xref: /llvm-project/llvm/lib/Transforms/Utils/LoopSimplify.cpp (revision 135f735af149e305635ba3886065b493d5c2bf8c)
1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs several transformations to transform natural loops into a
11 // simpler form, which makes subsequent analyses and transformations simpler and
12 // more effective.
13 //
14 // Loop pre-header insertion guarantees that there is a single, non-critical
15 // entry edge from outside of the loop to the loop header.  This simplifies a
16 // number of analyses and transformations, such as LICM.
17 //
18 // Loop exit-block insertion guarantees that all exit blocks from the loop
19 // (blocks which are outside of the loop that have predecessors inside of the
20 // loop) only have predecessors from inside of the loop (and are thus dominated
21 // by the loop header).  This simplifies transformations such as store-sinking
22 // that are built into LICM.
23 //
24 // This pass also guarantees that loops will have exactly one backedge.
25 //
26 // Indirectbr instructions introduce several complications. If the loop
27 // contains or is entered by an indirectbr instruction, it may not be possible
28 // to transform the loop and make these guarantees. Client code should check
29 // that these conditions are true before relying on them.
30 //
31 // Note that the simplifycfg pass will clean up blocks which are split out but
32 // end up being unnecessary, so usage of this pass should not pessimize
33 // generated code.
34 //
35 // This pass obviously modifies the CFG, but updates loop information and
36 // dominator information.
37 //
38 //===----------------------------------------------------------------------===//
39 
40 #include "llvm/Transforms/Scalar.h"
41 #include "llvm/ADT/DepthFirstIterator.h"
42 #include "llvm/ADT/SetOperations.h"
43 #include "llvm/ADT/SetVector.h"
44 #include "llvm/ADT/SmallVector.h"
45 #include "llvm/ADT/Statistic.h"
46 #include "llvm/Analysis/AliasAnalysis.h"
47 #include "llvm/Analysis/BasicAliasAnalysis.h"
48 #include "llvm/Analysis/AssumptionCache.h"
49 #include "llvm/Analysis/DependenceAnalysis.h"
50 #include "llvm/Analysis/GlobalsModRef.h"
51 #include "llvm/Analysis/InstructionSimplify.h"
52 #include "llvm/Analysis/LoopInfo.h"
53 #include "llvm/Analysis/ScalarEvolution.h"
54 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
55 #include "llvm/IR/CFG.h"
56 #include "llvm/IR/Constants.h"
57 #include "llvm/IR/DataLayout.h"
58 #include "llvm/IR/Dominators.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/IR/Type.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
68 #include "llvm/Transforms/Utils/Local.h"
69 #include "llvm/Transforms/Utils/LoopUtils.h"
70 using namespace llvm;
71 
72 #define DEBUG_TYPE "loop-simplify"
73 
74 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
75 STATISTIC(NumNested  , "Number of nested loops split out");
76 
77 // If the block isn't already, move the new block to right after some 'outside
78 // block' block.  This prevents the preheader from being placed inside the loop
79 // body, e.g. when the loop hasn't been rotated.
80 static void placeSplitBlockCarefully(BasicBlock *NewBB,
81                                      SmallVectorImpl<BasicBlock *> &SplitPreds,
82                                      Loop *L) {
83   // Check to see if NewBB is already well placed.
84   Function::iterator BBI = --NewBB->getIterator();
85   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
86     if (&*BBI == SplitPreds[i])
87       return;
88   }
89 
90   // If it isn't already after an outside block, move it after one.  This is
91   // always good as it makes the uncond branch from the outside block into a
92   // fall-through.
93 
94   // Figure out *which* outside block to put this after.  Prefer an outside
95   // block that neighbors a BB actually in the loop.
96   BasicBlock *FoundBB = nullptr;
97   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
98     Function::iterator BBI = SplitPreds[i]->getIterator();
99     if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) {
100       FoundBB = SplitPreds[i];
101       break;
102     }
103   }
104 
105   // If our heuristic for a *good* bb to place this after doesn't find
106   // anything, just pick something.  It's likely better than leaving it within
107   // the loop.
108   if (!FoundBB)
109     FoundBB = SplitPreds[0];
110   NewBB->moveAfter(FoundBB);
111 }
112 
113 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
114 /// preheader, this method is called to insert one.  This method has two phases:
115 /// preheader insertion and analysis updating.
116 ///
117 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT,
118                                          LoopInfo *LI, bool PreserveLCSSA) {
119   BasicBlock *Header = L->getHeader();
120 
121   // Compute the set of predecessors of the loop that are not in the loop.
122   SmallVector<BasicBlock*, 8> OutsideBlocks;
123   for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
124        PI != PE; ++PI) {
125     BasicBlock *P = *PI;
126     if (!L->contains(P)) {         // Coming in from outside the loop?
127       // If the loop is branched to from an indirect branch, we won't
128       // be able to fully transform the loop, because it prohibits
129       // edge splitting.
130       if (isa<IndirectBrInst>(P->getTerminator())) return nullptr;
131 
132       // Keep track of it.
133       OutsideBlocks.push_back(P);
134     }
135   }
136 
137   // Split out the loop pre-header.
138   BasicBlock *PreheaderBB;
139   PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT,
140                                        LI, PreserveLCSSA);
141   if (!PreheaderBB)
142     return nullptr;
143 
144   DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
145                << PreheaderBB->getName() << "\n");
146 
147   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
148   // code layout too horribly.
149   placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
150 
151   return PreheaderBB;
152 }
153 
154 /// \brief Ensure that the loop preheader dominates all exit blocks.
155 ///
156 /// This method is used to split exit blocks that have predecessors outside of
157 /// the loop.
158 static BasicBlock *rewriteLoopExitBlock(Loop *L, BasicBlock *Exit,
159                                         DominatorTree *DT, LoopInfo *LI,
160                                         bool PreserveLCSSA) {
161   SmallVector<BasicBlock*, 8> LoopBlocks;
162   for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) {
163     BasicBlock *P = *I;
164     if (L->contains(P)) {
165       // Don't do this if the loop is exited via an indirect branch.
166       if (isa<IndirectBrInst>(P->getTerminator())) return nullptr;
167 
168       LoopBlocks.push_back(P);
169     }
170   }
171 
172   assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
173   BasicBlock *NewExitBB = nullptr;
174 
175   NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", DT, LI,
176                                      PreserveLCSSA);
177   if (!NewExitBB)
178     return nullptr;
179 
180   DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
181                << NewExitBB->getName() << "\n");
182   return NewExitBB;
183 }
184 
185 /// Add the specified block, and all of its predecessors, to the specified set,
186 /// if it's not already in there.  Stop predecessor traversal when we reach
187 /// StopBlock.
188 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
189                                   std::set<BasicBlock*> &Blocks) {
190   SmallVector<BasicBlock *, 8> Worklist;
191   Worklist.push_back(InputBB);
192   do {
193     BasicBlock *BB = Worklist.pop_back_val();
194     if (Blocks.insert(BB).second && BB != StopBlock)
195       // If BB is not already processed and it is not a stop block then
196       // insert its predecessor in the work list
197       for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
198         BasicBlock *WBB = *I;
199         Worklist.push_back(WBB);
200       }
201   } while (!Worklist.empty());
202 }
203 
204 /// \brief The first part of loop-nestification is to find a PHI node that tells
205 /// us how to partition the loops.
206 static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT,
207                                         AssumptionCache *AC) {
208   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
209   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
210     PHINode *PN = cast<PHINode>(I);
211     ++I;
212     if (Value *V = SimplifyInstruction(PN, DL, nullptr, DT, AC)) {
213       // This is a degenerate PHI already, don't modify it!
214       PN->replaceAllUsesWith(V);
215       PN->eraseFromParent();
216       continue;
217     }
218 
219     // Scan this PHI node looking for a use of the PHI node by itself.
220     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
221       if (PN->getIncomingValue(i) == PN &&
222           L->contains(PN->getIncomingBlock(i)))
223         // We found something tasty to remove.
224         return PN;
225   }
226   return nullptr;
227 }
228 
229 /// \brief If this loop has multiple backedges, try to pull one of them out into
230 /// a nested loop.
231 ///
232 /// This is important for code that looks like
233 /// this:
234 ///
235 ///  Loop:
236 ///     ...
237 ///     br cond, Loop, Next
238 ///     ...
239 ///     br cond2, Loop, Out
240 ///
241 /// To identify this common case, we look at the PHI nodes in the header of the
242 /// loop.  PHI nodes with unchanging values on one backedge correspond to values
243 /// that change in the "outer" loop, but not in the "inner" loop.
244 ///
245 /// If we are able to separate out a loop, return the new outer loop that was
246 /// created.
247 ///
248 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
249                                 DominatorTree *DT, LoopInfo *LI,
250                                 ScalarEvolution *SE, bool PreserveLCSSA,
251                                 AssumptionCache *AC) {
252   // Don't try to separate loops without a preheader.
253   if (!Preheader)
254     return nullptr;
255 
256   // The header is not a landing pad; preheader insertion should ensure this.
257   BasicBlock *Header = L->getHeader();
258   assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
259 
260   PHINode *PN = findPHIToPartitionLoops(L, DT, AC);
261   if (!PN) return nullptr;  // No known way to partition.
262 
263   // Pull out all predecessors that have varying values in the loop.  This
264   // handles the case when a PHI node has multiple instances of itself as
265   // arguments.
266   SmallVector<BasicBlock*, 8> OuterLoopPreds;
267   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
268     if (PN->getIncomingValue(i) != PN ||
269         !L->contains(PN->getIncomingBlock(i))) {
270       // We can't split indirectbr edges.
271       if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
272         return nullptr;
273       OuterLoopPreds.push_back(PN->getIncomingBlock(i));
274     }
275   }
276   DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
277 
278   // If ScalarEvolution is around and knows anything about values in
279   // this loop, tell it to forget them, because we're about to
280   // substantially change it.
281   if (SE)
282     SE->forgetLoop(L);
283 
284   BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer",
285                                              DT, LI, PreserveLCSSA);
286 
287   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
288   // code layout too horribly.
289   placeSplitBlockCarefully(NewBB, OuterLoopPreds, L);
290 
291   // Create the new outer loop.
292   Loop *NewOuter = new Loop();
293 
294   // Change the parent loop to use the outer loop as its child now.
295   if (Loop *Parent = L->getParentLoop())
296     Parent->replaceChildLoopWith(L, NewOuter);
297   else
298     LI->changeTopLevelLoop(L, NewOuter);
299 
300   // L is now a subloop of our outer loop.
301   NewOuter->addChildLoop(L);
302 
303   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
304        I != E; ++I)
305     NewOuter->addBlockEntry(*I);
306 
307   // Now reset the header in L, which had been moved by
308   // SplitBlockPredecessors for the outer loop.
309   L->moveToHeader(Header);
310 
311   // Determine which blocks should stay in L and which should be moved out to
312   // the Outer loop now.
313   std::set<BasicBlock*> BlocksInL;
314   for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
315     BasicBlock *P = *PI;
316     if (DT->dominates(Header, P))
317       addBlockAndPredsToSet(P, Header, BlocksInL);
318   }
319 
320   // Scan all of the loop children of L, moving them to OuterLoop if they are
321   // not part of the inner loop.
322   const std::vector<Loop*> &SubLoops = L->getSubLoops();
323   for (size_t I = 0; I != SubLoops.size(); )
324     if (BlocksInL.count(SubLoops[I]->getHeader()))
325       ++I;   // Loop remains in L
326     else
327       NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
328 
329   // Now that we know which blocks are in L and which need to be moved to
330   // OuterLoop, move any blocks that need it.
331   for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
332     BasicBlock *BB = L->getBlocks()[i];
333     if (!BlocksInL.count(BB)) {
334       // Move this block to the parent, updating the exit blocks sets
335       L->removeBlockFromLoop(BB);
336       if ((*LI)[BB] == L)
337         LI->changeLoopFor(BB, NewOuter);
338       --i;
339     }
340   }
341 
342   return NewOuter;
343 }
344 
345 /// \brief This method is called when the specified loop has more than one
346 /// backedge in it.
347 ///
348 /// If this occurs, revector all of these backedges to target a new basic block
349 /// and have that block branch to the loop header.  This ensures that loops
350 /// have exactly one backedge.
351 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
352                                              DominatorTree *DT, LoopInfo *LI) {
353   assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
354 
355   // Get information about the loop
356   BasicBlock *Header = L->getHeader();
357   Function *F = Header->getParent();
358 
359   // Unique backedge insertion currently depends on having a preheader.
360   if (!Preheader)
361     return nullptr;
362 
363   // The header is not an EH pad; preheader insertion should ensure this.
364   assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
365 
366   // Figure out which basic blocks contain back-edges to the loop header.
367   std::vector<BasicBlock*> BackedgeBlocks;
368   for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
369     BasicBlock *P = *I;
370 
371     // Indirectbr edges cannot be split, so we must fail if we find one.
372     if (isa<IndirectBrInst>(P->getTerminator()))
373       return nullptr;
374 
375     if (P != Preheader) BackedgeBlocks.push_back(P);
376   }
377 
378   // Create and insert the new backedge block...
379   BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
380                                            Header->getName() + ".backedge", F);
381   BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
382   BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc());
383 
384   DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
385                << BEBlock->getName() << "\n");
386 
387   // Move the new backedge block to right after the last backedge block.
388   Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator();
389   F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
390 
391   // Now that the block has been inserted into the function, create PHI nodes in
392   // the backedge block which correspond to any PHI nodes in the header block.
393   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
394     PHINode *PN = cast<PHINode>(I);
395     PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
396                                      PN->getName()+".be", BETerminator);
397 
398     // Loop over the PHI node, moving all entries except the one for the
399     // preheader over to the new PHI node.
400     unsigned PreheaderIdx = ~0U;
401     bool HasUniqueIncomingValue = true;
402     Value *UniqueValue = nullptr;
403     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
404       BasicBlock *IBB = PN->getIncomingBlock(i);
405       Value *IV = PN->getIncomingValue(i);
406       if (IBB == Preheader) {
407         PreheaderIdx = i;
408       } else {
409         NewPN->addIncoming(IV, IBB);
410         if (HasUniqueIncomingValue) {
411           if (!UniqueValue)
412             UniqueValue = IV;
413           else if (UniqueValue != IV)
414             HasUniqueIncomingValue = false;
415         }
416       }
417     }
418 
419     // Delete all of the incoming values from the old PN except the preheader's
420     assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
421     if (PreheaderIdx != 0) {
422       PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
423       PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
424     }
425     // Nuke all entries except the zero'th.
426     for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
427       PN->removeIncomingValue(e-i, false);
428 
429     // Finally, add the newly constructed PHI node as the entry for the BEBlock.
430     PN->addIncoming(NewPN, BEBlock);
431 
432     // As an optimization, if all incoming values in the new PhiNode (which is a
433     // subset of the incoming values of the old PHI node) have the same value,
434     // eliminate the PHI Node.
435     if (HasUniqueIncomingValue) {
436       NewPN->replaceAllUsesWith(UniqueValue);
437       BEBlock->getInstList().erase(NewPN);
438     }
439   }
440 
441   // Now that all of the PHI nodes have been inserted and adjusted, modify the
442   // backedge blocks to just to the BEBlock instead of the header.
443   for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
444     TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
445     for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
446       if (TI->getSuccessor(Op) == Header)
447         TI->setSuccessor(Op, BEBlock);
448   }
449 
450   //===--- Update all analyses which we must preserve now -----------------===//
451 
452   // Update Loop Information - we know that this block is now in the current
453   // loop and all parent loops.
454   L->addBasicBlockToLoop(BEBlock, *LI);
455 
456   // Update dominator information
457   DT->splitBlock(BEBlock);
458 
459   return BEBlock;
460 }
461 
462 /// \brief Simplify one loop and queue further loops for simplification.
463 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
464                             DominatorTree *DT, LoopInfo *LI,
465                             ScalarEvolution *SE, AssumptionCache *AC,
466                             bool PreserveLCSSA) {
467   bool Changed = false;
468 ReprocessLoop:
469 
470   // Check to see that no blocks (other than the header) in this loop have
471   // predecessors that are not in the loop.  This is not valid for natural
472   // loops, but can occur if the blocks are unreachable.  Since they are
473   // unreachable we can just shamelessly delete those CFG edges!
474   for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
475        BB != E; ++BB) {
476     if (*BB == L->getHeader()) continue;
477 
478     SmallPtrSet<BasicBlock*, 4> BadPreds;
479     for (pred_iterator PI = pred_begin(*BB),
480          PE = pred_end(*BB); PI != PE; ++PI) {
481       BasicBlock *P = *PI;
482       if (!L->contains(P))
483         BadPreds.insert(P);
484     }
485 
486     // Delete each unique out-of-loop (and thus dead) predecessor.
487     for (BasicBlock *P : BadPreds) {
488 
489       DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
490                    << P->getName() << "\n");
491 
492       // Zap the dead pred's terminator and replace it with unreachable.
493       TerminatorInst *TI = P->getTerminator();
494       changeToUnreachable(TI, /*UseLLVMTrap=*/false);
495       Changed = true;
496     }
497   }
498 
499   // If there are exiting blocks with branches on undef, resolve the undef in
500   // the direction which will exit the loop. This will help simplify loop
501   // trip count computations.
502   SmallVector<BasicBlock*, 8> ExitingBlocks;
503   L->getExitingBlocks(ExitingBlocks);
504   for (BasicBlock *ExitingBlock : ExitingBlocks)
505     if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
506       if (BI->isConditional()) {
507         if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
508 
509           DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
510                        << ExitingBlock->getName() << "\n");
511 
512           BI->setCondition(ConstantInt::get(Cond->getType(),
513                                             !L->contains(BI->getSuccessor(0))));
514 
515           // This may make the loop analyzable, force SCEV recomputation.
516           if (SE)
517             SE->forgetLoop(L);
518 
519           Changed = true;
520         }
521       }
522 
523   // Does the loop already have a preheader?  If so, don't insert one.
524   BasicBlock *Preheader = L->getLoopPreheader();
525   if (!Preheader) {
526     Preheader = InsertPreheaderForLoop(L, DT, LI, PreserveLCSSA);
527     if (Preheader) {
528       ++NumInserted;
529       Changed = true;
530     }
531   }
532 
533   // Next, check to make sure that all exit nodes of the loop only have
534   // predecessors that are inside of the loop.  This check guarantees that the
535   // loop preheader/header will dominate the exit blocks.  If the exit block has
536   // predecessors from outside of the loop, split the edge now.
537   SmallVector<BasicBlock*, 8> ExitBlocks;
538   L->getExitBlocks(ExitBlocks);
539 
540   SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(),
541                                                ExitBlocks.end());
542   for (BasicBlock *ExitBlock : ExitBlockSet) {
543     for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
544          PI != PE; ++PI)
545       // Must be exactly this loop: no subloops, parent loops, or non-loop preds
546       // allowed.
547       if (!L->contains(*PI)) {
548         if (rewriteLoopExitBlock(L, ExitBlock, DT, LI, PreserveLCSSA)) {
549           ++NumInserted;
550           Changed = true;
551         }
552         break;
553       }
554   }
555 
556   // If the header has more than two predecessors at this point (from the
557   // preheader and from multiple backedges), we must adjust the loop.
558   BasicBlock *LoopLatch = L->getLoopLatch();
559   if (!LoopLatch) {
560     // If this is really a nested loop, rip it out into a child loop.  Don't do
561     // this for loops with a giant number of backedges, just factor them into a
562     // common backedge instead.
563     if (L->getNumBackEdges() < 8) {
564       if (Loop *OuterL =
565               separateNestedLoop(L, Preheader, DT, LI, SE, PreserveLCSSA, AC)) {
566         ++NumNested;
567         // Enqueue the outer loop as it should be processed next in our
568         // depth-first nest walk.
569         Worklist.push_back(OuterL);
570 
571         // This is a big restructuring change, reprocess the whole loop.
572         Changed = true;
573         // GCC doesn't tail recursion eliminate this.
574         // FIXME: It isn't clear we can't rely on LLVM to TRE this.
575         goto ReprocessLoop;
576       }
577     }
578 
579     // If we either couldn't, or didn't want to, identify nesting of the loops,
580     // insert a new block that all backedges target, then make it jump to the
581     // loop header.
582     LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI);
583     if (LoopLatch) {
584       ++NumInserted;
585       Changed = true;
586     }
587   }
588 
589   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
590 
591   // Scan over the PHI nodes in the loop header.  Since they now have only two
592   // incoming values (the loop is canonicalized), we may have simplified the PHI
593   // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
594   PHINode *PN;
595   for (BasicBlock::iterator I = L->getHeader()->begin();
596        (PN = dyn_cast<PHINode>(I++)); )
597     if (Value *V = SimplifyInstruction(PN, DL, nullptr, DT, AC)) {
598       if (SE) SE->forgetValue(PN);
599       PN->replaceAllUsesWith(V);
600       PN->eraseFromParent();
601     }
602 
603   // If this loop has multiple exits and the exits all go to the same
604   // block, attempt to merge the exits. This helps several passes, such
605   // as LoopRotation, which do not support loops with multiple exits.
606   // SimplifyCFG also does this (and this code uses the same utility
607   // function), however this code is loop-aware, where SimplifyCFG is
608   // not. That gives it the advantage of being able to hoist
609   // loop-invariant instructions out of the way to open up more
610   // opportunities, and the disadvantage of having the responsibility
611   // to preserve dominator information.
612   bool UniqueExit = true;
613   if (!ExitBlocks.empty())
614     for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i)
615       if (ExitBlocks[i] != ExitBlocks[0]) {
616         UniqueExit = false;
617         break;
618       }
619   if (UniqueExit) {
620     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
621       BasicBlock *ExitingBlock = ExitingBlocks[i];
622       if (!ExitingBlock->getSinglePredecessor()) continue;
623       BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
624       if (!BI || !BI->isConditional()) continue;
625       CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
626       if (!CI || CI->getParent() != ExitingBlock) continue;
627 
628       // Attempt to hoist out all instructions except for the
629       // comparison and the branch.
630       bool AllInvariant = true;
631       bool AnyInvariant = false;
632       for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) {
633         Instruction *Inst = &*I++;
634         // Skip debug info intrinsics.
635         if (isa<DbgInfoIntrinsic>(Inst))
636           continue;
637         if (Inst == CI)
638           continue;
639         if (!L->makeLoopInvariant(Inst, AnyInvariant,
640                                   Preheader ? Preheader->getTerminator()
641                                             : nullptr)) {
642           AllInvariant = false;
643           break;
644         }
645       }
646       if (AnyInvariant) {
647         Changed = true;
648         // The loop disposition of all SCEV expressions that depend on any
649         // hoisted values have also changed.
650         if (SE)
651           SE->forgetLoopDispositions(L);
652       }
653       if (!AllInvariant) continue;
654 
655       // The block has now been cleared of all instructions except for
656       // a comparison and a conditional branch. SimplifyCFG may be able
657       // to fold it now.
658       if (!FoldBranchToCommonDest(BI))
659         continue;
660 
661       // Success. The block is now dead, so remove it from the loop,
662       // update the dominator tree and delete it.
663       DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
664                    << ExitingBlock->getName() << "\n");
665 
666       // Notify ScalarEvolution before deleting this block. Currently assume the
667       // parent loop doesn't change (spliting edges doesn't count). If blocks,
668       // CFG edges, or other values in the parent loop change, then we need call
669       // to forgetLoop() for the parent instead.
670       if (SE)
671         SE->forgetLoop(L);
672 
673       assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
674       Changed = true;
675       LI->removeBlock(ExitingBlock);
676 
677       DomTreeNode *Node = DT->getNode(ExitingBlock);
678       const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
679         Node->getChildren();
680       while (!Children.empty()) {
681         DomTreeNode *Child = Children.front();
682         DT->changeImmediateDominator(Child, Node->getIDom());
683       }
684       DT->eraseNode(ExitingBlock);
685 
686       BI->getSuccessor(0)->removePredecessor(
687           ExitingBlock, /* DontDeleteUselessPHIs */ PreserveLCSSA);
688       BI->getSuccessor(1)->removePredecessor(
689           ExitingBlock, /* DontDeleteUselessPHIs */ PreserveLCSSA);
690       ExitingBlock->eraseFromParent();
691     }
692   }
693 
694   return Changed;
695 }
696 
697 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI,
698                         ScalarEvolution *SE, AssumptionCache *AC,
699                         bool PreserveLCSSA) {
700   bool Changed = false;
701 
702   // Worklist maintains our depth-first queue of loops in this nest to process.
703   SmallVector<Loop *, 4> Worklist;
704   Worklist.push_back(L);
705 
706   // Walk the worklist from front to back, pushing newly found sub loops onto
707   // the back. This will let us process loops from back to front in depth-first
708   // order. We can use this simple process because loops form a tree.
709   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
710     Loop *L2 = Worklist[Idx];
711     Worklist.append(L2->begin(), L2->end());
712   }
713 
714   while (!Worklist.empty())
715     Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE,
716                                AC, PreserveLCSSA);
717 
718   return Changed;
719 }
720 
721 namespace {
722   struct LoopSimplify : public FunctionPass {
723     static char ID; // Pass identification, replacement for typeid
724     LoopSimplify() : FunctionPass(ID) {
725       initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
726     }
727 
728     bool runOnFunction(Function &F) override;
729 
730     void getAnalysisUsage(AnalysisUsage &AU) const override {
731       AU.addRequired<AssumptionCacheTracker>();
732 
733       // We need loop information to identify the loops...
734       AU.addRequired<DominatorTreeWrapperPass>();
735       AU.addPreserved<DominatorTreeWrapperPass>();
736 
737       AU.addRequired<LoopInfoWrapperPass>();
738       AU.addPreserved<LoopInfoWrapperPass>();
739 
740       AU.addPreserved<BasicAAWrapperPass>();
741       AU.addPreserved<AAResultsWrapperPass>();
742       AU.addPreserved<GlobalsAAWrapperPass>();
743       AU.addPreserved<ScalarEvolutionWrapperPass>();
744       AU.addPreserved<SCEVAAWrapperPass>();
745       AU.addPreservedID(LCSSAID);
746       AU.addPreserved<DependenceAnalysisWrapperPass>();
747       AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
748     }
749 
750     /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
751     void verifyAnalysis() const override;
752   };
753 }
754 
755 char LoopSimplify::ID = 0;
756 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
757                 "Canonicalize natural loops", false, false)
758 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
759 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
760 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
761 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
762                 "Canonicalize natural loops", false, false)
763 
764 // Publicly exposed interface to pass...
765 char &llvm::LoopSimplifyID = LoopSimplify::ID;
766 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
767 
768 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do
769 /// it in any convenient order) inserting preheaders...
770 ///
771 bool LoopSimplify::runOnFunction(Function &F) {
772   bool Changed = false;
773   LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
774   DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
775   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
776   ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr;
777   AssumptionCache *AC =
778       &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
779 
780   bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
781 #ifndef NDEBUG
782   if (PreserveLCSSA) {
783     assert(DT && "DT not available.");
784     assert(LI && "LI not available.");
785     bool InLCSSA =
786         all_of(*LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT); });
787     assert(InLCSSA && "Requested to preserve LCSSA, but it's already broken.");
788   }
789 #endif
790 
791   // Simplify each loop nest in the function.
792   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
793     Changed |= simplifyLoop(*I, DT, LI, SE, AC, PreserveLCSSA);
794 
795 #ifndef NDEBUG
796   if (PreserveLCSSA) {
797     bool InLCSSA =
798         all_of(*LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT); });
799     assert(InLCSSA && "LCSSA is broken after loop-simplify.");
800   }
801 #endif
802   return Changed;
803 }
804 
805 // FIXME: Restore this code when we re-enable verification in verifyAnalysis
806 // below.
807 #if 0
808 static void verifyLoop(Loop *L) {
809   // Verify subloops.
810   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
811     verifyLoop(*I);
812 
813   // It used to be possible to just assert L->isLoopSimplifyForm(), however
814   // with the introduction of indirectbr, there are now cases where it's
815   // not possible to transform a loop as necessary. We can at least check
816   // that there is an indirectbr near any time there's trouble.
817 
818   // Indirectbr can interfere with preheader and unique backedge insertion.
819   if (!L->getLoopPreheader() || !L->getLoopLatch()) {
820     bool HasIndBrPred = false;
821     for (pred_iterator PI = pred_begin(L->getHeader()),
822          PE = pred_end(L->getHeader()); PI != PE; ++PI)
823       if (isa<IndirectBrInst>((*PI)->getTerminator())) {
824         HasIndBrPred = true;
825         break;
826       }
827     assert(HasIndBrPred &&
828            "LoopSimplify has no excuse for missing loop header info!");
829     (void)HasIndBrPred;
830   }
831 
832   // Indirectbr can interfere with exit block canonicalization.
833   if (!L->hasDedicatedExits()) {
834     bool HasIndBrExiting = false;
835     SmallVector<BasicBlock*, 8> ExitingBlocks;
836     L->getExitingBlocks(ExitingBlocks);
837     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
838       if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
839         HasIndBrExiting = true;
840         break;
841       }
842     }
843 
844     assert(HasIndBrExiting &&
845            "LoopSimplify has no excuse for missing exit block info!");
846     (void)HasIndBrExiting;
847   }
848 }
849 #endif
850 
851 void LoopSimplify::verifyAnalysis() const {
852   // FIXME: This routine is being called mid-way through the loop pass manager
853   // as loop passes destroy this analysis. That's actually fine, but we have no
854   // way of expressing that here. Once all of the passes that destroy this are
855   // hoisted out of the loop pass manager we can add back verification here.
856 #if 0
857   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
858     verifyLoop(*I);
859 #endif
860 }
861