1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs several transformations to transform natural loops into a 11 // simpler form, which makes subsequent analyses and transformations simpler and 12 // more effective. 13 // 14 // Loop pre-header insertion guarantees that there is a single, non-critical 15 // entry edge from outside of the loop to the loop header. This simplifies a 16 // number of analyses and transformations, such as LICM. 17 // 18 // Loop exit-block insertion guarantees that all exit blocks from the loop 19 // (blocks which are outside of the loop that have predecessors inside of the 20 // loop) only have predecessors from inside of the loop (and are thus dominated 21 // by the loop header). This simplifies transformations such as store-sinking 22 // that are built into LICM. 23 // 24 // This pass also guarantees that loops will have exactly one backedge. 25 // 26 // Indirectbr instructions introduce several complications. If the loop 27 // contains or is entered by an indirectbr instruction, it may not be possible 28 // to transform the loop and make these guarantees. Client code should check 29 // that these conditions are true before relying on them. 30 // 31 // Note that the simplifycfg pass will clean up blocks which are split out but 32 // end up being unnecessary, so usage of this pass should not pessimize 33 // generated code. 34 // 35 // This pass obviously modifies the CFG, but updates loop information and 36 // dominator information. 37 // 38 //===----------------------------------------------------------------------===// 39 40 #define DEBUG_TYPE "loop-simplify" 41 #include "llvm/Transforms/Scalar.h" 42 #include "llvm/ADT/DepthFirstIterator.h" 43 #include "llvm/ADT/SetOperations.h" 44 #include "llvm/ADT/SetVector.h" 45 #include "llvm/ADT/Statistic.h" 46 #include "llvm/Analysis/AliasAnalysis.h" 47 #include "llvm/Analysis/DependenceAnalysis.h" 48 #include "llvm/Analysis/InstructionSimplify.h" 49 #include "llvm/Analysis/LoopPass.h" 50 #include "llvm/Analysis/ScalarEvolution.h" 51 #include "llvm/IR/Constants.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/Instructions.h" 55 #include "llvm/IR/IntrinsicInst.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/Support/CFG.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 61 #include "llvm/Transforms/Utils/Local.h" 62 #include "llvm/Transforms/Utils/LoopUtils.h" 63 using namespace llvm; 64 65 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted"); 66 STATISTIC(NumNested , "Number of nested loops split out"); 67 68 namespace { 69 struct LoopSimplify : public LoopPass { 70 static char ID; // Pass identification, replacement for typeid 71 LoopSimplify() : LoopPass(ID) { 72 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry()); 73 } 74 75 // AA - If we have an alias analysis object to update, this is it, otherwise 76 // this is null. 77 AliasAnalysis *AA; 78 LoopInfo *LI; 79 DominatorTree *DT; 80 ScalarEvolution *SE; 81 Loop *L; 82 virtual bool runOnLoop(Loop *L, LPPassManager &LPM); 83 84 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 85 // We need loop information to identify the loops... 86 AU.addRequired<DominatorTree>(); 87 AU.addPreserved<DominatorTree>(); 88 89 AU.addRequired<LoopInfo>(); 90 AU.addPreserved<LoopInfo>(); 91 92 AU.addPreserved<AliasAnalysis>(); 93 AU.addPreserved<ScalarEvolution>(); 94 AU.addPreserved<DependenceAnalysis>(); 95 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added. 96 } 97 98 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees. 99 void verifyAnalysis() const; 100 101 private: 102 bool ProcessLoop(Loop *L, LPPassManager &LPM); 103 BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit); 104 Loop *SeparateNestedLoop(Loop *L, LPPassManager &LPM, 105 BasicBlock *Preheader); 106 BasicBlock *InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader); 107 }; 108 } 109 110 static void PlaceSplitBlockCarefully(BasicBlock *NewBB, 111 SmallVectorImpl<BasicBlock*> &SplitPreds, 112 Loop *L); 113 114 char LoopSimplify::ID = 0; 115 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify", 116 "Canonicalize natural loops", true, false) 117 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 118 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 119 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify", 120 "Canonicalize natural loops", true, false) 121 122 // Publicly exposed interface to pass... 123 char &llvm::LoopSimplifyID = LoopSimplify::ID; 124 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); } 125 126 /// runOnLoop - Run down all loops in the CFG (recursively, but we could do 127 /// it in any convenient order) inserting preheaders... 128 /// 129 bool LoopSimplify::runOnLoop(Loop *l, LPPassManager &LPM) { 130 L = l; 131 bool Changed = false; 132 LI = &getAnalysis<LoopInfo>(); 133 AA = getAnalysisIfAvailable<AliasAnalysis>(); 134 DT = &getAnalysis<DominatorTree>(); 135 SE = getAnalysisIfAvailable<ScalarEvolution>(); 136 137 Changed |= ProcessLoop(L, LPM); 138 139 return Changed; 140 } 141 142 /// ProcessLoop - Walk the loop structure in depth first order, ensuring that 143 /// all loops have preheaders. 144 /// 145 bool LoopSimplify::ProcessLoop(Loop *L, LPPassManager &LPM) { 146 bool Changed = false; 147 ReprocessLoop: 148 149 // Check to see that no blocks (other than the header) in this loop have 150 // predecessors that are not in the loop. This is not valid for natural 151 // loops, but can occur if the blocks are unreachable. Since they are 152 // unreachable we can just shamelessly delete those CFG edges! 153 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); 154 BB != E; ++BB) { 155 if (*BB == L->getHeader()) continue; 156 157 SmallPtrSet<BasicBlock*, 4> BadPreds; 158 for (pred_iterator PI = pred_begin(*BB), 159 PE = pred_end(*BB); PI != PE; ++PI) { 160 BasicBlock *P = *PI; 161 if (!L->contains(P)) 162 BadPreds.insert(P); 163 } 164 165 // Delete each unique out-of-loop (and thus dead) predecessor. 166 for (SmallPtrSet<BasicBlock*, 4>::iterator I = BadPreds.begin(), 167 E = BadPreds.end(); I != E; ++I) { 168 169 DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor " 170 << (*I)->getName() << "\n"); 171 172 // Inform each successor of each dead pred. 173 for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI) 174 (*SI)->removePredecessor(*I); 175 // Zap the dead pred's terminator and replace it with unreachable. 176 TerminatorInst *TI = (*I)->getTerminator(); 177 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 178 (*I)->getTerminator()->eraseFromParent(); 179 new UnreachableInst((*I)->getContext(), *I); 180 Changed = true; 181 } 182 } 183 184 // If there are exiting blocks with branches on undef, resolve the undef in 185 // the direction which will exit the loop. This will help simplify loop 186 // trip count computations. 187 SmallVector<BasicBlock*, 8> ExitingBlocks; 188 L->getExitingBlocks(ExitingBlocks); 189 for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(), 190 E = ExitingBlocks.end(); I != E; ++I) 191 if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator())) 192 if (BI->isConditional()) { 193 if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) { 194 195 DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in " 196 << (*I)->getName() << "\n"); 197 198 BI->setCondition(ConstantInt::get(Cond->getType(), 199 !L->contains(BI->getSuccessor(0)))); 200 201 // This may make the loop analyzable, force SCEV recomputation. 202 if (SE) 203 SE->forgetLoop(L); 204 205 Changed = true; 206 } 207 } 208 209 // Does the loop already have a preheader? If so, don't insert one. 210 BasicBlock *Preheader = L->getLoopPreheader(); 211 if (!Preheader) { 212 Preheader = InsertPreheaderForLoop(L, this); 213 if (Preheader) { 214 ++NumInserted; 215 Changed = true; 216 } 217 } 218 219 // Next, check to make sure that all exit nodes of the loop only have 220 // predecessors that are inside of the loop. This check guarantees that the 221 // loop preheader/header will dominate the exit blocks. If the exit block has 222 // predecessors from outside of the loop, split the edge now. 223 SmallVector<BasicBlock*, 8> ExitBlocks; 224 L->getExitBlocks(ExitBlocks); 225 226 SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(), 227 ExitBlocks.end()); 228 for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(), 229 E = ExitBlockSet.end(); I != E; ++I) { 230 BasicBlock *ExitBlock = *I; 231 for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock); 232 PI != PE; ++PI) 233 // Must be exactly this loop: no subloops, parent loops, or non-loop preds 234 // allowed. 235 if (!L->contains(*PI)) { 236 if (RewriteLoopExitBlock(L, ExitBlock)) { 237 ++NumInserted; 238 Changed = true; 239 } 240 break; 241 } 242 } 243 244 // If the header has more than two predecessors at this point (from the 245 // preheader and from multiple backedges), we must adjust the loop. 246 BasicBlock *LoopLatch = L->getLoopLatch(); 247 if (!LoopLatch) { 248 // If this is really a nested loop, rip it out into a child loop. Don't do 249 // this for loops with a giant number of backedges, just factor them into a 250 // common backedge instead. 251 if (L->getNumBackEdges() < 8) { 252 if (SeparateNestedLoop(L, LPM, Preheader)) { 253 ++NumNested; 254 // This is a big restructuring change, reprocess the whole loop. 255 Changed = true; 256 // GCC doesn't tail recursion eliminate this. 257 goto ReprocessLoop; 258 } 259 } 260 261 // If we either couldn't, or didn't want to, identify nesting of the loops, 262 // insert a new block that all backedges target, then make it jump to the 263 // loop header. 264 LoopLatch = InsertUniqueBackedgeBlock(L, Preheader); 265 if (LoopLatch) { 266 ++NumInserted; 267 Changed = true; 268 } 269 } 270 271 // Scan over the PHI nodes in the loop header. Since they now have only two 272 // incoming values (the loop is canonicalized), we may have simplified the PHI 273 // down to 'X = phi [X, Y]', which should be replaced with 'Y'. 274 PHINode *PN; 275 for (BasicBlock::iterator I = L->getHeader()->begin(); 276 (PN = dyn_cast<PHINode>(I++)); ) 277 if (Value *V = SimplifyInstruction(PN, 0, 0, DT)) { 278 if (AA) AA->deleteValue(PN); 279 if (SE) SE->forgetValue(PN); 280 PN->replaceAllUsesWith(V); 281 PN->eraseFromParent(); 282 } 283 284 // If this loop has multiple exits and the exits all go to the same 285 // block, attempt to merge the exits. This helps several passes, such 286 // as LoopRotation, which do not support loops with multiple exits. 287 // SimplifyCFG also does this (and this code uses the same utility 288 // function), however this code is loop-aware, where SimplifyCFG is 289 // not. That gives it the advantage of being able to hoist 290 // loop-invariant instructions out of the way to open up more 291 // opportunities, and the disadvantage of having the responsibility 292 // to preserve dominator information. 293 bool UniqueExit = true; 294 if (!ExitBlocks.empty()) 295 for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i) 296 if (ExitBlocks[i] != ExitBlocks[0]) { 297 UniqueExit = false; 298 break; 299 } 300 if (UniqueExit) { 301 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 302 BasicBlock *ExitingBlock = ExitingBlocks[i]; 303 if (!ExitingBlock->getSinglePredecessor()) continue; 304 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 305 if (!BI || !BI->isConditional()) continue; 306 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); 307 if (!CI || CI->getParent() != ExitingBlock) continue; 308 309 // Attempt to hoist out all instructions except for the 310 // comparison and the branch. 311 bool AllInvariant = true; 312 bool AnyInvariant = false; 313 for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) { 314 Instruction *Inst = I++; 315 // Skip debug info intrinsics. 316 if (isa<DbgInfoIntrinsic>(Inst)) 317 continue; 318 if (Inst == CI) 319 continue; 320 if (!L->makeLoopInvariant(Inst, AnyInvariant, 321 Preheader ? Preheader->getTerminator() : 0)) { 322 AllInvariant = false; 323 break; 324 } 325 } 326 if (AnyInvariant) { 327 Changed = true; 328 // The loop disposition of all SCEV expressions that depend on any 329 // hoisted values have also changed. 330 if (SE) 331 SE->forgetLoopDispositions(L); 332 } 333 if (!AllInvariant) continue; 334 335 // The block has now been cleared of all instructions except for 336 // a comparison and a conditional branch. SimplifyCFG may be able 337 // to fold it now. 338 if (!FoldBranchToCommonDest(BI)) continue; 339 340 // Success. The block is now dead, so remove it from the loop, 341 // update the dominator tree and delete it. 342 DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block " 343 << ExitingBlock->getName() << "\n"); 344 345 // Notify ScalarEvolution before deleting this block. Currently assume the 346 // parent loop doesn't change (spliting edges doesn't count). If blocks, 347 // CFG edges, or other values in the parent loop change, then we need call 348 // to forgetLoop() for the parent instead. 349 if (SE) 350 SE->forgetLoop(L); 351 352 assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock)); 353 Changed = true; 354 LI->removeBlock(ExitingBlock); 355 356 DomTreeNode *Node = DT->getNode(ExitingBlock); 357 const std::vector<DomTreeNodeBase<BasicBlock> *> &Children = 358 Node->getChildren(); 359 while (!Children.empty()) { 360 DomTreeNode *Child = Children.front(); 361 DT->changeImmediateDominator(Child, Node->getIDom()); 362 } 363 DT->eraseNode(ExitingBlock); 364 365 BI->getSuccessor(0)->removePredecessor(ExitingBlock); 366 BI->getSuccessor(1)->removePredecessor(ExitingBlock); 367 ExitingBlock->eraseFromParent(); 368 } 369 } 370 371 return Changed; 372 } 373 374 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a 375 /// preheader, this method is called to insert one. This method has two phases: 376 /// preheader insertion and analysis updating. 377 /// 378 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, Pass *PP) { 379 BasicBlock *Header = L->getHeader(); 380 381 // Compute the set of predecessors of the loop that are not in the loop. 382 SmallVector<BasicBlock*, 8> OutsideBlocks; 383 for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); 384 PI != PE; ++PI) { 385 BasicBlock *P = *PI; 386 if (!L->contains(P)) { // Coming in from outside the loop? 387 // If the loop is branched to from an indirect branch, we won't 388 // be able to fully transform the loop, because it prohibits 389 // edge splitting. 390 if (isa<IndirectBrInst>(P->getTerminator())) return 0; 391 392 // Keep track of it. 393 OutsideBlocks.push_back(P); 394 } 395 } 396 397 // Split out the loop pre-header. 398 BasicBlock *PreheaderBB; 399 if (!Header->isLandingPad()) { 400 PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", 401 PP); 402 } else { 403 SmallVector<BasicBlock*, 2> NewBBs; 404 SplitLandingPadPredecessors(Header, OutsideBlocks, ".preheader", 405 ".split-lp", PP, NewBBs); 406 PreheaderBB = NewBBs[0]; 407 } 408 409 PreheaderBB->getTerminator()->setDebugLoc( 410 Header->getFirstNonPHI()->getDebugLoc()); 411 DEBUG(dbgs() << "LoopSimplify: Creating pre-header " 412 << PreheaderBB->getName() << "\n"); 413 414 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 415 // code layout too horribly. 416 PlaceSplitBlockCarefully(PreheaderBB, OutsideBlocks, L); 417 418 return PreheaderBB; 419 } 420 421 /// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit 422 /// blocks. This method is used to split exit blocks that have predecessors 423 /// outside of the loop. 424 BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) { 425 SmallVector<BasicBlock*, 8> LoopBlocks; 426 for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) { 427 BasicBlock *P = *I; 428 if (L->contains(P)) { 429 // Don't do this if the loop is exited via an indirect branch. 430 if (isa<IndirectBrInst>(P->getTerminator())) return 0; 431 432 LoopBlocks.push_back(P); 433 } 434 } 435 436 assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?"); 437 BasicBlock *NewExitBB = 0; 438 439 if (Exit->isLandingPad()) { 440 SmallVector<BasicBlock*, 2> NewBBs; 441 SplitLandingPadPredecessors(Exit, ArrayRef<BasicBlock*>(&LoopBlocks[0], 442 LoopBlocks.size()), 443 ".loopexit", ".nonloopexit", 444 this, NewBBs); 445 NewExitBB = NewBBs[0]; 446 } else { 447 NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", this); 448 } 449 450 DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 451 << NewExitBB->getName() << "\n"); 452 return NewExitBB; 453 } 454 455 /// AddBlockAndPredsToSet - Add the specified block, and all of its 456 /// predecessors, to the specified set, if it's not already in there. Stop 457 /// predecessor traversal when we reach StopBlock. 458 static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, 459 std::set<BasicBlock*> &Blocks) { 460 std::vector<BasicBlock *> WorkList; 461 WorkList.push_back(InputBB); 462 do { 463 BasicBlock *BB = WorkList.back(); WorkList.pop_back(); 464 if (Blocks.insert(BB).second && BB != StopBlock) 465 // If BB is not already processed and it is not a stop block then 466 // insert its predecessor in the work list 467 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 468 BasicBlock *WBB = *I; 469 WorkList.push_back(WBB); 470 } 471 } while(!WorkList.empty()); 472 } 473 474 /// FindPHIToPartitionLoops - The first part of loop-nestification is to find a 475 /// PHI node that tells us how to partition the loops. 476 static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT, 477 AliasAnalysis *AA, LoopInfo *LI) { 478 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) { 479 PHINode *PN = cast<PHINode>(I); 480 ++I; 481 if (Value *V = SimplifyInstruction(PN, 0, 0, DT)) { 482 // This is a degenerate PHI already, don't modify it! 483 PN->replaceAllUsesWith(V); 484 if (AA) AA->deleteValue(PN); 485 PN->eraseFromParent(); 486 continue; 487 } 488 489 // Scan this PHI node looking for a use of the PHI node by itself. 490 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 491 if (PN->getIncomingValue(i) == PN && 492 L->contains(PN->getIncomingBlock(i))) 493 // We found something tasty to remove. 494 return PN; 495 } 496 return 0; 497 } 498 499 // PlaceSplitBlockCarefully - If the block isn't already, move the new block to 500 // right after some 'outside block' block. This prevents the preheader from 501 // being placed inside the loop body, e.g. when the loop hasn't been rotated. 502 void PlaceSplitBlockCarefully(BasicBlock *NewBB, 503 SmallVectorImpl<BasicBlock*> &SplitPreds, 504 Loop *L) { 505 // Check to see if NewBB is already well placed. 506 Function::iterator BBI = NewBB; --BBI; 507 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 508 if (&*BBI == SplitPreds[i]) 509 return; 510 } 511 512 // If it isn't already after an outside block, move it after one. This is 513 // always good as it makes the uncond branch from the outside block into a 514 // fall-through. 515 516 // Figure out *which* outside block to put this after. Prefer an outside 517 // block that neighbors a BB actually in the loop. 518 BasicBlock *FoundBB = 0; 519 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 520 Function::iterator BBI = SplitPreds[i]; 521 if (++BBI != NewBB->getParent()->end() && 522 L->contains(BBI)) { 523 FoundBB = SplitPreds[i]; 524 break; 525 } 526 } 527 528 // If our heuristic for a *good* bb to place this after doesn't find 529 // anything, just pick something. It's likely better than leaving it within 530 // the loop. 531 if (!FoundBB) 532 FoundBB = SplitPreds[0]; 533 NewBB->moveAfter(FoundBB); 534 } 535 536 537 /// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of 538 /// them out into a nested loop. This is important for code that looks like 539 /// this: 540 /// 541 /// Loop: 542 /// ... 543 /// br cond, Loop, Next 544 /// ... 545 /// br cond2, Loop, Out 546 /// 547 /// To identify this common case, we look at the PHI nodes in the header of the 548 /// loop. PHI nodes with unchanging values on one backedge correspond to values 549 /// that change in the "outer" loop, but not in the "inner" loop. 550 /// 551 /// If we are able to separate out a loop, return the new outer loop that was 552 /// created. 553 /// 554 Loop *LoopSimplify::SeparateNestedLoop(Loop *L, LPPassManager &LPM, 555 BasicBlock *Preheader) { 556 // Don't try to separate loops without a preheader. 557 if (!Preheader) 558 return 0; 559 560 // The header is not a landing pad; preheader insertion should ensure this. 561 assert(!L->getHeader()->isLandingPad() && 562 "Can't insert backedge to landing pad"); 563 564 PHINode *PN = FindPHIToPartitionLoops(L, DT, AA, LI); 565 if (PN == 0) return 0; // No known way to partition. 566 567 // Pull out all predecessors that have varying values in the loop. This 568 // handles the case when a PHI node has multiple instances of itself as 569 // arguments. 570 SmallVector<BasicBlock*, 8> OuterLoopPreds; 571 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 572 if (PN->getIncomingValue(i) != PN || 573 !L->contains(PN->getIncomingBlock(i))) { 574 // We can't split indirectbr edges. 575 if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator())) 576 return 0; 577 OuterLoopPreds.push_back(PN->getIncomingBlock(i)); 578 } 579 } 580 DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n"); 581 582 // If ScalarEvolution is around and knows anything about values in 583 // this loop, tell it to forget them, because we're about to 584 // substantially change it. 585 if (SE) 586 SE->forgetLoop(L); 587 588 BasicBlock *Header = L->getHeader(); 589 BasicBlock *NewBB = 590 SplitBlockPredecessors(Header, OuterLoopPreds, ".outer", this); 591 592 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 593 // code layout too horribly. 594 PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L); 595 596 // Create the new outer loop. 597 Loop *NewOuter = new Loop(); 598 599 // Change the parent loop to use the outer loop as its child now. 600 if (Loop *Parent = L->getParentLoop()) 601 Parent->replaceChildLoopWith(L, NewOuter); 602 else 603 LI->changeTopLevelLoop(L, NewOuter); 604 605 // L is now a subloop of our outer loop. 606 NewOuter->addChildLoop(L); 607 608 // Add the new loop to the pass manager queue. 609 LPM.insertLoopIntoQueue(NewOuter); 610 611 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 612 I != E; ++I) 613 NewOuter->addBlockEntry(*I); 614 615 // Now reset the header in L, which had been moved by 616 // SplitBlockPredecessors for the outer loop. 617 L->moveToHeader(Header); 618 619 // Determine which blocks should stay in L and which should be moved out to 620 // the Outer loop now. 621 std::set<BasicBlock*> BlocksInL; 622 for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) { 623 BasicBlock *P = *PI; 624 if (DT->dominates(Header, P)) 625 AddBlockAndPredsToSet(P, Header, BlocksInL); 626 } 627 628 // Scan all of the loop children of L, moving them to OuterLoop if they are 629 // not part of the inner loop. 630 const std::vector<Loop*> &SubLoops = L->getSubLoops(); 631 for (size_t I = 0; I != SubLoops.size(); ) 632 if (BlocksInL.count(SubLoops[I]->getHeader())) 633 ++I; // Loop remains in L 634 else 635 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I)); 636 637 // Now that we know which blocks are in L and which need to be moved to 638 // OuterLoop, move any blocks that need it. 639 for (unsigned i = 0; i != L->getBlocks().size(); ++i) { 640 BasicBlock *BB = L->getBlocks()[i]; 641 if (!BlocksInL.count(BB)) { 642 // Move this block to the parent, updating the exit blocks sets 643 L->removeBlockFromLoop(BB); 644 if ((*LI)[BB] == L) 645 LI->changeLoopFor(BB, NewOuter); 646 --i; 647 } 648 } 649 650 return NewOuter; 651 } 652 653 654 655 /// InsertUniqueBackedgeBlock - This method is called when the specified loop 656 /// has more than one backedge in it. If this occurs, revector all of these 657 /// backedges to target a new basic block and have that block branch to the loop 658 /// header. This ensures that loops have exactly one backedge. 659 /// 660 BasicBlock * 661 LoopSimplify::InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader) { 662 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!"); 663 664 // Get information about the loop 665 BasicBlock *Header = L->getHeader(); 666 Function *F = Header->getParent(); 667 668 // Unique backedge insertion currently depends on having a preheader. 669 if (!Preheader) 670 return 0; 671 672 // The header is not a landing pad; preheader insertion should ensure this. 673 assert(!Header->isLandingPad() && "Can't insert backedge to landing pad"); 674 675 // Figure out which basic blocks contain back-edges to the loop header. 676 std::vector<BasicBlock*> BackedgeBlocks; 677 for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){ 678 BasicBlock *P = *I; 679 680 // Indirectbr edges cannot be split, so we must fail if we find one. 681 if (isa<IndirectBrInst>(P->getTerminator())) 682 return 0; 683 684 if (P != Preheader) BackedgeBlocks.push_back(P); 685 } 686 687 // Create and insert the new backedge block... 688 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(), 689 Header->getName()+".backedge", F); 690 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock); 691 692 DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block " 693 << BEBlock->getName() << "\n"); 694 695 // Move the new backedge block to right after the last backedge block. 696 Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos; 697 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock); 698 699 // Now that the block has been inserted into the function, create PHI nodes in 700 // the backedge block which correspond to any PHI nodes in the header block. 701 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 702 PHINode *PN = cast<PHINode>(I); 703 PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(), 704 PN->getName()+".be", BETerminator); 705 if (AA) AA->copyValue(PN, NewPN); 706 707 // Loop over the PHI node, moving all entries except the one for the 708 // preheader over to the new PHI node. 709 unsigned PreheaderIdx = ~0U; 710 bool HasUniqueIncomingValue = true; 711 Value *UniqueValue = 0; 712 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 713 BasicBlock *IBB = PN->getIncomingBlock(i); 714 Value *IV = PN->getIncomingValue(i); 715 if (IBB == Preheader) { 716 PreheaderIdx = i; 717 } else { 718 NewPN->addIncoming(IV, IBB); 719 if (HasUniqueIncomingValue) { 720 if (UniqueValue == 0) 721 UniqueValue = IV; 722 else if (UniqueValue != IV) 723 HasUniqueIncomingValue = false; 724 } 725 } 726 } 727 728 // Delete all of the incoming values from the old PN except the preheader's 729 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??"); 730 if (PreheaderIdx != 0) { 731 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx)); 732 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx)); 733 } 734 // Nuke all entries except the zero'th. 735 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i) 736 PN->removeIncomingValue(e-i, false); 737 738 // Finally, add the newly constructed PHI node as the entry for the BEBlock. 739 PN->addIncoming(NewPN, BEBlock); 740 741 // As an optimization, if all incoming values in the new PhiNode (which is a 742 // subset of the incoming values of the old PHI node) have the same value, 743 // eliminate the PHI Node. 744 if (HasUniqueIncomingValue) { 745 NewPN->replaceAllUsesWith(UniqueValue); 746 if (AA) AA->deleteValue(NewPN); 747 BEBlock->getInstList().erase(NewPN); 748 } 749 } 750 751 // Now that all of the PHI nodes have been inserted and adjusted, modify the 752 // backedge blocks to just to the BEBlock instead of the header. 753 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) { 754 TerminatorInst *TI = BackedgeBlocks[i]->getTerminator(); 755 for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op) 756 if (TI->getSuccessor(Op) == Header) 757 TI->setSuccessor(Op, BEBlock); 758 } 759 760 //===--- Update all analyses which we must preserve now -----------------===// 761 762 // Update Loop Information - we know that this block is now in the current 763 // loop and all parent loops. 764 L->addBasicBlockToLoop(BEBlock, LI->getBase()); 765 766 // Update dominator information 767 DT->splitBlock(BEBlock); 768 769 return BEBlock; 770 } 771 772 void LoopSimplify::verifyAnalysis() const { 773 // It used to be possible to just assert L->isLoopSimplifyForm(), however 774 // with the introduction of indirectbr, there are now cases where it's 775 // not possible to transform a loop as necessary. We can at least check 776 // that there is an indirectbr near any time there's trouble. 777 778 // Indirectbr can interfere with preheader and unique backedge insertion. 779 if (!L->getLoopPreheader() || !L->getLoopLatch()) { 780 bool HasIndBrPred = false; 781 for (pred_iterator PI = pred_begin(L->getHeader()), 782 PE = pred_end(L->getHeader()); PI != PE; ++PI) 783 if (isa<IndirectBrInst>((*PI)->getTerminator())) { 784 HasIndBrPred = true; 785 break; 786 } 787 assert(HasIndBrPred && 788 "LoopSimplify has no excuse for missing loop header info!"); 789 (void)HasIndBrPred; 790 } 791 792 // Indirectbr can interfere with exit block canonicalization. 793 if (!L->hasDedicatedExits()) { 794 bool HasIndBrExiting = false; 795 SmallVector<BasicBlock*, 8> ExitingBlocks; 796 L->getExitingBlocks(ExitingBlocks); 797 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 798 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) { 799 HasIndBrExiting = true; 800 break; 801 } 802 } 803 804 assert(HasIndBrExiting && 805 "LoopSimplify has no excuse for missing exit block info!"); 806 (void)HasIndBrExiting; 807 } 808 } 809