664 // The loop disposition of all SCEV expressions that depend on any 665 // hoisted values have also changed. 666 if (SE) 667 SE->forgetLoopDispositions(L); 668 } 669 if (!AllInvariant) continue; 670 671 // The block has now been cleared of all instructions except for 672 // a comparison and a conditional branch. SimplifyCFG may be able 673 // to fold it now. 674 if (!FoldBranchToCommonDest(BI)) continue; 675 676 // Success. The block is now dead, so remove it from the loop, 677 // update the dominator tree and delete it. 678 DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block " 679 << ExitingBlock->getName() << "\n"); 680 681 // Notify ScalarEvolution before deleting this block. Currently assume the 682 // parent loop doesn't change (spliting edges doesn't count). If blocks, 683 // CFG edges, or other values in the parent loop change, then we need call 684 // to forgetLoop() for the parent instead. 685 if (SE) 686 SE->forgetLoop(L); 687 688 assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock)); 689 Changed = true; 690 LI->removeBlock(ExitingBlock); 691 692 DomTreeNode *Node = DT->getNode(ExitingBlock); 693 const std::vector<DomTreeNodeBase<BasicBlock> *> &Children = 694 Node->getChildren(); 695 while (!Children.empty()) { 696 DomTreeNode *Child = Children.front(); 697 DT->changeImmediateDominator(Child, Node->getIDom()); 698 } 699 DT->eraseNode(ExitingBlock); 700 701 BI->getSuccessor(0)->removePredecessor(ExitingBlock); 702 BI->getSuccessor(1)->removePredecessor(ExitingBlock); 703 ExitingBlock->eraseFromParent(); 704 } 705 } 706 707 return Changed; 708 } 709 710 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, Pass *PP, 711 AliasAnalysis *AA, ScalarEvolution *SE) { 712 bool Changed = false; 713 714 // Worklist maintains our depth-first queue of loops in this nest to process. 715 SmallVector<Loop *, 4> Worklist; 716 Worklist.push_back(L); 717 718 // Walk the worklist from front to back, pushing newly found sub loops onto 719 // the back. This will let us process loops from back to front in depth-first 720 // order. We can use this simple process because loops form a tree. 721 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 722 Loop *L2 = Worklist[Idx]; 723 for (Loop::iterator I = L2->begin(), E = L2->end(); I != E; ++I) 724 Worklist.push_back(*I); 725 } 726 727 while (!Worklist.empty()) 728 Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, AA, DT, LI, SE, PP); 729 730 return Changed; 731 } 732 733 namespace { 734 struct LoopSimplify : public FunctionPass { 735 static char ID; // Pass identification, replacement for typeid 736 LoopSimplify() : FunctionPass(ID) { 737 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry()); 738 } 739 740 // AA - If we have an alias analysis object to update, this is it, otherwise 741 // this is null. 742 AliasAnalysis *AA; 743 DominatorTree *DT; 744 LoopInfo *LI; 745 ScalarEvolution *SE; 746 747 bool runOnFunction(Function &F) override; 748 749 void getAnalysisUsage(AnalysisUsage &AU) const override { 750 // We need loop information to identify the loops... 751 AU.addRequired<DominatorTreeWrapperPass>(); 752 AU.addPreserved<DominatorTreeWrapperPass>(); 753 754 AU.addRequired<LoopInfo>(); 755 AU.addPreserved<LoopInfo>(); 756 757 AU.addPreserved<AliasAnalysis>(); 758 AU.addPreserved<ScalarEvolution>(); 759 AU.addPreserved<DependenceAnalysis>(); 760 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added. 761 } 762 763 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees. 764 void verifyAnalysis() const override; 765 }; 766 } 767 768 char LoopSimplify::ID = 0; 769 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify", 770 "Canonicalize natural loops", true, false) 771 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 772 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 773 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify", 774 "Canonicalize natural loops", true, false) 775 776 // Publicly exposed interface to pass... 777 char &llvm::LoopSimplifyID = LoopSimplify::ID; 778 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); } 779 780 /// runOnLoop - Run down all loops in the CFG (recursively, but we could do 781 /// it in any convenient order) inserting preheaders... 782 /// 783 bool LoopSimplify::runOnFunction(Function &F) { 784 bool Changed = false; 785 AA = getAnalysisIfAvailable<AliasAnalysis>(); 786 LI = &getAnalysis<LoopInfo>(); 787 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 788 SE = getAnalysisIfAvailable<ScalarEvolution>(); 789 790 // Simplify each loop nest in the function. 791 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 792 Changed |= simplifyLoop(*I, DT, LI, this, AA, SE); 793 794 return Changed; 795 } 796 797 // FIXME: Restore this code when we re-enable verification in verifyAnalysis 798 // below. 799 #if 0 800 static void verifyLoop(Loop *L) { 801 // Verify subloops. 802 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 803 verifyLoop(*I); 804 805 // It used to be possible to just assert L->isLoopSimplifyForm(), however 806 // with the introduction of indirectbr, there are now cases where it's 807 // not possible to transform a loop as necessary. We can at least check 808 // that there is an indirectbr near any time there's trouble. 809 810 // Indirectbr can interfere with preheader and unique backedge insertion. 811 if (!L->getLoopPreheader() || !L->getLoopLatch()) { 812 bool HasIndBrPred = false; 813 for (pred_iterator PI = pred_begin(L->getHeader()), 814 PE = pred_end(L->getHeader()); PI != PE; ++PI) 815 if (isa<IndirectBrInst>((*PI)->getTerminator())) { 816 HasIndBrPred = true; 817 break; 818 } 819 assert(HasIndBrPred && 820 "LoopSimplify has no excuse for missing loop header info!"); 821 (void)HasIndBrPred; 822 } 823 824 // Indirectbr can interfere with exit block canonicalization. 825 if (!L->hasDedicatedExits()) { 826 bool HasIndBrExiting = false; 827 SmallVector<BasicBlock*, 8> ExitingBlocks; 828 L->getExitingBlocks(ExitingBlocks); 829 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 830 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) { 831 HasIndBrExiting = true; 832 break; 833 } 834 } 835 836 assert(HasIndBrExiting && 837 "LoopSimplify has no excuse for missing exit block info!"); 838 (void)HasIndBrExiting; 839 } 840 } 841 #endif 842 843 void LoopSimplify::verifyAnalysis() const { 844 // FIXME: This routine is being called mid-way through the loop pass manager 845 // as loop passes destroy this analysis. That's actually fine, but we have no 846 // way of expressing that here. Once all of the passes that destroy this are 847 // hoisted out of the loop pass manager we can add back verification here. 848 #if 0 849 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 850 verifyLoop(*I); 851 #endif 852 } 853