1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs several transformations to transform natural loops into a 11 // simpler form, which makes subsequent analyses and transformations simpler and 12 // more effective. 13 // 14 // Loop pre-header insertion guarantees that there is a single, non-critical 15 // entry edge from outside of the loop to the loop header. This simplifies a 16 // number of analyses and transformations, such as LICM. 17 // 18 // Loop exit-block insertion guarantees that all exit blocks from the loop 19 // (blocks which are outside of the loop that have predecessors inside of the 20 // loop) only have predecessors from inside of the loop (and are thus dominated 21 // by the loop header). This simplifies transformations such as store-sinking 22 // that are built into LICM. 23 // 24 // This pass also guarantees that loops will have exactly one backedge. 25 // 26 // Indirectbr instructions introduce several complications. If the loop 27 // contains or is entered by an indirectbr instruction, it may not be possible 28 // to transform the loop and make these guarantees. Client code should check 29 // that these conditions are true before relying on them. 30 // 31 // Note that the simplifycfg pass will clean up blocks which are split out but 32 // end up being unnecessary, so usage of this pass should not pessimize 33 // generated code. 34 // 35 // This pass obviously modifies the CFG, but updates loop information and 36 // dominator information. 37 // 38 //===----------------------------------------------------------------------===// 39 40 #include "llvm/Transforms/Scalar.h" 41 #include "llvm/ADT/DepthFirstIterator.h" 42 #include "llvm/ADT/SetOperations.h" 43 #include "llvm/ADT/SetVector.h" 44 #include "llvm/ADT/SmallVector.h" 45 #include "llvm/ADT/Statistic.h" 46 #include "llvm/Analysis/AliasAnalysis.h" 47 #include "llvm/Analysis/AssumptionTracker.h" 48 #include "llvm/Analysis/DependenceAnalysis.h" 49 #include "llvm/Analysis/InstructionSimplify.h" 50 #include "llvm/Analysis/LoopInfo.h" 51 #include "llvm/Analysis/ScalarEvolution.h" 52 #include "llvm/IR/CFG.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/Dominators.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/Instructions.h" 58 #include "llvm/IR/IntrinsicInst.h" 59 #include "llvm/IR/LLVMContext.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 63 #include "llvm/Transforms/Utils/Local.h" 64 #include "llvm/Transforms/Utils/LoopUtils.h" 65 using namespace llvm; 66 67 #define DEBUG_TYPE "loop-simplify" 68 69 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted"); 70 STATISTIC(NumNested , "Number of nested loops split out"); 71 72 // If the block isn't already, move the new block to right after some 'outside 73 // block' block. This prevents the preheader from being placed inside the loop 74 // body, e.g. when the loop hasn't been rotated. 75 static void placeSplitBlockCarefully(BasicBlock *NewBB, 76 SmallVectorImpl<BasicBlock *> &SplitPreds, 77 Loop *L) { 78 // Check to see if NewBB is already well placed. 79 Function::iterator BBI = NewBB; --BBI; 80 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 81 if (&*BBI == SplitPreds[i]) 82 return; 83 } 84 85 // If it isn't already after an outside block, move it after one. This is 86 // always good as it makes the uncond branch from the outside block into a 87 // fall-through. 88 89 // Figure out *which* outside block to put this after. Prefer an outside 90 // block that neighbors a BB actually in the loop. 91 BasicBlock *FoundBB = nullptr; 92 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 93 Function::iterator BBI = SplitPreds[i]; 94 if (++BBI != NewBB->getParent()->end() && 95 L->contains(BBI)) { 96 FoundBB = SplitPreds[i]; 97 break; 98 } 99 } 100 101 // If our heuristic for a *good* bb to place this after doesn't find 102 // anything, just pick something. It's likely better than leaving it within 103 // the loop. 104 if (!FoundBB) 105 FoundBB = SplitPreds[0]; 106 NewBB->moveAfter(FoundBB); 107 } 108 109 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a 110 /// preheader, this method is called to insert one. This method has two phases: 111 /// preheader insertion and analysis updating. 112 /// 113 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, Pass *PP) { 114 BasicBlock *Header = L->getHeader(); 115 116 // Compute the set of predecessors of the loop that are not in the loop. 117 SmallVector<BasicBlock*, 8> OutsideBlocks; 118 for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); 119 PI != PE; ++PI) { 120 BasicBlock *P = *PI; 121 if (!L->contains(P)) { // Coming in from outside the loop? 122 // If the loop is branched to from an indirect branch, we won't 123 // be able to fully transform the loop, because it prohibits 124 // edge splitting. 125 if (isa<IndirectBrInst>(P->getTerminator())) return nullptr; 126 127 // Keep track of it. 128 OutsideBlocks.push_back(P); 129 } 130 } 131 132 // Split out the loop pre-header. 133 BasicBlock *PreheaderBB; 134 if (!Header->isLandingPad()) { 135 PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", 136 PP); 137 } else { 138 SmallVector<BasicBlock*, 2> NewBBs; 139 SplitLandingPadPredecessors(Header, OutsideBlocks, ".preheader", 140 ".split-lp", PP, NewBBs); 141 PreheaderBB = NewBBs[0]; 142 } 143 144 PreheaderBB->getTerminator()->setDebugLoc( 145 Header->getFirstNonPHI()->getDebugLoc()); 146 DEBUG(dbgs() << "LoopSimplify: Creating pre-header " 147 << PreheaderBB->getName() << "\n"); 148 149 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 150 // code layout too horribly. 151 placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L); 152 153 return PreheaderBB; 154 } 155 156 /// \brief Ensure that the loop preheader dominates all exit blocks. 157 /// 158 /// This method is used to split exit blocks that have predecessors outside of 159 /// the loop. 160 static BasicBlock *rewriteLoopExitBlock(Loop *L, BasicBlock *Exit, Pass *PP) { 161 SmallVector<BasicBlock*, 8> LoopBlocks; 162 for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) { 163 BasicBlock *P = *I; 164 if (L->contains(P)) { 165 // Don't do this if the loop is exited via an indirect branch. 166 if (isa<IndirectBrInst>(P->getTerminator())) return nullptr; 167 168 LoopBlocks.push_back(P); 169 } 170 } 171 172 assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?"); 173 BasicBlock *NewExitBB = nullptr; 174 175 if (Exit->isLandingPad()) { 176 SmallVector<BasicBlock*, 2> NewBBs; 177 SplitLandingPadPredecessors(Exit, LoopBlocks, 178 ".loopexit", ".nonloopexit", 179 PP, NewBBs); 180 NewExitBB = NewBBs[0]; 181 } else { 182 NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", PP); 183 } 184 185 DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 186 << NewExitBB->getName() << "\n"); 187 return NewExitBB; 188 } 189 190 /// Add the specified block, and all of its predecessors, to the specified set, 191 /// if it's not already in there. Stop predecessor traversal when we reach 192 /// StopBlock. 193 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, 194 std::set<BasicBlock*> &Blocks) { 195 SmallVector<BasicBlock *, 8> Worklist; 196 Worklist.push_back(InputBB); 197 do { 198 BasicBlock *BB = Worklist.pop_back_val(); 199 if (Blocks.insert(BB).second && BB != StopBlock) 200 // If BB is not already processed and it is not a stop block then 201 // insert its predecessor in the work list 202 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 203 BasicBlock *WBB = *I; 204 Worklist.push_back(WBB); 205 } 206 } while (!Worklist.empty()); 207 } 208 209 /// \brief The first part of loop-nestification is to find a PHI node that tells 210 /// us how to partition the loops. 211 static PHINode *findPHIToPartitionLoops(Loop *L, AliasAnalysis *AA, 212 DominatorTree *DT, 213 AssumptionTracker *AT) { 214 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) { 215 PHINode *PN = cast<PHINode>(I); 216 ++I; 217 if (Value *V = SimplifyInstruction(PN, nullptr, nullptr, DT, AT)) { 218 // This is a degenerate PHI already, don't modify it! 219 PN->replaceAllUsesWith(V); 220 if (AA) AA->deleteValue(PN); 221 PN->eraseFromParent(); 222 continue; 223 } 224 225 // Scan this PHI node looking for a use of the PHI node by itself. 226 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 227 if (PN->getIncomingValue(i) == PN && 228 L->contains(PN->getIncomingBlock(i))) 229 // We found something tasty to remove. 230 return PN; 231 } 232 return nullptr; 233 } 234 235 /// \brief If this loop has multiple backedges, try to pull one of them out into 236 /// a nested loop. 237 /// 238 /// This is important for code that looks like 239 /// this: 240 /// 241 /// Loop: 242 /// ... 243 /// br cond, Loop, Next 244 /// ... 245 /// br cond2, Loop, Out 246 /// 247 /// To identify this common case, we look at the PHI nodes in the header of the 248 /// loop. PHI nodes with unchanging values on one backedge correspond to values 249 /// that change in the "outer" loop, but not in the "inner" loop. 250 /// 251 /// If we are able to separate out a loop, return the new outer loop that was 252 /// created. 253 /// 254 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader, 255 AliasAnalysis *AA, DominatorTree *DT, 256 LoopInfo *LI, ScalarEvolution *SE, Pass *PP, 257 AssumptionTracker *AT) { 258 // Don't try to separate loops without a preheader. 259 if (!Preheader) 260 return nullptr; 261 262 // The header is not a landing pad; preheader insertion should ensure this. 263 assert(!L->getHeader()->isLandingPad() && 264 "Can't insert backedge to landing pad"); 265 266 PHINode *PN = findPHIToPartitionLoops(L, AA, DT, AT); 267 if (!PN) return nullptr; // No known way to partition. 268 269 // Pull out all predecessors that have varying values in the loop. This 270 // handles the case when a PHI node has multiple instances of itself as 271 // arguments. 272 SmallVector<BasicBlock*, 8> OuterLoopPreds; 273 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 274 if (PN->getIncomingValue(i) != PN || 275 !L->contains(PN->getIncomingBlock(i))) { 276 // We can't split indirectbr edges. 277 if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator())) 278 return nullptr; 279 OuterLoopPreds.push_back(PN->getIncomingBlock(i)); 280 } 281 } 282 DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n"); 283 284 // If ScalarEvolution is around and knows anything about values in 285 // this loop, tell it to forget them, because we're about to 286 // substantially change it. 287 if (SE) 288 SE->forgetLoop(L); 289 290 BasicBlock *Header = L->getHeader(); 291 BasicBlock *NewBB = 292 SplitBlockPredecessors(Header, OuterLoopPreds, ".outer", PP); 293 294 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 295 // code layout too horribly. 296 placeSplitBlockCarefully(NewBB, OuterLoopPreds, L); 297 298 // Create the new outer loop. 299 Loop *NewOuter = new Loop(); 300 301 // Change the parent loop to use the outer loop as its child now. 302 if (Loop *Parent = L->getParentLoop()) 303 Parent->replaceChildLoopWith(L, NewOuter); 304 else 305 LI->changeTopLevelLoop(L, NewOuter); 306 307 // L is now a subloop of our outer loop. 308 NewOuter->addChildLoop(L); 309 310 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 311 I != E; ++I) 312 NewOuter->addBlockEntry(*I); 313 314 // Now reset the header in L, which had been moved by 315 // SplitBlockPredecessors for the outer loop. 316 L->moveToHeader(Header); 317 318 // Determine which blocks should stay in L and which should be moved out to 319 // the Outer loop now. 320 std::set<BasicBlock*> BlocksInL; 321 for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) { 322 BasicBlock *P = *PI; 323 if (DT->dominates(Header, P)) 324 addBlockAndPredsToSet(P, Header, BlocksInL); 325 } 326 327 // Scan all of the loop children of L, moving them to OuterLoop if they are 328 // not part of the inner loop. 329 const std::vector<Loop*> &SubLoops = L->getSubLoops(); 330 for (size_t I = 0; I != SubLoops.size(); ) 331 if (BlocksInL.count(SubLoops[I]->getHeader())) 332 ++I; // Loop remains in L 333 else 334 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I)); 335 336 // Now that we know which blocks are in L and which need to be moved to 337 // OuterLoop, move any blocks that need it. 338 for (unsigned i = 0; i != L->getBlocks().size(); ++i) { 339 BasicBlock *BB = L->getBlocks()[i]; 340 if (!BlocksInL.count(BB)) { 341 // Move this block to the parent, updating the exit blocks sets 342 L->removeBlockFromLoop(BB); 343 if ((*LI)[BB] == L) 344 LI->changeLoopFor(BB, NewOuter); 345 --i; 346 } 347 } 348 349 return NewOuter; 350 } 351 352 /// \brief This method is called when the specified loop has more than one 353 /// backedge in it. 354 /// 355 /// If this occurs, revector all of these backedges to target a new basic block 356 /// and have that block branch to the loop header. This ensures that loops 357 /// have exactly one backedge. 358 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader, 359 AliasAnalysis *AA, 360 DominatorTree *DT, LoopInfo *LI) { 361 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!"); 362 363 // Get information about the loop 364 BasicBlock *Header = L->getHeader(); 365 Function *F = Header->getParent(); 366 367 // Unique backedge insertion currently depends on having a preheader. 368 if (!Preheader) 369 return nullptr; 370 371 // The header is not a landing pad; preheader insertion should ensure this. 372 assert(!Header->isLandingPad() && "Can't insert backedge to landing pad"); 373 374 // Figure out which basic blocks contain back-edges to the loop header. 375 std::vector<BasicBlock*> BackedgeBlocks; 376 for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){ 377 BasicBlock *P = *I; 378 379 // Indirectbr edges cannot be split, so we must fail if we find one. 380 if (isa<IndirectBrInst>(P->getTerminator())) 381 return nullptr; 382 383 if (P != Preheader) BackedgeBlocks.push_back(P); 384 } 385 386 // Create and insert the new backedge block... 387 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(), 388 Header->getName()+".backedge", F); 389 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock); 390 391 DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block " 392 << BEBlock->getName() << "\n"); 393 394 // Move the new backedge block to right after the last backedge block. 395 Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos; 396 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock); 397 398 // Now that the block has been inserted into the function, create PHI nodes in 399 // the backedge block which correspond to any PHI nodes in the header block. 400 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 401 PHINode *PN = cast<PHINode>(I); 402 PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(), 403 PN->getName()+".be", BETerminator); 404 if (AA) AA->copyValue(PN, NewPN); 405 406 // Loop over the PHI node, moving all entries except the one for the 407 // preheader over to the new PHI node. 408 unsigned PreheaderIdx = ~0U; 409 bool HasUniqueIncomingValue = true; 410 Value *UniqueValue = nullptr; 411 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 412 BasicBlock *IBB = PN->getIncomingBlock(i); 413 Value *IV = PN->getIncomingValue(i); 414 if (IBB == Preheader) { 415 PreheaderIdx = i; 416 } else { 417 NewPN->addIncoming(IV, IBB); 418 if (HasUniqueIncomingValue) { 419 if (!UniqueValue) 420 UniqueValue = IV; 421 else if (UniqueValue != IV) 422 HasUniqueIncomingValue = false; 423 } 424 } 425 } 426 427 // Delete all of the incoming values from the old PN except the preheader's 428 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??"); 429 if (PreheaderIdx != 0) { 430 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx)); 431 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx)); 432 } 433 // Nuke all entries except the zero'th. 434 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i) 435 PN->removeIncomingValue(e-i, false); 436 437 // Finally, add the newly constructed PHI node as the entry for the BEBlock. 438 PN->addIncoming(NewPN, BEBlock); 439 440 // As an optimization, if all incoming values in the new PhiNode (which is a 441 // subset of the incoming values of the old PHI node) have the same value, 442 // eliminate the PHI Node. 443 if (HasUniqueIncomingValue) { 444 NewPN->replaceAllUsesWith(UniqueValue); 445 if (AA) AA->deleteValue(NewPN); 446 BEBlock->getInstList().erase(NewPN); 447 } 448 } 449 450 // Now that all of the PHI nodes have been inserted and adjusted, modify the 451 // backedge blocks to just to the BEBlock instead of the header. 452 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) { 453 TerminatorInst *TI = BackedgeBlocks[i]->getTerminator(); 454 for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op) 455 if (TI->getSuccessor(Op) == Header) 456 TI->setSuccessor(Op, BEBlock); 457 } 458 459 //===--- Update all analyses which we must preserve now -----------------===// 460 461 // Update Loop Information - we know that this block is now in the current 462 // loop and all parent loops. 463 L->addBasicBlockToLoop(BEBlock, LI->getBase()); 464 465 // Update dominator information 466 DT->splitBlock(BEBlock); 467 468 return BEBlock; 469 } 470 471 /// \brief Simplify one loop and queue further loops for simplification. 472 /// 473 /// FIXME: Currently this accepts both lots of analyses that it uses and a raw 474 /// Pass pointer. The Pass pointer is used by numerous utilities to update 475 /// specific analyses. Rather than a pass it would be much cleaner and more 476 /// explicit if they accepted the analysis directly and then updated it. 477 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist, 478 AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI, 479 ScalarEvolution *SE, Pass *PP, 480 const DataLayout *DL, AssumptionTracker *AT) { 481 bool Changed = false; 482 ReprocessLoop: 483 484 // Check to see that no blocks (other than the header) in this loop have 485 // predecessors that are not in the loop. This is not valid for natural 486 // loops, but can occur if the blocks are unreachable. Since they are 487 // unreachable we can just shamelessly delete those CFG edges! 488 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); 489 BB != E; ++BB) { 490 if (*BB == L->getHeader()) continue; 491 492 SmallPtrSet<BasicBlock*, 4> BadPreds; 493 for (pred_iterator PI = pred_begin(*BB), 494 PE = pred_end(*BB); PI != PE; ++PI) { 495 BasicBlock *P = *PI; 496 if (!L->contains(P)) 497 BadPreds.insert(P); 498 } 499 500 // Delete each unique out-of-loop (and thus dead) predecessor. 501 for (BasicBlock *P : BadPreds) { 502 503 DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor " 504 << P->getName() << "\n"); 505 506 // Inform each successor of each dead pred. 507 for (succ_iterator SI = succ_begin(P), SE = succ_end(P); SI != SE; ++SI) 508 (*SI)->removePredecessor(P); 509 // Zap the dead pred's terminator and replace it with unreachable. 510 TerminatorInst *TI = P->getTerminator(); 511 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 512 P->getTerminator()->eraseFromParent(); 513 new UnreachableInst(P->getContext(), P); 514 Changed = true; 515 } 516 } 517 518 // If there are exiting blocks with branches on undef, resolve the undef in 519 // the direction which will exit the loop. This will help simplify loop 520 // trip count computations. 521 SmallVector<BasicBlock*, 8> ExitingBlocks; 522 L->getExitingBlocks(ExitingBlocks); 523 for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(), 524 E = ExitingBlocks.end(); I != E; ++I) 525 if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator())) 526 if (BI->isConditional()) { 527 if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) { 528 529 DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in " 530 << (*I)->getName() << "\n"); 531 532 BI->setCondition(ConstantInt::get(Cond->getType(), 533 !L->contains(BI->getSuccessor(0)))); 534 535 // This may make the loop analyzable, force SCEV recomputation. 536 if (SE) 537 SE->forgetLoop(L); 538 539 Changed = true; 540 } 541 } 542 543 // Does the loop already have a preheader? If so, don't insert one. 544 BasicBlock *Preheader = L->getLoopPreheader(); 545 if (!Preheader) { 546 Preheader = InsertPreheaderForLoop(L, PP); 547 if (Preheader) { 548 ++NumInserted; 549 Changed = true; 550 } 551 } 552 553 // Next, check to make sure that all exit nodes of the loop only have 554 // predecessors that are inside of the loop. This check guarantees that the 555 // loop preheader/header will dominate the exit blocks. If the exit block has 556 // predecessors from outside of the loop, split the edge now. 557 SmallVector<BasicBlock*, 8> ExitBlocks; 558 L->getExitBlocks(ExitBlocks); 559 560 SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(), 561 ExitBlocks.end()); 562 for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(), 563 E = ExitBlockSet.end(); I != E; ++I) { 564 BasicBlock *ExitBlock = *I; 565 for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock); 566 PI != PE; ++PI) 567 // Must be exactly this loop: no subloops, parent loops, or non-loop preds 568 // allowed. 569 if (!L->contains(*PI)) { 570 if (rewriteLoopExitBlock(L, ExitBlock, PP)) { 571 ++NumInserted; 572 Changed = true; 573 } 574 break; 575 } 576 } 577 578 // If the header has more than two predecessors at this point (from the 579 // preheader and from multiple backedges), we must adjust the loop. 580 BasicBlock *LoopLatch = L->getLoopLatch(); 581 if (!LoopLatch) { 582 // If this is really a nested loop, rip it out into a child loop. Don't do 583 // this for loops with a giant number of backedges, just factor them into a 584 // common backedge instead. 585 if (L->getNumBackEdges() < 8) { 586 if (Loop *OuterL = separateNestedLoop(L, Preheader, AA, DT, LI, SE, 587 PP, AT)) { 588 ++NumNested; 589 // Enqueue the outer loop as it should be processed next in our 590 // depth-first nest walk. 591 Worklist.push_back(OuterL); 592 593 // This is a big restructuring change, reprocess the whole loop. 594 Changed = true; 595 // GCC doesn't tail recursion eliminate this. 596 // FIXME: It isn't clear we can't rely on LLVM to TRE this. 597 goto ReprocessLoop; 598 } 599 } 600 601 // If we either couldn't, or didn't want to, identify nesting of the loops, 602 // insert a new block that all backedges target, then make it jump to the 603 // loop header. 604 LoopLatch = insertUniqueBackedgeBlock(L, Preheader, AA, DT, LI); 605 if (LoopLatch) { 606 ++NumInserted; 607 Changed = true; 608 } 609 } 610 611 // Scan over the PHI nodes in the loop header. Since they now have only two 612 // incoming values (the loop is canonicalized), we may have simplified the PHI 613 // down to 'X = phi [X, Y]', which should be replaced with 'Y'. 614 PHINode *PN; 615 for (BasicBlock::iterator I = L->getHeader()->begin(); 616 (PN = dyn_cast<PHINode>(I++)); ) 617 if (Value *V = SimplifyInstruction(PN, nullptr, nullptr, DT, AT)) { 618 if (AA) AA->deleteValue(PN); 619 if (SE) SE->forgetValue(PN); 620 PN->replaceAllUsesWith(V); 621 PN->eraseFromParent(); 622 } 623 624 // If this loop has multiple exits and the exits all go to the same 625 // block, attempt to merge the exits. This helps several passes, such 626 // as LoopRotation, which do not support loops with multiple exits. 627 // SimplifyCFG also does this (and this code uses the same utility 628 // function), however this code is loop-aware, where SimplifyCFG is 629 // not. That gives it the advantage of being able to hoist 630 // loop-invariant instructions out of the way to open up more 631 // opportunities, and the disadvantage of having the responsibility 632 // to preserve dominator information. 633 bool UniqueExit = true; 634 if (!ExitBlocks.empty()) 635 for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i) 636 if (ExitBlocks[i] != ExitBlocks[0]) { 637 UniqueExit = false; 638 break; 639 } 640 if (UniqueExit) { 641 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 642 BasicBlock *ExitingBlock = ExitingBlocks[i]; 643 if (!ExitingBlock->getSinglePredecessor()) continue; 644 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 645 if (!BI || !BI->isConditional()) continue; 646 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); 647 if (!CI || CI->getParent() != ExitingBlock) continue; 648 649 // Attempt to hoist out all instructions except for the 650 // comparison and the branch. 651 bool AllInvariant = true; 652 bool AnyInvariant = false; 653 for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) { 654 Instruction *Inst = I++; 655 // Skip debug info intrinsics. 656 if (isa<DbgInfoIntrinsic>(Inst)) 657 continue; 658 if (Inst == CI) 659 continue; 660 if (!L->makeLoopInvariant(Inst, AnyInvariant, 661 Preheader ? Preheader->getTerminator() 662 : nullptr)) { 663 AllInvariant = false; 664 break; 665 } 666 } 667 if (AnyInvariant) { 668 Changed = true; 669 // The loop disposition of all SCEV expressions that depend on any 670 // hoisted values have also changed. 671 if (SE) 672 SE->forgetLoopDispositions(L); 673 } 674 if (!AllInvariant) continue; 675 676 // The block has now been cleared of all instructions except for 677 // a comparison and a conditional branch. SimplifyCFG may be able 678 // to fold it now. 679 if (!FoldBranchToCommonDest(BI, DL)) continue; 680 681 // Success. The block is now dead, so remove it from the loop, 682 // update the dominator tree and delete it. 683 DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block " 684 << ExitingBlock->getName() << "\n"); 685 686 // Notify ScalarEvolution before deleting this block. Currently assume the 687 // parent loop doesn't change (spliting edges doesn't count). If blocks, 688 // CFG edges, or other values in the parent loop change, then we need call 689 // to forgetLoop() for the parent instead. 690 if (SE) 691 SE->forgetLoop(L); 692 693 assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock)); 694 Changed = true; 695 LI->removeBlock(ExitingBlock); 696 697 DomTreeNode *Node = DT->getNode(ExitingBlock); 698 const std::vector<DomTreeNodeBase<BasicBlock> *> &Children = 699 Node->getChildren(); 700 while (!Children.empty()) { 701 DomTreeNode *Child = Children.front(); 702 DT->changeImmediateDominator(Child, Node->getIDom()); 703 } 704 DT->eraseNode(ExitingBlock); 705 706 BI->getSuccessor(0)->removePredecessor(ExitingBlock); 707 BI->getSuccessor(1)->removePredecessor(ExitingBlock); 708 ExitingBlock->eraseFromParent(); 709 } 710 } 711 712 return Changed; 713 } 714 715 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, Pass *PP, 716 AliasAnalysis *AA, ScalarEvolution *SE, 717 const DataLayout *DL, AssumptionTracker *AT) { 718 bool Changed = false; 719 720 // Worklist maintains our depth-first queue of loops in this nest to process. 721 SmallVector<Loop *, 4> Worklist; 722 Worklist.push_back(L); 723 724 // Walk the worklist from front to back, pushing newly found sub loops onto 725 // the back. This will let us process loops from back to front in depth-first 726 // order. We can use this simple process because loops form a tree. 727 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 728 Loop *L2 = Worklist[Idx]; 729 for (Loop::iterator I = L2->begin(), E = L2->end(); I != E; ++I) 730 Worklist.push_back(*I); 731 } 732 733 while (!Worklist.empty()) 734 Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, AA, DT, LI, 735 SE, PP, DL, AT); 736 737 return Changed; 738 } 739 740 namespace { 741 struct LoopSimplify : public FunctionPass { 742 static char ID; // Pass identification, replacement for typeid 743 LoopSimplify() : FunctionPass(ID) { 744 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry()); 745 } 746 747 // AA - If we have an alias analysis object to update, this is it, otherwise 748 // this is null. 749 AliasAnalysis *AA; 750 DominatorTree *DT; 751 LoopInfo *LI; 752 ScalarEvolution *SE; 753 const DataLayout *DL; 754 AssumptionTracker *AT; 755 756 bool runOnFunction(Function &F) override; 757 758 void getAnalysisUsage(AnalysisUsage &AU) const override { 759 AU.addRequired<AssumptionTracker>(); 760 761 // We need loop information to identify the loops... 762 AU.addRequired<DominatorTreeWrapperPass>(); 763 AU.addPreserved<DominatorTreeWrapperPass>(); 764 765 AU.addRequired<LoopInfo>(); 766 AU.addPreserved<LoopInfo>(); 767 768 AU.addPreserved<AliasAnalysis>(); 769 AU.addPreserved<ScalarEvolution>(); 770 AU.addPreserved<DependenceAnalysis>(); 771 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added. 772 } 773 774 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees. 775 void verifyAnalysis() const override; 776 }; 777 } 778 779 char LoopSimplify::ID = 0; 780 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify", 781 "Canonicalize natural loops", true, false) 782 INITIALIZE_PASS_DEPENDENCY(AssumptionTracker) 783 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 784 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 785 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify", 786 "Canonicalize natural loops", true, false) 787 788 // Publicly exposed interface to pass... 789 char &llvm::LoopSimplifyID = LoopSimplify::ID; 790 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); } 791 792 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do 793 /// it in any convenient order) inserting preheaders... 794 /// 795 bool LoopSimplify::runOnFunction(Function &F) { 796 bool Changed = false; 797 AA = getAnalysisIfAvailable<AliasAnalysis>(); 798 LI = &getAnalysis<LoopInfo>(); 799 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 800 SE = getAnalysisIfAvailable<ScalarEvolution>(); 801 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 802 DL = DLP ? &DLP->getDataLayout() : nullptr; 803 AT = &getAnalysis<AssumptionTracker>(); 804 805 // Simplify each loop nest in the function. 806 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 807 Changed |= simplifyLoop(*I, DT, LI, this, AA, SE, DL, AT); 808 809 return Changed; 810 } 811 812 // FIXME: Restore this code when we re-enable verification in verifyAnalysis 813 // below. 814 #if 0 815 static void verifyLoop(Loop *L) { 816 // Verify subloops. 817 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 818 verifyLoop(*I); 819 820 // It used to be possible to just assert L->isLoopSimplifyForm(), however 821 // with the introduction of indirectbr, there are now cases where it's 822 // not possible to transform a loop as necessary. We can at least check 823 // that there is an indirectbr near any time there's trouble. 824 825 // Indirectbr can interfere with preheader and unique backedge insertion. 826 if (!L->getLoopPreheader() || !L->getLoopLatch()) { 827 bool HasIndBrPred = false; 828 for (pred_iterator PI = pred_begin(L->getHeader()), 829 PE = pred_end(L->getHeader()); PI != PE; ++PI) 830 if (isa<IndirectBrInst>((*PI)->getTerminator())) { 831 HasIndBrPred = true; 832 break; 833 } 834 assert(HasIndBrPred && 835 "LoopSimplify has no excuse for missing loop header info!"); 836 (void)HasIndBrPred; 837 } 838 839 // Indirectbr can interfere with exit block canonicalization. 840 if (!L->hasDedicatedExits()) { 841 bool HasIndBrExiting = false; 842 SmallVector<BasicBlock*, 8> ExitingBlocks; 843 L->getExitingBlocks(ExitingBlocks); 844 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 845 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) { 846 HasIndBrExiting = true; 847 break; 848 } 849 } 850 851 assert(HasIndBrExiting && 852 "LoopSimplify has no excuse for missing exit block info!"); 853 (void)HasIndBrExiting; 854 } 855 } 856 #endif 857 858 void LoopSimplify::verifyAnalysis() const { 859 // FIXME: This routine is being called mid-way through the loop pass manager 860 // as loop passes destroy this analysis. That's actually fine, but we have no 861 // way of expressing that here. Once all of the passes that destroy this are 862 // hoisted out of the loop pass manager we can add back verification here. 863 #if 0 864 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 865 verifyLoop(*I); 866 #endif 867 } 868