1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/DomTreeUpdater.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/LazyValueInfo.h" 33 #include "llvm/Analysis/MemoryBuiltins.h" 34 #include "llvm/Analysis/MemorySSAUpdater.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/BinaryFormat/Dwarf.h" 39 #include "llvm/IR/Argument.h" 40 #include "llvm/IR/Attributes.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/IR/CFG.h" 43 #include "llvm/IR/CallSite.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/ConstantRange.h" 46 #include "llvm/IR/Constants.h" 47 #include "llvm/IR/DIBuilder.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GetElementPtrTypeIterator.h" 55 #include "llvm/IR/GlobalObject.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/MDBuilder.h" 64 #include "llvm/IR/Metadata.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/KnownBits.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Utils/ValueMapper.h" 79 #include <algorithm> 80 #include <cassert> 81 #include <climits> 82 #include <cstdint> 83 #include <iterator> 84 #include <map> 85 #include <utility> 86 87 using namespace llvm; 88 using namespace llvm::PatternMatch; 89 90 #define DEBUG_TYPE "local" 91 92 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 93 94 //===----------------------------------------------------------------------===// 95 // Local constant propagation. 96 // 97 98 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 99 /// constant value, convert it into an unconditional branch to the constant 100 /// destination. This is a nontrivial operation because the successors of this 101 /// basic block must have their PHI nodes updated. 102 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 103 /// conditions and indirectbr addresses this might make dead if 104 /// DeleteDeadConditions is true. 105 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 106 const TargetLibraryInfo *TLI, 107 DomTreeUpdater *DTU) { 108 Instruction *T = BB->getTerminator(); 109 IRBuilder<> Builder(T); 110 111 // Branch - See if we are conditional jumping on constant 112 if (auto *BI = dyn_cast<BranchInst>(T)) { 113 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 114 BasicBlock *Dest1 = BI->getSuccessor(0); 115 BasicBlock *Dest2 = BI->getSuccessor(1); 116 117 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 118 // Are we branching on constant? 119 // YES. Change to unconditional branch... 120 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 121 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 122 123 // Let the basic block know that we are letting go of it. Based on this, 124 // it will adjust it's PHI nodes. 125 OldDest->removePredecessor(BB); 126 127 // Replace the conditional branch with an unconditional one. 128 Builder.CreateBr(Destination); 129 BI->eraseFromParent(); 130 if (DTU) 131 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, OldDest}}); 132 return true; 133 } 134 135 if (Dest2 == Dest1) { // Conditional branch to same location? 136 // This branch matches something like this: 137 // br bool %cond, label %Dest, label %Dest 138 // and changes it into: br label %Dest 139 140 // Let the basic block know that we are letting go of one copy of it. 141 assert(BI->getParent() && "Terminator not inserted in block!"); 142 Dest1->removePredecessor(BI->getParent()); 143 144 // Replace the conditional branch with an unconditional one. 145 Builder.CreateBr(Dest1); 146 Value *Cond = BI->getCondition(); 147 BI->eraseFromParent(); 148 if (DeleteDeadConditions) 149 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 150 return true; 151 } 152 return false; 153 } 154 155 if (auto *SI = dyn_cast<SwitchInst>(T)) { 156 // If we are switching on a constant, we can convert the switch to an 157 // unconditional branch. 158 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 159 BasicBlock *DefaultDest = SI->getDefaultDest(); 160 BasicBlock *TheOnlyDest = DefaultDest; 161 162 // If the default is unreachable, ignore it when searching for TheOnlyDest. 163 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 164 SI->getNumCases() > 0) { 165 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 166 } 167 168 // Figure out which case it goes to. 169 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 170 // Found case matching a constant operand? 171 if (i->getCaseValue() == CI) { 172 TheOnlyDest = i->getCaseSuccessor(); 173 break; 174 } 175 176 // Check to see if this branch is going to the same place as the default 177 // dest. If so, eliminate it as an explicit compare. 178 if (i->getCaseSuccessor() == DefaultDest) { 179 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 180 unsigned NCases = SI->getNumCases(); 181 // Fold the case metadata into the default if there will be any branches 182 // left, unless the metadata doesn't match the switch. 183 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 184 // Collect branch weights into a vector. 185 SmallVector<uint32_t, 8> Weights; 186 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 187 ++MD_i) { 188 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 189 Weights.push_back(CI->getValue().getZExtValue()); 190 } 191 // Merge weight of this case to the default weight. 192 unsigned idx = i->getCaseIndex(); 193 Weights[0] += Weights[idx+1]; 194 // Remove weight for this case. 195 std::swap(Weights[idx+1], Weights.back()); 196 Weights.pop_back(); 197 SI->setMetadata(LLVMContext::MD_prof, 198 MDBuilder(BB->getContext()). 199 createBranchWeights(Weights)); 200 } 201 // Remove this entry. 202 BasicBlock *ParentBB = SI->getParent(); 203 DefaultDest->removePredecessor(ParentBB); 204 i = SI->removeCase(i); 205 e = SI->case_end(); 206 if (DTU) 207 DTU->applyUpdatesPermissive( 208 {{DominatorTree::Delete, ParentBB, DefaultDest}}); 209 continue; 210 } 211 212 // Otherwise, check to see if the switch only branches to one destination. 213 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 214 // destinations. 215 if (i->getCaseSuccessor() != TheOnlyDest) 216 TheOnlyDest = nullptr; 217 218 // Increment this iterator as we haven't removed the case. 219 ++i; 220 } 221 222 if (CI && !TheOnlyDest) { 223 // Branching on a constant, but not any of the cases, go to the default 224 // successor. 225 TheOnlyDest = SI->getDefaultDest(); 226 } 227 228 // If we found a single destination that we can fold the switch into, do so 229 // now. 230 if (TheOnlyDest) { 231 // Insert the new branch. 232 Builder.CreateBr(TheOnlyDest); 233 BasicBlock *BB = SI->getParent(); 234 std::vector <DominatorTree::UpdateType> Updates; 235 if (DTU) 236 Updates.reserve(SI->getNumSuccessors() - 1); 237 238 // Remove entries from PHI nodes which we no longer branch to... 239 for (BasicBlock *Succ : successors(SI)) { 240 // Found case matching a constant operand? 241 if (Succ == TheOnlyDest) { 242 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 243 } else { 244 Succ->removePredecessor(BB); 245 if (DTU) 246 Updates.push_back({DominatorTree::Delete, BB, Succ}); 247 } 248 } 249 250 // Delete the old switch. 251 Value *Cond = SI->getCondition(); 252 SI->eraseFromParent(); 253 if (DeleteDeadConditions) 254 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 255 if (DTU) 256 DTU->applyUpdatesPermissive(Updates); 257 return true; 258 } 259 260 if (SI->getNumCases() == 1) { 261 // Otherwise, we can fold this switch into a conditional branch 262 // instruction if it has only one non-default destination. 263 auto FirstCase = *SI->case_begin(); 264 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 265 FirstCase.getCaseValue(), "cond"); 266 267 // Insert the new branch. 268 BranchInst *NewBr = Builder.CreateCondBr(Cond, 269 FirstCase.getCaseSuccessor(), 270 SI->getDefaultDest()); 271 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 272 if (MD && MD->getNumOperands() == 3) { 273 ConstantInt *SICase = 274 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 275 ConstantInt *SIDef = 276 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 277 assert(SICase && SIDef); 278 // The TrueWeight should be the weight for the single case of SI. 279 NewBr->setMetadata(LLVMContext::MD_prof, 280 MDBuilder(BB->getContext()). 281 createBranchWeights(SICase->getValue().getZExtValue(), 282 SIDef->getValue().getZExtValue())); 283 } 284 285 // Update make.implicit metadata to the newly-created conditional branch. 286 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 287 if (MakeImplicitMD) 288 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 289 290 // Delete the old switch. 291 SI->eraseFromParent(); 292 return true; 293 } 294 return false; 295 } 296 297 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 298 // indirectbr blockaddress(@F, @BB) -> br label @BB 299 if (auto *BA = 300 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 301 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 302 std::vector <DominatorTree::UpdateType> Updates; 303 if (DTU) 304 Updates.reserve(IBI->getNumDestinations() - 1); 305 306 // Insert the new branch. 307 Builder.CreateBr(TheOnlyDest); 308 309 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 310 if (IBI->getDestination(i) == TheOnlyDest) { 311 TheOnlyDest = nullptr; 312 } else { 313 BasicBlock *ParentBB = IBI->getParent(); 314 BasicBlock *DestBB = IBI->getDestination(i); 315 DestBB->removePredecessor(ParentBB); 316 if (DTU) 317 Updates.push_back({DominatorTree::Delete, ParentBB, DestBB}); 318 } 319 } 320 Value *Address = IBI->getAddress(); 321 IBI->eraseFromParent(); 322 if (DeleteDeadConditions) 323 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 324 325 // If we didn't find our destination in the IBI successor list, then we 326 // have undefined behavior. Replace the unconditional branch with an 327 // 'unreachable' instruction. 328 if (TheOnlyDest) { 329 BB->getTerminator()->eraseFromParent(); 330 new UnreachableInst(BB->getContext(), BB); 331 } 332 333 if (DTU) 334 DTU->applyUpdatesPermissive(Updates); 335 return true; 336 } 337 } 338 339 return false; 340 } 341 342 //===----------------------------------------------------------------------===// 343 // Local dead code elimination. 344 // 345 346 /// isInstructionTriviallyDead - Return true if the result produced by the 347 /// instruction is not used, and the instruction has no side effects. 348 /// 349 bool llvm::isInstructionTriviallyDead(Instruction *I, 350 const TargetLibraryInfo *TLI) { 351 if (!I->use_empty()) 352 return false; 353 return wouldInstructionBeTriviallyDead(I, TLI); 354 } 355 356 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 357 const TargetLibraryInfo *TLI) { 358 if (I->isTerminator()) 359 return false; 360 361 // We don't want the landingpad-like instructions removed by anything this 362 // general. 363 if (I->isEHPad()) 364 return false; 365 366 // We don't want debug info removed by anything this general, unless 367 // debug info is empty. 368 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 369 if (DDI->getAddress()) 370 return false; 371 return true; 372 } 373 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 374 if (DVI->getValue()) 375 return false; 376 return true; 377 } 378 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 379 if (DLI->getLabel()) 380 return false; 381 return true; 382 } 383 384 if (!I->mayHaveSideEffects()) 385 return true; 386 387 // Special case intrinsics that "may have side effects" but can be deleted 388 // when dead. 389 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 390 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 391 if (II->getIntrinsicID() == Intrinsic::stacksave || 392 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 393 return true; 394 395 // Lifetime intrinsics are dead when their right-hand is undef. 396 if (II->isLifetimeStartOrEnd()) 397 return isa<UndefValue>(II->getArgOperand(1)); 398 399 // Assumptions are dead if their condition is trivially true. Guards on 400 // true are operationally no-ops. In the future we can consider more 401 // sophisticated tradeoffs for guards considering potential for check 402 // widening, but for now we keep things simple. 403 if (II->getIntrinsicID() == Intrinsic::assume || 404 II->getIntrinsicID() == Intrinsic::experimental_guard) { 405 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 406 return !Cond->isZero(); 407 408 return false; 409 } 410 } 411 412 if (isAllocLikeFn(I, TLI)) 413 return true; 414 415 if (CallInst *CI = isFreeCall(I, TLI)) 416 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 417 return C->isNullValue() || isa<UndefValue>(C); 418 419 if (auto *Call = dyn_cast<CallBase>(I)) 420 if (isMathLibCallNoop(Call, TLI)) 421 return true; 422 423 return false; 424 } 425 426 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 427 /// trivially dead instruction, delete it. If that makes any of its operands 428 /// trivially dead, delete them too, recursively. Return true if any 429 /// instructions were deleted. 430 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 431 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU) { 432 Instruction *I = dyn_cast<Instruction>(V); 433 if (!I || !isInstructionTriviallyDead(I, TLI)) 434 return false; 435 436 SmallVector<Instruction*, 16> DeadInsts; 437 DeadInsts.push_back(I); 438 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU); 439 440 return true; 441 } 442 443 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 444 SmallVectorImpl<Instruction *> &DeadInsts, const TargetLibraryInfo *TLI, 445 MemorySSAUpdater *MSSAU) { 446 // Process the dead instruction list until empty. 447 while (!DeadInsts.empty()) { 448 Instruction &I = *DeadInsts.pop_back_val(); 449 assert(I.use_empty() && "Instructions with uses are not dead."); 450 assert(isInstructionTriviallyDead(&I, TLI) && 451 "Live instruction found in dead worklist!"); 452 453 // Don't lose the debug info while deleting the instructions. 454 salvageDebugInfo(I); 455 456 // Null out all of the instruction's operands to see if any operand becomes 457 // dead as we go. 458 for (Use &OpU : I.operands()) { 459 Value *OpV = OpU.get(); 460 OpU.set(nullptr); 461 462 if (!OpV->use_empty()) 463 continue; 464 465 // If the operand is an instruction that became dead as we nulled out the 466 // operand, and if it is 'trivially' dead, delete it in a future loop 467 // iteration. 468 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 469 if (isInstructionTriviallyDead(OpI, TLI)) 470 DeadInsts.push_back(OpI); 471 } 472 if (MSSAU) 473 MSSAU->removeMemoryAccess(&I); 474 475 I.eraseFromParent(); 476 } 477 } 478 479 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 480 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 481 findDbgUsers(DbgUsers, I); 482 for (auto *DII : DbgUsers) { 483 Value *Undef = UndefValue::get(I->getType()); 484 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 485 ValueAsMetadata::get(Undef))); 486 } 487 return !DbgUsers.empty(); 488 } 489 490 /// areAllUsesEqual - Check whether the uses of a value are all the same. 491 /// This is similar to Instruction::hasOneUse() except this will also return 492 /// true when there are no uses or multiple uses that all refer to the same 493 /// value. 494 static bool areAllUsesEqual(Instruction *I) { 495 Value::user_iterator UI = I->user_begin(); 496 Value::user_iterator UE = I->user_end(); 497 if (UI == UE) 498 return true; 499 500 User *TheUse = *UI; 501 for (++UI; UI != UE; ++UI) { 502 if (*UI != TheUse) 503 return false; 504 } 505 return true; 506 } 507 508 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 509 /// dead PHI node, due to being a def-use chain of single-use nodes that 510 /// either forms a cycle or is terminated by a trivially dead instruction, 511 /// delete it. If that makes any of its operands trivially dead, delete them 512 /// too, recursively. Return true if a change was made. 513 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 514 const TargetLibraryInfo *TLI) { 515 SmallPtrSet<Instruction*, 4> Visited; 516 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 517 I = cast<Instruction>(*I->user_begin())) { 518 if (I->use_empty()) 519 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 520 521 // If we find an instruction more than once, we're on a cycle that 522 // won't prove fruitful. 523 if (!Visited.insert(I).second) { 524 // Break the cycle and delete the instruction and its operands. 525 I->replaceAllUsesWith(UndefValue::get(I->getType())); 526 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 527 return true; 528 } 529 } 530 return false; 531 } 532 533 static bool 534 simplifyAndDCEInstruction(Instruction *I, 535 SmallSetVector<Instruction *, 16> &WorkList, 536 const DataLayout &DL, 537 const TargetLibraryInfo *TLI) { 538 if (isInstructionTriviallyDead(I, TLI)) { 539 salvageDebugInfo(*I); 540 541 // Null out all of the instruction's operands to see if any operand becomes 542 // dead as we go. 543 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 544 Value *OpV = I->getOperand(i); 545 I->setOperand(i, nullptr); 546 547 if (!OpV->use_empty() || I == OpV) 548 continue; 549 550 // If the operand is an instruction that became dead as we nulled out the 551 // operand, and if it is 'trivially' dead, delete it in a future loop 552 // iteration. 553 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 554 if (isInstructionTriviallyDead(OpI, TLI)) 555 WorkList.insert(OpI); 556 } 557 558 I->eraseFromParent(); 559 560 return true; 561 } 562 563 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 564 // Add the users to the worklist. CAREFUL: an instruction can use itself, 565 // in the case of a phi node. 566 for (User *U : I->users()) { 567 if (U != I) { 568 WorkList.insert(cast<Instruction>(U)); 569 } 570 } 571 572 // Replace the instruction with its simplified value. 573 bool Changed = false; 574 if (!I->use_empty()) { 575 I->replaceAllUsesWith(SimpleV); 576 Changed = true; 577 } 578 if (isInstructionTriviallyDead(I, TLI)) { 579 I->eraseFromParent(); 580 Changed = true; 581 } 582 return Changed; 583 } 584 return false; 585 } 586 587 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 588 /// simplify any instructions in it and recursively delete dead instructions. 589 /// 590 /// This returns true if it changed the code, note that it can delete 591 /// instructions in other blocks as well in this block. 592 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 593 const TargetLibraryInfo *TLI) { 594 bool MadeChange = false; 595 const DataLayout &DL = BB->getModule()->getDataLayout(); 596 597 #ifndef NDEBUG 598 // In debug builds, ensure that the terminator of the block is never replaced 599 // or deleted by these simplifications. The idea of simplification is that it 600 // cannot introduce new instructions, and there is no way to replace the 601 // terminator of a block without introducing a new instruction. 602 AssertingVH<Instruction> TerminatorVH(&BB->back()); 603 #endif 604 605 SmallSetVector<Instruction *, 16> WorkList; 606 // Iterate over the original function, only adding insts to the worklist 607 // if they actually need to be revisited. This avoids having to pre-init 608 // the worklist with the entire function's worth of instructions. 609 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 610 BI != E;) { 611 assert(!BI->isTerminator()); 612 Instruction *I = &*BI; 613 ++BI; 614 615 // We're visiting this instruction now, so make sure it's not in the 616 // worklist from an earlier visit. 617 if (!WorkList.count(I)) 618 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 619 } 620 621 while (!WorkList.empty()) { 622 Instruction *I = WorkList.pop_back_val(); 623 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 624 } 625 return MadeChange; 626 } 627 628 //===----------------------------------------------------------------------===// 629 // Control Flow Graph Restructuring. 630 // 631 632 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 633 /// method is called when we're about to delete Pred as a predecessor of BB. If 634 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 635 /// 636 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 637 /// nodes that collapse into identity values. For example, if we have: 638 /// x = phi(1, 0, 0, 0) 639 /// y = and x, z 640 /// 641 /// .. and delete the predecessor corresponding to the '1', this will attempt to 642 /// recursively fold the and to 0. 643 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, 644 DomTreeUpdater *DTU) { 645 // This only adjusts blocks with PHI nodes. 646 if (!isa<PHINode>(BB->begin())) 647 return; 648 649 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 650 // them down. This will leave us with single entry phi nodes and other phis 651 // that can be removed. 652 BB->removePredecessor(Pred, true); 653 654 WeakTrackingVH PhiIt = &BB->front(); 655 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 656 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 657 Value *OldPhiIt = PhiIt; 658 659 if (!recursivelySimplifyInstruction(PN)) 660 continue; 661 662 // If recursive simplification ended up deleting the next PHI node we would 663 // iterate to, then our iterator is invalid, restart scanning from the top 664 // of the block. 665 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 666 } 667 if (DTU) 668 DTU->applyUpdatesPermissive({{DominatorTree::Delete, Pred, BB}}); 669 } 670 671 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 672 /// predecessor is known to have one successor (DestBB!). Eliminate the edge 673 /// between them, moving the instructions in the predecessor into DestBB and 674 /// deleting the predecessor block. 675 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 676 DomTreeUpdater *DTU) { 677 678 // If BB has single-entry PHI nodes, fold them. 679 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 680 Value *NewVal = PN->getIncomingValue(0); 681 // Replace self referencing PHI with undef, it must be dead. 682 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 683 PN->replaceAllUsesWith(NewVal); 684 PN->eraseFromParent(); 685 } 686 687 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 688 assert(PredBB && "Block doesn't have a single predecessor!"); 689 690 bool ReplaceEntryBB = false; 691 if (PredBB == &DestBB->getParent()->getEntryBlock()) 692 ReplaceEntryBB = true; 693 694 // DTU updates: Collect all the edges that enter 695 // PredBB. These dominator edges will be redirected to DestBB. 696 SmallVector<DominatorTree::UpdateType, 32> Updates; 697 698 if (DTU) { 699 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 700 for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) { 701 Updates.push_back({DominatorTree::Delete, *I, PredBB}); 702 // This predecessor of PredBB may already have DestBB as a successor. 703 if (llvm::find(successors(*I), DestBB) == succ_end(*I)) 704 Updates.push_back({DominatorTree::Insert, *I, DestBB}); 705 } 706 } 707 708 // Zap anything that took the address of DestBB. Not doing this will give the 709 // address an invalid value. 710 if (DestBB->hasAddressTaken()) { 711 BlockAddress *BA = BlockAddress::get(DestBB); 712 Constant *Replacement = 713 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 714 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 715 BA->getType())); 716 BA->destroyConstant(); 717 } 718 719 // Anything that branched to PredBB now branches to DestBB. 720 PredBB->replaceAllUsesWith(DestBB); 721 722 // Splice all the instructions from PredBB to DestBB. 723 PredBB->getTerminator()->eraseFromParent(); 724 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 725 new UnreachableInst(PredBB->getContext(), PredBB); 726 727 // If the PredBB is the entry block of the function, move DestBB up to 728 // become the entry block after we erase PredBB. 729 if (ReplaceEntryBB) 730 DestBB->moveAfter(PredBB); 731 732 if (DTU) { 733 assert(PredBB->getInstList().size() == 1 && 734 isa<UnreachableInst>(PredBB->getTerminator()) && 735 "The successor list of PredBB isn't empty before " 736 "applying corresponding DTU updates."); 737 DTU->applyUpdatesPermissive(Updates); 738 DTU->deleteBB(PredBB); 739 // Recalculation of DomTree is needed when updating a forward DomTree and 740 // the Entry BB is replaced. 741 if (ReplaceEntryBB && DTU->hasDomTree()) { 742 // The entry block was removed and there is no external interface for 743 // the dominator tree to be notified of this change. In this corner-case 744 // we recalculate the entire tree. 745 DTU->recalculate(*(DestBB->getParent())); 746 } 747 } 748 749 else { 750 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 751 } 752 } 753 754 /// CanMergeValues - Return true if we can choose one of these values to use 755 /// in place of the other. Note that we will always choose the non-undef 756 /// value to keep. 757 static bool CanMergeValues(Value *First, Value *Second) { 758 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 759 } 760 761 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an 762 /// almost-empty BB ending in an unconditional branch to Succ, into Succ. 763 /// 764 /// Assumption: Succ is the single successor for BB. 765 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 766 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 767 768 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 769 << Succ->getName() << "\n"); 770 // Shortcut, if there is only a single predecessor it must be BB and merging 771 // is always safe 772 if (Succ->getSinglePredecessor()) return true; 773 774 // Make a list of the predecessors of BB 775 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 776 777 // Look at all the phi nodes in Succ, to see if they present a conflict when 778 // merging these blocks 779 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 780 PHINode *PN = cast<PHINode>(I); 781 782 // If the incoming value from BB is again a PHINode in 783 // BB which has the same incoming value for *PI as PN does, we can 784 // merge the phi nodes and then the blocks can still be merged 785 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 786 if (BBPN && BBPN->getParent() == BB) { 787 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 788 BasicBlock *IBB = PN->getIncomingBlock(PI); 789 if (BBPreds.count(IBB) && 790 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 791 PN->getIncomingValue(PI))) { 792 LLVM_DEBUG(dbgs() 793 << "Can't fold, phi node " << PN->getName() << " in " 794 << Succ->getName() << " is conflicting with " 795 << BBPN->getName() << " with regard to common predecessor " 796 << IBB->getName() << "\n"); 797 return false; 798 } 799 } 800 } else { 801 Value* Val = PN->getIncomingValueForBlock(BB); 802 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 803 // See if the incoming value for the common predecessor is equal to the 804 // one for BB, in which case this phi node will not prevent the merging 805 // of the block. 806 BasicBlock *IBB = PN->getIncomingBlock(PI); 807 if (BBPreds.count(IBB) && 808 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 809 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 810 << " in " << Succ->getName() 811 << " is conflicting with regard to common " 812 << "predecessor " << IBB->getName() << "\n"); 813 return false; 814 } 815 } 816 } 817 } 818 819 return true; 820 } 821 822 using PredBlockVector = SmallVector<BasicBlock *, 16>; 823 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 824 825 /// Determines the value to use as the phi node input for a block. 826 /// 827 /// Select between \p OldVal any value that we know flows from \p BB 828 /// to a particular phi on the basis of which one (if either) is not 829 /// undef. Update IncomingValues based on the selected value. 830 /// 831 /// \param OldVal The value we are considering selecting. 832 /// \param BB The block that the value flows in from. 833 /// \param IncomingValues A map from block-to-value for other phi inputs 834 /// that we have examined. 835 /// 836 /// \returns the selected value. 837 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 838 IncomingValueMap &IncomingValues) { 839 if (!isa<UndefValue>(OldVal)) { 840 assert((!IncomingValues.count(BB) || 841 IncomingValues.find(BB)->second == OldVal) && 842 "Expected OldVal to match incoming value from BB!"); 843 844 IncomingValues.insert(std::make_pair(BB, OldVal)); 845 return OldVal; 846 } 847 848 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 849 if (It != IncomingValues.end()) return It->second; 850 851 return OldVal; 852 } 853 854 /// Create a map from block to value for the operands of a 855 /// given phi. 856 /// 857 /// Create a map from block to value for each non-undef value flowing 858 /// into \p PN. 859 /// 860 /// \param PN The phi we are collecting the map for. 861 /// \param IncomingValues [out] The map from block to value for this phi. 862 static void gatherIncomingValuesToPhi(PHINode *PN, 863 IncomingValueMap &IncomingValues) { 864 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 865 BasicBlock *BB = PN->getIncomingBlock(i); 866 Value *V = PN->getIncomingValue(i); 867 868 if (!isa<UndefValue>(V)) 869 IncomingValues.insert(std::make_pair(BB, V)); 870 } 871 } 872 873 /// Replace the incoming undef values to a phi with the values 874 /// from a block-to-value map. 875 /// 876 /// \param PN The phi we are replacing the undefs in. 877 /// \param IncomingValues A map from block to value. 878 static void replaceUndefValuesInPhi(PHINode *PN, 879 const IncomingValueMap &IncomingValues) { 880 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 881 Value *V = PN->getIncomingValue(i); 882 883 if (!isa<UndefValue>(V)) continue; 884 885 BasicBlock *BB = PN->getIncomingBlock(i); 886 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 887 if (It == IncomingValues.end()) continue; 888 889 PN->setIncomingValue(i, It->second); 890 } 891 } 892 893 /// Replace a value flowing from a block to a phi with 894 /// potentially multiple instances of that value flowing from the 895 /// block's predecessors to the phi. 896 /// 897 /// \param BB The block with the value flowing into the phi. 898 /// \param BBPreds The predecessors of BB. 899 /// \param PN The phi that we are updating. 900 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 901 const PredBlockVector &BBPreds, 902 PHINode *PN) { 903 Value *OldVal = PN->removeIncomingValue(BB, false); 904 assert(OldVal && "No entry in PHI for Pred BB!"); 905 906 IncomingValueMap IncomingValues; 907 908 // We are merging two blocks - BB, and the block containing PN - and 909 // as a result we need to redirect edges from the predecessors of BB 910 // to go to the block containing PN, and update PN 911 // accordingly. Since we allow merging blocks in the case where the 912 // predecessor and successor blocks both share some predecessors, 913 // and where some of those common predecessors might have undef 914 // values flowing into PN, we want to rewrite those values to be 915 // consistent with the non-undef values. 916 917 gatherIncomingValuesToPhi(PN, IncomingValues); 918 919 // If this incoming value is one of the PHI nodes in BB, the new entries 920 // in the PHI node are the entries from the old PHI. 921 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 922 PHINode *OldValPN = cast<PHINode>(OldVal); 923 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 924 // Note that, since we are merging phi nodes and BB and Succ might 925 // have common predecessors, we could end up with a phi node with 926 // identical incoming branches. This will be cleaned up later (and 927 // will trigger asserts if we try to clean it up now, without also 928 // simplifying the corresponding conditional branch). 929 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 930 Value *PredVal = OldValPN->getIncomingValue(i); 931 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 932 IncomingValues); 933 934 // And add a new incoming value for this predecessor for the 935 // newly retargeted branch. 936 PN->addIncoming(Selected, PredBB); 937 } 938 } else { 939 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 940 // Update existing incoming values in PN for this 941 // predecessor of BB. 942 BasicBlock *PredBB = BBPreds[i]; 943 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 944 IncomingValues); 945 946 // And add a new incoming value for this predecessor for the 947 // newly retargeted branch. 948 PN->addIncoming(Selected, PredBB); 949 } 950 } 951 952 replaceUndefValuesInPhi(PN, IncomingValues); 953 } 954 955 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 956 /// unconditional branch, and contains no instructions other than PHI nodes, 957 /// potential side-effect free intrinsics and the branch. If possible, 958 /// eliminate BB by rewriting all the predecessors to branch to the successor 959 /// block and return true. If we can't transform, return false. 960 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 961 DomTreeUpdater *DTU) { 962 assert(BB != &BB->getParent()->getEntryBlock() && 963 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 964 965 // We can't eliminate infinite loops. 966 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 967 if (BB == Succ) return false; 968 969 // Check to see if merging these blocks would cause conflicts for any of the 970 // phi nodes in BB or Succ. If not, we can safely merge. 971 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 972 973 // Check for cases where Succ has multiple predecessors and a PHI node in BB 974 // has uses which will not disappear when the PHI nodes are merged. It is 975 // possible to handle such cases, but difficult: it requires checking whether 976 // BB dominates Succ, which is non-trivial to calculate in the case where 977 // Succ has multiple predecessors. Also, it requires checking whether 978 // constructing the necessary self-referential PHI node doesn't introduce any 979 // conflicts; this isn't too difficult, but the previous code for doing this 980 // was incorrect. 981 // 982 // Note that if this check finds a live use, BB dominates Succ, so BB is 983 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 984 // folding the branch isn't profitable in that case anyway. 985 if (!Succ->getSinglePredecessor()) { 986 BasicBlock::iterator BBI = BB->begin(); 987 while (isa<PHINode>(*BBI)) { 988 for (Use &U : BBI->uses()) { 989 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 990 if (PN->getIncomingBlock(U) != BB) 991 return false; 992 } else { 993 return false; 994 } 995 } 996 ++BBI; 997 } 998 } 999 1000 // We cannot fold the block if it's a branch to an already present callbr 1001 // successor because that creates duplicate successors. 1002 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 1003 if (auto *CBI = dyn_cast<CallBrInst>((*I)->getTerminator())) { 1004 if (Succ == CBI->getDefaultDest()) 1005 return false; 1006 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 1007 if (Succ == CBI->getIndirectDest(i)) 1008 return false; 1009 } 1010 } 1011 1012 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1013 1014 SmallVector<DominatorTree::UpdateType, 32> Updates; 1015 if (DTU) { 1016 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1017 // All predecessors of BB will be moved to Succ. 1018 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 1019 Updates.push_back({DominatorTree::Delete, *I, BB}); 1020 // This predecessor of BB may already have Succ as a successor. 1021 if (llvm::find(successors(*I), Succ) == succ_end(*I)) 1022 Updates.push_back({DominatorTree::Insert, *I, Succ}); 1023 } 1024 } 1025 1026 if (isa<PHINode>(Succ->begin())) { 1027 // If there is more than one pred of succ, and there are PHI nodes in 1028 // the successor, then we need to add incoming edges for the PHI nodes 1029 // 1030 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 1031 1032 // Loop over all of the PHI nodes in the successor of BB. 1033 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1034 PHINode *PN = cast<PHINode>(I); 1035 1036 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1037 } 1038 } 1039 1040 if (Succ->getSinglePredecessor()) { 1041 // BB is the only predecessor of Succ, so Succ will end up with exactly 1042 // the same predecessors BB had. 1043 1044 // Copy over any phi, debug or lifetime instruction. 1045 BB->getTerminator()->eraseFromParent(); 1046 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1047 BB->getInstList()); 1048 } else { 1049 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1050 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1051 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1052 PN->eraseFromParent(); 1053 } 1054 } 1055 1056 // If the unconditional branch we replaced contains llvm.loop metadata, we 1057 // add the metadata to the branch instructions in the predecessors. 1058 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1059 Instruction *TI = BB->getTerminator(); 1060 if (TI) 1061 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1062 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 1063 BasicBlock *Pred = *PI; 1064 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1065 } 1066 1067 // Everything that jumped to BB now goes to Succ. 1068 BB->replaceAllUsesWith(Succ); 1069 if (!Succ->hasName()) Succ->takeName(BB); 1070 1071 // Clear the successor list of BB to match updates applying to DTU later. 1072 if (BB->getTerminator()) 1073 BB->getInstList().pop_back(); 1074 new UnreachableInst(BB->getContext(), BB); 1075 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1076 "applying corresponding DTU updates."); 1077 1078 if (DTU) { 1079 DTU->applyUpdatesPermissive(Updates); 1080 DTU->deleteBB(BB); 1081 } else { 1082 BB->eraseFromParent(); // Delete the old basic block. 1083 } 1084 return true; 1085 } 1086 1087 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 1088 /// nodes in this block. This doesn't try to be clever about PHI nodes 1089 /// which differ only in the order of the incoming values, but instcombine 1090 /// orders them so it usually won't matter. 1091 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1092 // This implementation doesn't currently consider undef operands 1093 // specially. Theoretically, two phis which are identical except for 1094 // one having an undef where the other doesn't could be collapsed. 1095 1096 struct PHIDenseMapInfo { 1097 static PHINode *getEmptyKey() { 1098 return DenseMapInfo<PHINode *>::getEmptyKey(); 1099 } 1100 1101 static PHINode *getTombstoneKey() { 1102 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1103 } 1104 1105 static unsigned getHashValue(PHINode *PN) { 1106 // Compute a hash value on the operands. Instcombine will likely have 1107 // sorted them, which helps expose duplicates, but we have to check all 1108 // the operands to be safe in case instcombine hasn't run. 1109 return static_cast<unsigned>(hash_combine( 1110 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1111 hash_combine_range(PN->block_begin(), PN->block_end()))); 1112 } 1113 1114 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1115 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 1116 RHS == getEmptyKey() || RHS == getTombstoneKey()) 1117 return LHS == RHS; 1118 return LHS->isIdenticalTo(RHS); 1119 } 1120 }; 1121 1122 // Set of unique PHINodes. 1123 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1124 1125 // Examine each PHI. 1126 bool Changed = false; 1127 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1128 auto Inserted = PHISet.insert(PN); 1129 if (!Inserted.second) { 1130 // A duplicate. Replace this PHI with its duplicate. 1131 PN->replaceAllUsesWith(*Inserted.first); 1132 PN->eraseFromParent(); 1133 Changed = true; 1134 1135 // The RAUW can change PHIs that we already visited. Start over from the 1136 // beginning. 1137 PHISet.clear(); 1138 I = BB->begin(); 1139 } 1140 } 1141 1142 return Changed; 1143 } 1144 1145 /// enforceKnownAlignment - If the specified pointer points to an object that 1146 /// we control, modify the object's alignment to PrefAlign. This isn't 1147 /// often possible though. If alignment is important, a more reliable approach 1148 /// is to simply align all global variables and allocation instructions to 1149 /// their preferred alignment from the beginning. 1150 static unsigned enforceKnownAlignment(Value *V, unsigned Align, 1151 unsigned PrefAlign, 1152 const DataLayout &DL) { 1153 assert(PrefAlign > Align); 1154 1155 V = V->stripPointerCasts(); 1156 1157 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1158 // TODO: ideally, computeKnownBits ought to have used 1159 // AllocaInst::getAlignment() in its computation already, making 1160 // the below max redundant. But, as it turns out, 1161 // stripPointerCasts recurses through infinite layers of bitcasts, 1162 // while computeKnownBits is not allowed to traverse more than 6 1163 // levels. 1164 Align = std::max(AI->getAlignment(), Align); 1165 if (PrefAlign <= Align) 1166 return Align; 1167 1168 // If the preferred alignment is greater than the natural stack alignment 1169 // then don't round up. This avoids dynamic stack realignment. 1170 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1171 return Align; 1172 AI->setAlignment(PrefAlign); 1173 return PrefAlign; 1174 } 1175 1176 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1177 // TODO: as above, this shouldn't be necessary. 1178 Align = std::max(GO->getAlignment(), Align); 1179 if (PrefAlign <= Align) 1180 return Align; 1181 1182 // If there is a large requested alignment and we can, bump up the alignment 1183 // of the global. If the memory we set aside for the global may not be the 1184 // memory used by the final program then it is impossible for us to reliably 1185 // enforce the preferred alignment. 1186 if (!GO->canIncreaseAlignment()) 1187 return Align; 1188 1189 GO->setAlignment(PrefAlign); 1190 return PrefAlign; 1191 } 1192 1193 return Align; 1194 } 1195 1196 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 1197 const DataLayout &DL, 1198 const Instruction *CxtI, 1199 AssumptionCache *AC, 1200 const DominatorTree *DT) { 1201 assert(V->getType()->isPointerTy() && 1202 "getOrEnforceKnownAlignment expects a pointer!"); 1203 1204 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1205 unsigned TrailZ = Known.countMinTrailingZeros(); 1206 1207 // Avoid trouble with ridiculously large TrailZ values, such as 1208 // those computed from a null pointer. 1209 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 1210 1211 unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ); 1212 1213 // LLVM doesn't support alignments larger than this currently. 1214 Align = std::min(Align, +Value::MaximumAlignment); 1215 1216 if (PrefAlign > Align) 1217 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 1218 1219 // We don't need to make any adjustment. 1220 return Align; 1221 } 1222 1223 ///===---------------------------------------------------------------------===// 1224 /// Dbg Intrinsic utilities 1225 /// 1226 1227 /// See if there is a dbg.value intrinsic for DIVar before I. 1228 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr, 1229 Instruction *I) { 1230 // Since we can't guarantee that the original dbg.declare instrinsic 1231 // is removed by LowerDbgDeclare(), we need to make sure that we are 1232 // not inserting the same dbg.value intrinsic over and over. 1233 BasicBlock::InstListType::iterator PrevI(I); 1234 if (PrevI != I->getParent()->getInstList().begin()) { 1235 --PrevI; 1236 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) 1237 if (DVI->getValue() == I->getOperand(0) && 1238 DVI->getVariable() == DIVar && 1239 DVI->getExpression() == DIExpr) 1240 return true; 1241 } 1242 return false; 1243 } 1244 1245 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1246 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1247 DIExpression *DIExpr, 1248 PHINode *APN) { 1249 // Since we can't guarantee that the original dbg.declare instrinsic 1250 // is removed by LowerDbgDeclare(), we need to make sure that we are 1251 // not inserting the same dbg.value intrinsic over and over. 1252 SmallVector<DbgValueInst *, 1> DbgValues; 1253 findDbgValues(DbgValues, APN); 1254 for (auto *DVI : DbgValues) { 1255 assert(DVI->getValue() == APN); 1256 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1257 return true; 1258 } 1259 return false; 1260 } 1261 1262 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1263 /// (or fragment of the variable) described by \p DII. 1264 /// 1265 /// This is primarily intended as a helper for the different 1266 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1267 /// converted describes an alloca'd variable, so we need to use the 1268 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1269 /// identified as covering an n-bit fragment, if the store size of i1 is at 1270 /// least n bits. 1271 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1272 const DataLayout &DL = DII->getModule()->getDataLayout(); 1273 uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1274 if (auto FragmentSize = DII->getFragmentSizeInBits()) 1275 return ValueSize >= *FragmentSize; 1276 // We can't always calculate the size of the DI variable (e.g. if it is a 1277 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1278 // intead. 1279 if (DII->isAddressOfVariable()) 1280 if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation())) 1281 if (auto FragmentSize = AI->getAllocationSizeInBits(DL)) 1282 return ValueSize >= *FragmentSize; 1283 // Could not determine size of variable. Conservatively return false. 1284 return false; 1285 } 1286 1287 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1288 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1289 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1290 StoreInst *SI, DIBuilder &Builder) { 1291 assert(DII->isAddressOfVariable()); 1292 auto *DIVar = DII->getVariable(); 1293 assert(DIVar && "Missing variable"); 1294 auto *DIExpr = DII->getExpression(); 1295 Value *DV = SI->getValueOperand(); 1296 1297 if (!valueCoversEntireFragment(DV->getType(), DII)) { 1298 // FIXME: If storing to a part of the variable described by the dbg.declare, 1299 // then we want to insert a dbg.value for the corresponding fragment. 1300 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1301 << *DII << '\n'); 1302 // For now, when there is a store to parts of the variable (but we do not 1303 // know which part) we insert an dbg.value instrinsic to indicate that we 1304 // know nothing about the variable's content. 1305 DV = UndefValue::get(DV->getType()); 1306 if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1307 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(), 1308 SI); 1309 return; 1310 } 1311 1312 if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1313 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(), 1314 SI); 1315 } 1316 1317 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1318 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1319 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1320 LoadInst *LI, DIBuilder &Builder) { 1321 auto *DIVar = DII->getVariable(); 1322 auto *DIExpr = DII->getExpression(); 1323 assert(DIVar && "Missing variable"); 1324 1325 if (LdStHasDebugValue(DIVar, DIExpr, LI)) 1326 return; 1327 1328 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1329 // FIXME: If only referring to a part of the variable described by the 1330 // dbg.declare, then we want to insert a dbg.value for the corresponding 1331 // fragment. 1332 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1333 << *DII << '\n'); 1334 return; 1335 } 1336 1337 // We are now tracking the loaded value instead of the address. In the 1338 // future if multi-location support is added to the IR, it might be 1339 // preferable to keep tracking both the loaded value and the original 1340 // address in case the alloca can not be elided. 1341 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1342 LI, DIVar, DIExpr, DII->getDebugLoc(), (Instruction *)nullptr); 1343 DbgValue->insertAfter(LI); 1344 } 1345 1346 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1347 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1348 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1349 PHINode *APN, DIBuilder &Builder) { 1350 auto *DIVar = DII->getVariable(); 1351 auto *DIExpr = DII->getExpression(); 1352 assert(DIVar && "Missing variable"); 1353 1354 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1355 return; 1356 1357 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1358 // FIXME: If only referring to a part of the variable described by the 1359 // dbg.declare, then we want to insert a dbg.value for the corresponding 1360 // fragment. 1361 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1362 << *DII << '\n'); 1363 return; 1364 } 1365 1366 BasicBlock *BB = APN->getParent(); 1367 auto InsertionPt = BB->getFirstInsertionPt(); 1368 1369 // The block may be a catchswitch block, which does not have a valid 1370 // insertion point. 1371 // FIXME: Insert dbg.value markers in the successors when appropriate. 1372 if (InsertionPt != BB->end()) 1373 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, DII->getDebugLoc(), 1374 &*InsertionPt); 1375 } 1376 1377 /// Determine whether this alloca is either a VLA or an array. 1378 static bool isArray(AllocaInst *AI) { 1379 return AI->isArrayAllocation() || 1380 AI->getType()->getElementType()->isArrayTy(); 1381 } 1382 1383 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1384 /// of llvm.dbg.value intrinsics. 1385 bool llvm::LowerDbgDeclare(Function &F) { 1386 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1387 SmallVector<DbgDeclareInst *, 4> Dbgs; 1388 for (auto &FI : F) 1389 for (Instruction &BI : FI) 1390 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1391 Dbgs.push_back(DDI); 1392 1393 if (Dbgs.empty()) 1394 return false; 1395 1396 for (auto &I : Dbgs) { 1397 DbgDeclareInst *DDI = I; 1398 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1399 // If this is an alloca for a scalar variable, insert a dbg.value 1400 // at each load and store to the alloca and erase the dbg.declare. 1401 // The dbg.values allow tracking a variable even if it is not 1402 // stored on the stack, while the dbg.declare can only describe 1403 // the stack slot (and at a lexical-scope granularity). Later 1404 // passes will attempt to elide the stack slot. 1405 if (!AI || isArray(AI)) 1406 continue; 1407 1408 // A volatile load/store means that the alloca can't be elided anyway. 1409 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1410 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1411 return LI->isVolatile(); 1412 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1413 return SI->isVolatile(); 1414 return false; 1415 })) 1416 continue; 1417 1418 for (auto &AIUse : AI->uses()) { 1419 User *U = AIUse.getUser(); 1420 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1421 if (AIUse.getOperandNo() == 1) 1422 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1423 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1424 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1425 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1426 // This is a call by-value or some other instruction that takes a 1427 // pointer to the variable. Insert a *value* intrinsic that describes 1428 // the variable by dereferencing the alloca. 1429 auto *DerefExpr = 1430 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1431 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1432 DDI->getDebugLoc(), CI); 1433 } 1434 } 1435 DDI->eraseFromParent(); 1436 } 1437 return true; 1438 } 1439 1440 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1441 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1442 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1443 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1444 if (InsertedPHIs.size() == 0) 1445 return; 1446 1447 // Map existing PHI nodes to their dbg.values. 1448 ValueToValueMapTy DbgValueMap; 1449 for (auto &I : *BB) { 1450 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1451 if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation())) 1452 DbgValueMap.insert({Loc, DbgII}); 1453 } 1454 } 1455 if (DbgValueMap.size() == 0) 1456 return; 1457 1458 // Then iterate through the new PHIs and look to see if they use one of the 1459 // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will 1460 // propagate the info through the new PHI. 1461 LLVMContext &C = BB->getContext(); 1462 for (auto PHI : InsertedPHIs) { 1463 BasicBlock *Parent = PHI->getParent(); 1464 // Avoid inserting an intrinsic into an EH block. 1465 if (Parent->getFirstNonPHI()->isEHPad()) 1466 continue; 1467 auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI)); 1468 for (auto VI : PHI->operand_values()) { 1469 auto V = DbgValueMap.find(VI); 1470 if (V != DbgValueMap.end()) { 1471 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1472 Instruction *NewDbgII = DbgII->clone(); 1473 NewDbgII->setOperand(0, PhiMAV); 1474 auto InsertionPt = Parent->getFirstInsertionPt(); 1475 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1476 NewDbgII->insertBefore(&*InsertionPt); 1477 } 1478 } 1479 } 1480 } 1481 1482 /// Finds all intrinsics declaring local variables as living in the memory that 1483 /// 'V' points to. This may include a mix of dbg.declare and 1484 /// dbg.addr intrinsics. 1485 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) { 1486 // This function is hot. Check whether the value has any metadata to avoid a 1487 // DenseMap lookup. 1488 if (!V->isUsedByMetadata()) 1489 return {}; 1490 auto *L = LocalAsMetadata::getIfExists(V); 1491 if (!L) 1492 return {}; 1493 auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L); 1494 if (!MDV) 1495 return {}; 1496 1497 TinyPtrVector<DbgVariableIntrinsic *> Declares; 1498 for (User *U : MDV->users()) { 1499 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1500 if (DII->isAddressOfVariable()) 1501 Declares.push_back(DII); 1502 } 1503 1504 return Declares; 1505 } 1506 1507 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1508 // This function is hot. Check whether the value has any metadata to avoid a 1509 // DenseMap lookup. 1510 if (!V->isUsedByMetadata()) 1511 return; 1512 if (auto *L = LocalAsMetadata::getIfExists(V)) 1513 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1514 for (User *U : MDV->users()) 1515 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1516 DbgValues.push_back(DVI); 1517 } 1518 1519 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers, 1520 Value *V) { 1521 // This function is hot. Check whether the value has any metadata to avoid a 1522 // DenseMap lookup. 1523 if (!V->isUsedByMetadata()) 1524 return; 1525 if (auto *L = LocalAsMetadata::getIfExists(V)) 1526 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1527 for (User *U : MDV->users()) 1528 if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1529 DbgUsers.push_back(DII); 1530 } 1531 1532 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1533 Instruction *InsertBefore, DIBuilder &Builder, 1534 bool DerefBefore, int Offset, bool DerefAfter) { 1535 auto DbgAddrs = FindDbgAddrUses(Address); 1536 for (DbgVariableIntrinsic *DII : DbgAddrs) { 1537 DebugLoc Loc = DII->getDebugLoc(); 1538 auto *DIVar = DII->getVariable(); 1539 auto *DIExpr = DII->getExpression(); 1540 assert(DIVar && "Missing variable"); 1541 DIExpr = DIExpression::prepend(DIExpr, DerefBefore, Offset, DerefAfter); 1542 // Insert llvm.dbg.declare immediately before InsertBefore, and remove old 1543 // llvm.dbg.declare. 1544 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore); 1545 if (DII == InsertBefore) 1546 InsertBefore = InsertBefore->getNextNode(); 1547 DII->eraseFromParent(); 1548 } 1549 return !DbgAddrs.empty(); 1550 } 1551 1552 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1553 DIBuilder &Builder, bool DerefBefore, 1554 int Offset, bool DerefAfter) { 1555 return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder, 1556 DerefBefore, Offset, DerefAfter); 1557 } 1558 1559 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1560 DIBuilder &Builder, int Offset) { 1561 DebugLoc Loc = DVI->getDebugLoc(); 1562 auto *DIVar = DVI->getVariable(); 1563 auto *DIExpr = DVI->getExpression(); 1564 assert(DIVar && "Missing variable"); 1565 1566 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1567 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1568 // it and give up. 1569 if (!DIExpr || DIExpr->getNumElements() < 1 || 1570 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1571 return; 1572 1573 // Insert the offset immediately after the first deref. 1574 // We could just change the offset argument of dbg.value, but it's unsigned... 1575 if (Offset) { 1576 SmallVector<uint64_t, 4> Ops; 1577 Ops.push_back(dwarf::DW_OP_deref); 1578 DIExpression::appendOffset(Ops, Offset); 1579 Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end()); 1580 DIExpr = Builder.createExpression(Ops); 1581 } 1582 1583 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1584 DVI->eraseFromParent(); 1585 } 1586 1587 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1588 DIBuilder &Builder, int Offset) { 1589 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1590 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1591 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1592 Use &U = *UI++; 1593 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1594 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1595 } 1596 } 1597 1598 /// Wrap \p V in a ValueAsMetadata instance. 1599 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) { 1600 return MetadataAsValue::get(C, ValueAsMetadata::get(V)); 1601 } 1602 1603 bool llvm::salvageDebugInfo(Instruction &I) { 1604 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1605 findDbgUsers(DbgUsers, &I); 1606 if (DbgUsers.empty()) 1607 return false; 1608 1609 return salvageDebugInfoForDbgValues(I, DbgUsers); 1610 } 1611 1612 bool llvm::salvageDebugInfoForDbgValues( 1613 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) { 1614 auto &Ctx = I.getContext(); 1615 auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); }; 1616 1617 for (auto *DII : DbgUsers) { 1618 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1619 // are implicitly pointing out the value as a DWARF memory location 1620 // description. 1621 bool StackValue = isa<DbgValueInst>(DII); 1622 1623 DIExpression *DIExpr = 1624 salvageDebugInfoImpl(I, DII->getExpression(), StackValue); 1625 1626 // salvageDebugInfoImpl should fail on examining the first element of 1627 // DbgUsers, or none of them. 1628 if (!DIExpr) 1629 return false; 1630 1631 DII->setOperand(0, wrapMD(I.getOperand(0))); 1632 DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr)); 1633 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1634 } 1635 1636 return true; 1637 } 1638 1639 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I, 1640 DIExpression *SrcDIExpr, 1641 bool WithStackValue) { 1642 auto &M = *I.getModule(); 1643 auto &DL = M.getDataLayout(); 1644 1645 // Apply a vector of opcodes to the source DIExpression. 1646 auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * { 1647 DIExpression *DIExpr = SrcDIExpr; 1648 if (!Ops.empty()) { 1649 DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue); 1650 } 1651 return DIExpr; 1652 }; 1653 1654 // Apply the given offset to the source DIExpression. 1655 auto applyOffset = [&](uint64_t Offset) -> DIExpression * { 1656 SmallVector<uint64_t, 8> Ops; 1657 DIExpression::appendOffset(Ops, Offset); 1658 return doSalvage(Ops); 1659 }; 1660 1661 // initializer-list helper for applying operators to the source DIExpression. 1662 auto applyOps = 1663 [&](std::initializer_list<uint64_t> Opcodes) -> DIExpression * { 1664 SmallVector<uint64_t, 8> Ops(Opcodes); 1665 return doSalvage(Ops); 1666 }; 1667 1668 if (auto *CI = dyn_cast<CastInst>(&I)) { 1669 // No-op casts and zexts are irrelevant for debug info. 1670 if (CI->isNoopCast(DL) || isa<ZExtInst>(&I)) 1671 return SrcDIExpr; 1672 return nullptr; 1673 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1674 unsigned BitWidth = 1675 M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace()); 1676 // Rewrite a constant GEP into a DIExpression. 1677 APInt Offset(BitWidth, 0); 1678 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) { 1679 return applyOffset(Offset.getSExtValue()); 1680 } else { 1681 return nullptr; 1682 } 1683 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { 1684 // Rewrite binary operations with constant integer operands. 1685 auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1)); 1686 if (!ConstInt || ConstInt->getBitWidth() > 64) 1687 return nullptr; 1688 1689 uint64_t Val = ConstInt->getSExtValue(); 1690 switch (BI->getOpcode()) { 1691 case Instruction::Add: 1692 return applyOffset(Val); 1693 case Instruction::Sub: 1694 return applyOffset(-int64_t(Val)); 1695 case Instruction::Mul: 1696 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul}); 1697 case Instruction::SDiv: 1698 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div}); 1699 case Instruction::SRem: 1700 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod}); 1701 case Instruction::Or: 1702 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or}); 1703 case Instruction::And: 1704 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and}); 1705 case Instruction::Xor: 1706 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor}); 1707 case Instruction::Shl: 1708 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl}); 1709 case Instruction::LShr: 1710 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr}); 1711 case Instruction::AShr: 1712 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra}); 1713 default: 1714 // TODO: Salvage constants from each kind of binop we know about. 1715 return nullptr; 1716 } 1717 // *Not* to do: we should not attempt to salvage load instructions, 1718 // because the validity and lifetime of a dbg.value containing 1719 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 1720 } 1721 return nullptr; 1722 } 1723 1724 /// A replacement for a dbg.value expression. 1725 using DbgValReplacement = Optional<DIExpression *>; 1726 1727 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 1728 /// possibly moving/deleting users to prevent use-before-def. Returns true if 1729 /// changes are made. 1730 static bool rewriteDebugUsers( 1731 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 1732 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 1733 // Find debug users of From. 1734 SmallVector<DbgVariableIntrinsic *, 1> Users; 1735 findDbgUsers(Users, &From); 1736 if (Users.empty()) 1737 return false; 1738 1739 // Prevent use-before-def of To. 1740 bool Changed = false; 1741 SmallPtrSet<DbgVariableIntrinsic *, 1> DeleteOrSalvage; 1742 if (isa<Instruction>(&To)) { 1743 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 1744 1745 for (auto *DII : Users) { 1746 // It's common to see a debug user between From and DomPoint. Move it 1747 // after DomPoint to preserve the variable update without any reordering. 1748 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 1749 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 1750 DII->moveAfter(&DomPoint); 1751 Changed = true; 1752 1753 // Users which otherwise aren't dominated by the replacement value must 1754 // be salvaged or deleted. 1755 } else if (!DT.dominates(&DomPoint, DII)) { 1756 DeleteOrSalvage.insert(DII); 1757 } 1758 } 1759 } 1760 1761 // Update debug users without use-before-def risk. 1762 for (auto *DII : Users) { 1763 if (DeleteOrSalvage.count(DII)) 1764 continue; 1765 1766 LLVMContext &Ctx = DII->getContext(); 1767 DbgValReplacement DVR = RewriteExpr(*DII); 1768 if (!DVR) 1769 continue; 1770 1771 DII->setOperand(0, wrapValueInMetadata(Ctx, &To)); 1772 DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR)); 1773 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 1774 Changed = true; 1775 } 1776 1777 if (!DeleteOrSalvage.empty()) { 1778 // Try to salvage the remaining debug users. 1779 Changed |= salvageDebugInfo(From); 1780 1781 // Delete the debug users which weren't salvaged. 1782 for (auto *DII : DeleteOrSalvage) { 1783 if (DII->getVariableLocation() == &From) { 1784 LLVM_DEBUG(dbgs() << "Erased UseBeforeDef: " << *DII << '\n'); 1785 DII->eraseFromParent(); 1786 Changed = true; 1787 } 1788 } 1789 } 1790 1791 return Changed; 1792 } 1793 1794 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 1795 /// losslessly preserve the bits and semantics of the value. This predicate is 1796 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 1797 /// 1798 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 1799 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 1800 /// and also does not allow lossless pointer <-> integer conversions. 1801 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 1802 Type *ToTy) { 1803 // Trivially compatible types. 1804 if (FromTy == ToTy) 1805 return true; 1806 1807 // Handle compatible pointer <-> integer conversions. 1808 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 1809 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 1810 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 1811 !DL.isNonIntegralPointerType(ToTy); 1812 return SameSize && LosslessConversion; 1813 } 1814 1815 // TODO: This is not exhaustive. 1816 return false; 1817 } 1818 1819 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 1820 Instruction &DomPoint, DominatorTree &DT) { 1821 // Exit early if From has no debug users. 1822 if (!From.isUsedByMetadata()) 1823 return false; 1824 1825 assert(&From != &To && "Can't replace something with itself"); 1826 1827 Type *FromTy = From.getType(); 1828 Type *ToTy = To.getType(); 1829 1830 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1831 return DII.getExpression(); 1832 }; 1833 1834 // Handle no-op conversions. 1835 Module &M = *From.getModule(); 1836 const DataLayout &DL = M.getDataLayout(); 1837 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 1838 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1839 1840 // Handle integer-to-integer widening and narrowing. 1841 // FIXME: Use DW_OP_convert when it's available everywhere. 1842 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 1843 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 1844 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 1845 assert(FromBits != ToBits && "Unexpected no-op conversion"); 1846 1847 // When the width of the result grows, assume that a debugger will only 1848 // access the low `FromBits` bits when inspecting the source variable. 1849 if (FromBits < ToBits) 1850 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1851 1852 // The width of the result has shrunk. Use sign/zero extension to describe 1853 // the source variable's high bits. 1854 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1855 DILocalVariable *Var = DII.getVariable(); 1856 1857 // Without knowing signedness, sign/zero extension isn't possible. 1858 auto Signedness = Var->getSignedness(); 1859 if (!Signedness) 1860 return None; 1861 1862 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 1863 dwarf::TypeKind TK = Signed ? dwarf::DW_ATE_signed : dwarf::DW_ATE_unsigned; 1864 SmallVector<uint64_t, 8> Ops({dwarf::DW_OP_LLVM_convert, ToBits, TK, 1865 dwarf::DW_OP_LLVM_convert, FromBits, TK}); 1866 return DIExpression::appendToStack(DII.getExpression(), Ops); 1867 }; 1868 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 1869 } 1870 1871 // TODO: Floating-point conversions, vectors. 1872 return false; 1873 } 1874 1875 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 1876 unsigned NumDeadInst = 0; 1877 // Delete the instructions backwards, as it has a reduced likelihood of 1878 // having to update as many def-use and use-def chains. 1879 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1880 while (EndInst != &BB->front()) { 1881 // Delete the next to last instruction. 1882 Instruction *Inst = &*--EndInst->getIterator(); 1883 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 1884 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1885 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 1886 EndInst = Inst; 1887 continue; 1888 } 1889 if (!isa<DbgInfoIntrinsic>(Inst)) 1890 ++NumDeadInst; 1891 Inst->eraseFromParent(); 1892 } 1893 return NumDeadInst; 1894 } 1895 1896 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 1897 bool PreserveLCSSA, DomTreeUpdater *DTU, 1898 MemorySSAUpdater *MSSAU) { 1899 BasicBlock *BB = I->getParent(); 1900 std::vector <DominatorTree::UpdateType> Updates; 1901 1902 if (MSSAU) 1903 MSSAU->changeToUnreachable(I); 1904 1905 // Loop over all of the successors, removing BB's entry from any PHI 1906 // nodes. 1907 if (DTU) 1908 Updates.reserve(BB->getTerminator()->getNumSuccessors()); 1909 for (BasicBlock *Successor : successors(BB)) { 1910 Successor->removePredecessor(BB, PreserveLCSSA); 1911 if (DTU) 1912 Updates.push_back({DominatorTree::Delete, BB, Successor}); 1913 } 1914 // Insert a call to llvm.trap right before this. This turns the undefined 1915 // behavior into a hard fail instead of falling through into random code. 1916 if (UseLLVMTrap) { 1917 Function *TrapFn = 1918 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1919 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1920 CallTrap->setDebugLoc(I->getDebugLoc()); 1921 } 1922 auto *UI = new UnreachableInst(I->getContext(), I); 1923 UI->setDebugLoc(I->getDebugLoc()); 1924 1925 // All instructions after this are dead. 1926 unsigned NumInstrsRemoved = 0; 1927 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 1928 while (BBI != BBE) { 1929 if (!BBI->use_empty()) 1930 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1931 BB->getInstList().erase(BBI++); 1932 ++NumInstrsRemoved; 1933 } 1934 if (DTU) 1935 DTU->applyUpdatesPermissive(Updates); 1936 return NumInstrsRemoved; 1937 } 1938 1939 /// changeToCall - Convert the specified invoke into a normal call. 1940 static void changeToCall(InvokeInst *II, DomTreeUpdater *DTU = nullptr) { 1941 SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end()); 1942 SmallVector<OperandBundleDef, 1> OpBundles; 1943 II->getOperandBundlesAsDefs(OpBundles); 1944 CallInst *NewCall = CallInst::Create( 1945 II->getFunctionType(), II->getCalledValue(), Args, OpBundles, "", II); 1946 NewCall->takeName(II); 1947 NewCall->setCallingConv(II->getCallingConv()); 1948 NewCall->setAttributes(II->getAttributes()); 1949 NewCall->setDebugLoc(II->getDebugLoc()); 1950 NewCall->copyMetadata(*II); 1951 II->replaceAllUsesWith(NewCall); 1952 1953 // Follow the call by a branch to the normal destination. 1954 BasicBlock *NormalDestBB = II->getNormalDest(); 1955 BranchInst::Create(NormalDestBB, II); 1956 1957 // Update PHI nodes in the unwind destination 1958 BasicBlock *BB = II->getParent(); 1959 BasicBlock *UnwindDestBB = II->getUnwindDest(); 1960 UnwindDestBB->removePredecessor(BB); 1961 II->eraseFromParent(); 1962 if (DTU) 1963 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDestBB}}); 1964 } 1965 1966 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 1967 BasicBlock *UnwindEdge) { 1968 BasicBlock *BB = CI->getParent(); 1969 1970 // Convert this function call into an invoke instruction. First, split the 1971 // basic block. 1972 BasicBlock *Split = 1973 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 1974 1975 // Delete the unconditional branch inserted by splitBasicBlock 1976 BB->getInstList().pop_back(); 1977 1978 // Create the new invoke instruction. 1979 SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end()); 1980 SmallVector<OperandBundleDef, 1> OpBundles; 1981 1982 CI->getOperandBundlesAsDefs(OpBundles); 1983 1984 // Note: we're round tripping operand bundles through memory here, and that 1985 // can potentially be avoided with a cleverer API design that we do not have 1986 // as of this time. 1987 1988 InvokeInst *II = 1989 InvokeInst::Create(CI->getFunctionType(), CI->getCalledValue(), Split, 1990 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 1991 II->setDebugLoc(CI->getDebugLoc()); 1992 II->setCallingConv(CI->getCallingConv()); 1993 II->setAttributes(CI->getAttributes()); 1994 1995 // Make sure that anything using the call now uses the invoke! This also 1996 // updates the CallGraph if present, because it uses a WeakTrackingVH. 1997 CI->replaceAllUsesWith(II); 1998 1999 // Delete the original call 2000 Split->getInstList().pop_front(); 2001 return Split; 2002 } 2003 2004 static bool markAliveBlocks(Function &F, 2005 SmallPtrSetImpl<BasicBlock *> &Reachable, 2006 DomTreeUpdater *DTU = nullptr) { 2007 SmallVector<BasicBlock*, 128> Worklist; 2008 BasicBlock *BB = &F.front(); 2009 Worklist.push_back(BB); 2010 Reachable.insert(BB); 2011 bool Changed = false; 2012 do { 2013 BB = Worklist.pop_back_val(); 2014 2015 // Do a quick scan of the basic block, turning any obviously unreachable 2016 // instructions into LLVM unreachable insts. The instruction combining pass 2017 // canonicalizes unreachable insts into stores to null or undef. 2018 for (Instruction &I : *BB) { 2019 if (auto *CI = dyn_cast<CallInst>(&I)) { 2020 Value *Callee = CI->getCalledValue(); 2021 // Handle intrinsic calls. 2022 if (Function *F = dyn_cast<Function>(Callee)) { 2023 auto IntrinsicID = F->getIntrinsicID(); 2024 // Assumptions that are known to be false are equivalent to 2025 // unreachable. Also, if the condition is undefined, then we make the 2026 // choice most beneficial to the optimizer, and choose that to also be 2027 // unreachable. 2028 if (IntrinsicID == Intrinsic::assume) { 2029 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2030 // Don't insert a call to llvm.trap right before the unreachable. 2031 changeToUnreachable(CI, false, false, DTU); 2032 Changed = true; 2033 break; 2034 } 2035 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2036 // A call to the guard intrinsic bails out of the current 2037 // compilation unit if the predicate passed to it is false. If the 2038 // predicate is a constant false, then we know the guard will bail 2039 // out of the current compile unconditionally, so all code following 2040 // it is dead. 2041 // 2042 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2043 // guards to treat `undef` as `false` since a guard on `undef` can 2044 // still be useful for widening. 2045 if (match(CI->getArgOperand(0), m_Zero())) 2046 if (!isa<UnreachableInst>(CI->getNextNode())) { 2047 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false, 2048 false, DTU); 2049 Changed = true; 2050 break; 2051 } 2052 } 2053 } else if ((isa<ConstantPointerNull>(Callee) && 2054 !NullPointerIsDefined(CI->getFunction())) || 2055 isa<UndefValue>(Callee)) { 2056 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU); 2057 Changed = true; 2058 break; 2059 } 2060 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 2061 // If we found a call to a no-return function, insert an unreachable 2062 // instruction after it. Make sure there isn't *already* one there 2063 // though. 2064 if (!isa<UnreachableInst>(CI->getNextNode())) { 2065 // Don't insert a call to llvm.trap right before the unreachable. 2066 changeToUnreachable(CI->getNextNode(), false, false, DTU); 2067 Changed = true; 2068 } 2069 break; 2070 } 2071 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2072 // Store to undef and store to null are undefined and used to signal 2073 // that they should be changed to unreachable by passes that can't 2074 // modify the CFG. 2075 2076 // Don't touch volatile stores. 2077 if (SI->isVolatile()) continue; 2078 2079 Value *Ptr = SI->getOperand(1); 2080 2081 if (isa<UndefValue>(Ptr) || 2082 (isa<ConstantPointerNull>(Ptr) && 2083 !NullPointerIsDefined(SI->getFunction(), 2084 SI->getPointerAddressSpace()))) { 2085 changeToUnreachable(SI, true, false, DTU); 2086 Changed = true; 2087 break; 2088 } 2089 } 2090 } 2091 2092 Instruction *Terminator = BB->getTerminator(); 2093 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2094 // Turn invokes that call 'nounwind' functions into ordinary calls. 2095 Value *Callee = II->getCalledValue(); 2096 if ((isa<ConstantPointerNull>(Callee) && 2097 !NullPointerIsDefined(BB->getParent())) || 2098 isa<UndefValue>(Callee)) { 2099 changeToUnreachable(II, true, false, DTU); 2100 Changed = true; 2101 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2102 if (II->use_empty() && II->onlyReadsMemory()) { 2103 // jump to the normal destination branch. 2104 BasicBlock *NormalDestBB = II->getNormalDest(); 2105 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2106 BranchInst::Create(NormalDestBB, II); 2107 UnwindDestBB->removePredecessor(II->getParent()); 2108 II->eraseFromParent(); 2109 if (DTU) 2110 DTU->applyUpdatesPermissive( 2111 {{DominatorTree::Delete, BB, UnwindDestBB}}); 2112 } else 2113 changeToCall(II, DTU); 2114 Changed = true; 2115 } 2116 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2117 // Remove catchpads which cannot be reached. 2118 struct CatchPadDenseMapInfo { 2119 static CatchPadInst *getEmptyKey() { 2120 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2121 } 2122 2123 static CatchPadInst *getTombstoneKey() { 2124 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2125 } 2126 2127 static unsigned getHashValue(CatchPadInst *CatchPad) { 2128 return static_cast<unsigned>(hash_combine_range( 2129 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2130 } 2131 2132 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2133 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2134 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2135 return LHS == RHS; 2136 return LHS->isIdenticalTo(RHS); 2137 } 2138 }; 2139 2140 // Set of unique CatchPads. 2141 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2142 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2143 HandlerSet; 2144 detail::DenseSetEmpty Empty; 2145 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2146 E = CatchSwitch->handler_end(); 2147 I != E; ++I) { 2148 BasicBlock *HandlerBB = *I; 2149 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2150 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2151 CatchSwitch->removeHandler(I); 2152 --I; 2153 --E; 2154 Changed = true; 2155 } 2156 } 2157 } 2158 2159 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2160 for (BasicBlock *Successor : successors(BB)) 2161 if (Reachable.insert(Successor).second) 2162 Worklist.push_back(Successor); 2163 } while (!Worklist.empty()); 2164 return Changed; 2165 } 2166 2167 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2168 Instruction *TI = BB->getTerminator(); 2169 2170 if (auto *II = dyn_cast<InvokeInst>(TI)) { 2171 changeToCall(II, DTU); 2172 return; 2173 } 2174 2175 Instruction *NewTI; 2176 BasicBlock *UnwindDest; 2177 2178 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2179 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2180 UnwindDest = CRI->getUnwindDest(); 2181 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2182 auto *NewCatchSwitch = CatchSwitchInst::Create( 2183 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2184 CatchSwitch->getName(), CatchSwitch); 2185 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2186 NewCatchSwitch->addHandler(PadBB); 2187 2188 NewTI = NewCatchSwitch; 2189 UnwindDest = CatchSwitch->getUnwindDest(); 2190 } else { 2191 llvm_unreachable("Could not find unwind successor"); 2192 } 2193 2194 NewTI->takeName(TI); 2195 NewTI->setDebugLoc(TI->getDebugLoc()); 2196 UnwindDest->removePredecessor(BB); 2197 TI->replaceAllUsesWith(NewTI); 2198 TI->eraseFromParent(); 2199 if (DTU) 2200 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDest}}); 2201 } 2202 2203 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2204 /// if they are in a dead cycle. Return true if a change was made, false 2205 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo 2206 /// after modifying the CFG. 2207 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI, 2208 DomTreeUpdater *DTU, 2209 MemorySSAUpdater *MSSAU) { 2210 SmallPtrSet<BasicBlock*, 16> Reachable; 2211 bool Changed = markAliveBlocks(F, Reachable, DTU); 2212 2213 // If there are unreachable blocks in the CFG... 2214 if (Reachable.size() == F.size()) 2215 return Changed; 2216 2217 assert(Reachable.size() < F.size()); 2218 NumRemoved += F.size()-Reachable.size(); 2219 2220 SmallPtrSet<BasicBlock *, 16> DeadBlockSet; 2221 for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ++I) { 2222 auto *BB = &*I; 2223 if (Reachable.count(BB)) 2224 continue; 2225 DeadBlockSet.insert(BB); 2226 } 2227 2228 if (MSSAU) 2229 MSSAU->removeBlocks(DeadBlockSet); 2230 2231 // Loop over all of the basic blocks that are not reachable, dropping all of 2232 // their internal references. Update DTU and LVI if available. 2233 std::vector<DominatorTree::UpdateType> Updates; 2234 for (auto *BB : DeadBlockSet) { 2235 for (BasicBlock *Successor : successors(BB)) { 2236 if (!DeadBlockSet.count(Successor)) 2237 Successor->removePredecessor(BB); 2238 if (DTU) 2239 Updates.push_back({DominatorTree::Delete, BB, Successor}); 2240 } 2241 if (LVI) 2242 LVI->eraseBlock(BB); 2243 BB->dropAllReferences(); 2244 } 2245 for (Function::iterator I = ++F.begin(); I != F.end();) { 2246 auto *BB = &*I; 2247 if (Reachable.count(BB)) { 2248 ++I; 2249 continue; 2250 } 2251 if (DTU) { 2252 // Remove the terminator of BB to clear the successor list of BB. 2253 if (BB->getTerminator()) 2254 BB->getInstList().pop_back(); 2255 new UnreachableInst(BB->getContext(), BB); 2256 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 2257 "applying corresponding DTU updates."); 2258 ++I; 2259 } else { 2260 I = F.getBasicBlockList().erase(I); 2261 } 2262 } 2263 2264 if (DTU) { 2265 DTU->applyUpdatesPermissive(Updates); 2266 bool Deleted = false; 2267 for (auto *BB : DeadBlockSet) { 2268 if (DTU->isBBPendingDeletion(BB)) 2269 --NumRemoved; 2270 else 2271 Deleted = true; 2272 DTU->deleteBB(BB); 2273 } 2274 if (!Deleted) 2275 return false; 2276 } 2277 return true; 2278 } 2279 2280 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2281 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2282 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2283 K->dropUnknownNonDebugMetadata(KnownIDs); 2284 K->getAllMetadataOtherThanDebugLoc(Metadata); 2285 for (const auto &MD : Metadata) { 2286 unsigned Kind = MD.first; 2287 MDNode *JMD = J->getMetadata(Kind); 2288 MDNode *KMD = MD.second; 2289 2290 switch (Kind) { 2291 default: 2292 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2293 break; 2294 case LLVMContext::MD_dbg: 2295 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2296 case LLVMContext::MD_tbaa: 2297 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2298 break; 2299 case LLVMContext::MD_alias_scope: 2300 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2301 break; 2302 case LLVMContext::MD_noalias: 2303 case LLVMContext::MD_mem_parallel_loop_access: 2304 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2305 break; 2306 case LLVMContext::MD_access_group: 2307 K->setMetadata(LLVMContext::MD_access_group, 2308 intersectAccessGroups(K, J)); 2309 break; 2310 case LLVMContext::MD_range: 2311 2312 // If K does move, use most generic range. Otherwise keep the range of 2313 // K. 2314 if (DoesKMove) 2315 // FIXME: If K does move, we should drop the range info and nonnull. 2316 // Currently this function is used with DoesKMove in passes 2317 // doing hoisting/sinking and the current behavior of using the 2318 // most generic range is correct in those cases. 2319 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2320 break; 2321 case LLVMContext::MD_fpmath: 2322 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2323 break; 2324 case LLVMContext::MD_invariant_load: 2325 // Only set the !invariant.load if it is present in both instructions. 2326 K->setMetadata(Kind, JMD); 2327 break; 2328 case LLVMContext::MD_nonnull: 2329 // If K does move, keep nonull if it is present in both instructions. 2330 if (DoesKMove) 2331 K->setMetadata(Kind, JMD); 2332 break; 2333 case LLVMContext::MD_invariant_group: 2334 // Preserve !invariant.group in K. 2335 break; 2336 case LLVMContext::MD_align: 2337 K->setMetadata(Kind, 2338 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2339 break; 2340 case LLVMContext::MD_dereferenceable: 2341 case LLVMContext::MD_dereferenceable_or_null: 2342 K->setMetadata(Kind, 2343 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2344 break; 2345 } 2346 } 2347 // Set !invariant.group from J if J has it. If both instructions have it 2348 // then we will just pick it from J - even when they are different. 2349 // Also make sure that K is load or store - f.e. combining bitcast with load 2350 // could produce bitcast with invariant.group metadata, which is invalid. 2351 // FIXME: we should try to preserve both invariant.group md if they are 2352 // different, but right now instruction can only have one invariant.group. 2353 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2354 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2355 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2356 } 2357 2358 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 2359 bool KDominatesJ) { 2360 unsigned KnownIDs[] = { 2361 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2362 LLVMContext::MD_noalias, LLVMContext::MD_range, 2363 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2364 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2365 LLVMContext::MD_dereferenceable, 2366 LLVMContext::MD_dereferenceable_or_null, 2367 LLVMContext::MD_access_group}; 2368 combineMetadata(K, J, KnownIDs, KDominatesJ); 2369 } 2370 2371 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2372 auto *ReplInst = dyn_cast<Instruction>(Repl); 2373 if (!ReplInst) 2374 return; 2375 2376 // Patch the replacement so that it is not more restrictive than the value 2377 // being replaced. 2378 // Note that if 'I' is a load being replaced by some operation, 2379 // for example, by an arithmetic operation, then andIRFlags() 2380 // would just erase all math flags from the original arithmetic 2381 // operation, which is clearly not wanted and not needed. 2382 if (!isa<LoadInst>(I)) 2383 ReplInst->andIRFlags(I); 2384 2385 // FIXME: If both the original and replacement value are part of the 2386 // same control-flow region (meaning that the execution of one 2387 // guarantees the execution of the other), then we can combine the 2388 // noalias scopes here and do better than the general conservative 2389 // answer used in combineMetadata(). 2390 2391 // In general, GVN unifies expressions over different control-flow 2392 // regions, and so we need a conservative combination of the noalias 2393 // scopes. 2394 static const unsigned KnownIDs[] = { 2395 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2396 LLVMContext::MD_noalias, LLVMContext::MD_range, 2397 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 2398 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull, 2399 LLVMContext::MD_access_group}; 2400 combineMetadata(ReplInst, I, KnownIDs, false); 2401 } 2402 2403 template <typename RootType, typename DominatesFn> 2404 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2405 const RootType &Root, 2406 const DominatesFn &Dominates) { 2407 assert(From->getType() == To->getType()); 2408 2409 unsigned Count = 0; 2410 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2411 UI != UE;) { 2412 Use &U = *UI++; 2413 if (!Dominates(Root, U)) 2414 continue; 2415 U.set(To); 2416 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2417 << "' as " << *To << " in " << *U << "\n"); 2418 ++Count; 2419 } 2420 return Count; 2421 } 2422 2423 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2424 assert(From->getType() == To->getType()); 2425 auto *BB = From->getParent(); 2426 unsigned Count = 0; 2427 2428 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2429 UI != UE;) { 2430 Use &U = *UI++; 2431 auto *I = cast<Instruction>(U.getUser()); 2432 if (I->getParent() == BB) 2433 continue; 2434 U.set(To); 2435 ++Count; 2436 } 2437 return Count; 2438 } 2439 2440 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2441 DominatorTree &DT, 2442 const BasicBlockEdge &Root) { 2443 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2444 return DT.dominates(Root, U); 2445 }; 2446 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2447 } 2448 2449 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2450 DominatorTree &DT, 2451 const BasicBlock *BB) { 2452 auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) { 2453 auto *I = cast<Instruction>(U.getUser())->getParent(); 2454 return DT.properlyDominates(BB, I); 2455 }; 2456 return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates); 2457 } 2458 2459 bool llvm::callsGCLeafFunction(const CallBase *Call, 2460 const TargetLibraryInfo &TLI) { 2461 // Check if the function is specifically marked as a gc leaf function. 2462 if (Call->hasFnAttr("gc-leaf-function")) 2463 return true; 2464 if (const Function *F = Call->getCalledFunction()) { 2465 if (F->hasFnAttribute("gc-leaf-function")) 2466 return true; 2467 2468 if (auto IID = F->getIntrinsicID()) 2469 // Most LLVM intrinsics do not take safepoints. 2470 return IID != Intrinsic::experimental_gc_statepoint && 2471 IID != Intrinsic::experimental_deoptimize; 2472 } 2473 2474 // Lib calls can be materialized by some passes, and won't be 2475 // marked as 'gc-leaf-function.' All available Libcalls are 2476 // GC-leaf. 2477 LibFunc LF; 2478 if (TLI.getLibFunc(ImmutableCallSite(Call), LF)) { 2479 return TLI.has(LF); 2480 } 2481 2482 return false; 2483 } 2484 2485 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2486 LoadInst &NewLI) { 2487 auto *NewTy = NewLI.getType(); 2488 2489 // This only directly applies if the new type is also a pointer. 2490 if (NewTy->isPointerTy()) { 2491 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2492 return; 2493 } 2494 2495 // The only other translation we can do is to integral loads with !range 2496 // metadata. 2497 if (!NewTy->isIntegerTy()) 2498 return; 2499 2500 MDBuilder MDB(NewLI.getContext()); 2501 const Value *Ptr = OldLI.getPointerOperand(); 2502 auto *ITy = cast<IntegerType>(NewTy); 2503 auto *NullInt = ConstantExpr::getPtrToInt( 2504 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2505 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2506 NewLI.setMetadata(LLVMContext::MD_range, 2507 MDB.createRange(NonNullInt, NullInt)); 2508 } 2509 2510 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2511 MDNode *N, LoadInst &NewLI) { 2512 auto *NewTy = NewLI.getType(); 2513 2514 // Give up unless it is converted to a pointer where there is a single very 2515 // valuable mapping we can do reliably. 2516 // FIXME: It would be nice to propagate this in more ways, but the type 2517 // conversions make it hard. 2518 if (!NewTy->isPointerTy()) 2519 return; 2520 2521 unsigned BitWidth = DL.getIndexTypeSizeInBits(NewTy); 2522 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2523 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2524 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2525 } 2526 } 2527 2528 void llvm::dropDebugUsers(Instruction &I) { 2529 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2530 findDbgUsers(DbgUsers, &I); 2531 for (auto *DII : DbgUsers) 2532 DII->eraseFromParent(); 2533 } 2534 2535 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 2536 BasicBlock *BB) { 2537 // Since we are moving the instructions out of its basic block, we do not 2538 // retain their original debug locations (DILocations) and debug intrinsic 2539 // instructions. 2540 // 2541 // Doing so would degrade the debugging experience and adversely affect the 2542 // accuracy of profiling information. 2543 // 2544 // Currently, when hoisting the instructions, we take the following actions: 2545 // - Remove their debug intrinsic instructions. 2546 // - Set their debug locations to the values from the insertion point. 2547 // 2548 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 2549 // need to be deleted, is because there will not be any instructions with a 2550 // DILocation in either branch left after performing the transformation. We 2551 // can only insert a dbg.value after the two branches are joined again. 2552 // 2553 // See PR38762, PR39243 for more details. 2554 // 2555 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 2556 // encode predicated DIExpressions that yield different results on different 2557 // code paths. 2558 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 2559 Instruction *I = &*II; 2560 I->dropUnknownNonDebugMetadata(); 2561 if (I->isUsedByMetadata()) 2562 dropDebugUsers(*I); 2563 if (isa<DbgInfoIntrinsic>(I)) { 2564 // Remove DbgInfo Intrinsics. 2565 II = I->eraseFromParent(); 2566 continue; 2567 } 2568 I->setDebugLoc(InsertPt->getDebugLoc()); 2569 ++II; 2570 } 2571 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(), 2572 BB->begin(), 2573 BB->getTerminator()->getIterator()); 2574 } 2575 2576 namespace { 2577 2578 /// A potential constituent of a bitreverse or bswap expression. See 2579 /// collectBitParts for a fuller explanation. 2580 struct BitPart { 2581 BitPart(Value *P, unsigned BW) : Provider(P) { 2582 Provenance.resize(BW); 2583 } 2584 2585 /// The Value that this is a bitreverse/bswap of. 2586 Value *Provider; 2587 2588 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2589 /// in Provider becomes bit B in the result of this expression. 2590 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2591 2592 enum { Unset = -1 }; 2593 }; 2594 2595 } // end anonymous namespace 2596 2597 /// Analyze the specified subexpression and see if it is capable of providing 2598 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2599 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in 2600 /// the output of the expression came from a corresponding bit in some other 2601 /// value. This function is recursive, and the end result is a mapping of 2602 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2603 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2604 /// 2605 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2606 /// that the expression deposits the low byte of %X into the high byte of the 2607 /// result and that all other bits are zero. This expression is accepted and a 2608 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2609 /// [0-7]. 2610 /// 2611 /// To avoid revisiting values, the BitPart results are memoized into the 2612 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2613 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2614 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2615 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2616 /// type instead to provide the same functionality. 2617 /// 2618 /// Because we pass around references into \c BPS, we must use a container that 2619 /// does not invalidate internal references (std::map instead of DenseMap). 2620 static const Optional<BitPart> & 2621 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2622 std::map<Value *, Optional<BitPart>> &BPS) { 2623 auto I = BPS.find(V); 2624 if (I != BPS.end()) 2625 return I->second; 2626 2627 auto &Result = BPS[V] = None; 2628 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 2629 2630 if (Instruction *I = dyn_cast<Instruction>(V)) { 2631 // If this is an or instruction, it may be an inner node of the bswap. 2632 if (I->getOpcode() == Instruction::Or) { 2633 auto &A = collectBitParts(I->getOperand(0), MatchBSwaps, 2634 MatchBitReversals, BPS); 2635 auto &B = collectBitParts(I->getOperand(1), MatchBSwaps, 2636 MatchBitReversals, BPS); 2637 if (!A || !B) 2638 return Result; 2639 2640 // Try and merge the two together. 2641 if (!A->Provider || A->Provider != B->Provider) 2642 return Result; 2643 2644 Result = BitPart(A->Provider, BitWidth); 2645 for (unsigned i = 0; i < A->Provenance.size(); ++i) { 2646 if (A->Provenance[i] != BitPart::Unset && 2647 B->Provenance[i] != BitPart::Unset && 2648 A->Provenance[i] != B->Provenance[i]) 2649 return Result = None; 2650 2651 if (A->Provenance[i] == BitPart::Unset) 2652 Result->Provenance[i] = B->Provenance[i]; 2653 else 2654 Result->Provenance[i] = A->Provenance[i]; 2655 } 2656 2657 return Result; 2658 } 2659 2660 // If this is a logical shift by a constant, recurse then shift the result. 2661 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { 2662 unsigned BitShift = 2663 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); 2664 // Ensure the shift amount is defined. 2665 if (BitShift > BitWidth) 2666 return Result; 2667 2668 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2669 MatchBitReversals, BPS); 2670 if (!Res) 2671 return Result; 2672 Result = Res; 2673 2674 // Perform the "shift" on BitProvenance. 2675 auto &P = Result->Provenance; 2676 if (I->getOpcode() == Instruction::Shl) { 2677 P.erase(std::prev(P.end(), BitShift), P.end()); 2678 P.insert(P.begin(), BitShift, BitPart::Unset); 2679 } else { 2680 P.erase(P.begin(), std::next(P.begin(), BitShift)); 2681 P.insert(P.end(), BitShift, BitPart::Unset); 2682 } 2683 2684 return Result; 2685 } 2686 2687 // If this is a logical 'and' with a mask that clears bits, recurse then 2688 // unset the appropriate bits. 2689 if (I->getOpcode() == Instruction::And && 2690 isa<ConstantInt>(I->getOperand(1))) { 2691 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1); 2692 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); 2693 2694 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2695 // early exit. 2696 unsigned NumMaskedBits = AndMask.countPopulation(); 2697 if (!MatchBitReversals && NumMaskedBits % 8 != 0) 2698 return Result; 2699 2700 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2701 MatchBitReversals, BPS); 2702 if (!Res) 2703 return Result; 2704 Result = Res; 2705 2706 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1) 2707 // If the AndMask is zero for this bit, clear the bit. 2708 if ((AndMask & Bit) == 0) 2709 Result->Provenance[i] = BitPart::Unset; 2710 return Result; 2711 } 2712 2713 // If this is a zext instruction zero extend the result. 2714 if (I->getOpcode() == Instruction::ZExt) { 2715 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2716 MatchBitReversals, BPS); 2717 if (!Res) 2718 return Result; 2719 2720 Result = BitPart(Res->Provider, BitWidth); 2721 auto NarrowBitWidth = 2722 cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth(); 2723 for (unsigned i = 0; i < NarrowBitWidth; ++i) 2724 Result->Provenance[i] = Res->Provenance[i]; 2725 for (unsigned i = NarrowBitWidth; i < BitWidth; ++i) 2726 Result->Provenance[i] = BitPart::Unset; 2727 return Result; 2728 } 2729 } 2730 2731 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 2732 // the input value to the bswap/bitreverse. 2733 Result = BitPart(V, BitWidth); 2734 for (unsigned i = 0; i < BitWidth; ++i) 2735 Result->Provenance[i] = i; 2736 return Result; 2737 } 2738 2739 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 2740 unsigned BitWidth) { 2741 if (From % 8 != To % 8) 2742 return false; 2743 // Convert from bit indices to byte indices and check for a byte reversal. 2744 From >>= 3; 2745 To >>= 3; 2746 BitWidth >>= 3; 2747 return From == BitWidth - To - 1; 2748 } 2749 2750 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 2751 unsigned BitWidth) { 2752 return From == BitWidth - To - 1; 2753 } 2754 2755 bool llvm::recognizeBSwapOrBitReverseIdiom( 2756 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 2757 SmallVectorImpl<Instruction *> &InsertedInsts) { 2758 if (Operator::getOpcode(I) != Instruction::Or) 2759 return false; 2760 if (!MatchBSwaps && !MatchBitReversals) 2761 return false; 2762 IntegerType *ITy = dyn_cast<IntegerType>(I->getType()); 2763 if (!ITy || ITy->getBitWidth() > 128) 2764 return false; // Can't do vectors or integers > 128 bits. 2765 unsigned BW = ITy->getBitWidth(); 2766 2767 unsigned DemandedBW = BW; 2768 IntegerType *DemandedTy = ITy; 2769 if (I->hasOneUse()) { 2770 if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) { 2771 DemandedTy = cast<IntegerType>(Trunc->getType()); 2772 DemandedBW = DemandedTy->getBitWidth(); 2773 } 2774 } 2775 2776 // Try to find all the pieces corresponding to the bswap. 2777 std::map<Value *, Optional<BitPart>> BPS; 2778 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS); 2779 if (!Res) 2780 return false; 2781 auto &BitProvenance = Res->Provenance; 2782 2783 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 2784 // only byteswap values with an even number of bytes. 2785 bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true; 2786 for (unsigned i = 0; i < DemandedBW; ++i) { 2787 OKForBSwap &= 2788 bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW); 2789 OKForBitReverse &= 2790 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW); 2791 } 2792 2793 Intrinsic::ID Intrin; 2794 if (OKForBSwap && MatchBSwaps) 2795 Intrin = Intrinsic::bswap; 2796 else if (OKForBitReverse && MatchBitReversals) 2797 Intrin = Intrinsic::bitreverse; 2798 else 2799 return false; 2800 2801 if (ITy != DemandedTy) { 2802 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 2803 Value *Provider = Res->Provider; 2804 IntegerType *ProviderTy = cast<IntegerType>(Provider->getType()); 2805 // We may need to truncate the provider. 2806 if (DemandedTy != ProviderTy) { 2807 auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy, 2808 "trunc", I); 2809 InsertedInsts.push_back(Trunc); 2810 Provider = Trunc; 2811 } 2812 auto *CI = CallInst::Create(F, Provider, "rev", I); 2813 InsertedInsts.push_back(CI); 2814 auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I); 2815 InsertedInsts.push_back(ExtInst); 2816 return true; 2817 } 2818 2819 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy); 2820 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I)); 2821 return true; 2822 } 2823 2824 // CodeGen has special handling for some string functions that may replace 2825 // them with target-specific intrinsics. Since that'd skip our interceptors 2826 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 2827 // we mark affected calls as NoBuiltin, which will disable optimization 2828 // in CodeGen. 2829 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 2830 CallInst *CI, const TargetLibraryInfo *TLI) { 2831 Function *F = CI->getCalledFunction(); 2832 LibFunc Func; 2833 if (F && !F->hasLocalLinkage() && F->hasName() && 2834 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 2835 !F->doesNotAccessMemory()) 2836 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 2837 } 2838 2839 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 2840 // We can't have a PHI with a metadata type. 2841 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 2842 return false; 2843 2844 // Early exit. 2845 if (!isa<Constant>(I->getOperand(OpIdx))) 2846 return true; 2847 2848 switch (I->getOpcode()) { 2849 default: 2850 return true; 2851 case Instruction::Call: 2852 case Instruction::Invoke: 2853 // Can't handle inline asm. Skip it. 2854 if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue())) 2855 return false; 2856 // Many arithmetic intrinsics have no issue taking a 2857 // variable, however it's hard to distingish these from 2858 // specials such as @llvm.frameaddress that require a constant. 2859 if (isa<IntrinsicInst>(I)) 2860 return false; 2861 2862 // Constant bundle operands may need to retain their constant-ness for 2863 // correctness. 2864 if (ImmutableCallSite(I).isBundleOperand(OpIdx)) 2865 return false; 2866 return true; 2867 case Instruction::ShuffleVector: 2868 // Shufflevector masks are constant. 2869 return OpIdx != 2; 2870 case Instruction::Switch: 2871 case Instruction::ExtractValue: 2872 // All operands apart from the first are constant. 2873 return OpIdx == 0; 2874 case Instruction::InsertValue: 2875 // All operands apart from the first and the second are constant. 2876 return OpIdx < 2; 2877 case Instruction::Alloca: 2878 // Static allocas (constant size in the entry block) are handled by 2879 // prologue/epilogue insertion so they're free anyway. We definitely don't 2880 // want to make them non-constant. 2881 return !cast<AllocaInst>(I)->isStaticAlloca(); 2882 case Instruction::GetElementPtr: 2883 if (OpIdx == 0) 2884 return true; 2885 gep_type_iterator It = gep_type_begin(I); 2886 for (auto E = std::next(It, OpIdx); It != E; ++It) 2887 if (It.isStruct()) 2888 return false; 2889 return true; 2890 } 2891 } 2892 2893 using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>; 2894 AllocaInst *llvm::findAllocaForValue(Value *V, 2895 AllocaForValueMapTy &AllocaForValue) { 2896 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2897 return AI; 2898 // See if we've already calculated (or started to calculate) alloca for a 2899 // given value. 2900 AllocaForValueMapTy::iterator I = AllocaForValue.find(V); 2901 if (I != AllocaForValue.end()) 2902 return I->second; 2903 // Store 0 while we're calculating alloca for value V to avoid 2904 // infinite recursion if the value references itself. 2905 AllocaForValue[V] = nullptr; 2906 AllocaInst *Res = nullptr; 2907 if (CastInst *CI = dyn_cast<CastInst>(V)) 2908 Res = findAllocaForValue(CI->getOperand(0), AllocaForValue); 2909 else if (PHINode *PN = dyn_cast<PHINode>(V)) { 2910 for (Value *IncValue : PN->incoming_values()) { 2911 // Allow self-referencing phi-nodes. 2912 if (IncValue == PN) 2913 continue; 2914 AllocaInst *IncValueAI = findAllocaForValue(IncValue, AllocaForValue); 2915 // AI for incoming values should exist and should all be equal. 2916 if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res)) 2917 return nullptr; 2918 Res = IncValueAI; 2919 } 2920 } else if (GetElementPtrInst *EP = dyn_cast<GetElementPtrInst>(V)) { 2921 Res = findAllocaForValue(EP->getPointerOperand(), AllocaForValue); 2922 } else { 2923 LLVM_DEBUG(dbgs() << "Alloca search cancelled on unknown instruction: " 2924 << *V << "\n"); 2925 } 2926 if (Res) 2927 AllocaForValue[V] = Res; 2928 return Res; 2929 } 2930