1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs several transformations to transform natural loops into a 11 // simpler form, which makes subsequent analyses and transformations simpler and 12 // more effective. 13 // 14 // Loop pre-header insertion guarantees that there is a single, non-critical 15 // entry edge from outside of the loop to the loop header. This simplifies a 16 // number of analyses and transformations, such as LICM. 17 // 18 // Loop exit-block insertion guarantees that all exit blocks from the loop 19 // (blocks which are outside of the loop that have predecessors inside of the 20 // loop) only have predecessors from inside of the loop (and are thus dominated 21 // by the loop header). This simplifies transformations such as store-sinking 22 // that are built into LICM. 23 // 24 // This pass also guarantees that loops will have exactly one backedge. 25 // 26 // Indirectbr instructions introduce several complications. If the loop 27 // contains or is entered by an indirectbr instruction, it may not be possible 28 // to transform the loop and make these guarantees. Client code should check 29 // that these conditions are true before relying on them. 30 // 31 // Note that the simplifycfg pass will clean up blocks which are split out but 32 // end up being unnecessary, so usage of this pass should not pessimize 33 // generated code. 34 // 35 // This pass obviously modifies the CFG, but updates loop information and 36 // dominator information. 37 // 38 //===----------------------------------------------------------------------===// 39 40 #define DEBUG_TYPE "loop-simplify" 41 #include "llvm/Transforms/Scalar.h" 42 #include "llvm/ADT/DepthFirstIterator.h" 43 #include "llvm/ADT/SetOperations.h" 44 #include "llvm/ADT/SetVector.h" 45 #include "llvm/ADT/SmallVector.h" 46 #include "llvm/ADT/Statistic.h" 47 #include "llvm/Analysis/AliasAnalysis.h" 48 #include "llvm/Analysis/DependenceAnalysis.h" 49 #include "llvm/Analysis/InstructionSimplify.h" 50 #include "llvm/Analysis/LoopInfo.h" 51 #include "llvm/Analysis/ScalarEvolution.h" 52 #include "llvm/IR/CFG.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/Dominators.h" 55 #include "llvm/IR/Function.h" 56 #include "llvm/IR/Instructions.h" 57 #include "llvm/IR/IntrinsicInst.h" 58 #include "llvm/IR/LLVMContext.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 62 #include "llvm/Transforms/Utils/Local.h" 63 #include "llvm/Transforms/Utils/LoopUtils.h" 64 using namespace llvm; 65 66 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted"); 67 STATISTIC(NumNested , "Number of nested loops split out"); 68 69 // If the block isn't already, move the new block to right after some 'outside 70 // block' block. This prevents the preheader from being placed inside the loop 71 // body, e.g. when the loop hasn't been rotated. 72 static void placeSplitBlockCarefully(BasicBlock *NewBB, 73 SmallVectorImpl<BasicBlock *> &SplitPreds, 74 Loop *L) { 75 // Check to see if NewBB is already well placed. 76 Function::iterator BBI = NewBB; --BBI; 77 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 78 if (&*BBI == SplitPreds[i]) 79 return; 80 } 81 82 // If it isn't already after an outside block, move it after one. This is 83 // always good as it makes the uncond branch from the outside block into a 84 // fall-through. 85 86 // Figure out *which* outside block to put this after. Prefer an outside 87 // block that neighbors a BB actually in the loop. 88 BasicBlock *FoundBB = 0; 89 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 90 Function::iterator BBI = SplitPreds[i]; 91 if (++BBI != NewBB->getParent()->end() && 92 L->contains(BBI)) { 93 FoundBB = SplitPreds[i]; 94 break; 95 } 96 } 97 98 // If our heuristic for a *good* bb to place this after doesn't find 99 // anything, just pick something. It's likely better than leaving it within 100 // the loop. 101 if (!FoundBB) 102 FoundBB = SplitPreds[0]; 103 NewBB->moveAfter(FoundBB); 104 } 105 106 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a 107 /// preheader, this method is called to insert one. This method has two phases: 108 /// preheader insertion and analysis updating. 109 /// 110 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, Pass *PP) { 111 BasicBlock *Header = L->getHeader(); 112 113 // Compute the set of predecessors of the loop that are not in the loop. 114 SmallVector<BasicBlock*, 8> OutsideBlocks; 115 for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); 116 PI != PE; ++PI) { 117 BasicBlock *P = *PI; 118 if (!L->contains(P)) { // Coming in from outside the loop? 119 // If the loop is branched to from an indirect branch, we won't 120 // be able to fully transform the loop, because it prohibits 121 // edge splitting. 122 if (isa<IndirectBrInst>(P->getTerminator())) return 0; 123 124 // Keep track of it. 125 OutsideBlocks.push_back(P); 126 } 127 } 128 129 // Split out the loop pre-header. 130 BasicBlock *PreheaderBB; 131 if (!Header->isLandingPad()) { 132 PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", 133 PP); 134 } else { 135 SmallVector<BasicBlock*, 2> NewBBs; 136 SplitLandingPadPredecessors(Header, OutsideBlocks, ".preheader", 137 ".split-lp", PP, NewBBs); 138 PreheaderBB = NewBBs[0]; 139 } 140 141 PreheaderBB->getTerminator()->setDebugLoc( 142 Header->getFirstNonPHI()->getDebugLoc()); 143 DEBUG(dbgs() << "LoopSimplify: Creating pre-header " 144 << PreheaderBB->getName() << "\n"); 145 146 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 147 // code layout too horribly. 148 placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L); 149 150 return PreheaderBB; 151 } 152 153 /// \brief Ensure that the loop preheader dominates all exit blocks. 154 /// 155 /// This method is used to split exit blocks that have predecessors outside of 156 /// the loop. 157 static BasicBlock *rewriteLoopExitBlock(Loop *L, BasicBlock *Exit, Pass *PP) { 158 SmallVector<BasicBlock*, 8> LoopBlocks; 159 for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) { 160 BasicBlock *P = *I; 161 if (L->contains(P)) { 162 // Don't do this if the loop is exited via an indirect branch. 163 if (isa<IndirectBrInst>(P->getTerminator())) return 0; 164 165 LoopBlocks.push_back(P); 166 } 167 } 168 169 assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?"); 170 BasicBlock *NewExitBB = 0; 171 172 if (Exit->isLandingPad()) { 173 SmallVector<BasicBlock*, 2> NewBBs; 174 SplitLandingPadPredecessors(Exit, ArrayRef<BasicBlock*>(&LoopBlocks[0], 175 LoopBlocks.size()), 176 ".loopexit", ".nonloopexit", 177 PP, NewBBs); 178 NewExitBB = NewBBs[0]; 179 } else { 180 NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", PP); 181 } 182 183 DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 184 << NewExitBB->getName() << "\n"); 185 return NewExitBB; 186 } 187 188 /// Add the specified block, and all of its predecessors, to the specified set, 189 /// if it's not already in there. Stop predecessor traversal when we reach 190 /// StopBlock. 191 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, 192 std::set<BasicBlock*> &Blocks) { 193 SmallVector<BasicBlock *, 8> Worklist; 194 Worklist.push_back(InputBB); 195 do { 196 BasicBlock *BB = Worklist.pop_back_val(); 197 if (Blocks.insert(BB).second && BB != StopBlock) 198 // If BB is not already processed and it is not a stop block then 199 // insert its predecessor in the work list 200 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 201 BasicBlock *WBB = *I; 202 Worklist.push_back(WBB); 203 } 204 } while (!Worklist.empty()); 205 } 206 207 /// \brief The first part of loop-nestification is to find a PHI node that tells 208 /// us how to partition the loops. 209 static PHINode *findPHIToPartitionLoops(Loop *L, AliasAnalysis *AA, 210 DominatorTree *DT) { 211 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) { 212 PHINode *PN = cast<PHINode>(I); 213 ++I; 214 if (Value *V = SimplifyInstruction(PN, 0, 0, DT)) { 215 // This is a degenerate PHI already, don't modify it! 216 PN->replaceAllUsesWith(V); 217 if (AA) AA->deleteValue(PN); 218 PN->eraseFromParent(); 219 continue; 220 } 221 222 // Scan this PHI node looking for a use of the PHI node by itself. 223 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 224 if (PN->getIncomingValue(i) == PN && 225 L->contains(PN->getIncomingBlock(i))) 226 // We found something tasty to remove. 227 return PN; 228 } 229 return 0; 230 } 231 232 /// \brief If this loop has multiple backedges, try to pull one of them out into 233 /// a nested loop. 234 /// 235 /// This is important for code that looks like 236 /// this: 237 /// 238 /// Loop: 239 /// ... 240 /// br cond, Loop, Next 241 /// ... 242 /// br cond2, Loop, Out 243 /// 244 /// To identify this common case, we look at the PHI nodes in the header of the 245 /// loop. PHI nodes with unchanging values on one backedge correspond to values 246 /// that change in the "outer" loop, but not in the "inner" loop. 247 /// 248 /// If we are able to separate out a loop, return the new outer loop that was 249 /// created. 250 /// 251 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader, 252 AliasAnalysis *AA, DominatorTree *DT, 253 LoopInfo *LI, ScalarEvolution *SE, Pass *PP) { 254 // Don't try to separate loops without a preheader. 255 if (!Preheader) 256 return 0; 257 258 // The header is not a landing pad; preheader insertion should ensure this. 259 assert(!L->getHeader()->isLandingPad() && 260 "Can't insert backedge to landing pad"); 261 262 PHINode *PN = findPHIToPartitionLoops(L, AA, DT); 263 if (PN == 0) return 0; // No known way to partition. 264 265 // Pull out all predecessors that have varying values in the loop. This 266 // handles the case when a PHI node has multiple instances of itself as 267 // arguments. 268 SmallVector<BasicBlock*, 8> OuterLoopPreds; 269 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 270 if (PN->getIncomingValue(i) != PN || 271 !L->contains(PN->getIncomingBlock(i))) { 272 // We can't split indirectbr edges. 273 if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator())) 274 return 0; 275 OuterLoopPreds.push_back(PN->getIncomingBlock(i)); 276 } 277 } 278 DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n"); 279 280 // If ScalarEvolution is around and knows anything about values in 281 // this loop, tell it to forget them, because we're about to 282 // substantially change it. 283 if (SE) 284 SE->forgetLoop(L); 285 286 BasicBlock *Header = L->getHeader(); 287 BasicBlock *NewBB = 288 SplitBlockPredecessors(Header, OuterLoopPreds, ".outer", PP); 289 290 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 291 // code layout too horribly. 292 placeSplitBlockCarefully(NewBB, OuterLoopPreds, L); 293 294 // Create the new outer loop. 295 Loop *NewOuter = new Loop(); 296 297 // Change the parent loop to use the outer loop as its child now. 298 if (Loop *Parent = L->getParentLoop()) 299 Parent->replaceChildLoopWith(L, NewOuter); 300 else 301 LI->changeTopLevelLoop(L, NewOuter); 302 303 // L is now a subloop of our outer loop. 304 NewOuter->addChildLoop(L); 305 306 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 307 I != E; ++I) 308 NewOuter->addBlockEntry(*I); 309 310 // Now reset the header in L, which had been moved by 311 // SplitBlockPredecessors for the outer loop. 312 L->moveToHeader(Header); 313 314 // Determine which blocks should stay in L and which should be moved out to 315 // the Outer loop now. 316 std::set<BasicBlock*> BlocksInL; 317 for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) { 318 BasicBlock *P = *PI; 319 if (DT->dominates(Header, P)) 320 addBlockAndPredsToSet(P, Header, BlocksInL); 321 } 322 323 // Scan all of the loop children of L, moving them to OuterLoop if they are 324 // not part of the inner loop. 325 const std::vector<Loop*> &SubLoops = L->getSubLoops(); 326 for (size_t I = 0; I != SubLoops.size(); ) 327 if (BlocksInL.count(SubLoops[I]->getHeader())) 328 ++I; // Loop remains in L 329 else 330 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I)); 331 332 // Now that we know which blocks are in L and which need to be moved to 333 // OuterLoop, move any blocks that need it. 334 for (unsigned i = 0; i != L->getBlocks().size(); ++i) { 335 BasicBlock *BB = L->getBlocks()[i]; 336 if (!BlocksInL.count(BB)) { 337 // Move this block to the parent, updating the exit blocks sets 338 L->removeBlockFromLoop(BB); 339 if ((*LI)[BB] == L) 340 LI->changeLoopFor(BB, NewOuter); 341 --i; 342 } 343 } 344 345 return NewOuter; 346 } 347 348 /// \brief This method is called when the specified loop has more than one 349 /// backedge in it. 350 /// 351 /// If this occurs, revector all of these backedges to target a new basic block 352 /// and have that block branch to the loop header. This ensures that loops 353 /// have exactly one backedge. 354 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader, 355 AliasAnalysis *AA, 356 DominatorTree *DT, LoopInfo *LI) { 357 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!"); 358 359 // Get information about the loop 360 BasicBlock *Header = L->getHeader(); 361 Function *F = Header->getParent(); 362 363 // Unique backedge insertion currently depends on having a preheader. 364 if (!Preheader) 365 return 0; 366 367 // The header is not a landing pad; preheader insertion should ensure this. 368 assert(!Header->isLandingPad() && "Can't insert backedge to landing pad"); 369 370 // Figure out which basic blocks contain back-edges to the loop header. 371 std::vector<BasicBlock*> BackedgeBlocks; 372 for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){ 373 BasicBlock *P = *I; 374 375 // Indirectbr edges cannot be split, so we must fail if we find one. 376 if (isa<IndirectBrInst>(P->getTerminator())) 377 return 0; 378 379 if (P != Preheader) BackedgeBlocks.push_back(P); 380 } 381 382 // Create and insert the new backedge block... 383 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(), 384 Header->getName()+".backedge", F); 385 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock); 386 387 DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block " 388 << BEBlock->getName() << "\n"); 389 390 // Move the new backedge block to right after the last backedge block. 391 Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos; 392 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock); 393 394 // Now that the block has been inserted into the function, create PHI nodes in 395 // the backedge block which correspond to any PHI nodes in the header block. 396 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 397 PHINode *PN = cast<PHINode>(I); 398 PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(), 399 PN->getName()+".be", BETerminator); 400 if (AA) AA->copyValue(PN, NewPN); 401 402 // Loop over the PHI node, moving all entries except the one for the 403 // preheader over to the new PHI node. 404 unsigned PreheaderIdx = ~0U; 405 bool HasUniqueIncomingValue = true; 406 Value *UniqueValue = 0; 407 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 408 BasicBlock *IBB = PN->getIncomingBlock(i); 409 Value *IV = PN->getIncomingValue(i); 410 if (IBB == Preheader) { 411 PreheaderIdx = i; 412 } else { 413 NewPN->addIncoming(IV, IBB); 414 if (HasUniqueIncomingValue) { 415 if (UniqueValue == 0) 416 UniqueValue = IV; 417 else if (UniqueValue != IV) 418 HasUniqueIncomingValue = false; 419 } 420 } 421 } 422 423 // Delete all of the incoming values from the old PN except the preheader's 424 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??"); 425 if (PreheaderIdx != 0) { 426 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx)); 427 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx)); 428 } 429 // Nuke all entries except the zero'th. 430 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i) 431 PN->removeIncomingValue(e-i, false); 432 433 // Finally, add the newly constructed PHI node as the entry for the BEBlock. 434 PN->addIncoming(NewPN, BEBlock); 435 436 // As an optimization, if all incoming values in the new PhiNode (which is a 437 // subset of the incoming values of the old PHI node) have the same value, 438 // eliminate the PHI Node. 439 if (HasUniqueIncomingValue) { 440 NewPN->replaceAllUsesWith(UniqueValue); 441 if (AA) AA->deleteValue(NewPN); 442 BEBlock->getInstList().erase(NewPN); 443 } 444 } 445 446 // Now that all of the PHI nodes have been inserted and adjusted, modify the 447 // backedge blocks to just to the BEBlock instead of the header. 448 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) { 449 TerminatorInst *TI = BackedgeBlocks[i]->getTerminator(); 450 for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op) 451 if (TI->getSuccessor(Op) == Header) 452 TI->setSuccessor(Op, BEBlock); 453 } 454 455 //===--- Update all analyses which we must preserve now -----------------===// 456 457 // Update Loop Information - we know that this block is now in the current 458 // loop and all parent loops. 459 L->addBasicBlockToLoop(BEBlock, LI->getBase()); 460 461 // Update dominator information 462 DT->splitBlock(BEBlock); 463 464 return BEBlock; 465 } 466 467 /// \brief Simplify one loop and queue further loops for simplification. 468 /// 469 /// FIXME: Currently this accepts both lots of analyses that it uses and a raw 470 /// Pass pointer. The Pass pointer is used by numerous utilities to update 471 /// specific analyses. Rather than a pass it would be much cleaner and more 472 /// explicit if they accepted the analysis directly and then updated it. 473 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist, 474 AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI, 475 ScalarEvolution *SE, Pass *PP) { 476 bool Changed = false; 477 ReprocessLoop: 478 479 // Check to see that no blocks (other than the header) in this loop have 480 // predecessors that are not in the loop. This is not valid for natural 481 // loops, but can occur if the blocks are unreachable. Since they are 482 // unreachable we can just shamelessly delete those CFG edges! 483 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); 484 BB != E; ++BB) { 485 if (*BB == L->getHeader()) continue; 486 487 SmallPtrSet<BasicBlock*, 4> BadPreds; 488 for (pred_iterator PI = pred_begin(*BB), 489 PE = pred_end(*BB); PI != PE; ++PI) { 490 BasicBlock *P = *PI; 491 if (!L->contains(P)) 492 BadPreds.insert(P); 493 } 494 495 // Delete each unique out-of-loop (and thus dead) predecessor. 496 for (SmallPtrSet<BasicBlock*, 4>::iterator I = BadPreds.begin(), 497 E = BadPreds.end(); I != E; ++I) { 498 499 DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor " 500 << (*I)->getName() << "\n"); 501 502 // Inform each successor of each dead pred. 503 for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI) 504 (*SI)->removePredecessor(*I); 505 // Zap the dead pred's terminator and replace it with unreachable. 506 TerminatorInst *TI = (*I)->getTerminator(); 507 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 508 (*I)->getTerminator()->eraseFromParent(); 509 new UnreachableInst((*I)->getContext(), *I); 510 Changed = true; 511 } 512 } 513 514 // If there are exiting blocks with branches on undef, resolve the undef in 515 // the direction which will exit the loop. This will help simplify loop 516 // trip count computations. 517 SmallVector<BasicBlock*, 8> ExitingBlocks; 518 L->getExitingBlocks(ExitingBlocks); 519 for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(), 520 E = ExitingBlocks.end(); I != E; ++I) 521 if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator())) 522 if (BI->isConditional()) { 523 if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) { 524 525 DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in " 526 << (*I)->getName() << "\n"); 527 528 BI->setCondition(ConstantInt::get(Cond->getType(), 529 !L->contains(BI->getSuccessor(0)))); 530 531 // This may make the loop analyzable, force SCEV recomputation. 532 if (SE) 533 SE->forgetLoop(L); 534 535 Changed = true; 536 } 537 } 538 539 // Does the loop already have a preheader? If so, don't insert one. 540 BasicBlock *Preheader = L->getLoopPreheader(); 541 if (!Preheader) { 542 Preheader = InsertPreheaderForLoop(L, PP); 543 if (Preheader) { 544 ++NumInserted; 545 Changed = true; 546 } 547 } 548 549 // Next, check to make sure that all exit nodes of the loop only have 550 // predecessors that are inside of the loop. This check guarantees that the 551 // loop preheader/header will dominate the exit blocks. If the exit block has 552 // predecessors from outside of the loop, split the edge now. 553 SmallVector<BasicBlock*, 8> ExitBlocks; 554 L->getExitBlocks(ExitBlocks); 555 556 SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(), 557 ExitBlocks.end()); 558 for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(), 559 E = ExitBlockSet.end(); I != E; ++I) { 560 BasicBlock *ExitBlock = *I; 561 for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock); 562 PI != PE; ++PI) 563 // Must be exactly this loop: no subloops, parent loops, or non-loop preds 564 // allowed. 565 if (!L->contains(*PI)) { 566 if (rewriteLoopExitBlock(L, ExitBlock, PP)) { 567 ++NumInserted; 568 Changed = true; 569 } 570 break; 571 } 572 } 573 574 // If the header has more than two predecessors at this point (from the 575 // preheader and from multiple backedges), we must adjust the loop. 576 BasicBlock *LoopLatch = L->getLoopLatch(); 577 if (!LoopLatch) { 578 // If this is really a nested loop, rip it out into a child loop. Don't do 579 // this for loops with a giant number of backedges, just factor them into a 580 // common backedge instead. 581 if (L->getNumBackEdges() < 8) { 582 if (Loop *OuterL = separateNestedLoop(L, Preheader, AA, DT, LI, SE, PP)) { 583 ++NumNested; 584 // Enqueue the outer loop as it should be processed next in our 585 // depth-first nest walk. 586 Worklist.push_back(OuterL); 587 588 // This is a big restructuring change, reprocess the whole loop. 589 Changed = true; 590 // GCC doesn't tail recursion eliminate this. 591 // FIXME: It isn't clear we can't rely on LLVM to TRE this. 592 goto ReprocessLoop; 593 } 594 } 595 596 // If we either couldn't, or didn't want to, identify nesting of the loops, 597 // insert a new block that all backedges target, then make it jump to the 598 // loop header. 599 LoopLatch = insertUniqueBackedgeBlock(L, Preheader, AA, DT, LI); 600 if (LoopLatch) { 601 ++NumInserted; 602 Changed = true; 603 } 604 } 605 606 // Scan over the PHI nodes in the loop header. Since they now have only two 607 // incoming values (the loop is canonicalized), we may have simplified the PHI 608 // down to 'X = phi [X, Y]', which should be replaced with 'Y'. 609 PHINode *PN; 610 for (BasicBlock::iterator I = L->getHeader()->begin(); 611 (PN = dyn_cast<PHINode>(I++)); ) 612 if (Value *V = SimplifyInstruction(PN, 0, 0, DT)) { 613 if (AA) AA->deleteValue(PN); 614 if (SE) SE->forgetValue(PN); 615 PN->replaceAllUsesWith(V); 616 PN->eraseFromParent(); 617 } 618 619 // If this loop has multiple exits and the exits all go to the same 620 // block, attempt to merge the exits. This helps several passes, such 621 // as LoopRotation, which do not support loops with multiple exits. 622 // SimplifyCFG also does this (and this code uses the same utility 623 // function), however this code is loop-aware, where SimplifyCFG is 624 // not. That gives it the advantage of being able to hoist 625 // loop-invariant instructions out of the way to open up more 626 // opportunities, and the disadvantage of having the responsibility 627 // to preserve dominator information. 628 bool UniqueExit = true; 629 if (!ExitBlocks.empty()) 630 for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i) 631 if (ExitBlocks[i] != ExitBlocks[0]) { 632 UniqueExit = false; 633 break; 634 } 635 if (UniqueExit) { 636 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 637 BasicBlock *ExitingBlock = ExitingBlocks[i]; 638 if (!ExitingBlock->getSinglePredecessor()) continue; 639 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 640 if (!BI || !BI->isConditional()) continue; 641 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); 642 if (!CI || CI->getParent() != ExitingBlock) continue; 643 644 // Attempt to hoist out all instructions except for the 645 // comparison and the branch. 646 bool AllInvariant = true; 647 bool AnyInvariant = false; 648 for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) { 649 Instruction *Inst = I++; 650 // Skip debug info intrinsics. 651 if (isa<DbgInfoIntrinsic>(Inst)) 652 continue; 653 if (Inst == CI) 654 continue; 655 if (!L->makeLoopInvariant(Inst, AnyInvariant, 656 Preheader ? Preheader->getTerminator() : 0)) { 657 AllInvariant = false; 658 break; 659 } 660 } 661 if (AnyInvariant) { 662 Changed = true; 663 // The loop disposition of all SCEV expressions that depend on any 664 // hoisted values have also changed. 665 if (SE) 666 SE->forgetLoopDispositions(L); 667 } 668 if (!AllInvariant) continue; 669 670 // The block has now been cleared of all instructions except for 671 // a comparison and a conditional branch. SimplifyCFG may be able 672 // to fold it now. 673 if (!FoldBranchToCommonDest(BI)) continue; 674 675 // Success. The block is now dead, so remove it from the loop, 676 // update the dominator tree and delete it. 677 DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block " 678 << ExitingBlock->getName() << "\n"); 679 680 // Notify ScalarEvolution before deleting this block. Currently assume the 681 // parent loop doesn't change (spliting edges doesn't count). If blocks, 682 // CFG edges, or other values in the parent loop change, then we need call 683 // to forgetLoop() for the parent instead. 684 if (SE) 685 SE->forgetLoop(L); 686 687 assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock)); 688 Changed = true; 689 LI->removeBlock(ExitingBlock); 690 691 DomTreeNode *Node = DT->getNode(ExitingBlock); 692 const std::vector<DomTreeNodeBase<BasicBlock> *> &Children = 693 Node->getChildren(); 694 while (!Children.empty()) { 695 DomTreeNode *Child = Children.front(); 696 DT->changeImmediateDominator(Child, Node->getIDom()); 697 } 698 DT->eraseNode(ExitingBlock); 699 700 BI->getSuccessor(0)->removePredecessor(ExitingBlock); 701 BI->getSuccessor(1)->removePredecessor(ExitingBlock); 702 ExitingBlock->eraseFromParent(); 703 } 704 } 705 706 return Changed; 707 } 708 709 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, Pass *PP, 710 AliasAnalysis *AA, ScalarEvolution *SE) { 711 bool Changed = false; 712 713 // Worklist maintains our depth-first queue of loops in this nest to process. 714 SmallVector<Loop *, 4> Worklist; 715 Worklist.push_back(L); 716 717 // Walk the worklist from front to back, pushing newly found sub loops onto 718 // the back. This will let us process loops from back to front in depth-first 719 // order. We can use this simple process because loops form a tree. 720 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 721 Loop *L2 = Worklist[Idx]; 722 for (Loop::iterator I = L2->begin(), E = L2->end(); I != E; ++I) 723 Worklist.push_back(*I); 724 } 725 726 while (!Worklist.empty()) 727 Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, AA, DT, LI, SE, PP); 728 729 return Changed; 730 } 731 732 namespace { 733 struct LoopSimplify : public FunctionPass { 734 static char ID; // Pass identification, replacement for typeid 735 LoopSimplify() : FunctionPass(ID) { 736 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry()); 737 } 738 739 // AA - If we have an alias analysis object to update, this is it, otherwise 740 // this is null. 741 AliasAnalysis *AA; 742 DominatorTree *DT; 743 LoopInfo *LI; 744 ScalarEvolution *SE; 745 746 virtual bool runOnFunction(Function &F); 747 748 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 749 // We need loop information to identify the loops... 750 AU.addRequired<DominatorTreeWrapperPass>(); 751 AU.addPreserved<DominatorTreeWrapperPass>(); 752 753 AU.addRequired<LoopInfo>(); 754 AU.addPreserved<LoopInfo>(); 755 756 AU.addPreserved<AliasAnalysis>(); 757 AU.addPreserved<ScalarEvolution>(); 758 AU.addPreserved<DependenceAnalysis>(); 759 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added. 760 } 761 762 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees. 763 void verifyAnalysis() const; 764 765 private: 766 bool ProcessLoop(Loop *L); 767 BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit); 768 Loop *SeparateNestedLoop(Loop *L, BasicBlock *Preheader); 769 BasicBlock *InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader); 770 }; 771 } 772 773 char LoopSimplify::ID = 0; 774 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify", 775 "Canonicalize natural loops", true, false) 776 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 777 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 778 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify", 779 "Canonicalize natural loops", true, false) 780 781 // Publicly exposed interface to pass... 782 char &llvm::LoopSimplifyID = LoopSimplify::ID; 783 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); } 784 785 /// runOnLoop - Run down all loops in the CFG (recursively, but we could do 786 /// it in any convenient order) inserting preheaders... 787 /// 788 bool LoopSimplify::runOnFunction(Function &F) { 789 bool Changed = false; 790 AA = getAnalysisIfAvailable<AliasAnalysis>(); 791 LI = &getAnalysis<LoopInfo>(); 792 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 793 SE = getAnalysisIfAvailable<ScalarEvolution>(); 794 795 // Simplify each loop nest in the function. 796 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 797 Changed |= simplifyLoop(*I, DT, LI, this, AA, SE); 798 799 return Changed; 800 } 801 802 // FIXME: Restore this code when we re-enable verification in verifyAnalysis 803 // below. 804 #if 0 805 static void verifyLoop(Loop *L) { 806 // Verify subloops. 807 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 808 verifyLoop(*I); 809 810 // It used to be possible to just assert L->isLoopSimplifyForm(), however 811 // with the introduction of indirectbr, there are now cases where it's 812 // not possible to transform a loop as necessary. We can at least check 813 // that there is an indirectbr near any time there's trouble. 814 815 // Indirectbr can interfere with preheader and unique backedge insertion. 816 if (!L->getLoopPreheader() || !L->getLoopLatch()) { 817 bool HasIndBrPred = false; 818 for (pred_iterator PI = pred_begin(L->getHeader()), 819 PE = pred_end(L->getHeader()); PI != PE; ++PI) 820 if (isa<IndirectBrInst>((*PI)->getTerminator())) { 821 HasIndBrPred = true; 822 break; 823 } 824 assert(HasIndBrPred && 825 "LoopSimplify has no excuse for missing loop header info!"); 826 (void)HasIndBrPred; 827 } 828 829 // Indirectbr can interfere with exit block canonicalization. 830 if (!L->hasDedicatedExits()) { 831 bool HasIndBrExiting = false; 832 SmallVector<BasicBlock*, 8> ExitingBlocks; 833 L->getExitingBlocks(ExitingBlocks); 834 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 835 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) { 836 HasIndBrExiting = true; 837 break; 838 } 839 } 840 841 assert(HasIndBrExiting && 842 "LoopSimplify has no excuse for missing exit block info!"); 843 (void)HasIndBrExiting; 844 } 845 } 846 #endif 847 848 void LoopSimplify::verifyAnalysis() const { 849 // FIXME: This routine is being called mid-way through the loop pass manager 850 // as loop passes destroy this analysis. That's actually fine, but we have no 851 // way of expressing that here. Once all of the passes that destroy this are 852 // hoisted out of the loop pass manager we can add back verification here. 853 #if 0 854 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 855 verifyLoop(*I); 856 #endif 857 } 858