1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs several transformations to transform natural loops into a 11 // simpler form, which makes subsequent analyses and transformations simpler and 12 // more effective. 13 // 14 // Loop pre-header insertion guarantees that there is a single, non-critical 15 // entry edge from outside of the loop to the loop header. This simplifies a 16 // number of analyses and transformations, such as LICM. 17 // 18 // Loop exit-block insertion guarantees that all exit blocks from the loop 19 // (blocks which are outside of the loop that have predecessors inside of the 20 // loop) only have predecessors from inside of the loop (and are thus dominated 21 // by the loop header). This simplifies transformations such as store-sinking 22 // that are built into LICM. 23 // 24 // This pass also guarantees that loops will have exactly one backedge. 25 // 26 // Indirectbr instructions introduce several complications. If the loop 27 // contains or is entered by an indirectbr instruction, it may not be possible 28 // to transform the loop and make these guarantees. Client code should check 29 // that these conditions are true before relying on them. 30 // 31 // Note that the simplifycfg pass will clean up blocks which are split out but 32 // end up being unnecessary, so usage of this pass should not pessimize 33 // generated code. 34 // 35 // This pass obviously modifies the CFG, but updates loop information and 36 // dominator information. 37 // 38 //===----------------------------------------------------------------------===// 39 40 #define DEBUG_TYPE "loopsimplify" 41 #include "llvm/Transforms/Scalar.h" 42 #include "llvm/Constants.h" 43 #include "llvm/Instructions.h" 44 #include "llvm/IntrinsicInst.h" 45 #include "llvm/Function.h" 46 #include "llvm/LLVMContext.h" 47 #include "llvm/Type.h" 48 #include "llvm/Analysis/AliasAnalysis.h" 49 #include "llvm/Analysis/Dominators.h" 50 #include "llvm/Analysis/InstructionSimplify.h" 51 #include "llvm/Analysis/LoopPass.h" 52 #include "llvm/Analysis/ScalarEvolution.h" 53 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 54 #include "llvm/Transforms/Utils/Local.h" 55 #include "llvm/Support/CFG.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/ADT/SetOperations.h" 58 #include "llvm/ADT/SetVector.h" 59 #include "llvm/ADT/Statistic.h" 60 #include "llvm/ADT/DepthFirstIterator.h" 61 using namespace llvm; 62 63 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted"); 64 STATISTIC(NumNested , "Number of nested loops split out"); 65 66 namespace { 67 struct LoopSimplify : public LoopPass { 68 static char ID; // Pass identification, replacement for typeid 69 LoopSimplify() : LoopPass(ID) { 70 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry()); 71 } 72 73 // AA - If we have an alias analysis object to update, this is it, otherwise 74 // this is null. 75 AliasAnalysis *AA; 76 LoopInfo *LI; 77 DominatorTree *DT; 78 ScalarEvolution *SE; 79 Loop *L; 80 virtual bool runOnLoop(Loop *L, LPPassManager &LPM); 81 82 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 83 // We need loop information to identify the loops... 84 AU.addRequired<DominatorTree>(); 85 AU.addPreserved<DominatorTree>(); 86 87 AU.addRequired<LoopInfo>(); 88 AU.addPreserved<LoopInfo>(); 89 90 AU.addPreserved<AliasAnalysis>(); 91 AU.addPreserved<ScalarEvolution>(); 92 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added. 93 AU.addPreserved<DominanceFrontier>(); 94 AU.addPreservedID(LCSSAID); 95 } 96 97 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees. 98 void verifyAnalysis() const; 99 100 private: 101 bool ProcessLoop(Loop *L, LPPassManager &LPM); 102 BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit); 103 BasicBlock *InsertPreheaderForLoop(Loop *L); 104 Loop *SeparateNestedLoop(Loop *L, LPPassManager &LPM); 105 BasicBlock *InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader); 106 void PlaceSplitBlockCarefully(BasicBlock *NewBB, 107 SmallVectorImpl<BasicBlock*> &SplitPreds, 108 Loop *L); 109 }; 110 } 111 112 char LoopSimplify::ID = 0; 113 INITIALIZE_PASS_BEGIN(LoopSimplify, "loopsimplify", 114 "Canonicalize natural loops", true, false) 115 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 116 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 117 INITIALIZE_PASS_END(LoopSimplify, "loopsimplify", 118 "Canonicalize natural loops", true, false) 119 120 // Publically exposed interface to pass... 121 char &llvm::LoopSimplifyID = LoopSimplify::ID; 122 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); } 123 124 /// runOnLoop - Run down all loops in the CFG (recursively, but we could do 125 /// it in any convenient order) inserting preheaders... 126 /// 127 bool LoopSimplify::runOnLoop(Loop *l, LPPassManager &LPM) { 128 L = l; 129 bool Changed = false; 130 LI = &getAnalysis<LoopInfo>(); 131 AA = getAnalysisIfAvailable<AliasAnalysis>(); 132 DT = &getAnalysis<DominatorTree>(); 133 SE = getAnalysisIfAvailable<ScalarEvolution>(); 134 135 Changed |= ProcessLoop(L, LPM); 136 137 return Changed; 138 } 139 140 /// ProcessLoop - Walk the loop structure in depth first order, ensuring that 141 /// all loops have preheaders. 142 /// 143 bool LoopSimplify::ProcessLoop(Loop *L, LPPassManager &LPM) { 144 bool Changed = false; 145 ReprocessLoop: 146 147 // Check to see that no blocks (other than the header) in this loop have 148 // predecessors that are not in the loop. This is not valid for natural 149 // loops, but can occur if the blocks are unreachable. Since they are 150 // unreachable we can just shamelessly delete those CFG edges! 151 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); 152 BB != E; ++BB) { 153 if (*BB == L->getHeader()) continue; 154 155 SmallPtrSet<BasicBlock*, 4> BadPreds; 156 for (pred_iterator PI = pred_begin(*BB), 157 PE = pred_end(*BB); PI != PE; ++PI) { 158 BasicBlock *P = *PI; 159 if (!L->contains(P)) 160 BadPreds.insert(P); 161 } 162 163 // Delete each unique out-of-loop (and thus dead) predecessor. 164 for (SmallPtrSet<BasicBlock*, 4>::iterator I = BadPreds.begin(), 165 E = BadPreds.end(); I != E; ++I) { 166 167 DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "; 168 WriteAsOperand(dbgs(), *I, false); 169 dbgs() << "\n"); 170 171 // Inform each successor of each dead pred. 172 for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI) 173 (*SI)->removePredecessor(*I); 174 // Zap the dead pred's terminator and replace it with unreachable. 175 TerminatorInst *TI = (*I)->getTerminator(); 176 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 177 (*I)->getTerminator()->eraseFromParent(); 178 new UnreachableInst((*I)->getContext(), *I); 179 Changed = true; 180 } 181 } 182 183 // If there are exiting blocks with branches on undef, resolve the undef in 184 // the direction which will exit the loop. This will help simplify loop 185 // trip count computations. 186 SmallVector<BasicBlock*, 8> ExitingBlocks; 187 L->getExitingBlocks(ExitingBlocks); 188 for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(), 189 E = ExitingBlocks.end(); I != E; ++I) 190 if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator())) 191 if (BI->isConditional()) { 192 if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) { 193 194 DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in "; 195 WriteAsOperand(dbgs(), *I, false); 196 dbgs() << "\n"); 197 198 BI->setCondition(ConstantInt::get(Cond->getType(), 199 !L->contains(BI->getSuccessor(0)))); 200 Changed = true; 201 } 202 } 203 204 // Does the loop already have a preheader? If so, don't insert one. 205 BasicBlock *Preheader = L->getLoopPreheader(); 206 if (!Preheader) { 207 Preheader = InsertPreheaderForLoop(L); 208 if (Preheader) { 209 ++NumInserted; 210 Changed = true; 211 } 212 } 213 214 // Next, check to make sure that all exit nodes of the loop only have 215 // predecessors that are inside of the loop. This check guarantees that the 216 // loop preheader/header will dominate the exit blocks. If the exit block has 217 // predecessors from outside of the loop, split the edge now. 218 SmallVector<BasicBlock*, 8> ExitBlocks; 219 L->getExitBlocks(ExitBlocks); 220 221 SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(), 222 ExitBlocks.end()); 223 for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(), 224 E = ExitBlockSet.end(); I != E; ++I) { 225 BasicBlock *ExitBlock = *I; 226 for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock); 227 PI != PE; ++PI) 228 // Must be exactly this loop: no subloops, parent loops, or non-loop preds 229 // allowed. 230 if (!L->contains(*PI)) { 231 if (RewriteLoopExitBlock(L, ExitBlock)) { 232 ++NumInserted; 233 Changed = true; 234 } 235 break; 236 } 237 } 238 239 // If the header has more than two predecessors at this point (from the 240 // preheader and from multiple backedges), we must adjust the loop. 241 BasicBlock *LoopLatch = L->getLoopLatch(); 242 if (!LoopLatch) { 243 // If this is really a nested loop, rip it out into a child loop. Don't do 244 // this for loops with a giant number of backedges, just factor them into a 245 // common backedge instead. 246 if (L->getNumBackEdges() < 8) { 247 if (SeparateNestedLoop(L, LPM)) { 248 ++NumNested; 249 // This is a big restructuring change, reprocess the whole loop. 250 Changed = true; 251 // GCC doesn't tail recursion eliminate this. 252 goto ReprocessLoop; 253 } 254 } 255 256 // If we either couldn't, or didn't want to, identify nesting of the loops, 257 // insert a new block that all backedges target, then make it jump to the 258 // loop header. 259 LoopLatch = InsertUniqueBackedgeBlock(L, Preheader); 260 if (LoopLatch) { 261 ++NumInserted; 262 Changed = true; 263 } 264 } 265 266 // Scan over the PHI nodes in the loop header. Since they now have only two 267 // incoming values (the loop is canonicalized), we may have simplified the PHI 268 // down to 'X = phi [X, Y]', which should be replaced with 'Y'. 269 PHINode *PN; 270 for (BasicBlock::iterator I = L->getHeader()->begin(); 271 (PN = dyn_cast<PHINode>(I++)); ) 272 if (Value *V = SimplifyInstruction(PN, 0, DT)) { 273 if (AA) AA->deleteValue(PN); 274 PN->replaceAllUsesWith(V); 275 PN->eraseFromParent(); 276 } 277 278 // If this loop has multiple exits and the exits all go to the same 279 // block, attempt to merge the exits. This helps several passes, such 280 // as LoopRotation, which do not support loops with multiple exits. 281 // SimplifyCFG also does this (and this code uses the same utility 282 // function), however this code is loop-aware, where SimplifyCFG is 283 // not. That gives it the advantage of being able to hoist 284 // loop-invariant instructions out of the way to open up more 285 // opportunities, and the disadvantage of having the responsibility 286 // to preserve dominator information. 287 bool UniqueExit = true; 288 if (!ExitBlocks.empty()) 289 for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i) 290 if (ExitBlocks[i] != ExitBlocks[0]) { 291 UniqueExit = false; 292 break; 293 } 294 if (UniqueExit) { 295 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 296 BasicBlock *ExitingBlock = ExitingBlocks[i]; 297 if (!ExitingBlock->getSinglePredecessor()) continue; 298 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 299 if (!BI || !BI->isConditional()) continue; 300 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); 301 if (!CI || CI->getParent() != ExitingBlock) continue; 302 303 // Attempt to hoist out all instructions except for the 304 // comparison and the branch. 305 bool AllInvariant = true; 306 for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) { 307 Instruction *Inst = I++; 308 // Skip debug info intrinsics. 309 if (isa<DbgInfoIntrinsic>(Inst)) 310 continue; 311 if (Inst == CI) 312 continue; 313 if (!L->makeLoopInvariant(Inst, Changed, 314 Preheader ? Preheader->getTerminator() : 0)) { 315 AllInvariant = false; 316 break; 317 } 318 } 319 if (!AllInvariant) continue; 320 321 // The block has now been cleared of all instructions except for 322 // a comparison and a conditional branch. SimplifyCFG may be able 323 // to fold it now. 324 if (!FoldBranchToCommonDest(BI)) continue; 325 326 // Success. The block is now dead, so remove it from the loop, 327 // update the dominator tree and dominance frontier, and delete it. 328 329 DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "; 330 WriteAsOperand(dbgs(), ExitingBlock, false); 331 dbgs() << "\n"); 332 333 assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock)); 334 Changed = true; 335 LI->removeBlock(ExitingBlock); 336 337 DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>(); 338 DomTreeNode *Node = DT->getNode(ExitingBlock); 339 const std::vector<DomTreeNodeBase<BasicBlock> *> &Children = 340 Node->getChildren(); 341 while (!Children.empty()) { 342 DomTreeNode *Child = Children.front(); 343 DT->changeImmediateDominator(Child, Node->getIDom()); 344 if (DF) DF->changeImmediateDominator(Child->getBlock(), 345 Node->getIDom()->getBlock(), 346 DT); 347 } 348 DT->eraseNode(ExitingBlock); 349 if (DF) DF->removeBlock(ExitingBlock); 350 351 BI->getSuccessor(0)->removePredecessor(ExitingBlock); 352 BI->getSuccessor(1)->removePredecessor(ExitingBlock); 353 ExitingBlock->eraseFromParent(); 354 } 355 } 356 357 return Changed; 358 } 359 360 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a 361 /// preheader, this method is called to insert one. This method has two phases: 362 /// preheader insertion and analysis updating. 363 /// 364 BasicBlock *LoopSimplify::InsertPreheaderForLoop(Loop *L) { 365 BasicBlock *Header = L->getHeader(); 366 367 // Compute the set of predecessors of the loop that are not in the loop. 368 SmallVector<BasicBlock*, 8> OutsideBlocks; 369 for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); 370 PI != PE; ++PI) { 371 BasicBlock *P = *PI; 372 if (!L->contains(P)) { // Coming in from outside the loop? 373 // If the loop is branched to from an indirect branch, we won't 374 // be able to fully transform the loop, because it prohibits 375 // edge splitting. 376 if (isa<IndirectBrInst>(P->getTerminator())) return 0; 377 378 // Keep track of it. 379 OutsideBlocks.push_back(P); 380 } 381 } 382 383 // Split out the loop pre-header. 384 BasicBlock *NewBB = 385 SplitBlockPredecessors(Header, &OutsideBlocks[0], OutsideBlocks.size(), 386 ".preheader", this); 387 388 DEBUG(dbgs() << "LoopSimplify: Creating pre-header "; 389 WriteAsOperand(dbgs(), NewBB, false); 390 dbgs() << "\n"); 391 392 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 393 // code layout too horribly. 394 PlaceSplitBlockCarefully(NewBB, OutsideBlocks, L); 395 396 return NewBB; 397 } 398 399 /// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit 400 /// blocks. This method is used to split exit blocks that have predecessors 401 /// outside of the loop. 402 BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) { 403 SmallVector<BasicBlock*, 8> LoopBlocks; 404 for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) { 405 BasicBlock *P = *I; 406 if (L->contains(P)) { 407 // Don't do this if the loop is exited via an indirect branch. 408 if (isa<IndirectBrInst>(P->getTerminator())) return 0; 409 410 LoopBlocks.push_back(P); 411 } 412 } 413 414 assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?"); 415 BasicBlock *NewBB = SplitBlockPredecessors(Exit, &LoopBlocks[0], 416 LoopBlocks.size(), ".loopexit", 417 this); 418 419 DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "; 420 WriteAsOperand(dbgs(), NewBB, false); 421 dbgs() << "\n"); 422 423 return NewBB; 424 } 425 426 /// AddBlockAndPredsToSet - Add the specified block, and all of its 427 /// predecessors, to the specified set, if it's not already in there. Stop 428 /// predecessor traversal when we reach StopBlock. 429 static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, 430 std::set<BasicBlock*> &Blocks) { 431 std::vector<BasicBlock *> WorkList; 432 WorkList.push_back(InputBB); 433 do { 434 BasicBlock *BB = WorkList.back(); WorkList.pop_back(); 435 if (Blocks.insert(BB).second && BB != StopBlock) 436 // If BB is not already processed and it is not a stop block then 437 // insert its predecessor in the work list 438 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 439 BasicBlock *WBB = *I; 440 WorkList.push_back(WBB); 441 } 442 } while(!WorkList.empty()); 443 } 444 445 /// FindPHIToPartitionLoops - The first part of loop-nestification is to find a 446 /// PHI node that tells us how to partition the loops. 447 static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT, 448 AliasAnalysis *AA) { 449 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) { 450 PHINode *PN = cast<PHINode>(I); 451 ++I; 452 if (Value *V = SimplifyInstruction(PN, 0, DT)) { 453 // This is a degenerate PHI already, don't modify it! 454 PN->replaceAllUsesWith(V); 455 if (AA) AA->deleteValue(PN); 456 PN->eraseFromParent(); 457 continue; 458 } 459 460 // Scan this PHI node looking for a use of the PHI node by itself. 461 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 462 if (PN->getIncomingValue(i) == PN && 463 L->contains(PN->getIncomingBlock(i))) 464 // We found something tasty to remove. 465 return PN; 466 } 467 return 0; 468 } 469 470 // PlaceSplitBlockCarefully - If the block isn't already, move the new block to 471 // right after some 'outside block' block. This prevents the preheader from 472 // being placed inside the loop body, e.g. when the loop hasn't been rotated. 473 void LoopSimplify::PlaceSplitBlockCarefully(BasicBlock *NewBB, 474 SmallVectorImpl<BasicBlock*> &SplitPreds, 475 Loop *L) { 476 // Check to see if NewBB is already well placed. 477 Function::iterator BBI = NewBB; --BBI; 478 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 479 if (&*BBI == SplitPreds[i]) 480 return; 481 } 482 483 // If it isn't already after an outside block, move it after one. This is 484 // always good as it makes the uncond branch from the outside block into a 485 // fall-through. 486 487 // Figure out *which* outside block to put this after. Prefer an outside 488 // block that neighbors a BB actually in the loop. 489 BasicBlock *FoundBB = 0; 490 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 491 Function::iterator BBI = SplitPreds[i]; 492 if (++BBI != NewBB->getParent()->end() && 493 L->contains(BBI)) { 494 FoundBB = SplitPreds[i]; 495 break; 496 } 497 } 498 499 // If our heuristic for a *good* bb to place this after doesn't find 500 // anything, just pick something. It's likely better than leaving it within 501 // the loop. 502 if (!FoundBB) 503 FoundBB = SplitPreds[0]; 504 NewBB->moveAfter(FoundBB); 505 } 506 507 508 /// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of 509 /// them out into a nested loop. This is important for code that looks like 510 /// this: 511 /// 512 /// Loop: 513 /// ... 514 /// br cond, Loop, Next 515 /// ... 516 /// br cond2, Loop, Out 517 /// 518 /// To identify this common case, we look at the PHI nodes in the header of the 519 /// loop. PHI nodes with unchanging values on one backedge correspond to values 520 /// that change in the "outer" loop, but not in the "inner" loop. 521 /// 522 /// If we are able to separate out a loop, return the new outer loop that was 523 /// created. 524 /// 525 Loop *LoopSimplify::SeparateNestedLoop(Loop *L, LPPassManager &LPM) { 526 PHINode *PN = FindPHIToPartitionLoops(L, DT, AA); 527 if (PN == 0) return 0; // No known way to partition. 528 529 // Pull out all predecessors that have varying values in the loop. This 530 // handles the case when a PHI node has multiple instances of itself as 531 // arguments. 532 SmallVector<BasicBlock*, 8> OuterLoopPreds; 533 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 534 if (PN->getIncomingValue(i) != PN || 535 !L->contains(PN->getIncomingBlock(i))) { 536 // We can't split indirectbr edges. 537 if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator())) 538 return 0; 539 540 OuterLoopPreds.push_back(PN->getIncomingBlock(i)); 541 } 542 543 DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n"); 544 545 // If ScalarEvolution is around and knows anything about values in 546 // this loop, tell it to forget them, because we're about to 547 // substantially change it. 548 if (SE) 549 SE->forgetLoop(L); 550 551 BasicBlock *Header = L->getHeader(); 552 BasicBlock *NewBB = SplitBlockPredecessors(Header, &OuterLoopPreds[0], 553 OuterLoopPreds.size(), 554 ".outer", this); 555 556 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 557 // code layout too horribly. 558 PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L); 559 560 // Create the new outer loop. 561 Loop *NewOuter = new Loop(); 562 563 // Change the parent loop to use the outer loop as its child now. 564 if (Loop *Parent = L->getParentLoop()) 565 Parent->replaceChildLoopWith(L, NewOuter); 566 else 567 LI->changeTopLevelLoop(L, NewOuter); 568 569 // L is now a subloop of our outer loop. 570 NewOuter->addChildLoop(L); 571 572 // Add the new loop to the pass manager queue. 573 LPM.insertLoopIntoQueue(NewOuter); 574 575 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 576 I != E; ++I) 577 NewOuter->addBlockEntry(*I); 578 579 // Now reset the header in L, which had been moved by 580 // SplitBlockPredecessors for the outer loop. 581 L->moveToHeader(Header); 582 583 // Determine which blocks should stay in L and which should be moved out to 584 // the Outer loop now. 585 std::set<BasicBlock*> BlocksInL; 586 for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) { 587 BasicBlock *P = *PI; 588 if (DT->dominates(Header, P)) 589 AddBlockAndPredsToSet(P, Header, BlocksInL); 590 } 591 592 // Scan all of the loop children of L, moving them to OuterLoop if they are 593 // not part of the inner loop. 594 const std::vector<Loop*> &SubLoops = L->getSubLoops(); 595 for (size_t I = 0; I != SubLoops.size(); ) 596 if (BlocksInL.count(SubLoops[I]->getHeader())) 597 ++I; // Loop remains in L 598 else 599 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I)); 600 601 // Now that we know which blocks are in L and which need to be moved to 602 // OuterLoop, move any blocks that need it. 603 for (unsigned i = 0; i != L->getBlocks().size(); ++i) { 604 BasicBlock *BB = L->getBlocks()[i]; 605 if (!BlocksInL.count(BB)) { 606 // Move this block to the parent, updating the exit blocks sets 607 L->removeBlockFromLoop(BB); 608 if ((*LI)[BB] == L) 609 LI->changeLoopFor(BB, NewOuter); 610 --i; 611 } 612 } 613 614 return NewOuter; 615 } 616 617 618 619 /// InsertUniqueBackedgeBlock - This method is called when the specified loop 620 /// has more than one backedge in it. If this occurs, revector all of these 621 /// backedges to target a new basic block and have that block branch to the loop 622 /// header. This ensures that loops have exactly one backedge. 623 /// 624 BasicBlock * 625 LoopSimplify::InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader) { 626 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!"); 627 628 // Get information about the loop 629 BasicBlock *Header = L->getHeader(); 630 Function *F = Header->getParent(); 631 632 // Unique backedge insertion currently depends on having a preheader. 633 if (!Preheader) 634 return 0; 635 636 // Figure out which basic blocks contain back-edges to the loop header. 637 std::vector<BasicBlock*> BackedgeBlocks; 638 for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){ 639 BasicBlock *P = *I; 640 641 // Indirectbr edges cannot be split, so we must fail if we find one. 642 if (isa<IndirectBrInst>(P->getTerminator())) 643 return 0; 644 645 if (P != Preheader) BackedgeBlocks.push_back(P); 646 } 647 648 // Create and insert the new backedge block... 649 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(), 650 Header->getName()+".backedge", F); 651 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock); 652 653 DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "; 654 WriteAsOperand(dbgs(), BEBlock, false); 655 dbgs() << "\n"); 656 657 // Move the new backedge block to right after the last backedge block. 658 Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos; 659 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock); 660 661 // Now that the block has been inserted into the function, create PHI nodes in 662 // the backedge block which correspond to any PHI nodes in the header block. 663 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 664 PHINode *PN = cast<PHINode>(I); 665 PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName()+".be", 666 BETerminator); 667 NewPN->reserveOperandSpace(BackedgeBlocks.size()); 668 if (AA) AA->copyValue(PN, NewPN); 669 670 // Loop over the PHI node, moving all entries except the one for the 671 // preheader over to the new PHI node. 672 unsigned PreheaderIdx = ~0U; 673 bool HasUniqueIncomingValue = true; 674 Value *UniqueValue = 0; 675 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 676 BasicBlock *IBB = PN->getIncomingBlock(i); 677 Value *IV = PN->getIncomingValue(i); 678 if (IBB == Preheader) { 679 PreheaderIdx = i; 680 } else { 681 NewPN->addIncoming(IV, IBB); 682 if (HasUniqueIncomingValue) { 683 if (UniqueValue == 0) 684 UniqueValue = IV; 685 else if (UniqueValue != IV) 686 HasUniqueIncomingValue = false; 687 } 688 } 689 } 690 691 // Delete all of the incoming values from the old PN except the preheader's 692 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??"); 693 if (PreheaderIdx != 0) { 694 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx)); 695 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx)); 696 } 697 // Nuke all entries except the zero'th. 698 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i) 699 PN->removeIncomingValue(e-i, false); 700 701 // Finally, add the newly constructed PHI node as the entry for the BEBlock. 702 PN->addIncoming(NewPN, BEBlock); 703 704 // As an optimization, if all incoming values in the new PhiNode (which is a 705 // subset of the incoming values of the old PHI node) have the same value, 706 // eliminate the PHI Node. 707 if (HasUniqueIncomingValue) { 708 NewPN->replaceAllUsesWith(UniqueValue); 709 if (AA) AA->deleteValue(NewPN); 710 BEBlock->getInstList().erase(NewPN); 711 } 712 } 713 714 // Now that all of the PHI nodes have been inserted and adjusted, modify the 715 // backedge blocks to just to the BEBlock instead of the header. 716 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) { 717 TerminatorInst *TI = BackedgeBlocks[i]->getTerminator(); 718 for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op) 719 if (TI->getSuccessor(Op) == Header) 720 TI->setSuccessor(Op, BEBlock); 721 } 722 723 //===--- Update all analyses which we must preserve now -----------------===// 724 725 // Update Loop Information - we know that this block is now in the current 726 // loop and all parent loops. 727 L->addBasicBlockToLoop(BEBlock, LI->getBase()); 728 729 // Update dominator information 730 DT->splitBlock(BEBlock); 731 if (DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>()) 732 DF->splitBlock(BEBlock); 733 734 return BEBlock; 735 } 736 737 void LoopSimplify::verifyAnalysis() const { 738 // It used to be possible to just assert L->isLoopSimplifyForm(), however 739 // with the introduction of indirectbr, there are now cases where it's 740 // not possible to transform a loop as necessary. We can at least check 741 // that there is an indirectbr near any time there's trouble. 742 743 // Indirectbr can interfere with preheader and unique backedge insertion. 744 if (!L->getLoopPreheader() || !L->getLoopLatch()) { 745 bool HasIndBrPred = false; 746 for (pred_iterator PI = pred_begin(L->getHeader()), 747 PE = pred_end(L->getHeader()); PI != PE; ++PI) 748 if (isa<IndirectBrInst>((*PI)->getTerminator())) { 749 HasIndBrPred = true; 750 break; 751 } 752 assert(HasIndBrPred && 753 "LoopSimplify has no excuse for missing loop header info!"); 754 } 755 756 // Indirectbr can interfere with exit block canonicalization. 757 if (!L->hasDedicatedExits()) { 758 bool HasIndBrExiting = false; 759 SmallVector<BasicBlock*, 8> ExitingBlocks; 760 L->getExitingBlocks(ExitingBlocks); 761 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) 762 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) { 763 HasIndBrExiting = true; 764 break; 765 } 766 assert(HasIndBrExiting && 767 "LoopSimplify has no excuse for missing exit block info!"); 768 } 769 } 770