1 //===-- Local.cpp - Functions to perform local transformations ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform various local transformations to the 11 // program. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LibCallSemantics.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/IR/CFG.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DIBuilder.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/IR/GetElementPtrTypeIterator.h" 35 #include "llvm/IR/GlobalAlias.h" 36 #include "llvm/IR/GlobalVariable.h" 37 #include "llvm/IR/IRBuilder.h" 38 #include "llvm/IR/Instructions.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Intrinsics.h" 41 #include "llvm/IR/MDBuilder.h" 42 #include "llvm/IR/Metadata.h" 43 #include "llvm/IR/Operator.h" 44 #include "llvm/IR/ValueHandle.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/raw_ostream.h" 48 using namespace llvm; 49 50 #define DEBUG_TYPE "local" 51 52 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 53 54 //===----------------------------------------------------------------------===// 55 // Local constant propagation. 56 // 57 58 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 59 /// constant value, convert it into an unconditional branch to the constant 60 /// destination. This is a nontrivial operation because the successors of this 61 /// basic block must have their PHI nodes updated. 62 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 63 /// conditions and indirectbr addresses this might make dead if 64 /// DeleteDeadConditions is true. 65 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 66 const TargetLibraryInfo *TLI) { 67 TerminatorInst *T = BB->getTerminator(); 68 IRBuilder<> Builder(T); 69 70 // Branch - See if we are conditional jumping on constant 71 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 72 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 73 BasicBlock *Dest1 = BI->getSuccessor(0); 74 BasicBlock *Dest2 = BI->getSuccessor(1); 75 76 if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 77 // Are we branching on constant? 78 // YES. Change to unconditional branch... 79 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 80 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 81 82 //cerr << "Function: " << T->getParent()->getParent() 83 // << "\nRemoving branch from " << T->getParent() 84 // << "\n\nTo: " << OldDest << endl; 85 86 // Let the basic block know that we are letting go of it. Based on this, 87 // it will adjust it's PHI nodes. 88 OldDest->removePredecessor(BB); 89 90 // Replace the conditional branch with an unconditional one. 91 Builder.CreateBr(Destination); 92 BI->eraseFromParent(); 93 return true; 94 } 95 96 if (Dest2 == Dest1) { // Conditional branch to same location? 97 // This branch matches something like this: 98 // br bool %cond, label %Dest, label %Dest 99 // and changes it into: br label %Dest 100 101 // Let the basic block know that we are letting go of one copy of it. 102 assert(BI->getParent() && "Terminator not inserted in block!"); 103 Dest1->removePredecessor(BI->getParent()); 104 105 // Replace the conditional branch with an unconditional one. 106 Builder.CreateBr(Dest1); 107 Value *Cond = BI->getCondition(); 108 BI->eraseFromParent(); 109 if (DeleteDeadConditions) 110 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 111 return true; 112 } 113 return false; 114 } 115 116 if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { 117 // If we are switching on a constant, we can convert the switch to an 118 // unconditional branch. 119 ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition()); 120 BasicBlock *DefaultDest = SI->getDefaultDest(); 121 BasicBlock *TheOnlyDest = DefaultDest; 122 123 // If the default is unreachable, ignore it when searching for TheOnlyDest. 124 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 125 SI->getNumCases() > 0) { 126 TheOnlyDest = SI->case_begin().getCaseSuccessor(); 127 } 128 129 // Figure out which case it goes to. 130 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 131 i != e; ++i) { 132 // Found case matching a constant operand? 133 if (i.getCaseValue() == CI) { 134 TheOnlyDest = i.getCaseSuccessor(); 135 break; 136 } 137 138 // Check to see if this branch is going to the same place as the default 139 // dest. If so, eliminate it as an explicit compare. 140 if (i.getCaseSuccessor() == DefaultDest) { 141 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 142 unsigned NCases = SI->getNumCases(); 143 // Fold the case metadata into the default if there will be any branches 144 // left, unless the metadata doesn't match the switch. 145 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 146 // Collect branch weights into a vector. 147 SmallVector<uint32_t, 8> Weights; 148 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 149 ++MD_i) { 150 ConstantInt *CI = 151 mdconst::dyn_extract<ConstantInt>(MD->getOperand(MD_i)); 152 assert(CI); 153 Weights.push_back(CI->getValue().getZExtValue()); 154 } 155 // Merge weight of this case to the default weight. 156 unsigned idx = i.getCaseIndex(); 157 Weights[0] += Weights[idx+1]; 158 // Remove weight for this case. 159 std::swap(Weights[idx+1], Weights.back()); 160 Weights.pop_back(); 161 SI->setMetadata(LLVMContext::MD_prof, 162 MDBuilder(BB->getContext()). 163 createBranchWeights(Weights)); 164 } 165 // Remove this entry. 166 DefaultDest->removePredecessor(SI->getParent()); 167 SI->removeCase(i); 168 --i; --e; 169 continue; 170 } 171 172 // Otherwise, check to see if the switch only branches to one destination. 173 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 174 // destinations. 175 if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = nullptr; 176 } 177 178 if (CI && !TheOnlyDest) { 179 // Branching on a constant, but not any of the cases, go to the default 180 // successor. 181 TheOnlyDest = SI->getDefaultDest(); 182 } 183 184 // If we found a single destination that we can fold the switch into, do so 185 // now. 186 if (TheOnlyDest) { 187 // Insert the new branch. 188 Builder.CreateBr(TheOnlyDest); 189 BasicBlock *BB = SI->getParent(); 190 191 // Remove entries from PHI nodes which we no longer branch to... 192 for (BasicBlock *Succ : SI->successors()) { 193 // Found case matching a constant operand? 194 if (Succ == TheOnlyDest) 195 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 196 else 197 Succ->removePredecessor(BB); 198 } 199 200 // Delete the old switch. 201 Value *Cond = SI->getCondition(); 202 SI->eraseFromParent(); 203 if (DeleteDeadConditions) 204 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 205 return true; 206 } 207 208 if (SI->getNumCases() == 1) { 209 // Otherwise, we can fold this switch into a conditional branch 210 // instruction if it has only one non-default destination. 211 SwitchInst::CaseIt FirstCase = SI->case_begin(); 212 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 213 FirstCase.getCaseValue(), "cond"); 214 215 // Insert the new branch. 216 BranchInst *NewBr = Builder.CreateCondBr(Cond, 217 FirstCase.getCaseSuccessor(), 218 SI->getDefaultDest()); 219 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 220 if (MD && MD->getNumOperands() == 3) { 221 ConstantInt *SICase = 222 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 223 ConstantInt *SIDef = 224 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 225 assert(SICase && SIDef); 226 // The TrueWeight should be the weight for the single case of SI. 227 NewBr->setMetadata(LLVMContext::MD_prof, 228 MDBuilder(BB->getContext()). 229 createBranchWeights(SICase->getValue().getZExtValue(), 230 SIDef->getValue().getZExtValue())); 231 } 232 233 // Update make.implicit metadata to the newly-created conditional branch. 234 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 235 if (MakeImplicitMD) 236 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 237 238 // Delete the old switch. 239 SI->eraseFromParent(); 240 return true; 241 } 242 return false; 243 } 244 245 if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) { 246 // indirectbr blockaddress(@F, @BB) -> br label @BB 247 if (BlockAddress *BA = 248 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 249 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 250 // Insert the new branch. 251 Builder.CreateBr(TheOnlyDest); 252 253 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 254 if (IBI->getDestination(i) == TheOnlyDest) 255 TheOnlyDest = nullptr; 256 else 257 IBI->getDestination(i)->removePredecessor(IBI->getParent()); 258 } 259 Value *Address = IBI->getAddress(); 260 IBI->eraseFromParent(); 261 if (DeleteDeadConditions) 262 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 263 264 // If we didn't find our destination in the IBI successor list, then we 265 // have undefined behavior. Replace the unconditional branch with an 266 // 'unreachable' instruction. 267 if (TheOnlyDest) { 268 BB->getTerminator()->eraseFromParent(); 269 new UnreachableInst(BB->getContext(), BB); 270 } 271 272 return true; 273 } 274 } 275 276 return false; 277 } 278 279 280 //===----------------------------------------------------------------------===// 281 // Local dead code elimination. 282 // 283 284 /// isInstructionTriviallyDead - Return true if the result produced by the 285 /// instruction is not used, and the instruction has no side effects. 286 /// 287 bool llvm::isInstructionTriviallyDead(Instruction *I, 288 const TargetLibraryInfo *TLI) { 289 if (!I->use_empty() || isa<TerminatorInst>(I)) return false; 290 291 // We don't want the landingpad-like instructions removed by anything this 292 // general. 293 if (I->isEHPad()) 294 return false; 295 296 // We don't want debug info removed by anything this general, unless 297 // debug info is empty. 298 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 299 if (DDI->getAddress()) 300 return false; 301 return true; 302 } 303 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 304 if (DVI->getValue()) 305 return false; 306 return true; 307 } 308 309 if (!I->mayHaveSideEffects()) return true; 310 311 // Special case intrinsics that "may have side effects" but can be deleted 312 // when dead. 313 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 314 // Safe to delete llvm.stacksave if dead. 315 if (II->getIntrinsicID() == Intrinsic::stacksave) 316 return true; 317 318 // Lifetime intrinsics are dead when their right-hand is undef. 319 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 320 II->getIntrinsicID() == Intrinsic::lifetime_end) 321 return isa<UndefValue>(II->getArgOperand(1)); 322 323 // Assumptions are dead if their condition is trivially true. 324 if (II->getIntrinsicID() == Intrinsic::assume) { 325 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 326 return !Cond->isZero(); 327 328 return false; 329 } 330 } 331 332 if (isAllocLikeFn(I, TLI)) return true; 333 334 if (CallInst *CI = isFreeCall(I, TLI)) 335 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 336 return C->isNullValue() || isa<UndefValue>(C); 337 338 return false; 339 } 340 341 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 342 /// trivially dead instruction, delete it. If that makes any of its operands 343 /// trivially dead, delete them too, recursively. Return true if any 344 /// instructions were deleted. 345 bool 346 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V, 347 const TargetLibraryInfo *TLI) { 348 Instruction *I = dyn_cast<Instruction>(V); 349 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI)) 350 return false; 351 352 SmallVector<Instruction*, 16> DeadInsts; 353 DeadInsts.push_back(I); 354 355 do { 356 I = DeadInsts.pop_back_val(); 357 358 // Null out all of the instruction's operands to see if any operand becomes 359 // dead as we go. 360 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 361 Value *OpV = I->getOperand(i); 362 I->setOperand(i, nullptr); 363 364 if (!OpV->use_empty()) continue; 365 366 // If the operand is an instruction that became dead as we nulled out the 367 // operand, and if it is 'trivially' dead, delete it in a future loop 368 // iteration. 369 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 370 if (isInstructionTriviallyDead(OpI, TLI)) 371 DeadInsts.push_back(OpI); 372 } 373 374 I->eraseFromParent(); 375 } while (!DeadInsts.empty()); 376 377 return true; 378 } 379 380 /// areAllUsesEqual - Check whether the uses of a value are all the same. 381 /// This is similar to Instruction::hasOneUse() except this will also return 382 /// true when there are no uses or multiple uses that all refer to the same 383 /// value. 384 static bool areAllUsesEqual(Instruction *I) { 385 Value::user_iterator UI = I->user_begin(); 386 Value::user_iterator UE = I->user_end(); 387 if (UI == UE) 388 return true; 389 390 User *TheUse = *UI; 391 for (++UI; UI != UE; ++UI) { 392 if (*UI != TheUse) 393 return false; 394 } 395 return true; 396 } 397 398 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 399 /// dead PHI node, due to being a def-use chain of single-use nodes that 400 /// either forms a cycle or is terminated by a trivially dead instruction, 401 /// delete it. If that makes any of its operands trivially dead, delete them 402 /// too, recursively. Return true if a change was made. 403 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 404 const TargetLibraryInfo *TLI) { 405 SmallPtrSet<Instruction*, 4> Visited; 406 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 407 I = cast<Instruction>(*I->user_begin())) { 408 if (I->use_empty()) 409 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 410 411 // If we find an instruction more than once, we're on a cycle that 412 // won't prove fruitful. 413 if (!Visited.insert(I).second) { 414 // Break the cycle and delete the instruction and its operands. 415 I->replaceAllUsesWith(UndefValue::get(I->getType())); 416 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 417 return true; 418 } 419 } 420 return false; 421 } 422 423 static bool 424 simplifyAndDCEInstruction(Instruction *I, 425 SmallSetVector<Instruction *, 16> &WorkList, 426 const DataLayout &DL, 427 const TargetLibraryInfo *TLI) { 428 if (isInstructionTriviallyDead(I, TLI)) { 429 // Null out all of the instruction's operands to see if any operand becomes 430 // dead as we go. 431 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 432 Value *OpV = I->getOperand(i); 433 I->setOperand(i, nullptr); 434 435 if (!OpV->use_empty() || I == OpV) 436 continue; 437 438 // If the operand is an instruction that became dead as we nulled out the 439 // operand, and if it is 'trivially' dead, delete it in a future loop 440 // iteration. 441 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 442 if (isInstructionTriviallyDead(OpI, TLI)) 443 WorkList.insert(OpI); 444 } 445 446 I->eraseFromParent(); 447 448 return true; 449 } 450 451 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 452 // Add the users to the worklist. CAREFUL: an instruction can use itself, 453 // in the case of a phi node. 454 for (User *U : I->users()) 455 if (U != I) 456 WorkList.insert(cast<Instruction>(U)); 457 458 // Replace the instruction with its simplified value. 459 I->replaceAllUsesWith(SimpleV); 460 I->eraseFromParent(); 461 return true; 462 } 463 return false; 464 } 465 466 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 467 /// simplify any instructions in it and recursively delete dead instructions. 468 /// 469 /// This returns true if it changed the code, note that it can delete 470 /// instructions in other blocks as well in this block. 471 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 472 const TargetLibraryInfo *TLI) { 473 bool MadeChange = false; 474 const DataLayout &DL = BB->getModule()->getDataLayout(); 475 476 #ifndef NDEBUG 477 // In debug builds, ensure that the terminator of the block is never replaced 478 // or deleted by these simplifications. The idea of simplification is that it 479 // cannot introduce new instructions, and there is no way to replace the 480 // terminator of a block without introducing a new instruction. 481 AssertingVH<Instruction> TerminatorVH(--BB->end()); 482 #endif 483 484 SmallSetVector<Instruction *, 16> WorkList; 485 // Iterate over the original function, only adding insts to the worklist 486 // if they actually need to be revisited. This avoids having to pre-init 487 // the worklist with the entire function's worth of instructions. 488 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); BI != E;) { 489 assert(!BI->isTerminator()); 490 Instruction *I = &*BI; 491 ++BI; 492 493 // We're visiting this instruction now, so make sure it's not in the 494 // worklist from an earlier visit. 495 if (!WorkList.count(I)) 496 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 497 } 498 499 while (!WorkList.empty()) { 500 Instruction *I = WorkList.pop_back_val(); 501 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 502 } 503 return MadeChange; 504 } 505 506 //===----------------------------------------------------------------------===// 507 // Control Flow Graph Restructuring. 508 // 509 510 511 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 512 /// method is called when we're about to delete Pred as a predecessor of BB. If 513 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 514 /// 515 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 516 /// nodes that collapse into identity values. For example, if we have: 517 /// x = phi(1, 0, 0, 0) 518 /// y = and x, z 519 /// 520 /// .. and delete the predecessor corresponding to the '1', this will attempt to 521 /// recursively fold the and to 0. 522 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred) { 523 // This only adjusts blocks with PHI nodes. 524 if (!isa<PHINode>(BB->begin())) 525 return; 526 527 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 528 // them down. This will leave us with single entry phi nodes and other phis 529 // that can be removed. 530 BB->removePredecessor(Pred, true); 531 532 WeakVH PhiIt = &BB->front(); 533 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 534 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 535 Value *OldPhiIt = PhiIt; 536 537 if (!recursivelySimplifyInstruction(PN)) 538 continue; 539 540 // If recursive simplification ended up deleting the next PHI node we would 541 // iterate to, then our iterator is invalid, restart scanning from the top 542 // of the block. 543 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 544 } 545 } 546 547 548 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 549 /// predecessor is known to have one successor (DestBB!). Eliminate the edge 550 /// between them, moving the instructions in the predecessor into DestBB and 551 /// deleting the predecessor block. 552 /// 553 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) { 554 // If BB has single-entry PHI nodes, fold them. 555 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 556 Value *NewVal = PN->getIncomingValue(0); 557 // Replace self referencing PHI with undef, it must be dead. 558 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 559 PN->replaceAllUsesWith(NewVal); 560 PN->eraseFromParent(); 561 } 562 563 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 564 assert(PredBB && "Block doesn't have a single predecessor!"); 565 566 // Zap anything that took the address of DestBB. Not doing this will give the 567 // address an invalid value. 568 if (DestBB->hasAddressTaken()) { 569 BlockAddress *BA = BlockAddress::get(DestBB); 570 Constant *Replacement = 571 ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1); 572 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 573 BA->getType())); 574 BA->destroyConstant(); 575 } 576 577 // Anything that branched to PredBB now branches to DestBB. 578 PredBB->replaceAllUsesWith(DestBB); 579 580 // Splice all the instructions from PredBB to DestBB. 581 PredBB->getTerminator()->eraseFromParent(); 582 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 583 584 // If the PredBB is the entry block of the function, move DestBB up to 585 // become the entry block after we erase PredBB. 586 if (PredBB == &DestBB->getParent()->getEntryBlock()) 587 DestBB->moveAfter(PredBB); 588 589 if (DT) { 590 BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock(); 591 DT->changeImmediateDominator(DestBB, PredBBIDom); 592 DT->eraseNode(PredBB); 593 } 594 // Nuke BB. 595 PredBB->eraseFromParent(); 596 } 597 598 /// CanMergeValues - Return true if we can choose one of these values to use 599 /// in place of the other. Note that we will always choose the non-undef 600 /// value to keep. 601 static bool CanMergeValues(Value *First, Value *Second) { 602 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 603 } 604 605 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an 606 /// almost-empty BB ending in an unconditional branch to Succ, into Succ. 607 /// 608 /// Assumption: Succ is the single successor for BB. 609 /// 610 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 611 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 612 613 DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 614 << Succ->getName() << "\n"); 615 // Shortcut, if there is only a single predecessor it must be BB and merging 616 // is always safe 617 if (Succ->getSinglePredecessor()) return true; 618 619 // Make a list of the predecessors of BB 620 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 621 622 // Look at all the phi nodes in Succ, to see if they present a conflict when 623 // merging these blocks 624 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 625 PHINode *PN = cast<PHINode>(I); 626 627 // If the incoming value from BB is again a PHINode in 628 // BB which has the same incoming value for *PI as PN does, we can 629 // merge the phi nodes and then the blocks can still be merged 630 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 631 if (BBPN && BBPN->getParent() == BB) { 632 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 633 BasicBlock *IBB = PN->getIncomingBlock(PI); 634 if (BBPreds.count(IBB) && 635 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 636 PN->getIncomingValue(PI))) { 637 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 638 << Succ->getName() << " is conflicting with " 639 << BBPN->getName() << " with regard to common predecessor " 640 << IBB->getName() << "\n"); 641 return false; 642 } 643 } 644 } else { 645 Value* Val = PN->getIncomingValueForBlock(BB); 646 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 647 // See if the incoming value for the common predecessor is equal to the 648 // one for BB, in which case this phi node will not prevent the merging 649 // of the block. 650 BasicBlock *IBB = PN->getIncomingBlock(PI); 651 if (BBPreds.count(IBB) && 652 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 653 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 654 << Succ->getName() << " is conflicting with regard to common " 655 << "predecessor " << IBB->getName() << "\n"); 656 return false; 657 } 658 } 659 } 660 } 661 662 return true; 663 } 664 665 typedef SmallVector<BasicBlock *, 16> PredBlockVector; 666 typedef DenseMap<BasicBlock *, Value *> IncomingValueMap; 667 668 /// \brief Determines the value to use as the phi node input for a block. 669 /// 670 /// Select between \p OldVal any value that we know flows from \p BB 671 /// to a particular phi on the basis of which one (if either) is not 672 /// undef. Update IncomingValues based on the selected value. 673 /// 674 /// \param OldVal The value we are considering selecting. 675 /// \param BB The block that the value flows in from. 676 /// \param IncomingValues A map from block-to-value for other phi inputs 677 /// that we have examined. 678 /// 679 /// \returns the selected value. 680 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 681 IncomingValueMap &IncomingValues) { 682 if (!isa<UndefValue>(OldVal)) { 683 assert((!IncomingValues.count(BB) || 684 IncomingValues.find(BB)->second == OldVal) && 685 "Expected OldVal to match incoming value from BB!"); 686 687 IncomingValues.insert(std::make_pair(BB, OldVal)); 688 return OldVal; 689 } 690 691 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 692 if (It != IncomingValues.end()) return It->second; 693 694 return OldVal; 695 } 696 697 /// \brief Create a map from block to value for the operands of a 698 /// given phi. 699 /// 700 /// Create a map from block to value for each non-undef value flowing 701 /// into \p PN. 702 /// 703 /// \param PN The phi we are collecting the map for. 704 /// \param IncomingValues [out] The map from block to value for this phi. 705 static void gatherIncomingValuesToPhi(PHINode *PN, 706 IncomingValueMap &IncomingValues) { 707 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 708 BasicBlock *BB = PN->getIncomingBlock(i); 709 Value *V = PN->getIncomingValue(i); 710 711 if (!isa<UndefValue>(V)) 712 IncomingValues.insert(std::make_pair(BB, V)); 713 } 714 } 715 716 /// \brief Replace the incoming undef values to a phi with the values 717 /// from a block-to-value map. 718 /// 719 /// \param PN The phi we are replacing the undefs in. 720 /// \param IncomingValues A map from block to value. 721 static void replaceUndefValuesInPhi(PHINode *PN, 722 const IncomingValueMap &IncomingValues) { 723 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 724 Value *V = PN->getIncomingValue(i); 725 726 if (!isa<UndefValue>(V)) continue; 727 728 BasicBlock *BB = PN->getIncomingBlock(i); 729 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 730 if (It == IncomingValues.end()) continue; 731 732 PN->setIncomingValue(i, It->second); 733 } 734 } 735 736 /// \brief Replace a value flowing from a block to a phi with 737 /// potentially multiple instances of that value flowing from the 738 /// block's predecessors to the phi. 739 /// 740 /// \param BB The block with the value flowing into the phi. 741 /// \param BBPreds The predecessors of BB. 742 /// \param PN The phi that we are updating. 743 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 744 const PredBlockVector &BBPreds, 745 PHINode *PN) { 746 Value *OldVal = PN->removeIncomingValue(BB, false); 747 assert(OldVal && "No entry in PHI for Pred BB!"); 748 749 IncomingValueMap IncomingValues; 750 751 // We are merging two blocks - BB, and the block containing PN - and 752 // as a result we need to redirect edges from the predecessors of BB 753 // to go to the block containing PN, and update PN 754 // accordingly. Since we allow merging blocks in the case where the 755 // predecessor and successor blocks both share some predecessors, 756 // and where some of those common predecessors might have undef 757 // values flowing into PN, we want to rewrite those values to be 758 // consistent with the non-undef values. 759 760 gatherIncomingValuesToPhi(PN, IncomingValues); 761 762 // If this incoming value is one of the PHI nodes in BB, the new entries 763 // in the PHI node are the entries from the old PHI. 764 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 765 PHINode *OldValPN = cast<PHINode>(OldVal); 766 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 767 // Note that, since we are merging phi nodes and BB and Succ might 768 // have common predecessors, we could end up with a phi node with 769 // identical incoming branches. This will be cleaned up later (and 770 // will trigger asserts if we try to clean it up now, without also 771 // simplifying the corresponding conditional branch). 772 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 773 Value *PredVal = OldValPN->getIncomingValue(i); 774 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 775 IncomingValues); 776 777 // And add a new incoming value for this predecessor for the 778 // newly retargeted branch. 779 PN->addIncoming(Selected, PredBB); 780 } 781 } else { 782 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 783 // Update existing incoming values in PN for this 784 // predecessor of BB. 785 BasicBlock *PredBB = BBPreds[i]; 786 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 787 IncomingValues); 788 789 // And add a new incoming value for this predecessor for the 790 // newly retargeted branch. 791 PN->addIncoming(Selected, PredBB); 792 } 793 } 794 795 replaceUndefValuesInPhi(PN, IncomingValues); 796 } 797 798 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 799 /// unconditional branch, and contains no instructions other than PHI nodes, 800 /// potential side-effect free intrinsics and the branch. If possible, 801 /// eliminate BB by rewriting all the predecessors to branch to the successor 802 /// block and return true. If we can't transform, return false. 803 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) { 804 assert(BB != &BB->getParent()->getEntryBlock() && 805 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 806 807 // We can't eliminate infinite loops. 808 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 809 if (BB == Succ) return false; 810 811 // Check to see if merging these blocks would cause conflicts for any of the 812 // phi nodes in BB or Succ. If not, we can safely merge. 813 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 814 815 // Check for cases where Succ has multiple predecessors and a PHI node in BB 816 // has uses which will not disappear when the PHI nodes are merged. It is 817 // possible to handle such cases, but difficult: it requires checking whether 818 // BB dominates Succ, which is non-trivial to calculate in the case where 819 // Succ has multiple predecessors. Also, it requires checking whether 820 // constructing the necessary self-referential PHI node doesn't introduce any 821 // conflicts; this isn't too difficult, but the previous code for doing this 822 // was incorrect. 823 // 824 // Note that if this check finds a live use, BB dominates Succ, so BB is 825 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 826 // folding the branch isn't profitable in that case anyway. 827 if (!Succ->getSinglePredecessor()) { 828 BasicBlock::iterator BBI = BB->begin(); 829 while (isa<PHINode>(*BBI)) { 830 for (Use &U : BBI->uses()) { 831 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 832 if (PN->getIncomingBlock(U) != BB) 833 return false; 834 } else { 835 return false; 836 } 837 } 838 ++BBI; 839 } 840 } 841 842 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 843 844 if (isa<PHINode>(Succ->begin())) { 845 // If there is more than one pred of succ, and there are PHI nodes in 846 // the successor, then we need to add incoming edges for the PHI nodes 847 // 848 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 849 850 // Loop over all of the PHI nodes in the successor of BB. 851 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 852 PHINode *PN = cast<PHINode>(I); 853 854 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 855 } 856 } 857 858 if (Succ->getSinglePredecessor()) { 859 // BB is the only predecessor of Succ, so Succ will end up with exactly 860 // the same predecessors BB had. 861 862 // Copy over any phi, debug or lifetime instruction. 863 BB->getTerminator()->eraseFromParent(); 864 Succ->getInstList().splice(Succ->getFirstNonPHI(), BB->getInstList()); 865 } else { 866 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 867 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 868 assert(PN->use_empty() && "There shouldn't be any uses here!"); 869 PN->eraseFromParent(); 870 } 871 } 872 873 // Everything that jumped to BB now goes to Succ. 874 BB->replaceAllUsesWith(Succ); 875 if (!Succ->hasName()) Succ->takeName(BB); 876 BB->eraseFromParent(); // Delete the old basic block. 877 return true; 878 } 879 880 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 881 /// nodes in this block. This doesn't try to be clever about PHI nodes 882 /// which differ only in the order of the incoming values, but instcombine 883 /// orders them so it usually won't matter. 884 /// 885 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 886 // This implementation doesn't currently consider undef operands 887 // specially. Theoretically, two phis which are identical except for 888 // one having an undef where the other doesn't could be collapsed. 889 890 struct PHIDenseMapInfo { 891 static PHINode *getEmptyKey() { 892 return DenseMapInfo<PHINode *>::getEmptyKey(); 893 } 894 static PHINode *getTombstoneKey() { 895 return DenseMapInfo<PHINode *>::getTombstoneKey(); 896 } 897 static unsigned getHashValue(PHINode *PN) { 898 // Compute a hash value on the operands. Instcombine will likely have 899 // sorted them, which helps expose duplicates, but we have to check all 900 // the operands to be safe in case instcombine hasn't run. 901 return static_cast<unsigned>(hash_combine( 902 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 903 hash_combine_range(PN->block_begin(), PN->block_end()))); 904 } 905 static bool isEqual(PHINode *LHS, PHINode *RHS) { 906 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 907 RHS == getEmptyKey() || RHS == getTombstoneKey()) 908 return LHS == RHS; 909 return LHS->isIdenticalTo(RHS); 910 } 911 }; 912 913 // Set of unique PHINodes. 914 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 915 916 // Examine each PHI. 917 bool Changed = false; 918 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 919 auto Inserted = PHISet.insert(PN); 920 if (!Inserted.second) { 921 // A duplicate. Replace this PHI with its duplicate. 922 PN->replaceAllUsesWith(*Inserted.first); 923 PN->eraseFromParent(); 924 Changed = true; 925 926 // The RAUW can change PHIs that we already visited. Start over from the 927 // beginning. 928 PHISet.clear(); 929 I = BB->begin(); 930 } 931 } 932 933 return Changed; 934 } 935 936 /// enforceKnownAlignment - If the specified pointer points to an object that 937 /// we control, modify the object's alignment to PrefAlign. This isn't 938 /// often possible though. If alignment is important, a more reliable approach 939 /// is to simply align all global variables and allocation instructions to 940 /// their preferred alignment from the beginning. 941 /// 942 static unsigned enforceKnownAlignment(Value *V, unsigned Align, 943 unsigned PrefAlign, 944 const DataLayout &DL) { 945 V = V->stripPointerCasts(); 946 947 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 948 // If the preferred alignment is greater than the natural stack alignment 949 // then don't round up. This avoids dynamic stack realignment. 950 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 951 return Align; 952 // If there is a requested alignment and if this is an alloca, round up. 953 if (AI->getAlignment() >= PrefAlign) 954 return AI->getAlignment(); 955 AI->setAlignment(PrefAlign); 956 return PrefAlign; 957 } 958 959 if (auto *GO = dyn_cast<GlobalObject>(V)) { 960 // If there is a large requested alignment and we can, bump up the alignment 961 // of the global. If the memory we set aside for the global may not be the 962 // memory used by the final program then it is impossible for us to reliably 963 // enforce the preferred alignment. 964 if (!GO->isStrongDefinitionForLinker()) 965 return Align; 966 967 if (GO->getAlignment() >= PrefAlign) 968 return GO->getAlignment(); 969 // We can only increase the alignment of the global if it has no alignment 970 // specified or if it is not assigned a section. If it is assigned a 971 // section, the global could be densely packed with other objects in the 972 // section, increasing the alignment could cause padding issues. 973 if (!GO->hasSection() || GO->getAlignment() == 0) 974 GO->setAlignment(PrefAlign); 975 return GO->getAlignment(); 976 } 977 978 return Align; 979 } 980 981 /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that 982 /// we can determine, return it, otherwise return 0. If PrefAlign is specified, 983 /// and it is more than the alignment of the ultimate object, see if we can 984 /// increase the alignment of the ultimate object, making this check succeed. 985 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 986 const DataLayout &DL, 987 const Instruction *CxtI, 988 AssumptionCache *AC, 989 const DominatorTree *DT) { 990 assert(V->getType()->isPointerTy() && 991 "getOrEnforceKnownAlignment expects a pointer!"); 992 unsigned BitWidth = DL.getPointerTypeSizeInBits(V->getType()); 993 994 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 995 computeKnownBits(V, KnownZero, KnownOne, DL, 0, AC, CxtI, DT); 996 unsigned TrailZ = KnownZero.countTrailingOnes(); 997 998 // Avoid trouble with ridiculously large TrailZ values, such as 999 // those computed from a null pointer. 1000 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 1001 1002 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ); 1003 1004 // LLVM doesn't support alignments larger than this currently. 1005 Align = std::min(Align, +Value::MaximumAlignment); 1006 1007 if (PrefAlign > Align) 1008 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 1009 1010 // We don't need to make any adjustment. 1011 return Align; 1012 } 1013 1014 ///===---------------------------------------------------------------------===// 1015 /// Dbg Intrinsic utilities 1016 /// 1017 1018 /// See if there is a dbg.value intrinsic for DIVar before I. 1019 static bool LdStHasDebugValue(const DILocalVariable *DIVar, Instruction *I) { 1020 // Since we can't guarantee that the original dbg.declare instrinsic 1021 // is removed by LowerDbgDeclare(), we need to make sure that we are 1022 // not inserting the same dbg.value intrinsic over and over. 1023 llvm::BasicBlock::InstListType::iterator PrevI(I); 1024 if (PrevI != I->getParent()->getInstList().begin()) { 1025 --PrevI; 1026 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) 1027 if (DVI->getValue() == I->getOperand(0) && 1028 DVI->getOffset() == 0 && 1029 DVI->getVariable() == DIVar) 1030 return true; 1031 } 1032 return false; 1033 } 1034 1035 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1036 /// that has an associated llvm.dbg.decl intrinsic. 1037 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 1038 StoreInst *SI, DIBuilder &Builder) { 1039 auto *DIVar = DDI->getVariable(); 1040 auto *DIExpr = DDI->getExpression(); 1041 assert(DIVar && "Missing variable"); 1042 1043 if (LdStHasDebugValue(DIVar, SI)) 1044 return true; 1045 1046 // If an argument is zero extended then use argument directly. The ZExt 1047 // may be zapped by an optimization pass in future. 1048 Argument *ExtendedArg = nullptr; 1049 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) 1050 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0)); 1051 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) 1052 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0)); 1053 if (ExtendedArg) 1054 Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, DIExpr, 1055 DDI->getDebugLoc(), SI); 1056 else 1057 Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, DIExpr, 1058 DDI->getDebugLoc(), SI); 1059 return true; 1060 } 1061 1062 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1063 /// that has an associated llvm.dbg.decl intrinsic. 1064 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 1065 LoadInst *LI, DIBuilder &Builder) { 1066 auto *DIVar = DDI->getVariable(); 1067 auto *DIExpr = DDI->getExpression(); 1068 assert(DIVar && "Missing variable"); 1069 1070 if (LdStHasDebugValue(DIVar, LI)) 1071 return true; 1072 1073 Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0, DIVar, DIExpr, 1074 DDI->getDebugLoc(), LI); 1075 return true; 1076 } 1077 1078 /// Determine whether this alloca is either a VLA or an array. 1079 static bool isArray(AllocaInst *AI) { 1080 return AI->isArrayAllocation() || 1081 AI->getType()->getElementType()->isArrayTy(); 1082 } 1083 1084 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1085 /// of llvm.dbg.value intrinsics. 1086 bool llvm::LowerDbgDeclare(Function &F) { 1087 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1088 SmallVector<DbgDeclareInst *, 4> Dbgs; 1089 for (auto &FI : F) 1090 for (BasicBlock::iterator BI : FI) 1091 if (auto DDI = dyn_cast<DbgDeclareInst>(BI)) 1092 Dbgs.push_back(DDI); 1093 1094 if (Dbgs.empty()) 1095 return false; 1096 1097 for (auto &I : Dbgs) { 1098 DbgDeclareInst *DDI = I; 1099 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1100 // If this is an alloca for a scalar variable, insert a dbg.value 1101 // at each load and store to the alloca and erase the dbg.declare. 1102 // The dbg.values allow tracking a variable even if it is not 1103 // stored on the stack, while the dbg.declare can only describe 1104 // the stack slot (and at a lexical-scope granularity). Later 1105 // passes will attempt to elide the stack slot. 1106 if (AI && !isArray(AI)) { 1107 for (User *U : AI->users()) 1108 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1109 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1110 else if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1111 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1112 else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1113 // This is a call by-value or some other instruction that 1114 // takes a pointer to the variable. Insert a *value* 1115 // intrinsic that describes the alloca. 1116 DIB.insertDbgValueIntrinsic(AI, 0, DDI->getVariable(), 1117 DDI->getExpression(), DDI->getDebugLoc(), 1118 CI); 1119 } 1120 DDI->eraseFromParent(); 1121 } 1122 } 1123 return true; 1124 } 1125 1126 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the 1127 /// alloca 'V', if any. 1128 DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) { 1129 if (auto *L = LocalAsMetadata::getIfExists(V)) 1130 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1131 for (User *U : MDV->users()) 1132 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U)) 1133 return DDI; 1134 1135 return nullptr; 1136 } 1137 1138 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1139 DIBuilder &Builder, bool Deref, int Offset) { 1140 DbgDeclareInst *DDI = FindAllocaDbgDeclare(AI); 1141 if (!DDI) 1142 return false; 1143 DebugLoc Loc = DDI->getDebugLoc(); 1144 auto *DIVar = DDI->getVariable(); 1145 auto *DIExpr = DDI->getExpression(); 1146 assert(DIVar && "Missing variable"); 1147 1148 if (Deref || Offset) { 1149 // Create a copy of the original DIDescriptor for user variable, prepending 1150 // "deref" operation to a list of address elements, as new llvm.dbg.declare 1151 // will take a value storing address of the memory for variable, not 1152 // alloca itself. 1153 SmallVector<uint64_t, 4> NewDIExpr; 1154 if (Deref) 1155 NewDIExpr.push_back(dwarf::DW_OP_deref); 1156 if (Offset > 0) { 1157 NewDIExpr.push_back(dwarf::DW_OP_plus); 1158 NewDIExpr.push_back(Offset); 1159 } else if (Offset < 0) { 1160 NewDIExpr.push_back(dwarf::DW_OP_minus); 1161 NewDIExpr.push_back(-Offset); 1162 } 1163 if (DIExpr) 1164 NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end()); 1165 DIExpr = Builder.createExpression(NewDIExpr); 1166 } 1167 1168 // Insert llvm.dbg.declare immediately after the original alloca, and remove 1169 // old llvm.dbg.declare. 1170 Builder.insertDeclare(NewAllocaAddress, DIVar, DIExpr, Loc, 1171 AI->getNextNode()); 1172 DDI->eraseFromParent(); 1173 return true; 1174 } 1175 1176 /// changeToUnreachable - Insert an unreachable instruction before the specified 1177 /// instruction, making it and the rest of the code in the block dead. 1178 static void changeToUnreachable(Instruction *I, bool UseLLVMTrap) { 1179 BasicBlock *BB = I->getParent(); 1180 // Loop over all of the successors, removing BB's entry from any PHI 1181 // nodes. 1182 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 1183 (*SI)->removePredecessor(BB); 1184 1185 // Insert a call to llvm.trap right before this. This turns the undefined 1186 // behavior into a hard fail instead of falling through into random code. 1187 if (UseLLVMTrap) { 1188 Function *TrapFn = 1189 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1190 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1191 CallTrap->setDebugLoc(I->getDebugLoc()); 1192 } 1193 new UnreachableInst(I->getContext(), I); 1194 1195 // All instructions after this are dead. 1196 BasicBlock::iterator BBI = I, BBE = BB->end(); 1197 while (BBI != BBE) { 1198 if (!BBI->use_empty()) 1199 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1200 BB->getInstList().erase(BBI++); 1201 } 1202 } 1203 1204 /// changeToCall - Convert the specified invoke into a normal call. 1205 static void changeToCall(InvokeInst *II) { 1206 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3); 1207 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, "", II); 1208 NewCall->takeName(II); 1209 NewCall->setCallingConv(II->getCallingConv()); 1210 NewCall->setAttributes(II->getAttributes()); 1211 NewCall->setDebugLoc(II->getDebugLoc()); 1212 II->replaceAllUsesWith(NewCall); 1213 1214 // Follow the call by a branch to the normal destination. 1215 BranchInst::Create(II->getNormalDest(), II); 1216 1217 // Update PHI nodes in the unwind destination 1218 II->getUnwindDest()->removePredecessor(II->getParent()); 1219 II->eraseFromParent(); 1220 } 1221 1222 static bool markAliveBlocks(Function &F, 1223 SmallPtrSetImpl<BasicBlock*> &Reachable) { 1224 1225 SmallVector<BasicBlock*, 128> Worklist; 1226 BasicBlock *BB = F.begin(); 1227 Worklist.push_back(BB); 1228 Reachable.insert(BB); 1229 bool Changed = false; 1230 do { 1231 BB = Worklist.pop_back_val(); 1232 1233 // Do a quick scan of the basic block, turning any obviously unreachable 1234 // instructions into LLVM unreachable insts. The instruction combining pass 1235 // canonicalizes unreachable insts into stores to null or undef. 1236 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){ 1237 // Assumptions that are known to be false are equivalent to unreachable. 1238 // Also, if the condition is undefined, then we make the choice most 1239 // beneficial to the optimizer, and choose that to also be unreachable. 1240 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI)) 1241 if (II->getIntrinsicID() == Intrinsic::assume) { 1242 bool MakeUnreachable = false; 1243 if (isa<UndefValue>(II->getArgOperand(0))) 1244 MakeUnreachable = true; 1245 else if (ConstantInt *Cond = 1246 dyn_cast<ConstantInt>(II->getArgOperand(0))) 1247 MakeUnreachable = Cond->isZero(); 1248 1249 if (MakeUnreachable) { 1250 // Don't insert a call to llvm.trap right before the unreachable. 1251 changeToUnreachable(BBI, false); 1252 Changed = true; 1253 break; 1254 } 1255 } 1256 1257 if (CallInst *CI = dyn_cast<CallInst>(BBI)) { 1258 if (CI->doesNotReturn()) { 1259 // If we found a call to a no-return function, insert an unreachable 1260 // instruction after it. Make sure there isn't *already* one there 1261 // though. 1262 ++BBI; 1263 if (!isa<UnreachableInst>(BBI)) { 1264 // Don't insert a call to llvm.trap right before the unreachable. 1265 changeToUnreachable(BBI, false); 1266 Changed = true; 1267 } 1268 break; 1269 } 1270 } 1271 1272 // Store to undef and store to null are undefined and used to signal that 1273 // they should be changed to unreachable by passes that can't modify the 1274 // CFG. 1275 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 1276 // Don't touch volatile stores. 1277 if (SI->isVolatile()) continue; 1278 1279 Value *Ptr = SI->getOperand(1); 1280 1281 if (isa<UndefValue>(Ptr) || 1282 (isa<ConstantPointerNull>(Ptr) && 1283 SI->getPointerAddressSpace() == 0)) { 1284 changeToUnreachable(SI, true); 1285 Changed = true; 1286 break; 1287 } 1288 } 1289 } 1290 1291 // Turn invokes that call 'nounwind' functions into ordinary calls. 1292 if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) { 1293 Value *Callee = II->getCalledValue(); 1294 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1295 changeToUnreachable(II, true); 1296 Changed = true; 1297 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 1298 if (II->use_empty() && II->onlyReadsMemory()) { 1299 // jump to the normal destination branch. 1300 BranchInst::Create(II->getNormalDest(), II); 1301 II->getUnwindDest()->removePredecessor(II->getParent()); 1302 II->eraseFromParent(); 1303 } else 1304 changeToCall(II); 1305 Changed = true; 1306 } 1307 } 1308 1309 Changed |= ConstantFoldTerminator(BB, true); 1310 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 1311 if (Reachable.insert(*SI).second) 1312 Worklist.push_back(*SI); 1313 } while (!Worklist.empty()); 1314 return Changed; 1315 } 1316 1317 void llvm::removeUnwindEdge(BasicBlock *BB) { 1318 TerminatorInst *TI = BB->getTerminator(); 1319 1320 if (auto *II = dyn_cast<InvokeInst>(TI)) { 1321 changeToCall(II); 1322 return; 1323 } 1324 1325 TerminatorInst *NewTI; 1326 BasicBlock *UnwindDest; 1327 1328 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 1329 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 1330 UnwindDest = CRI->getUnwindDest(); 1331 } else if (auto *CEP = dyn_cast<CleanupEndPadInst>(TI)) { 1332 NewTI = CleanupEndPadInst::Create(CEP->getCleanupPad(), nullptr, CEP); 1333 UnwindDest = CEP->getUnwindDest(); 1334 } else if (auto *CEP = dyn_cast<CatchEndPadInst>(TI)) { 1335 NewTI = CatchEndPadInst::Create(CEP->getContext(), nullptr, CEP); 1336 UnwindDest = CEP->getUnwindDest(); 1337 } else if (auto *TPI = dyn_cast<TerminatePadInst>(TI)) { 1338 SmallVector<Value *, 3> TerminatePadArgs; 1339 for (Value *Operand : TPI->arg_operands()) 1340 TerminatePadArgs.push_back(Operand); 1341 NewTI = TerminatePadInst::Create(TPI->getContext(), nullptr, 1342 TerminatePadArgs, TPI); 1343 UnwindDest = TPI->getUnwindDest(); 1344 } else { 1345 llvm_unreachable("Could not find unwind successor"); 1346 } 1347 1348 NewTI->takeName(TI); 1349 NewTI->setDebugLoc(TI->getDebugLoc()); 1350 UnwindDest->removePredecessor(BB); 1351 TI->eraseFromParent(); 1352 } 1353 1354 /// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even 1355 /// if they are in a dead cycle. Return true if a change was made, false 1356 /// otherwise. 1357 bool llvm::removeUnreachableBlocks(Function &F) { 1358 SmallPtrSet<BasicBlock*, 128> Reachable; 1359 bool Changed = markAliveBlocks(F, Reachable); 1360 1361 // If there are unreachable blocks in the CFG... 1362 if (Reachable.size() == F.size()) 1363 return Changed; 1364 1365 assert(Reachable.size() < F.size()); 1366 NumRemoved += F.size()-Reachable.size(); 1367 1368 // Loop over all of the basic blocks that are not reachable, dropping all of 1369 // their internal references... 1370 for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) { 1371 if (Reachable.count(BB)) 1372 continue; 1373 1374 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 1375 if (Reachable.count(*SI)) 1376 (*SI)->removePredecessor(BB); 1377 BB->dropAllReferences(); 1378 } 1379 1380 for (Function::iterator I = ++F.begin(); I != F.end();) 1381 if (!Reachable.count(I)) 1382 I = F.getBasicBlockList().erase(I); 1383 else 1384 ++I; 1385 1386 return true; 1387 } 1388 1389 void llvm::combineMetadata(Instruction *K, const Instruction *J, ArrayRef<unsigned> KnownIDs) { 1390 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 1391 K->dropUnknownNonDebugMetadata(KnownIDs); 1392 K->getAllMetadataOtherThanDebugLoc(Metadata); 1393 for (unsigned i = 0, n = Metadata.size(); i < n; ++i) { 1394 unsigned Kind = Metadata[i].first; 1395 MDNode *JMD = J->getMetadata(Kind); 1396 MDNode *KMD = Metadata[i].second; 1397 1398 switch (Kind) { 1399 default: 1400 K->setMetadata(Kind, nullptr); // Remove unknown metadata 1401 break; 1402 case LLVMContext::MD_dbg: 1403 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 1404 case LLVMContext::MD_tbaa: 1405 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 1406 break; 1407 case LLVMContext::MD_alias_scope: 1408 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 1409 break; 1410 case LLVMContext::MD_noalias: 1411 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 1412 break; 1413 case LLVMContext::MD_range: 1414 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 1415 break; 1416 case LLVMContext::MD_fpmath: 1417 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 1418 break; 1419 case LLVMContext::MD_invariant_load: 1420 // Only set the !invariant.load if it is present in both instructions. 1421 K->setMetadata(Kind, JMD); 1422 break; 1423 case LLVMContext::MD_nonnull: 1424 // Only set the !nonnull if it is present in both instructions. 1425 K->setMetadata(Kind, JMD); 1426 break; 1427 } 1428 } 1429 } 1430 1431 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 1432 DominatorTree &DT, 1433 const BasicBlockEdge &Root) { 1434 assert(From->getType() == To->getType()); 1435 1436 unsigned Count = 0; 1437 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 1438 UI != UE; ) { 1439 Use &U = *UI++; 1440 if (DT.dominates(Root, U)) { 1441 U.set(To); 1442 DEBUG(dbgs() << "Replace dominated use of '" 1443 << From->getName() << "' as " 1444 << *To << " in " << *U << "\n"); 1445 ++Count; 1446 } 1447 } 1448 return Count; 1449 } 1450 1451 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 1452 DominatorTree &DT, 1453 const BasicBlock *BB) { 1454 assert(From->getType() == To->getType()); 1455 1456 unsigned Count = 0; 1457 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 1458 UI != UE;) { 1459 Use &U = *UI++; 1460 auto *I = cast<Instruction>(U.getUser()); 1461 if (DT.dominates(BB, I->getParent())) { 1462 U.set(To); 1463 DEBUG(dbgs() << "Replace dominated use of '" << From->getName() << "' as " 1464 << *To << " in " << *U << "\n"); 1465 ++Count; 1466 } 1467 } 1468 return Count; 1469 } 1470