1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs several transformations to transform natural loops into a 11 // simpler form, which makes subsequent analyses and transformations simpler and 12 // more effective. 13 // 14 // Loop pre-header insertion guarantees that there is a single, non-critical 15 // entry edge from outside of the loop to the loop header. This simplifies a 16 // number of analyses and transformations, such as LICM. 17 // 18 // Loop exit-block insertion guarantees that all exit blocks from the loop 19 // (blocks which are outside of the loop that have predecessors inside of the 20 // loop) only have predecessors from inside of the loop (and are thus dominated 21 // by the loop header). This simplifies transformations such as store-sinking 22 // that are built into LICM. 23 // 24 // This pass also guarantees that loops will have exactly one backedge. 25 // 26 // Indirectbr instructions introduce several complications. If the loop 27 // contains or is entered by an indirectbr instruction, it may not be possible 28 // to transform the loop and make these guarantees. Client code should check 29 // that these conditions are true before relying on them. 30 // 31 // Note that the simplifycfg pass will clean up blocks which are split out but 32 // end up being unnecessary, so usage of this pass should not pessimize 33 // generated code. 34 // 35 // This pass obviously modifies the CFG, but updates loop information and 36 // dominator information. 37 // 38 //===----------------------------------------------------------------------===// 39 40 #define DEBUG_TYPE "loopsimplify" 41 #include "llvm/Transforms/Scalar.h" 42 #include "llvm/Constants.h" 43 #include "llvm/Instructions.h" 44 #include "llvm/IntrinsicInst.h" 45 #include "llvm/Function.h" 46 #include "llvm/LLVMContext.h" 47 #include "llvm/Type.h" 48 #include "llvm/Analysis/AliasAnalysis.h" 49 #include "llvm/Analysis/ScalarEvolution.h" 50 #include "llvm/Analysis/Dominators.h" 51 #include "llvm/Analysis/LoopPass.h" 52 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 53 #include "llvm/Transforms/Utils/Local.h" 54 #include "llvm/Support/CFG.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/ADT/SetOperations.h" 57 #include "llvm/ADT/SetVector.h" 58 #include "llvm/ADT/Statistic.h" 59 #include "llvm/ADT/DepthFirstIterator.h" 60 using namespace llvm; 61 62 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted"); 63 STATISTIC(NumNested , "Number of nested loops split out"); 64 65 namespace { 66 struct LoopSimplify : public LoopPass { 67 static char ID; // Pass identification, replacement for typeid 68 LoopSimplify() : LoopPass(ID) { 69 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry()); 70 } 71 72 // AA - If we have an alias analysis object to update, this is it, otherwise 73 // this is null. 74 AliasAnalysis *AA; 75 LoopInfo *LI; 76 DominatorTree *DT; 77 ScalarEvolution *SE; 78 Loop *L; 79 virtual bool runOnLoop(Loop *L, LPPassManager &LPM); 80 81 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 82 // We need loop information to identify the loops... 83 AU.addRequired<DominatorTree>(); 84 AU.addPreserved<DominatorTree>(); 85 86 AU.addRequired<LoopInfo>(); 87 AU.addPreserved<LoopInfo>(); 88 89 AU.addPreserved<AliasAnalysis>(); 90 AU.addPreserved<ScalarEvolution>(); 91 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added. 92 AU.addPreserved<DominanceFrontier>(); 93 AU.addPreservedID(LCSSAID); 94 } 95 96 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees. 97 void verifyAnalysis() const; 98 99 private: 100 bool ProcessLoop(Loop *L, LPPassManager &LPM); 101 BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit); 102 BasicBlock *InsertPreheaderForLoop(Loop *L); 103 Loop *SeparateNestedLoop(Loop *L, LPPassManager &LPM); 104 BasicBlock *InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader); 105 void PlaceSplitBlockCarefully(BasicBlock *NewBB, 106 SmallVectorImpl<BasicBlock*> &SplitPreds, 107 Loop *L); 108 }; 109 } 110 111 char LoopSimplify::ID = 0; 112 INITIALIZE_PASS_BEGIN(LoopSimplify, "loopsimplify", 113 "Canonicalize natural loops", true, false) 114 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 115 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 116 INITIALIZE_PASS_END(LoopSimplify, "loopsimplify", 117 "Canonicalize natural loops", true, false) 118 119 // Publically exposed interface to pass... 120 char &llvm::LoopSimplifyID = LoopSimplify::ID; 121 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); } 122 123 /// runOnLoop - Run down all loops in the CFG (recursively, but we could do 124 /// it in any convenient order) inserting preheaders... 125 /// 126 bool LoopSimplify::runOnLoop(Loop *l, LPPassManager &LPM) { 127 L = l; 128 bool Changed = false; 129 LI = &getAnalysis<LoopInfo>(); 130 AA = getAnalysisIfAvailable<AliasAnalysis>(); 131 DT = &getAnalysis<DominatorTree>(); 132 SE = getAnalysisIfAvailable<ScalarEvolution>(); 133 134 Changed |= ProcessLoop(L, LPM); 135 136 return Changed; 137 } 138 139 /// ProcessLoop - Walk the loop structure in depth first order, ensuring that 140 /// all loops have preheaders. 141 /// 142 bool LoopSimplify::ProcessLoop(Loop *L, LPPassManager &LPM) { 143 bool Changed = false; 144 ReprocessLoop: 145 146 // Check to see that no blocks (other than the header) in this loop have 147 // predecessors that are not in the loop. This is not valid for natural 148 // loops, but can occur if the blocks are unreachable. Since they are 149 // unreachable we can just shamelessly delete those CFG edges! 150 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); 151 BB != E; ++BB) { 152 if (*BB == L->getHeader()) continue; 153 154 SmallPtrSet<BasicBlock*, 4> BadPreds; 155 for (pred_iterator PI = pred_begin(*BB), 156 PE = pred_end(*BB); PI != PE; ++PI) { 157 BasicBlock *P = *PI; 158 if (!L->contains(P)) 159 BadPreds.insert(P); 160 } 161 162 // Delete each unique out-of-loop (and thus dead) predecessor. 163 for (SmallPtrSet<BasicBlock*, 4>::iterator I = BadPreds.begin(), 164 E = BadPreds.end(); I != E; ++I) { 165 166 DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "; 167 WriteAsOperand(dbgs(), *I, false); 168 dbgs() << "\n"); 169 170 // Inform each successor of each dead pred. 171 for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI) 172 (*SI)->removePredecessor(*I); 173 // Zap the dead pred's terminator and replace it with unreachable. 174 TerminatorInst *TI = (*I)->getTerminator(); 175 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 176 (*I)->getTerminator()->eraseFromParent(); 177 new UnreachableInst((*I)->getContext(), *I); 178 Changed = true; 179 } 180 } 181 182 // If there are exiting blocks with branches on undef, resolve the undef in 183 // the direction which will exit the loop. This will help simplify loop 184 // trip count computations. 185 SmallVector<BasicBlock*, 8> ExitingBlocks; 186 L->getExitingBlocks(ExitingBlocks); 187 for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(), 188 E = ExitingBlocks.end(); I != E; ++I) 189 if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator())) 190 if (BI->isConditional()) { 191 if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) { 192 193 DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in "; 194 WriteAsOperand(dbgs(), *I, false); 195 dbgs() << "\n"); 196 197 BI->setCondition(ConstantInt::get(Cond->getType(), 198 !L->contains(BI->getSuccessor(0)))); 199 Changed = true; 200 } 201 } 202 203 // Does the loop already have a preheader? If so, don't insert one. 204 BasicBlock *Preheader = L->getLoopPreheader(); 205 if (!Preheader) { 206 Preheader = InsertPreheaderForLoop(L); 207 if (Preheader) { 208 ++NumInserted; 209 Changed = true; 210 } 211 } 212 213 // Next, check to make sure that all exit nodes of the loop only have 214 // predecessors that are inside of the loop. This check guarantees that the 215 // loop preheader/header will dominate the exit blocks. If the exit block has 216 // predecessors from outside of the loop, split the edge now. 217 SmallVector<BasicBlock*, 8> ExitBlocks; 218 L->getExitBlocks(ExitBlocks); 219 220 SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(), 221 ExitBlocks.end()); 222 for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(), 223 E = ExitBlockSet.end(); I != E; ++I) { 224 BasicBlock *ExitBlock = *I; 225 for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock); 226 PI != PE; ++PI) 227 // Must be exactly this loop: no subloops, parent loops, or non-loop preds 228 // allowed. 229 if (!L->contains(*PI)) { 230 if (RewriteLoopExitBlock(L, ExitBlock)) { 231 ++NumInserted; 232 Changed = true; 233 } 234 break; 235 } 236 } 237 238 // If the header has more than two predecessors at this point (from the 239 // preheader and from multiple backedges), we must adjust the loop. 240 BasicBlock *LoopLatch = L->getLoopLatch(); 241 if (!LoopLatch) { 242 // If this is really a nested loop, rip it out into a child loop. Don't do 243 // this for loops with a giant number of backedges, just factor them into a 244 // common backedge instead. 245 if (L->getNumBackEdges() < 8) { 246 if (SeparateNestedLoop(L, LPM)) { 247 ++NumNested; 248 // This is a big restructuring change, reprocess the whole loop. 249 Changed = true; 250 // GCC doesn't tail recursion eliminate this. 251 goto ReprocessLoop; 252 } 253 } 254 255 // If we either couldn't, or didn't want to, identify nesting of the loops, 256 // insert a new block that all backedges target, then make it jump to the 257 // loop header. 258 LoopLatch = InsertUniqueBackedgeBlock(L, Preheader); 259 if (LoopLatch) { 260 ++NumInserted; 261 Changed = true; 262 } 263 } 264 265 // Scan over the PHI nodes in the loop header. Since they now have only two 266 // incoming values (the loop is canonicalized), we may have simplified the PHI 267 // down to 'X = phi [X, Y]', which should be replaced with 'Y'. 268 PHINode *PN; 269 for (BasicBlock::iterator I = L->getHeader()->begin(); 270 (PN = dyn_cast<PHINode>(I++)); ) 271 if (Value *V = PN->hasConstantValue(DT)) { 272 if (AA) AA->deleteValue(PN); 273 PN->replaceAllUsesWith(V); 274 PN->eraseFromParent(); 275 } 276 277 // If this loop has multiple exits and the exits all go to the same 278 // block, attempt to merge the exits. This helps several passes, such 279 // as LoopRotation, which do not support loops with multiple exits. 280 // SimplifyCFG also does this (and this code uses the same utility 281 // function), however this code is loop-aware, where SimplifyCFG is 282 // not. That gives it the advantage of being able to hoist 283 // loop-invariant instructions out of the way to open up more 284 // opportunities, and the disadvantage of having the responsibility 285 // to preserve dominator information. 286 bool UniqueExit = true; 287 if (!ExitBlocks.empty()) 288 for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i) 289 if (ExitBlocks[i] != ExitBlocks[0]) { 290 UniqueExit = false; 291 break; 292 } 293 if (UniqueExit) { 294 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 295 BasicBlock *ExitingBlock = ExitingBlocks[i]; 296 if (!ExitingBlock->getSinglePredecessor()) continue; 297 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 298 if (!BI || !BI->isConditional()) continue; 299 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); 300 if (!CI || CI->getParent() != ExitingBlock) continue; 301 302 // Attempt to hoist out all instructions except for the 303 // comparison and the branch. 304 bool AllInvariant = true; 305 for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) { 306 Instruction *Inst = I++; 307 // Skip debug info intrinsics. 308 if (isa<DbgInfoIntrinsic>(Inst)) 309 continue; 310 if (Inst == CI) 311 continue; 312 if (!L->makeLoopInvariant(Inst, Changed, 313 Preheader ? Preheader->getTerminator() : 0)) { 314 AllInvariant = false; 315 break; 316 } 317 } 318 if (!AllInvariant) continue; 319 320 // The block has now been cleared of all instructions except for 321 // a comparison and a conditional branch. SimplifyCFG may be able 322 // to fold it now. 323 if (!FoldBranchToCommonDest(BI)) continue; 324 325 // Success. The block is now dead, so remove it from the loop, 326 // update the dominator tree and dominance frontier, and delete it. 327 328 DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "; 329 WriteAsOperand(dbgs(), ExitingBlock, false); 330 dbgs() << "\n"); 331 332 assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock)); 333 Changed = true; 334 LI->removeBlock(ExitingBlock); 335 336 DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>(); 337 DomTreeNode *Node = DT->getNode(ExitingBlock); 338 const std::vector<DomTreeNodeBase<BasicBlock> *> &Children = 339 Node->getChildren(); 340 while (!Children.empty()) { 341 DomTreeNode *Child = Children.front(); 342 DT->changeImmediateDominator(Child, Node->getIDom()); 343 if (DF) DF->changeImmediateDominator(Child->getBlock(), 344 Node->getIDom()->getBlock(), 345 DT); 346 } 347 DT->eraseNode(ExitingBlock); 348 if (DF) DF->removeBlock(ExitingBlock); 349 350 BI->getSuccessor(0)->removePredecessor(ExitingBlock); 351 BI->getSuccessor(1)->removePredecessor(ExitingBlock); 352 ExitingBlock->eraseFromParent(); 353 } 354 } 355 356 return Changed; 357 } 358 359 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a 360 /// preheader, this method is called to insert one. This method has two phases: 361 /// preheader insertion and analysis updating. 362 /// 363 BasicBlock *LoopSimplify::InsertPreheaderForLoop(Loop *L) { 364 BasicBlock *Header = L->getHeader(); 365 366 // Compute the set of predecessors of the loop that are not in the loop. 367 SmallVector<BasicBlock*, 8> OutsideBlocks; 368 for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); 369 PI != PE; ++PI) { 370 BasicBlock *P = *PI; 371 if (!L->contains(P)) { // Coming in from outside the loop? 372 // If the loop is branched to from an indirect branch, we won't 373 // be able to fully transform the loop, because it prohibits 374 // edge splitting. 375 if (isa<IndirectBrInst>(P->getTerminator())) return 0; 376 377 // Keep track of it. 378 OutsideBlocks.push_back(P); 379 } 380 } 381 382 // Split out the loop pre-header. 383 BasicBlock *NewBB = 384 SplitBlockPredecessors(Header, &OutsideBlocks[0], OutsideBlocks.size(), 385 ".preheader", this); 386 387 DEBUG(dbgs() << "LoopSimplify: Creating pre-header "; 388 WriteAsOperand(dbgs(), NewBB, false); 389 dbgs() << "\n"); 390 391 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 392 // code layout too horribly. 393 PlaceSplitBlockCarefully(NewBB, OutsideBlocks, L); 394 395 return NewBB; 396 } 397 398 /// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit 399 /// blocks. This method is used to split exit blocks that have predecessors 400 /// outside of the loop. 401 BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) { 402 SmallVector<BasicBlock*, 8> LoopBlocks; 403 for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) { 404 BasicBlock *P = *I; 405 if (L->contains(P)) { 406 // Don't do this if the loop is exited via an indirect branch. 407 if (isa<IndirectBrInst>(P->getTerminator())) return 0; 408 409 LoopBlocks.push_back(P); 410 } 411 } 412 413 assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?"); 414 BasicBlock *NewBB = SplitBlockPredecessors(Exit, &LoopBlocks[0], 415 LoopBlocks.size(), ".loopexit", 416 this); 417 418 DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "; 419 WriteAsOperand(dbgs(), NewBB, false); 420 dbgs() << "\n"); 421 422 return NewBB; 423 } 424 425 /// AddBlockAndPredsToSet - Add the specified block, and all of its 426 /// predecessors, to the specified set, if it's not already in there. Stop 427 /// predecessor traversal when we reach StopBlock. 428 static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, 429 std::set<BasicBlock*> &Blocks) { 430 std::vector<BasicBlock *> WorkList; 431 WorkList.push_back(InputBB); 432 do { 433 BasicBlock *BB = WorkList.back(); WorkList.pop_back(); 434 if (Blocks.insert(BB).second && BB != StopBlock) 435 // If BB is not already processed and it is not a stop block then 436 // insert its predecessor in the work list 437 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 438 BasicBlock *WBB = *I; 439 WorkList.push_back(WBB); 440 } 441 } while(!WorkList.empty()); 442 } 443 444 /// FindPHIToPartitionLoops - The first part of loop-nestification is to find a 445 /// PHI node that tells us how to partition the loops. 446 static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT, 447 AliasAnalysis *AA) { 448 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) { 449 PHINode *PN = cast<PHINode>(I); 450 ++I; 451 if (Value *V = PN->hasConstantValue(DT)) { 452 // This is a degenerate PHI already, don't modify it! 453 PN->replaceAllUsesWith(V); 454 if (AA) AA->deleteValue(PN); 455 PN->eraseFromParent(); 456 continue; 457 } 458 459 // Scan this PHI node looking for a use of the PHI node by itself. 460 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 461 if (PN->getIncomingValue(i) == PN && 462 L->contains(PN->getIncomingBlock(i))) 463 // We found something tasty to remove. 464 return PN; 465 } 466 return 0; 467 } 468 469 // PlaceSplitBlockCarefully - If the block isn't already, move the new block to 470 // right after some 'outside block' block. This prevents the preheader from 471 // being placed inside the loop body, e.g. when the loop hasn't been rotated. 472 void LoopSimplify::PlaceSplitBlockCarefully(BasicBlock *NewBB, 473 SmallVectorImpl<BasicBlock*> &SplitPreds, 474 Loop *L) { 475 // Check to see if NewBB is already well placed. 476 Function::iterator BBI = NewBB; --BBI; 477 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 478 if (&*BBI == SplitPreds[i]) 479 return; 480 } 481 482 // If it isn't already after an outside block, move it after one. This is 483 // always good as it makes the uncond branch from the outside block into a 484 // fall-through. 485 486 // Figure out *which* outside block to put this after. Prefer an outside 487 // block that neighbors a BB actually in the loop. 488 BasicBlock *FoundBB = 0; 489 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 490 Function::iterator BBI = SplitPreds[i]; 491 if (++BBI != NewBB->getParent()->end() && 492 L->contains(BBI)) { 493 FoundBB = SplitPreds[i]; 494 break; 495 } 496 } 497 498 // If our heuristic for a *good* bb to place this after doesn't find 499 // anything, just pick something. It's likely better than leaving it within 500 // the loop. 501 if (!FoundBB) 502 FoundBB = SplitPreds[0]; 503 NewBB->moveAfter(FoundBB); 504 } 505 506 507 /// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of 508 /// them out into a nested loop. This is important for code that looks like 509 /// this: 510 /// 511 /// Loop: 512 /// ... 513 /// br cond, Loop, Next 514 /// ... 515 /// br cond2, Loop, Out 516 /// 517 /// To identify this common case, we look at the PHI nodes in the header of the 518 /// loop. PHI nodes with unchanging values on one backedge correspond to values 519 /// that change in the "outer" loop, but not in the "inner" loop. 520 /// 521 /// If we are able to separate out a loop, return the new outer loop that was 522 /// created. 523 /// 524 Loop *LoopSimplify::SeparateNestedLoop(Loop *L, LPPassManager &LPM) { 525 PHINode *PN = FindPHIToPartitionLoops(L, DT, AA); 526 if (PN == 0) return 0; // No known way to partition. 527 528 // Pull out all predecessors that have varying values in the loop. This 529 // handles the case when a PHI node has multiple instances of itself as 530 // arguments. 531 SmallVector<BasicBlock*, 8> OuterLoopPreds; 532 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 533 if (PN->getIncomingValue(i) != PN || 534 !L->contains(PN->getIncomingBlock(i))) { 535 // We can't split indirectbr edges. 536 if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator())) 537 return 0; 538 539 OuterLoopPreds.push_back(PN->getIncomingBlock(i)); 540 } 541 542 DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n"); 543 544 // If ScalarEvolution is around and knows anything about values in 545 // this loop, tell it to forget them, because we're about to 546 // substantially change it. 547 if (SE) 548 SE->forgetLoop(L); 549 550 BasicBlock *Header = L->getHeader(); 551 BasicBlock *NewBB = SplitBlockPredecessors(Header, &OuterLoopPreds[0], 552 OuterLoopPreds.size(), 553 ".outer", this); 554 555 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 556 // code layout too horribly. 557 PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L); 558 559 // Create the new outer loop. 560 Loop *NewOuter = new Loop(); 561 562 // Change the parent loop to use the outer loop as its child now. 563 if (Loop *Parent = L->getParentLoop()) 564 Parent->replaceChildLoopWith(L, NewOuter); 565 else 566 LI->changeTopLevelLoop(L, NewOuter); 567 568 // L is now a subloop of our outer loop. 569 NewOuter->addChildLoop(L); 570 571 // Add the new loop to the pass manager queue. 572 LPM.insertLoopIntoQueue(NewOuter); 573 574 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 575 I != E; ++I) 576 NewOuter->addBlockEntry(*I); 577 578 // Now reset the header in L, which had been moved by 579 // SplitBlockPredecessors for the outer loop. 580 L->moveToHeader(Header); 581 582 // Determine which blocks should stay in L and which should be moved out to 583 // the Outer loop now. 584 std::set<BasicBlock*> BlocksInL; 585 for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) { 586 BasicBlock *P = *PI; 587 if (DT->dominates(Header, P)) 588 AddBlockAndPredsToSet(P, Header, BlocksInL); 589 } 590 591 // Scan all of the loop children of L, moving them to OuterLoop if they are 592 // not part of the inner loop. 593 const std::vector<Loop*> &SubLoops = L->getSubLoops(); 594 for (size_t I = 0; I != SubLoops.size(); ) 595 if (BlocksInL.count(SubLoops[I]->getHeader())) 596 ++I; // Loop remains in L 597 else 598 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I)); 599 600 // Now that we know which blocks are in L and which need to be moved to 601 // OuterLoop, move any blocks that need it. 602 for (unsigned i = 0; i != L->getBlocks().size(); ++i) { 603 BasicBlock *BB = L->getBlocks()[i]; 604 if (!BlocksInL.count(BB)) { 605 // Move this block to the parent, updating the exit blocks sets 606 L->removeBlockFromLoop(BB); 607 if ((*LI)[BB] == L) 608 LI->changeLoopFor(BB, NewOuter); 609 --i; 610 } 611 } 612 613 return NewOuter; 614 } 615 616 617 618 /// InsertUniqueBackedgeBlock - This method is called when the specified loop 619 /// has more than one backedge in it. If this occurs, revector all of these 620 /// backedges to target a new basic block and have that block branch to the loop 621 /// header. This ensures that loops have exactly one backedge. 622 /// 623 BasicBlock * 624 LoopSimplify::InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader) { 625 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!"); 626 627 // Get information about the loop 628 BasicBlock *Header = L->getHeader(); 629 Function *F = Header->getParent(); 630 631 // Unique backedge insertion currently depends on having a preheader. 632 if (!Preheader) 633 return 0; 634 635 // Figure out which basic blocks contain back-edges to the loop header. 636 std::vector<BasicBlock*> BackedgeBlocks; 637 for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){ 638 BasicBlock *P = *I; 639 640 // Indirectbr edges cannot be split, so we must fail if we find one. 641 if (isa<IndirectBrInst>(P->getTerminator())) 642 return 0; 643 644 if (P != Preheader) BackedgeBlocks.push_back(P); 645 } 646 647 // Create and insert the new backedge block... 648 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(), 649 Header->getName()+".backedge", F); 650 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock); 651 652 DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "; 653 WriteAsOperand(dbgs(), BEBlock, false); 654 dbgs() << "\n"); 655 656 // Move the new backedge block to right after the last backedge block. 657 Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos; 658 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock); 659 660 // Now that the block has been inserted into the function, create PHI nodes in 661 // the backedge block which correspond to any PHI nodes in the header block. 662 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 663 PHINode *PN = cast<PHINode>(I); 664 PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName()+".be", 665 BETerminator); 666 NewPN->reserveOperandSpace(BackedgeBlocks.size()); 667 if (AA) AA->copyValue(PN, NewPN); 668 669 // Loop over the PHI node, moving all entries except the one for the 670 // preheader over to the new PHI node. 671 unsigned PreheaderIdx = ~0U; 672 bool HasUniqueIncomingValue = true; 673 Value *UniqueValue = 0; 674 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 675 BasicBlock *IBB = PN->getIncomingBlock(i); 676 Value *IV = PN->getIncomingValue(i); 677 if (IBB == Preheader) { 678 PreheaderIdx = i; 679 } else { 680 NewPN->addIncoming(IV, IBB); 681 if (HasUniqueIncomingValue) { 682 if (UniqueValue == 0) 683 UniqueValue = IV; 684 else if (UniqueValue != IV) 685 HasUniqueIncomingValue = false; 686 } 687 } 688 } 689 690 // Delete all of the incoming values from the old PN except the preheader's 691 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??"); 692 if (PreheaderIdx != 0) { 693 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx)); 694 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx)); 695 } 696 // Nuke all entries except the zero'th. 697 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i) 698 PN->removeIncomingValue(e-i, false); 699 700 // Finally, add the newly constructed PHI node as the entry for the BEBlock. 701 PN->addIncoming(NewPN, BEBlock); 702 703 // As an optimization, if all incoming values in the new PhiNode (which is a 704 // subset of the incoming values of the old PHI node) have the same value, 705 // eliminate the PHI Node. 706 if (HasUniqueIncomingValue) { 707 NewPN->replaceAllUsesWith(UniqueValue); 708 if (AA) AA->deleteValue(NewPN); 709 BEBlock->getInstList().erase(NewPN); 710 } 711 } 712 713 // Now that all of the PHI nodes have been inserted and adjusted, modify the 714 // backedge blocks to just to the BEBlock instead of the header. 715 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) { 716 TerminatorInst *TI = BackedgeBlocks[i]->getTerminator(); 717 for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op) 718 if (TI->getSuccessor(Op) == Header) 719 TI->setSuccessor(Op, BEBlock); 720 } 721 722 //===--- Update all analyses which we must preserve now -----------------===// 723 724 // Update Loop Information - we know that this block is now in the current 725 // loop and all parent loops. 726 L->addBasicBlockToLoop(BEBlock, LI->getBase()); 727 728 // Update dominator information 729 DT->splitBlock(BEBlock); 730 if (DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>()) 731 DF->splitBlock(BEBlock); 732 733 return BEBlock; 734 } 735 736 void LoopSimplify::verifyAnalysis() const { 737 // It used to be possible to just assert L->isLoopSimplifyForm(), however 738 // with the introduction of indirectbr, there are now cases where it's 739 // not possible to transform a loop as necessary. We can at least check 740 // that there is an indirectbr near any time there's trouble. 741 742 // Indirectbr can interfere with preheader and unique backedge insertion. 743 if (!L->getLoopPreheader() || !L->getLoopLatch()) { 744 bool HasIndBrPred = false; 745 for (pred_iterator PI = pred_begin(L->getHeader()), 746 PE = pred_end(L->getHeader()); PI != PE; ++PI) 747 if (isa<IndirectBrInst>((*PI)->getTerminator())) { 748 HasIndBrPred = true; 749 break; 750 } 751 assert(HasIndBrPred && 752 "LoopSimplify has no excuse for missing loop header info!"); 753 } 754 755 // Indirectbr can interfere with exit block canonicalization. 756 if (!L->hasDedicatedExits()) { 757 bool HasIndBrExiting = false; 758 SmallVector<BasicBlock*, 8> ExitingBlocks; 759 L->getExitingBlocks(ExitingBlocks); 760 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) 761 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) { 762 HasIndBrExiting = true; 763 break; 764 } 765 assert(HasIndBrExiting && 766 "LoopSimplify has no excuse for missing exit block info!"); 767 } 768 } 769