xref: /llvm-project/llvm/lib/Transforms/Utils/LoopSimplify.cpp (revision 09cf304ebc3c75b32f919065e9f32b4fbef590ac)
1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs several transformations to transform natural loops into a
11 // simpler form, which makes subsequent analyses and transformations simpler and
12 // more effective.
13 //
14 // Loop pre-header insertion guarantees that there is a single, non-critical
15 // entry edge from outside of the loop to the loop header.  This simplifies a
16 // number of analyses and transformations, such as LICM.
17 //
18 // Loop exit-block insertion guarantees that all exit blocks from the loop
19 // (blocks which are outside of the loop that have predecessors inside of the
20 // loop) only have predecessors from inside of the loop (and are thus dominated
21 // by the loop header).  This simplifies transformations such as store-sinking
22 // that are built into LICM.
23 //
24 // This pass also guarantees that loops will have exactly one backedge.
25 //
26 // Indirectbr instructions introduce several complications. If the loop
27 // contains or is entered by an indirectbr instruction, it may not be possible
28 // to transform the loop and make these guarantees. Client code should check
29 // that these conditions are true before relying on them.
30 //
31 // Note that the simplifycfg pass will clean up blocks which are split out but
32 // end up being unnecessary, so usage of this pass should not pessimize
33 // generated code.
34 //
35 // This pass obviously modifies the CFG, but updates loop information and
36 // dominator information.
37 //
38 //===----------------------------------------------------------------------===//
39 
40 #include "llvm/Transforms/Utils/LoopSimplify.h"
41 #include "llvm/Transforms/Scalar.h"
42 #include "llvm/ADT/DepthFirstIterator.h"
43 #include "llvm/ADT/SetOperations.h"
44 #include "llvm/ADT/SetVector.h"
45 #include "llvm/ADT/SmallVector.h"
46 #include "llvm/ADT/Statistic.h"
47 #include "llvm/Analysis/AliasAnalysis.h"
48 #include "llvm/Analysis/BasicAliasAnalysis.h"
49 #include "llvm/Analysis/AssumptionCache.h"
50 #include "llvm/Analysis/DependenceAnalysis.h"
51 #include "llvm/Analysis/GlobalsModRef.h"
52 #include "llvm/Analysis/InstructionSimplify.h"
53 #include "llvm/Analysis/LoopInfo.h"
54 #include "llvm/Analysis/ScalarEvolution.h"
55 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
56 #include "llvm/IR/CFG.h"
57 #include "llvm/IR/Constants.h"
58 #include "llvm/IR/DataLayout.h"
59 #include "llvm/IR/Dominators.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/IR/IntrinsicInst.h"
63 #include "llvm/IR/LLVMContext.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/Type.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include "llvm/Transforms/Utils/LoopUtils.h"
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "loop-simplify"
74 
75 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
76 STATISTIC(NumNested  , "Number of nested loops split out");
77 
78 // If the block isn't already, move the new block to right after some 'outside
79 // block' block.  This prevents the preheader from being placed inside the loop
80 // body, e.g. when the loop hasn't been rotated.
81 static void placeSplitBlockCarefully(BasicBlock *NewBB,
82                                      SmallVectorImpl<BasicBlock *> &SplitPreds,
83                                      Loop *L) {
84   // Check to see if NewBB is already well placed.
85   Function::iterator BBI = --NewBB->getIterator();
86   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
87     if (&*BBI == SplitPreds[i])
88       return;
89   }
90 
91   // If it isn't already after an outside block, move it after one.  This is
92   // always good as it makes the uncond branch from the outside block into a
93   // fall-through.
94 
95   // Figure out *which* outside block to put this after.  Prefer an outside
96   // block that neighbors a BB actually in the loop.
97   BasicBlock *FoundBB = nullptr;
98   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
99     Function::iterator BBI = SplitPreds[i]->getIterator();
100     if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) {
101       FoundBB = SplitPreds[i];
102       break;
103     }
104   }
105 
106   // If our heuristic for a *good* bb to place this after doesn't find
107   // anything, just pick something.  It's likely better than leaving it within
108   // the loop.
109   if (!FoundBB)
110     FoundBB = SplitPreds[0];
111   NewBB->moveAfter(FoundBB);
112 }
113 
114 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
115 /// preheader, this method is called to insert one.  This method has two phases:
116 /// preheader insertion and analysis updating.
117 ///
118 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT,
119                                          LoopInfo *LI, bool PreserveLCSSA) {
120   BasicBlock *Header = L->getHeader();
121 
122   // Compute the set of predecessors of the loop that are not in the loop.
123   SmallVector<BasicBlock*, 8> OutsideBlocks;
124   for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
125        PI != PE; ++PI) {
126     BasicBlock *P = *PI;
127     if (!L->contains(P)) {         // Coming in from outside the loop?
128       // If the loop is branched to from an indirect branch, we won't
129       // be able to fully transform the loop, because it prohibits
130       // edge splitting.
131       if (isa<IndirectBrInst>(P->getTerminator())) return nullptr;
132 
133       // Keep track of it.
134       OutsideBlocks.push_back(P);
135     }
136   }
137 
138   // Split out the loop pre-header.
139   BasicBlock *PreheaderBB;
140   PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT,
141                                        LI, PreserveLCSSA);
142   if (!PreheaderBB)
143     return nullptr;
144 
145   DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
146                << PreheaderBB->getName() << "\n");
147 
148   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
149   // code layout too horribly.
150   placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
151 
152   return PreheaderBB;
153 }
154 
155 /// \brief Ensure that the loop preheader dominates all exit blocks.
156 ///
157 /// This method is used to split exit blocks that have predecessors outside of
158 /// the loop.
159 static BasicBlock *rewriteLoopExitBlock(Loop *L, BasicBlock *Exit,
160                                         DominatorTree *DT, LoopInfo *LI,
161                                         bool PreserveLCSSA) {
162   SmallVector<BasicBlock*, 8> LoopBlocks;
163   for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) {
164     BasicBlock *P = *I;
165     if (L->contains(P)) {
166       // Don't do this if the loop is exited via an indirect branch.
167       if (isa<IndirectBrInst>(P->getTerminator())) return nullptr;
168 
169       LoopBlocks.push_back(P);
170     }
171   }
172 
173   assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
174   BasicBlock *NewExitBB = nullptr;
175 
176   NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", DT, LI,
177                                      PreserveLCSSA);
178   if (!NewExitBB)
179     return nullptr;
180 
181   DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
182                << NewExitBB->getName() << "\n");
183   return NewExitBB;
184 }
185 
186 /// Add the specified block, and all of its predecessors, to the specified set,
187 /// if it's not already in there.  Stop predecessor traversal when we reach
188 /// StopBlock.
189 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
190                                   std::set<BasicBlock*> &Blocks) {
191   SmallVector<BasicBlock *, 8> Worklist;
192   Worklist.push_back(InputBB);
193   do {
194     BasicBlock *BB = Worklist.pop_back_val();
195     if (Blocks.insert(BB).second && BB != StopBlock)
196       // If BB is not already processed and it is not a stop block then
197       // insert its predecessor in the work list
198       for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
199         BasicBlock *WBB = *I;
200         Worklist.push_back(WBB);
201       }
202   } while (!Worklist.empty());
203 }
204 
205 /// \brief The first part of loop-nestification is to find a PHI node that tells
206 /// us how to partition the loops.
207 static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT,
208                                         AssumptionCache *AC) {
209   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
210   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
211     PHINode *PN = cast<PHINode>(I);
212     ++I;
213     if (Value *V = SimplifyInstruction(PN, DL, nullptr, DT, AC)) {
214       // This is a degenerate PHI already, don't modify it!
215       PN->replaceAllUsesWith(V);
216       PN->eraseFromParent();
217       continue;
218     }
219 
220     // Scan this PHI node looking for a use of the PHI node by itself.
221     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
222       if (PN->getIncomingValue(i) == PN &&
223           L->contains(PN->getIncomingBlock(i)))
224         // We found something tasty to remove.
225         return PN;
226   }
227   return nullptr;
228 }
229 
230 /// \brief If this loop has multiple backedges, try to pull one of them out into
231 /// a nested loop.
232 ///
233 /// This is important for code that looks like
234 /// this:
235 ///
236 ///  Loop:
237 ///     ...
238 ///     br cond, Loop, Next
239 ///     ...
240 ///     br cond2, Loop, Out
241 ///
242 /// To identify this common case, we look at the PHI nodes in the header of the
243 /// loop.  PHI nodes with unchanging values on one backedge correspond to values
244 /// that change in the "outer" loop, but not in the "inner" loop.
245 ///
246 /// If we are able to separate out a loop, return the new outer loop that was
247 /// created.
248 ///
249 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
250                                 DominatorTree *DT, LoopInfo *LI,
251                                 ScalarEvolution *SE, bool PreserveLCSSA,
252                                 AssumptionCache *AC) {
253   // Don't try to separate loops without a preheader.
254   if (!Preheader)
255     return nullptr;
256 
257   // The header is not a landing pad; preheader insertion should ensure this.
258   BasicBlock *Header = L->getHeader();
259   assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
260 
261   PHINode *PN = findPHIToPartitionLoops(L, DT, AC);
262   if (!PN) return nullptr;  // No known way to partition.
263 
264   // Pull out all predecessors that have varying values in the loop.  This
265   // handles the case when a PHI node has multiple instances of itself as
266   // arguments.
267   SmallVector<BasicBlock*, 8> OuterLoopPreds;
268   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
269     if (PN->getIncomingValue(i) != PN ||
270         !L->contains(PN->getIncomingBlock(i))) {
271       // We can't split indirectbr edges.
272       if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
273         return nullptr;
274       OuterLoopPreds.push_back(PN->getIncomingBlock(i));
275     }
276   }
277   DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
278 
279   // If ScalarEvolution is around and knows anything about values in
280   // this loop, tell it to forget them, because we're about to
281   // substantially change it.
282   if (SE)
283     SE->forgetLoop(L);
284 
285   BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer",
286                                              DT, LI, PreserveLCSSA);
287 
288   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
289   // code layout too horribly.
290   placeSplitBlockCarefully(NewBB, OuterLoopPreds, L);
291 
292   // Create the new outer loop.
293   Loop *NewOuter = new Loop();
294 
295   // Change the parent loop to use the outer loop as its child now.
296   if (Loop *Parent = L->getParentLoop())
297     Parent->replaceChildLoopWith(L, NewOuter);
298   else
299     LI->changeTopLevelLoop(L, NewOuter);
300 
301   // L is now a subloop of our outer loop.
302   NewOuter->addChildLoop(L);
303 
304   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
305        I != E; ++I)
306     NewOuter->addBlockEntry(*I);
307 
308   // Now reset the header in L, which had been moved by
309   // SplitBlockPredecessors for the outer loop.
310   L->moveToHeader(Header);
311 
312   // Determine which blocks should stay in L and which should be moved out to
313   // the Outer loop now.
314   std::set<BasicBlock*> BlocksInL;
315   for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
316     BasicBlock *P = *PI;
317     if (DT->dominates(Header, P))
318       addBlockAndPredsToSet(P, Header, BlocksInL);
319   }
320 
321   // Scan all of the loop children of L, moving them to OuterLoop if they are
322   // not part of the inner loop.
323   const std::vector<Loop*> &SubLoops = L->getSubLoops();
324   for (size_t I = 0; I != SubLoops.size(); )
325     if (BlocksInL.count(SubLoops[I]->getHeader()))
326       ++I;   // Loop remains in L
327     else
328       NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
329 
330   SmallVector<BasicBlock *, 8> OuterLoopBlocks;
331   OuterLoopBlocks.push_back(NewBB);
332   // Now that we know which blocks are in L and which need to be moved to
333   // OuterLoop, move any blocks that need it.
334   for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
335     BasicBlock *BB = L->getBlocks()[i];
336     if (!BlocksInL.count(BB)) {
337       // Move this block to the parent, updating the exit blocks sets
338       L->removeBlockFromLoop(BB);
339       if ((*LI)[BB] == L) {
340         LI->changeLoopFor(BB, NewOuter);
341         OuterLoopBlocks.push_back(BB);
342       }
343       --i;
344     }
345   }
346 
347   // Split edges to exit blocks from the inner loop, if they emerged in the
348   // process of separating the outer one.
349   SmallVector<BasicBlock *, 8> ExitBlocks;
350   L->getExitBlocks(ExitBlocks);
351   SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(),
352                                                ExitBlocks.end());
353   for (BasicBlock *ExitBlock : ExitBlockSet) {
354     if (any_of(predecessors(ExitBlock),
355                [L](BasicBlock *BB) { return !L->contains(BB); })) {
356       rewriteLoopExitBlock(L, ExitBlock, DT, LI, PreserveLCSSA);
357     }
358   }
359 
360   if (PreserveLCSSA) {
361     // Fix LCSSA form for L. Some values, which previously were only used inside
362     // L, can now be used in NewOuter loop. We need to insert phi-nodes for them
363     // in corresponding exit blocks.
364 
365     // Go through all instructions in OuterLoopBlocks and check if they are
366     // using operands from the inner loop. In this case we'll need to fix LCSSA
367     // for these instructions.
368     SmallSetVector<Instruction *, 8> WorklistSet;
369     for (BasicBlock *OuterBB: OuterLoopBlocks) {
370       for (Instruction &I : *OuterBB) {
371         for (Value *Op : I.operands()) {
372           Instruction *OpI = dyn_cast<Instruction>(Op);
373           if (!OpI || !L->contains(OpI))
374             continue;
375           WorklistSet.insert(OpI);
376         }
377       }
378     }
379     SmallVector<Instruction *, 8> Worklist(WorklistSet.begin(),
380                                            WorklistSet.end());
381     formLCSSAForInstructions(Worklist, *DT, *LI);
382     assert(NewOuter->isRecursivelyLCSSAForm(*DT) &&
383            "LCSSA is broken after separating nested loops!");
384   }
385 
386   return NewOuter;
387 }
388 
389 /// \brief This method is called when the specified loop has more than one
390 /// backedge in it.
391 ///
392 /// If this occurs, revector all of these backedges to target a new basic block
393 /// and have that block branch to the loop header.  This ensures that loops
394 /// have exactly one backedge.
395 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
396                                              DominatorTree *DT, LoopInfo *LI) {
397   assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
398 
399   // Get information about the loop
400   BasicBlock *Header = L->getHeader();
401   Function *F = Header->getParent();
402 
403   // Unique backedge insertion currently depends on having a preheader.
404   if (!Preheader)
405     return nullptr;
406 
407   // The header is not an EH pad; preheader insertion should ensure this.
408   assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
409 
410   // Figure out which basic blocks contain back-edges to the loop header.
411   std::vector<BasicBlock*> BackedgeBlocks;
412   for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
413     BasicBlock *P = *I;
414 
415     // Indirectbr edges cannot be split, so we must fail if we find one.
416     if (isa<IndirectBrInst>(P->getTerminator()))
417       return nullptr;
418 
419     if (P != Preheader) BackedgeBlocks.push_back(P);
420   }
421 
422   // Create and insert the new backedge block...
423   BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
424                                            Header->getName() + ".backedge", F);
425   BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
426   BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc());
427 
428   DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
429                << BEBlock->getName() << "\n");
430 
431   // Move the new backedge block to right after the last backedge block.
432   Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator();
433   F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
434 
435   // Now that the block has been inserted into the function, create PHI nodes in
436   // the backedge block which correspond to any PHI nodes in the header block.
437   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
438     PHINode *PN = cast<PHINode>(I);
439     PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
440                                      PN->getName()+".be", BETerminator);
441 
442     // Loop over the PHI node, moving all entries except the one for the
443     // preheader over to the new PHI node.
444     unsigned PreheaderIdx = ~0U;
445     bool HasUniqueIncomingValue = true;
446     Value *UniqueValue = nullptr;
447     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
448       BasicBlock *IBB = PN->getIncomingBlock(i);
449       Value *IV = PN->getIncomingValue(i);
450       if (IBB == Preheader) {
451         PreheaderIdx = i;
452       } else {
453         NewPN->addIncoming(IV, IBB);
454         if (HasUniqueIncomingValue) {
455           if (!UniqueValue)
456             UniqueValue = IV;
457           else if (UniqueValue != IV)
458             HasUniqueIncomingValue = false;
459         }
460       }
461     }
462 
463     // Delete all of the incoming values from the old PN except the preheader's
464     assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
465     if (PreheaderIdx != 0) {
466       PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
467       PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
468     }
469     // Nuke all entries except the zero'th.
470     for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
471       PN->removeIncomingValue(e-i, false);
472 
473     // Finally, add the newly constructed PHI node as the entry for the BEBlock.
474     PN->addIncoming(NewPN, BEBlock);
475 
476     // As an optimization, if all incoming values in the new PhiNode (which is a
477     // subset of the incoming values of the old PHI node) have the same value,
478     // eliminate the PHI Node.
479     if (HasUniqueIncomingValue) {
480       NewPN->replaceAllUsesWith(UniqueValue);
481       BEBlock->getInstList().erase(NewPN);
482     }
483   }
484 
485   // Now that all of the PHI nodes have been inserted and adjusted, modify the
486   // backedge blocks to just to the BEBlock instead of the header.
487   for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
488     TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
489     for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
490       if (TI->getSuccessor(Op) == Header)
491         TI->setSuccessor(Op, BEBlock);
492   }
493 
494   //===--- Update all analyses which we must preserve now -----------------===//
495 
496   // Update Loop Information - we know that this block is now in the current
497   // loop and all parent loops.
498   L->addBasicBlockToLoop(BEBlock, *LI);
499 
500   // Update dominator information
501   DT->splitBlock(BEBlock);
502 
503   return BEBlock;
504 }
505 
506 /// \brief Simplify one loop and queue further loops for simplification.
507 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
508                             DominatorTree *DT, LoopInfo *LI,
509                             ScalarEvolution *SE, AssumptionCache *AC,
510                             bool PreserveLCSSA) {
511   bool Changed = false;
512 ReprocessLoop:
513 
514   // Check to see that no blocks (other than the header) in this loop have
515   // predecessors that are not in the loop.  This is not valid for natural
516   // loops, but can occur if the blocks are unreachable.  Since they are
517   // unreachable we can just shamelessly delete those CFG edges!
518   for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
519        BB != E; ++BB) {
520     if (*BB == L->getHeader()) continue;
521 
522     SmallPtrSet<BasicBlock*, 4> BadPreds;
523     for (pred_iterator PI = pred_begin(*BB),
524          PE = pred_end(*BB); PI != PE; ++PI) {
525       BasicBlock *P = *PI;
526       if (!L->contains(P))
527         BadPreds.insert(P);
528     }
529 
530     // Delete each unique out-of-loop (and thus dead) predecessor.
531     for (BasicBlock *P : BadPreds) {
532 
533       DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
534                    << P->getName() << "\n");
535 
536       // Zap the dead pred's terminator and replace it with unreachable.
537       TerminatorInst *TI = P->getTerminator();
538       changeToUnreachable(TI, /*UseLLVMTrap=*/false);
539       Changed = true;
540     }
541   }
542 
543   // If there are exiting blocks with branches on undef, resolve the undef in
544   // the direction which will exit the loop. This will help simplify loop
545   // trip count computations.
546   SmallVector<BasicBlock*, 8> ExitingBlocks;
547   L->getExitingBlocks(ExitingBlocks);
548   for (BasicBlock *ExitingBlock : ExitingBlocks)
549     if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
550       if (BI->isConditional()) {
551         if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
552 
553           DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
554                        << ExitingBlock->getName() << "\n");
555 
556           BI->setCondition(ConstantInt::get(Cond->getType(),
557                                             !L->contains(BI->getSuccessor(0))));
558 
559           // This may make the loop analyzable, force SCEV recomputation.
560           if (SE)
561             SE->forgetLoop(L);
562 
563           Changed = true;
564         }
565       }
566 
567   // Does the loop already have a preheader?  If so, don't insert one.
568   BasicBlock *Preheader = L->getLoopPreheader();
569   if (!Preheader) {
570     Preheader = InsertPreheaderForLoop(L, DT, LI, PreserveLCSSA);
571     if (Preheader) {
572       ++NumInserted;
573       Changed = true;
574     }
575   }
576 
577   // Next, check to make sure that all exit nodes of the loop only have
578   // predecessors that are inside of the loop.  This check guarantees that the
579   // loop preheader/header will dominate the exit blocks.  If the exit block has
580   // predecessors from outside of the loop, split the edge now.
581   SmallVector<BasicBlock*, 8> ExitBlocks;
582   L->getExitBlocks(ExitBlocks);
583 
584   SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(),
585                                                ExitBlocks.end());
586   for (BasicBlock *ExitBlock : ExitBlockSet) {
587     if (any_of(predecessors(ExitBlock),
588                [L](BasicBlock *BB) { return !L->contains(BB); })) {
589       rewriteLoopExitBlock(L, ExitBlock, DT, LI, PreserveLCSSA);
590       ++NumInserted;
591       Changed = true;
592     }
593   }
594 
595   // If the header has more than two predecessors at this point (from the
596   // preheader and from multiple backedges), we must adjust the loop.
597   BasicBlock *LoopLatch = L->getLoopLatch();
598   if (!LoopLatch) {
599     // If this is really a nested loop, rip it out into a child loop.  Don't do
600     // this for loops with a giant number of backedges, just factor them into a
601     // common backedge instead.
602     if (L->getNumBackEdges() < 8) {
603       if (Loop *OuterL =
604               separateNestedLoop(L, Preheader, DT, LI, SE, PreserveLCSSA, AC)) {
605         ++NumNested;
606         // Enqueue the outer loop as it should be processed next in our
607         // depth-first nest walk.
608         Worklist.push_back(OuterL);
609 
610         // This is a big restructuring change, reprocess the whole loop.
611         Changed = true;
612         // GCC doesn't tail recursion eliminate this.
613         // FIXME: It isn't clear we can't rely on LLVM to TRE this.
614         goto ReprocessLoop;
615       }
616     }
617 
618     // If we either couldn't, or didn't want to, identify nesting of the loops,
619     // insert a new block that all backedges target, then make it jump to the
620     // loop header.
621     LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI);
622     if (LoopLatch) {
623       ++NumInserted;
624       Changed = true;
625     }
626   }
627 
628   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
629 
630   // Scan over the PHI nodes in the loop header.  Since they now have only two
631   // incoming values (the loop is canonicalized), we may have simplified the PHI
632   // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
633   PHINode *PN;
634   for (BasicBlock::iterator I = L->getHeader()->begin();
635        (PN = dyn_cast<PHINode>(I++)); )
636     if (Value *V = SimplifyInstruction(PN, DL, nullptr, DT, AC)) {
637       if (SE) SE->forgetValue(PN);
638       PN->replaceAllUsesWith(V);
639       PN->eraseFromParent();
640     }
641 
642   // If this loop has multiple exits and the exits all go to the same
643   // block, attempt to merge the exits. This helps several passes, such
644   // as LoopRotation, which do not support loops with multiple exits.
645   // SimplifyCFG also does this (and this code uses the same utility
646   // function), however this code is loop-aware, where SimplifyCFG is
647   // not. That gives it the advantage of being able to hoist
648   // loop-invariant instructions out of the way to open up more
649   // opportunities, and the disadvantage of having the responsibility
650   // to preserve dominator information.
651   bool UniqueExit = true;
652   if (!ExitBlocks.empty())
653     for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i)
654       if (ExitBlocks[i] != ExitBlocks[0]) {
655         UniqueExit = false;
656         break;
657       }
658   if (UniqueExit) {
659     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
660       BasicBlock *ExitingBlock = ExitingBlocks[i];
661       if (!ExitingBlock->getSinglePredecessor()) continue;
662       BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
663       if (!BI || !BI->isConditional()) continue;
664       CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
665       if (!CI || CI->getParent() != ExitingBlock) continue;
666 
667       // Attempt to hoist out all instructions except for the
668       // comparison and the branch.
669       bool AllInvariant = true;
670       bool AnyInvariant = false;
671       for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) {
672         Instruction *Inst = &*I++;
673         // Skip debug info intrinsics.
674         if (isa<DbgInfoIntrinsic>(Inst))
675           continue;
676         if (Inst == CI)
677           continue;
678         if (!L->makeLoopInvariant(Inst, AnyInvariant,
679                                   Preheader ? Preheader->getTerminator()
680                                             : nullptr)) {
681           AllInvariant = false;
682           break;
683         }
684       }
685       if (AnyInvariant) {
686         Changed = true;
687         // The loop disposition of all SCEV expressions that depend on any
688         // hoisted values have also changed.
689         if (SE)
690           SE->forgetLoopDispositions(L);
691       }
692       if (!AllInvariant) continue;
693 
694       // The block has now been cleared of all instructions except for
695       // a comparison and a conditional branch. SimplifyCFG may be able
696       // to fold it now.
697       if (!FoldBranchToCommonDest(BI))
698         continue;
699 
700       // Success. The block is now dead, so remove it from the loop,
701       // update the dominator tree and delete it.
702       DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
703                    << ExitingBlock->getName() << "\n");
704 
705       // Notify ScalarEvolution before deleting this block. Currently assume the
706       // parent loop doesn't change (spliting edges doesn't count). If blocks,
707       // CFG edges, or other values in the parent loop change, then we need call
708       // to forgetLoop() for the parent instead.
709       if (SE)
710         SE->forgetLoop(L);
711 
712       assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
713       Changed = true;
714       LI->removeBlock(ExitingBlock);
715 
716       DomTreeNode *Node = DT->getNode(ExitingBlock);
717       const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
718         Node->getChildren();
719       while (!Children.empty()) {
720         DomTreeNode *Child = Children.front();
721         DT->changeImmediateDominator(Child, Node->getIDom());
722       }
723       DT->eraseNode(ExitingBlock);
724 
725       BI->getSuccessor(0)->removePredecessor(
726           ExitingBlock, /* DontDeleteUselessPHIs */ PreserveLCSSA);
727       BI->getSuccessor(1)->removePredecessor(
728           ExitingBlock, /* DontDeleteUselessPHIs */ PreserveLCSSA);
729       ExitingBlock->eraseFromParent();
730     }
731   }
732 
733   return Changed;
734 }
735 
736 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI,
737                         ScalarEvolution *SE, AssumptionCache *AC,
738                         bool PreserveLCSSA) {
739   bool Changed = false;
740 
741   // Worklist maintains our depth-first queue of loops in this nest to process.
742   SmallVector<Loop *, 4> Worklist;
743   Worklist.push_back(L);
744 
745   // Walk the worklist from front to back, pushing newly found sub loops onto
746   // the back. This will let us process loops from back to front in depth-first
747   // order. We can use this simple process because loops form a tree.
748   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
749     Loop *L2 = Worklist[Idx];
750     Worklist.append(L2->begin(), L2->end());
751   }
752 
753   while (!Worklist.empty())
754     Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE,
755                                AC, PreserveLCSSA);
756 
757   return Changed;
758 }
759 
760 namespace {
761   struct LoopSimplify : public FunctionPass {
762     static char ID; // Pass identification, replacement for typeid
763     LoopSimplify() : FunctionPass(ID) {
764       initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
765     }
766 
767     bool runOnFunction(Function &F) override;
768 
769     void getAnalysisUsage(AnalysisUsage &AU) const override {
770       AU.addRequired<AssumptionCacheTracker>();
771 
772       // We need loop information to identify the loops...
773       AU.addRequired<DominatorTreeWrapperPass>();
774       AU.addPreserved<DominatorTreeWrapperPass>();
775 
776       AU.addRequired<LoopInfoWrapperPass>();
777       AU.addPreserved<LoopInfoWrapperPass>();
778 
779       AU.addPreserved<BasicAAWrapperPass>();
780       AU.addPreserved<AAResultsWrapperPass>();
781       AU.addPreserved<GlobalsAAWrapperPass>();
782       AU.addPreserved<ScalarEvolutionWrapperPass>();
783       AU.addPreserved<SCEVAAWrapperPass>();
784       AU.addPreservedID(LCSSAID);
785       AU.addPreserved<DependenceAnalysisWrapperPass>();
786       AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
787     }
788 
789     /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
790     void verifyAnalysis() const override;
791   };
792 }
793 
794 char LoopSimplify::ID = 0;
795 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
796                 "Canonicalize natural loops", false, false)
797 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
798 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
799 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
800 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
801                 "Canonicalize natural loops", false, false)
802 
803 // Publicly exposed interface to pass...
804 char &llvm::LoopSimplifyID = LoopSimplify::ID;
805 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
806 
807 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do
808 /// it in any convenient order) inserting preheaders...
809 ///
810 bool LoopSimplify::runOnFunction(Function &F) {
811   bool Changed = false;
812   LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
813   DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
814   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
815   ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr;
816   AssumptionCache *AC =
817       &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
818 
819   bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
820 #ifndef NDEBUG
821   if (PreserveLCSSA) {
822     assert(DT && "DT not available.");
823     assert(LI && "LI not available.");
824     bool InLCSSA =
825         all_of(*LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT); });
826     assert(InLCSSA && "Requested to preserve LCSSA, but it's already broken.");
827   }
828 #endif
829 
830   // Simplify each loop nest in the function.
831   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
832     Changed |= simplifyLoop(*I, DT, LI, SE, AC, PreserveLCSSA);
833 
834 #ifndef NDEBUG
835   if (PreserveLCSSA) {
836     bool InLCSSA =
837         all_of(*LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT); });
838     assert(InLCSSA && "LCSSA is broken after loop-simplify.");
839   }
840 #endif
841   return Changed;
842 }
843 
844 PreservedAnalyses LoopSimplifyPass::run(Function &F,
845                                         AnalysisManager<Function> &AM) {
846   bool Changed = false;
847   LoopInfo *LI = &AM.getResult<LoopAnalysis>(F);
848   DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
849   ScalarEvolution *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
850   AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F);
851 
852   // FIXME: This pass should verify that the loops on which it's operating
853   // are in canonical SSA form, and that the pass itself preserves this form.
854   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
855     Changed |= simplifyLoop(*I, DT, LI, SE, AC, true /* PreserveLCSSA */);
856 
857   if (!Changed)
858     return PreservedAnalyses::all();
859   PreservedAnalyses PA;
860   PA.preserve<DominatorTreeAnalysis>();
861   PA.preserve<LoopAnalysis>();
862   PA.preserve<BasicAA>();
863   PA.preserve<GlobalsAA>();
864   PA.preserve<SCEVAA>();
865   PA.preserve<ScalarEvolutionAnalysis>();
866   PA.preserve<DependenceAnalysis>();
867   return PA;
868 }
869 
870 // FIXME: Restore this code when we re-enable verification in verifyAnalysis
871 // below.
872 #if 0
873 static void verifyLoop(Loop *L) {
874   // Verify subloops.
875   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
876     verifyLoop(*I);
877 
878   // It used to be possible to just assert L->isLoopSimplifyForm(), however
879   // with the introduction of indirectbr, there are now cases where it's
880   // not possible to transform a loop as necessary. We can at least check
881   // that there is an indirectbr near any time there's trouble.
882 
883   // Indirectbr can interfere with preheader and unique backedge insertion.
884   if (!L->getLoopPreheader() || !L->getLoopLatch()) {
885     bool HasIndBrPred = false;
886     for (pred_iterator PI = pred_begin(L->getHeader()),
887          PE = pred_end(L->getHeader()); PI != PE; ++PI)
888       if (isa<IndirectBrInst>((*PI)->getTerminator())) {
889         HasIndBrPred = true;
890         break;
891       }
892     assert(HasIndBrPred &&
893            "LoopSimplify has no excuse for missing loop header info!");
894     (void)HasIndBrPred;
895   }
896 
897   // Indirectbr can interfere with exit block canonicalization.
898   if (!L->hasDedicatedExits()) {
899     bool HasIndBrExiting = false;
900     SmallVector<BasicBlock*, 8> ExitingBlocks;
901     L->getExitingBlocks(ExitingBlocks);
902     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
903       if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
904         HasIndBrExiting = true;
905         break;
906       }
907     }
908 
909     assert(HasIndBrExiting &&
910            "LoopSimplify has no excuse for missing exit block info!");
911     (void)HasIndBrExiting;
912   }
913 }
914 #endif
915 
916 void LoopSimplify::verifyAnalysis() const {
917   // FIXME: This routine is being called mid-way through the loop pass manager
918   // as loop passes destroy this analysis. That's actually fine, but we have no
919   // way of expressing that here. Once all of the passes that destroy this are
920   // hoisted out of the loop pass manager we can add back verification here.
921 #if 0
922   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
923     verifyLoop(*I);
924 #endif
925 }
926